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In multivariate regression, a K-dimensional response vector is regressed
upon a common set of p covariates, with a matrix B∗ ∈ R

p×K of regression
coefficients. We study the behavior of the multivariate group Lasso, in which
block regularization based on the �1/�2 norm is used for support union re-
covery, or recovery of the set of s rows for which B∗ is nonzero. Under high-
dimensional scaling, we show that the multivariate group Lasso exhibits a
threshold for the recovery of the exact row pattern with high probability over
the random design and noise that is specified by the sample complexity pa-
rameter θ(n,p, s) := n/[2ψ(B∗) log(p − s)]. Here n is the sample size, and
ψ(B∗) is a sparsity-overlap function measuring a combination of the spar-
sities and overlaps of the K-regression coefficient vectors that constitute the
model. We prove that the multivariate group Lasso succeeds for problem se-
quences (n,p, s) such that θ(n,p, s) exceeds a critical level θu, and fails for
sequences such that θ(n,p, s) lies below a critical level θ�. For the special
case of the standard Gaussian ensemble, we show that θ� = θu so that the
characterization is sharp. The sparsity-overlap function ψ(B∗) reveals that,
if the design is uncorrelated on the active rows, �1/�2 regularization for mul-
tivariate regression never harms performance relative to an ordinary Lasso
approach and can yield substantial improvements in sample complexity (up
to a factor of K) when the coefficient vectors are suitably orthogonal. For
more general designs, it is possible for the ordinary Lasso to outperform the
multivariate group Lasso. We complement our analysis with simulations that
demonstrate the sharpness of our theoretical results, even for relatively small
problems.

1. Introduction. The development of efficient algorithms for estimation of
large-scale models has been a major goal of statistical learning research in the
last decade. There is now a substantial body of work based on �1-regularization
dating back to the seminal work of Tibshirani (1996) and Donoho and collabora-
tors [Chen, Donoho and Saunders (1998); Donoho and Huo (2001)]. The bulk of
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this work has focused on the standard problem of linear regression, in which one
makes observations of the form

y = Xβ∗ + w,(1)

where y ∈ R
n is a real-valued vector of observations, w ∈ R

n is an additive zero-
mean noise vector and X ∈ R

n×p is the design matrix. A subset of the components
of the unknown parameter vector β∗ ∈ R

p are assumed nonzero; the goal is to
identify these coefficients and (possibly) estimate their values. This goal can be
formulated in terms of the solution of the penalized optimization problem

arg min
β∈Rp

{
1

n
‖y − Xβ‖2

2 + λn‖β‖0

}
,(2)

where ‖β‖0 counts the number of nonzero components in β and where λn > 0 is
a regularization parameter. Unfortunately, this optimization problem is computa-
tionally intractable, a fact which has led various authors to consider the convex
relaxation [Tibshirani (1996); Chen, Donoho and Saunders (1998)]

arg min
β∈Rp

{
1

n
‖y − Xβ‖2

2 + λn‖β‖1

}
,(3)

in which ‖β‖0 is replaced with the �1 norm ‖β‖1. This relaxation, often referred
to as the Lasso [Tibshirani (1996)], is a quadratic program, and can be solved
efficiently by various methods [e.g., Boyd and Vandenberghe (2004); Osborne,
Presnell and Turlach (2000); Efron et al. (2004)].

A variety of theoretical results are now in place for the Lasso, both in the tra-
ditional setting where the sample size n tends to infinity with the problem size p

fixed [Knight and Fu (2000)], as well as under high-dimensional scaling, in which
p and n tend to infinity simultaneously, thereby allowing p to be comparable to or
even larger than n [e.g., Meinshausen and Bühlmann (2006); Wainwright (2009b);
Meinshausen and Yu (2009); Bickel, Ritov and Tsybakov (2009)]. In many appli-
cations, it is natural to impose sparsity constraints on the regression vector β∗,
and a variety of such constraints have been considered. For example, one can con-
sider a “hard sparsity” model in which β∗ is assumed to contain at most s nonzero
entries or a “soft sparsity” model in which β∗ is assumed to belong to an �q ball
with q < 1. Analyses also differ in terms of the loss functions that are considered.
For the model or variable selection problem, it is natural to consider the zero–one
loss associated with the problem of recovering the unknown support set of β∗.
Alternatively, one can view the Lasso as a shrinkage estimator to be compared to
traditional least squares or ridge regression; in this case, it is natural to study the
�2-loss ‖β̂ − β∗‖2 between the estimate β̂ and the ground truth. In other settings,
the prediction error E[(Y − XT β̂)2] may be of primary interest, and one tries to
show risk consistency (namely, that the estimated model predicts as well as the
best sparse model, whether or not the true model is sparse).
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A number of alternatives to the Lasso have been explored in recent years, and
in some cases stronger theoretical results have been obtained [Fan and Li (2001);
Frank and Friedman (1993); Huang, Horowitz and Ma (2008)]. However, the re-
sulting optimization problems are generally nonconvex and thus difficult to solve
in practice. The Lasso remains a focus of attention due to its combination of favor-
able statistical and computational properties.

1.1. Block-structured regularization. While the assumption of sparsity at the
level of individual coefficients is one way to give meaning to high-dimensional
(p � n) regression, there are other structural assumptions that are natural in re-
gression, and which may provide additional leverage. For instance, in a hierar-
chical regression model, groups of regression coefficients may be required to be
zero or nonzero in a blockwise manner; for example, one might wish to include
a particular covariate and all powers of that covariate as a group [Yuan and Lin
(2006); Zhao, Rocha and Yu (2009)]. Another example arises when we consider
variable selection in the setting of multivariate regression: multiple regressions can
be related by a (partially) shared sparsity pattern, such as when there are an un-
derlying set of covariates that are “relevant” across regressions [Obozinski, Taskar
and Jordan (2010); Argyriou, Evgeniou and Pontil (2006); Turlach, Venables and
Wright (2005); Zhang et al. (2008)]. Based on such motivations, a recent line of
research [Bach, Lanckriet and Jordan (2004); Tropp (2006); Yuan and Lin (2006);
Zhao, Rocha and Yu (2009); Obozinski, Taskar and Jordan (2010); Ravikumar
et al. (2009)] has studied the use of block-regularization schemes, in which the �1
norm is composed with some other �q norm (q > 1), thereby obtaining the �1/�q

norm defined as a sum of �q norms over groups of regression coefficients. The best
known examples of such block norms are the �1/�∞ norm [Turlach, Venables and
Wright (2005); Zhang et al. (2008)] and the �1/�2 norm [Obozinski, Taskar and
Jordan (2010)].

In this paper, we investigate the use of �1/�2 block-regularization in the con-
text of high-dimensional multivariate linear regression, in which a collection of
K scalar outputs are regressed on the same design matrix X ∈ R

n×p . Represent-
ing the regression coefficients as an p × K matrix B∗, the multivariate regression
model takes the form

Y = XB∗ + W,(4)

where Y ∈ R
n×K and W ∈ R

n×K are matrices of observations and zero-mean
noise, respectively. In addition, we assume a hard-sparsity model for the regression
coefficients in which column k of the coefficient matrix B∗ has nonzero entries on
a subset

Sk := {
i ∈ {1, . . . , p} | β∗

ik �= 0
}

(5)

of size sk := |Sk|. In many applications it is natural to expect that the supports Sk

should overlap. In that case, instead of estimating the support of each regression
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separately, it might be beneficial to first estimate the set of variables which are
relevant to any of the multivariate responses and to estimate only subsequently the
individual supports within that set. Thus we focus on the problem of recovering the
union of the supports, namely the set S :=⋃K

k=1 Sk , corresponding to the subset
of indices i ∈ {1, . . . , p} that are involved in at least one regression. We consider
a range of problems in which variables can be relevant to all, some, only one or
none of the regressions, and we investigate if and how the overlap of the individual
supports and the relatedness of individual regressions benefit or hinder estimation
of the support union.

The support union problem can be understood as the generalization of the prob-
lem of variable selection to the group setting. Rather than selecting specific com-
ponents of a coefficient vector, we aim to select specific rows of a coefficient ma-
trix. We thus also refer to the support union problem as the row selection problem.
We note that recovering S, although not equivalent to recovering each of the dis-
tinct individual supports Sk , addresses the essential difficulty in recovering those
supports. Indeed, as we show in Section 2.2, given a method that returns the row
support S with |S| � p (with high probability), it is straightforward to recover the
individual supports Sk by ordinary least-squares and thresholding.

If computational complexity were not a concern, the natural way to perform row
selection for B∗ would be by solving the optimization problem

arg min
B∈Rp×K

{
1

2n
|||Y − XB|||2F + λn‖B‖�0/�q

}
,(6)

where B = (βik)1≤i≤p,1≤k≤K is a p × K matrix, the quantity ||| · |||F denotes the
Frobenius norm,1 and the “norm” ‖B‖�0/�q counts the number of rows in B that
have nonzero �q norm. As before, the �0 component of this regularizer yields a
nonconvex and computationally intractable problem, so that it is natural to consider
the relaxation

arg min
B∈Rp×K

{
1

2n
|||Y − XB|||2F + λn‖B‖�1/�q

}
,(7)

where ‖B‖�1/�q is the block �1/�q norm

‖B‖�1/�q :=
p∑

i=1

(
K∑

j=1

βij
q

)1/q

=
p∑

i=1

‖βi‖q.(8)

The relaxation (7) is a natural generalization of the Lasso; indeed, it special-
izes to the Lasso in the case K = 1. For later reference, we also note that setting
q = 1 leads to the use of the �1/�1 block norm in the relaxation (7). Since this
norm decouples across both the rows and columns, this particular choice is equiv-
alent to solving K separate Lasso problems, one for each column of the p × K

1The Frobenius norm of a matrix A is given by |||A|||F :=
√∑

i,j A2
ij .
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regression matrix B∗. A more interesting choice is q = 2, which yields a block
�1/�2 norm that couples together the columns of B . Regularization with the �1/�2
norm is commonly referred to as the group Lasso in the setting of univariate re-
gression [Yuan and Lin (2006)]. We thus refer to �1/�2 regularization in the mul-
tivariate setting as the multivariate group Lasso. Note that the multivariate group
Lasso can be viewed as a special case of the group Lasso, in that it involves a
specific grouping of regression coefficients, but the multivariate setting brings new
statistical issues to the fore. As we discuss in Appendix B, the multivariate group
Lasso can be cast as a second-order cone program (SOCP). This is a family of
convex optimization problems that can be solved efficiently with interior point
methods [Boyd and Vandenberghe (2004)] and includes quadratic programs as a
particular case.

Some recent work has addressed certain statistical aspects of block-regulariza-
tion schemes. Meier, van de Geer and Bühlmann (2008) perform an analysis of
risk consistency with block-norm regularization. Bach (2008) provides an analy-
sis of block-wise support recovery for the kernelized group Lasso in the classical,
fixed p setting. In the high-dimensional setting, Ravikumar et al. (2009) studies the
consistency of block-wise support recovery for the group Lasso for fixed design
matrices, and their result is generalized by Liu and Zhang (2008) to block-wise
support recovery in the setting of general �1/�q regularization, again for fixed
design matrices. However, these analyses do not discriminate between various val-
ues of q , yielding the same qualitative results and the same convergence rates for
q = 1 as for q > 1. Our focus, which is motivated by the empirical observation
that the group Lasso and the multivariate group Lasso can outperform the ordinary
Lasso [Bach (2008); Yuan and Lin (2006); Zhao, Rocha and Yu (2009); Obozinski,
Taskar and Jordan (2010)], is precisely the distinction between q = 1 and q > 1
(specifically q = 2). We note that in concurrent work Negahban and Wainwright
(2008) have studied a related problem of support recovery for the �1/�∞ relax-
ation.

The distinction between q = 1 and q = 2 is also significant from an optimiza-
tion-theoretic point of view. In particular, the SOCP relaxations underlying the
multivariate group Lasso (q = 2) are generally tighter than the quadratic program-
ming relaxation underlying the Lasso (q = 1); however, the improved accuracy
is generally obtained at a higher computational cost [Boyd and Vandenberghe
(2004)]. Thus we can view our problem as an instance of the general question
of the relationship of statistical efficiency to computational efficiency: does the
qualitatively greater amount of computational effort involved in solving the mul-
tivariate group Lasso always yield greater statistical efficiency? More specifically,
can we give theoretical conditions under which solving the generalized Lasso prob-
lem (7) has greater statistical efficiency than naive strategies based on the ordinary
Lasso? Conversely, can the multivariate group Lasso ever be worse than the ordi-
nary Lasso?
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With this motivation, this paper provides a detailed analysis of model selection
consistency of the multivariate group Lasso (7) with �1/�2-regularization. Statisti-
cal efficiency is defined in terms of the scaling of the sample size n, as a function
of the problem size p and of the sparsity structure of the regression matrix B∗,
required for consistent row selection. Our analysis is high-dimensional in nature,
allowing both n and p to diverge, and yielding explicit error bounds as a function
of p. As detailed below, our analysis provides affirmative answers to both of the
questions above. First, we demonstrate that under certain structural assumptions
on the design and regression matrix B∗, the multivariate group Lasso is always
guaranteed to outperform the ordinary Lasso, in that it correctly performs row se-
lection for sample sizes for which the Lasso fails with high probability. Second,
we also exhibit some problems (though arguably not generic) for which the mul-
tivariate group Lasso will be outperformed by the naive strategy of applying the
Lasso separately to each of the K columns, and taking the union of supports.

1.2. Our results. The main contribution of this paper is to show that under
certain technical conditions on the design and noise matrices, the model selection
performance of block-regularized �1/�2 regression (7) is governed by the sample
complexity function

θ�1/�2(n,p;B∗) := n

2ψ(B∗) log(p − s)
,(9)

where n is the sample size, p is the ambient dimension, s = |S| is the number of
rows that are nonzero and ψ(·) is a sparsity-overlap function. Our use of the term
“sample complexity” for θ�1/�2 reflects the role it plays in our analysis as the rate
at which the sample size must grow in order to obtain consistent row selection
as a function of the problem parameters. More precisely, for scalings (n,p, s,B∗)
such that θ�1/�2(n,p;B∗) exceeds a fixed critical threshold θu ∈ (0,+∞), we show
that the probability of correct row selection by the �1/�2 multivariate group Lasso
converges to one, and conversely, for scalings such that θ�1/�2(n,p;B∗) is below
another threshold θ�, we show that the multivariate group Lasso fails with high
probability.

Whereas the ratio (logp)/n is standard for the high-dimensional theory of �1-
regularization, the function ψ(B∗) is a novel and interesting quantity, one which
measures both the sparsity of the matrix B∗ as well as the overlap between the
different regressions, represented by the columns of B∗ [see equation (16) for the
precise definition of ψ(B∗)]. As a particular illustration, consider the special case
of a univariate regression with K = 1, in which the convex program (7) reduces
to the ordinary Lasso (3). In this case, if the design matrix is drawn from the
standard Gaussian ensemble [i.e., Xij ∼ N(0,1), i.i.d.], we show that the sparsity-
overlap function reduces to ψ(B∗) = s, corresponding to the support size of the
single coefficient vector. We thus recover as a corollary a previously known re-
sult [Wainwright (2009b)]: namely, the Lasso succeeds in performing exact sup-
port recovery once the ratio n/[s log(p−s)] exceeds a certain critical threshold. At
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the other extreme, for a genuinely multivariate problem with K > 1 and s nonzero
rows, again for a standard Gaussian design, when the regression matrix is “suit-
ably orthonormal” relative to the design (see Section 2 for a precise definition),
the sparsity-overlap function is given by ψ(B∗) = s/K . In this case, �1/�2 block-
regularization has sample complexity lower by a factor of K relative to the naive
approach of solving K separate Lasso problems. Of course, there is also a range
of behavior between these two extremes, in which the gain in sample complexity
varies smoothly as a function of the sparsity-overlap ψ(B∗) in the interval [ s

K
, s].

On the other hand, we also show that for suitably correlated designs, it is possible
that the sample complexity ψ(B∗) associated with �1/�2 block-regularization is
larger than that of the ordinary Lasso (�1/�1) approach.

The remainder of the paper is organized as follows. In Section 2, we provide a
precise statement of our main results (Theorems 1 and 2), discuss some of their
consequences and illustrate the close agreement between our theoretical results
and simulations. Sections 3 and 4 are devoted to the proofs of Theorems 1 and 2,
respectively, with the arguments broken down into a series of steps. More techni-
cal results are deferred to the appendices. We conclude with a brief discussion in
Section 5.

1.3. Notation. We collect here some notation used throughout the paper.
For a (possibly random) matrix M ∈ R

p×K , we define the Frobenius norm
|||M|||F := (

∑
i,j m2

ij )
1/2, and for parameters 1 ≤ a ≤ b ≤ ∞, the �a/�b block norm

is defined as follows:

‖M‖�a/�b
:=
{ p∑

i=1

(
K∑

k=1

|mik|b
)a/b}1/a

.(10)

These vector norms on matrices should be distinguished from the (a, b)-operator
norms

|||M|||a,b := sup
‖x‖b=1

‖Mx‖a(11)

(although some norms belong to both families; see Lemma 7 in Appendix E). Im-
portant special cases of the latter include the spectral norm |||M|||2,2 (also denoted
|||M|||2), and the �∞-operator norm |||M|||∞,∞ = maxi=1,...,p

∑K
j=1 |Mij |, denoted

|||M|||∞ for short.
In addition to the usual Landau notation O and o, we write an = �(bn) for

sequences such that bn

an
= o(1). We also use the notation an = �(bn) if both an =

O(bn) and bn = O(an) hold.

2. Main results and some consequences. The analysis of this paper consid-
ers the multivariate group Lasso estimator, obtained as a solution to the SOCP

arg min
B∈Rp×K

{
1

2n
|||Y − XB|||2F + λn‖B‖�1/�2

}
(12)
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for random ensembles of multivariate linear regression problems, each of the
form (4), where the noise matrix W ∈ R

n×K is assumed to consist of i.i.d. elements
Wij ∼ N(0, σ 2). We consider random design matrices X with each row drawn in
an i.i.d. manner from a zero-mean Gaussian N(0,
), where 
 � 0 is a p × p

covariance matrix. Although the block-regularized problem (12) need not have a
unique solution in general, a consequence of our analysis is that in the regime of
interest, the solution is unique, so that we may talk unambiguously about the esti-
mated support Ŝ. The main object of study in this paper is the probability P[Ŝ = S],
where the probability is taken both over the random choice of noise matrix W and
random design matrix X. We study the behavior of this probability as elements of
the triplet (n,p, s) tend to infinity.

2.1. Notation and assumptions. More precisely, our main result applies to se-
quences of models indexed by (n,p(n), s(n)), an associated sequence of p × p

covariance matrices and a sequence {B∗} of coefficient matrices with row support

S := {i | β∗
i �= 0}(13)

of size |S| = s = s(n). We use Sc to denote its complement (i.e., Sc :=
{1, . . . , p}\S). We let

b∗
min := min

i∈S
‖β∗

i ‖2(14)

correspond to the minimal �2 row-norm of the coefficient matrix B∗ over its non-
zero rows. Given an observed pair (Y,X) from the model (4), the goal is to estimate
the row support S of the matrix B∗.

We impose the following conditions on the covariance 
 of the design matrix:

(A1) Bounded eigenspectrum: There exist fixed constants Cmin > 0 and
Cmax < +∞ such that all eigenvalues of the s × s matrix 
SS are contained
in the interval [Cmin,Cmax].

(A2) Irrepresentable condition: There exists a fixed parameter γ ∈ (0,1] such that

|||
ScS(
SS)−1|||∞ ≤ 1 − γ.

(A3) Self-incoherence: |||(
SS)−1|||∞ ≤ Dmax for some Dmax < +∞.

The lower bound involving Cmin in assumption (A1) prevents excess depen-
dence among elements of the design matrix associated with the support S; condi-
tions of this form are required for model selection consistency or �2 consistency
of the Lasso. The upper bound involving Cmax in assumption (A1) is not needed
for proving success but only failure of the multivariate group Lasso. The irrep-
resentable condition and self-incoherence assumptions are also well known from
previous work on variable selection consistency of the Lasso [Meinshausen and
Bühlmann (2006); Tropp (2006); Zhao and Yu (2006)]. Although such assump-
tions are not needed in analyzing �2 or risk consistency, they are known to be
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necessary for variable selection consistency of the Lasso. Indeed, in the absence of
such conditions, it is always possible to make the Lasso fail, even with an arbitrar-
ily large sample size. [See, however, Meinshausen and Yu (2009) for methods that
weaken the irrepresentable condition.] Note that these assumptions are trivially
satisfied by the standard Gaussian ensemble 
 = Ip×p , with Cmin = Cmax = 1,
Dmax = 1 and γ = 1. More generally, it can be shown that various matrix classes
(e.g., Toeplitz matrices, tree-structured covariance matrices, bounded off-diagonal
matrices) satisfy these conditions [Meinshausen and Bühlmann (2006); Zhao and
Yu (2006); Wainwright (2009b)].

We require a few pieces of notation before stating the main results. For an
arbitrary matrix BS ∈ R

s×K with ith row βi ∈ R
1×K , we define the matrix

ζ(BS) ∈ R
s×K with ith row

ζ(βi) := βi

‖βi‖2
,(15)

when βi �= 0, and we set ζ(βi) = 0 otherwise. With this notation, the sparsity-
overlap function is given by

ψ(B) := |||ζ(BS)T (
SS)−1ζ(BS)|||2,(16)

where ||| · |||2 denotes the spectral norm. We use this sparsity-overlap function to
define the sample complexity parameter, which captures the effective sample size

θ�1/�2(n,p;B∗) := n

2ψ(B∗) log(p − s)
.(17)

In the following two theorems, we consider a random design matrix X drawn
with i.i.d. N(0,
) row vectors, where 
 satisfies assumptions (A1)–(A3), and an
observation matrix Y specified by model (4). In order to capture dependence in-
duced by the design covariance matrix, for any positive semidefinite matrix Q � 0,
we define the quantities

ρ�(Q) := 1
2 min

i �=j
[Qii + Qjj − 2Qij ](18a)

and

ρu(Q) := max
i

Qii .(18b)

We note that by definition, we have ρ�(Q) ≤ ρu(Q) whenever Q � 0. Our bounds
are stated in terms of these quantities as applied to the conditional covariance ma-
trix


ScSc|S := 
ScSc − 
ScS(
SS)−1
SSc .

Our first result is an achievability result, showing that the multivariate group
Lasso succeeds in recovering the row support and yields consistency in �∞/�2
norm. We state this result for sequences of regularization parameters λn =
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f (p) logp

n
, where f (p) −→

p→+∞+∞ is any function such that λn → 0. We also

assume that n is sufficiently large such that s/n < 1/2.

THEOREM 1. Suppose that we solve the multivariate group Lasso with speci-
fied regularization parameter sequence λn for a sequence of problems indexed by
(n,p,B∗,
) that satisfy assumptions (A1)–(A3), and such that, for some ν > 0,

θ�1/�2(n,p;B∗) = n

2ψ(B∗) log(p − s)
> (1 + ν)

ρu(
ScSc|S)

γ 2 .(19)

Then for universal constants ci > 0 (i.e., independent of n,p, s,B∗,
), with prob-
ability greater than 1−c2 exp(−c3K log s)−c0 exp(−c1 log(p−s)), the following
statements hold:

(a) The multivariate group Lasso has a unique solution B̂ with row support S(B)

that is contained within the true row support S(B∗), and moreover satisfies the
bound

‖B̂ − B∗‖�∞/�2 ≤
√

8K log s

Cminn
+ λnDmax + 6λn

Cmin

√
s2

n︸ ︷︷ ︸
ρ(n,s,λn)

.(20)

(b) If ρ
b∗

min
= o(1), the estimate of the row support, S(B̂) := {i ∈ {1, . . . , p} | β̂i �=

0}, specified by this unique solution is equal to the row support set S(B∗) of
the true model.

Note that the theorem is naturally separated into two distinct but related claims.
Part (a) guarantees that the method produces no false inclusions and, moreover,
bounds the maximum �2-error across the rows. Part (b) requires some additional
assumptions—namely, the restriction ρ

b∗
min

= o(1) ensuring that the error ρ is of

lower order than the minimum �2-norm b∗
min across rows—but also guarantees the

stronger result of no false exclusions as well, so that the method recovers the row
support exactly. Note that the probability of these events converges to one only if
both (p − s) and s tend to infinity, which might seem counter-intuitive initially
(since problems with larger support sets s might seem harder). However, as we
discuss at the end of Section 3.3, this dependence can be removed at the expense
of a slightly slower convergence rate for ‖B̂ − B∗‖�∞/�2 .

Our second main theorem is a negative result, showing that the multivariate
group Lasso fails with high probability if the rescaled sample size θ�1/�2 is below a
critical threshold. In order to clarify the phrasing of this result, note that Theorem 1
can be summarized succinctly as guaranteeing that there is a unique solution B̂

with the correct row support that satisfies ‖B̂ −B∗‖�∞/�2 = o(b∗
min). The following

result shows that such a guarantee cannot hold if the sample size n scales too
slowly relative to p, s and the other problem parameters.
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THEOREM 2. Consider problem sequences indexed by (n,p,B∗,
) that sat-
isfy assumptions (A1)–(A2), and with minimum value b∗

min such that b∗
min

2 =
�(

logp
n

), and suppose that we solve the multivariate group Lasso with any pos-
itive regularization sequence {λn}. Then there exist ν > 0 and universal constants
ci > 0 such that if the sample size is lower bounded as

θ�1/�2(n,p;B∗) = n

2ψ(B∗) log(p − s)
< (1 − ν)

ρ�(
ScSc|S)

(2 − γ )2 ,

then with probability greater than 1 − c0 exp{−c1 min(Kn
s

, θ�

2 log(p − s))}, there
is no solution B̂ of the multivariate group Lasso that has the correct row support
and satisfies the bound ‖B̂ − B∗‖�∞/�2 = o(b∗

min).

The proof of this claim is provided in Section 4. We note that information-
theoretic methods [Wainwright (2009a)] imply that no method (including the mul-
tivariate group Lasso) can perform exact support recovery unless n/s → +∞, so
that the probability given in Theorem 2 converges to one under the given condi-
tions. Note that Theorems 1 and 2 in conjunction imply that the rescaled sam-
ple size θ�1/�2(n,p;B∗) = n

2ψ(B∗) log(p−s)
captures the behavior of the multivariate

group Lasso for support recovery and estimation in block �∞/�2 norm. For the
special case of random design matrices drawn from the standard Gaussian ensem-
ble (i.e., 
 = Ip×p), the given scalings are sharp:

COROLLARY 1. For the standard Gaussian ensemble, the multivariate group
Lasso undergoes a sharp threshold at the level θ�1/�2(n,p,B∗) = 1. More specifi-
cally, for any δ > 0:

(a) For problem sequences (n,p,B∗) such that θ�1/�2(n,p,B∗) > 1 + δ, the mul-
tivariate group Lasso succeeds with high probability.

(b) Conversely, for sequences such that θ�1/�2(n,p,B∗) < 1 − δ, the multivariate
group Lasso fails with high probability.

PROOF. In the special case 
 = Ip×p , it is straightforward to verify that all
the assumptions are satisfied: in particular, we have Cmin = Cmax = 1, Dmax = 1
and γ = 1. Moreover, a short calculation shows that ρu(I ) = ρ�(I ) = 1. Conse-
quently, the thresholds given in the sufficient condition (19) and the necessary
condition (21) are both equal to one. �

2.2. Efficient estimation of individual supports. The preceding results address
exact recovery of the support union of the regression matrix B∗. As demonstrated
by the following procedure and the associated corollary of Theorem 1, once the
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row support has been recovered, it is straightforward to recover the individual sup-
ports of each column of the regression matrix via the additional steps of performing
ordinary least squares and thresholding.

Efficient multi-stage estimation of individual supports:

(1) estimate the support union with Ŝ, the support union of the solution B̂ of the
multivariate group Lasso;

(2) compute the restricted ordinary least squares (ROLS) estimate,

B̃
Ŝ

:= arg min
B

Ŝ

|||Y − X
Ŝ
B

Ŝ
|||F(21)

for the restricted multivariate problem;
(3) compute the matrix T (B̃

Ŝ
) obtained by thresholding B̃

Ŝ
at the level

2

√
2 log(K|Ŝ|)

Cminn
, and estimate the individual supports by the nonzero entries of

T (B̃
Ŝ
).

The following result, which is proved in Appendix A, shows that under the
assumptions of Theorem 1, the additional post-processing applied to the support
union estimate will recover the individual supports with high probability:

COROLLARY 2. Under assumptions (A1)–(A3) and the additional assump-
tions of Theorem 1, if for all individual nonzero coefficients β∗

ik, i ∈ S,1 ≤
k ≤ K, we have |β∗

ik| ≥ 2
√

4 log(Ks)
Cminn

, then with probability greater than 1 −
�(exp(−c0K log s)) the above two-step estimation procedure recovers the indi-
vidual supports of B∗.

2.3. Some consequences of Theorems 1 and 2. We begin by making some
simple observations about the sparsity-overlap function.

LEMMA 1. (a) For any design satisfying assumption (A1), the sparsity-
overlap ψ(B∗) obeys the bounds

s

CmaxK
≤ ψ(B∗) ≤ s

Cmin
;(22)

(b) if 
SS = Is×s , and if the columns (Z(k)∗) of the matrix Z∗ = ζ(B∗) are or-
thogonal, then the sparsity-overlap function is ψ(B∗) = maxk=1,...,K ‖Z(k)∗‖2

2.

The proof of this claim is provided in Appendix C. Based on this lemma, we
now study some special cases of Theorems 1 and 2. The simplest special case is
the univariate regression problem (K = 1), in which case the quantity ζ(β∗) [as
defined in equation (15)] simply yields an s-dimensional sign vector with elements
z∗
i = sign(β∗

i ). [Recall that the sign function is defined as sign(0) = 0, sign(x) = 1
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if x > 0 and sign(x) = −1 if x < 0.] In this case, the sparsity-overlap function
is given by ψ(β∗) = z∗T (
SS)−1z∗, and as a consequence of Lemma 1(a), we
have ψ(β∗) = �(s). Consequently, a simple corollary of Theorems 1 and 2 is
that the Lasso succeeds once the ratio n/(2s log(p − s)) exceeds a certain critical
threshold, determined by the eigenspectrum and incoherence properties of 
, and
it fails below a certain threshold. This result matches the necessary and sufficient
conditions established in previous work on the Lasso [Wainwright (2009b)].

We can also use Lemma 1 and Theorems 1 and 2 to compare the performance
of the multivariate group Lasso to the following (arguably naive) strategy for row
selection using the ordinary Lasso.

Row selection using ordinary Lasso:

(1) Apply the ordinary Lasso separately to each of the K univariate regression
problems specified by the columns of B∗, thereby obtaining estimates β̂(k) for
k = 1, . . . ,K .

(2) For k = 1, . . . ,K , estimate the support of individual columns via Ŝk := {i |
β̂

(k)
i �= 0}.

(3) Estimate the row support by taking the union: Ŝ =⋃K
k=1 Ŝk .

To understand the conditions governing the success/failure of this procedure, note
that it succeeds if and only if for each nonzero row i ∈ S =⋃K

k=1 Sk , the variable

β̂
(k)
i is nonzero for at least one k, and for all j ∈ Sc = {1, . . . , p}\S, the variable

β̂
(k)
j = 0 for all k = 1, . . . ,K . From our understanding of the univariate case, we

know that for θu = ρu(
ScSc |S)

γ 2 , the condition

n ≥ 2θu max
k=1,...,K

ψ
(
β

∗(k)
S

)
log(p − sk) ≥ 2θu max

k=1,...,K
ψ
(
β

∗(k)
S

)
log(p − s)(23)

is sufficient to ensure that the ordinary Lasso succeeds in row selection. Con-

versely, for θ� = ρ�(
ScSc |S)

(2−γ )2 , if the sample size is upper bounded as

n < 2θ� max
k=1,...,K

ψ
(
β

∗(k)
S

)
log(p − s),

then there will exist some j ∈ Sc such for at least one k ∈ {1, . . . ,K}, there holds
β̂

(k)
j �= 0 with high probability, implying failure of the ordinary Lasso.

A natural question is whether the multivariate group Lasso, by taking into ac-
count the couplings across columns, always outperforms (or at least matches) the
naive strategy. The following result, proven in Appendix D, shows that if the de-
sign is uncorrelated on the support, then indeed this is the case.

COROLLARY 3 (Multivariate group Lasso versus ordinary Lasso). Assume

SS = Is×s . Then for any multivariate regression problem, row selection using



14 G. OBOZINSKI, M. J. WAINWRIGHT AND M. I. JORDAN

the ordinary Lasso strategy requires, with high probability, at least as many sam-
ples as the �1/�2 multivariate group Lasso. In particular, the relative efficiency of
multivariate group Lasso versus ordinary Lasso is given by the ratio

maxk=1,...,K ψ(β
∗(k)
S ) log(p − sk)

ψ(B∗
S) log(p − s)

≥ 1.(24)

We consider the special case of identical regressions, for which a result can be
stated for any covariance design and the case of “orthonormal” regressions which
illustrates Corollary 3.

EXAMPLE 1 (Identical regressions). Suppose that B∗ := β∗�1T
K—that is, B∗

consists of K copies of the same coefficient vector β∗ ∈ R
p , with support of car-

dinality |S| = s. We then have [ζ(B∗)]ij = sign(β∗
i )/

√
K , from which we see that

ψ(B∗) = z∗T (
SS)−1z∗, with z∗ being an s-dimensional sign vector with ele-
ments z∗

i = sign(β∗
i ). Consequently, we have the equality ψ(B∗) = ψ(β∗), so that

under our analysis there is no benefit in using the multivariate group Lasso relative
to the strategy of solving separate Lasso problems and constructing the union of
individually estimated supports. This behavior may seem counter-intuitive, since
under the model (4) we essentially have Kn observations of the coefficient vector
β∗ with the same design matrix but K independent noise realizations, which could
help to reduce the effective noise variance from σ 2 to σ 2/K if the fact that the
regressions are identical is known. It must be borne in mind, however, that in our
high-dimensional analysis the noise variance does not grow as the dimensionality
grows, and thus asymptotically the noise is dominated by the interference between
the covariates, which grows as (p−s). It is thus this high-dimensional interference
that dominates the rates given in Theorems 1 and 2.

In contrast to this pessimistic example, we now turn to the most optimistic ex-
treme:

EXAMPLE 2 (“Orthonormal” regressions). Suppose that 
SS = Is×s and (for
s > K) suppose that B∗ is constructed such that the columns of the s × K matrix
ζ(B∗) are orthogonal and with equal norm (which implies their norm equals

√
s
K

).
Under these conditions, we claim that the sample complexity of multivariate group
Lasso is smaller than that of the ordinary Lasso by a factor of 1/K . Indeed, using
Lemma 1(b), we observe that

Kψ(B∗) = K
∥∥Z(1)∗∥∥2 =

K∑
k=1

∥∥Z(k)∗∥∥2 = tr(Z∗T
Z∗) = tr(Z∗Z∗T

) = s,

because Z∗Z∗T ∈ R
s×s is the Gram matrix of s unit vectors in R

k and its diagonal
elements are therefore all equal to 1. Consequently, the multivariate group Lasso
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recovers the row support with high probability for sequences such that
n

2(s/K) log(p − s)
> 1,

which allows for sample sizes K times smaller than the ordinary Lasso approach.

Corollary 3 and the subsequent examples address the case of uncorrelated de-
sign (
SS = Is×s) on the row support S, for which the multivariate group Lasso
is never worse than the ordinary Lasso in performing row selection. The follow-
ing example shows that if the supports are disjoint, the ordinary Lasso has the
same sample complexity as the multivariate group Lasso for uncorrelated design

SS = Is×s , but can be better than the multivariate group Lasso for designs 
SS

with suitable correlations:

COROLLARY 4 (Disjoint supports). Suppose that the support sets Sk of indi-
vidual regression problems are disjoint. Then for any design covariance 
SS , we
have

max
1≤k≤K

ψ
(
β

(k)∗
S

) (a)≤ ψ(B∗
S)

(b)≤
K∑

k=1

ψ
(
β

(k)∗
S

)
.(25)

PROOF. First note that, since all supports are disjoint, Z
(k)∗
i = sign(β∗

ik),

so that Z
(k)∗
S = ζ(β

(k)∗
S ). Inequality (b) is then immediate because we have

|||Z∗
S
T 
−1

SS Z∗
S |||2 ≤ tr(Z∗

S
T 
−1

SS Z∗
S). To establish inequality (a), we note that

ψ(B∗) = max
x∈RK :‖x‖≤1

xT Z∗
S
T

−1

SS Z∗
Sx ≥ max

1≤k≤K
eT
k Z∗

S
T

−1

SS Z∗
Sek

≥ max
1≤k≤K

Z
(k)∗
S

T

−1

SS Z
(k)∗
S . �

A caveat in interpreting Corollary 4, and more generally in comparing the per-
formance of the ordinary Lasso and the multivariate group Lasso, is that for a gen-
eral covariance matrix 
SS , assumptions (A2) and (A3) required by Theorem 1
do not induce the same constraints on the covariance matrix 
 when applied to
the multivariate problem as when applied to the individual regressions. Indeed, in
the latter case, (A2) would require maxk |||
Sc

kSk

−1

SkSk
|||∞ ≤ 1 − γ and (A3) would

require maxk |||
−1
SkSk

|||∞ ≤ Dmax. Thus (A3) is a stronger assumption in the multi-
variate case but (A2) is not.

We illustrate Corollary 4 with an example.

EXAMPLE 3 (Disjoint support with uncorrelated design). Suppose that

SS = Is×s , and the supports are disjoint. In this case, we claim that the sample
complexity of the �1/�2 multivariate group Lasso is the same as the ordinary Lasso.
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If the individual regressions have disjoint support, then Z∗
S = ζ(B∗

S) has only a sin-
gle nonzero entry per row and therefore the columns of Z∗ are orthogonal. More-
over, Z∗

ik = sign(β
(k)∗
i ). By Lemma 1(b), the sparsity-overlap function ψ(B∗) is

equal to the largest squared column norm. But ‖Z(k)∗‖2 =∑s
i=1 sign(β

(k)∗
i )2 = sk .

Thus, the sample complexity of the multivariate group Lasso is the same as the or-
dinary Lasso in this case.2

Finally, we consider an example that illustrates the effect of correlated designs:

EXAMPLE 4 (Effects of correlated designs). To illustrate the behavior of the
sparsity-overlap function in the presence of correlations in the design, we consider
the simple case of two regressions with support of size 2. For parameters ϑ1 and
ϑ2 ∈ [0, π] and μ ∈ (−1,+1), consider regression matrices B∗ such that B∗ =
ζ(B∗

S) and

ζ(B∗
S) =

[
cos(ϑ1) sin(ϑ1)

cos(ϑ2) sin(ϑ2)

]
and 
−1

SS =
[

1 μ

μ 1

]
.(26)

Setting M∗ = ζ(B∗
S)T 
−1

SS ζ(B∗
S), a simple calculation shows that

tr(M∗) = 2
(
1 + μ cos(ϑ1 − ϑ2)

)
and det(M∗) = (1 − μ2) sin(ϑ1 − ϑ2)

2,

so that the eigenvalues of M∗ are

μ+ = (1 + μ)
(
1 + cos(ϑ1 − ϑ2)

)
and μ− = (1 − μ)

(
1 − cos(ϑ1 − ϑ2)

)
,

and ψ(B∗) = max(μ+,μ−). On the other hand, with

z̃1 = ζ
(
β(1)∗)= (

sign(cos(ϑ1))

sign(cos(ϑ2))

)
and z̃2 = ζ

(
β(2)∗)= (

sign(sin(ϑ1))

sign(sin(ϑ2))

)
we have

ψ
(
β(1)∗)= z̃T

1 
−1
SS z̃1 = 1{cos(ϑ1) �=0} + 1{cos(ϑ2) �=0} + 2μ sign(cos(ϑ1) cos(ϑ2)),

ψ
(
β(2)∗)= z̃T

2 
−1
SS z̃2 = 1{sin(ϑ1) �=0} + 1{sin(ϑ2) �=0} + 2μ sign(sin(ϑ1) sin(ϑ2)).

Figure 1 provides a graphical comparison of these sample complexity functions.
The function ψ̃(B∗) = max(ψ(β(1)∗),ψ(β(2)∗)) is discontinuous on S = π

2 Z ×
R ∪ R × π

2 Z, and, as a consequence, so is its difference with ψ(B∗). Note that, for
fixed ϑ1 or fixed ϑ2, some of these discontinuities are removable discontinuities
of the induced function on the other variable, and these discontinuities therefore

2In making this assertion, we are ignoring any difference between log(p − sk) and log(p − s),
which is valid, for instance, in the regime of sublinear sparsity, when sk/p → 0 and s/p → 0.
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FIG. 1. Comparison of sparsity-overlap functions for �1/�2 and the Lasso. For the pair
1

2π
(ϑ1, ϑ2), we represent in each row of plots, corresponding respectively to μ = 0 (top), 0.9 (mid-

dle) and −0.9 (bottom), from left to right, the quantities: ψ(B∗) (left), max(ψ(β(1)∗),ψ(β(2)∗))

(center) and max(0,ψ(B∗) − max(ψ(β(1)∗),ψ(β(2)∗))) (right). The latter indicates when the in-
equality ψ(B∗) ≤ max(ψ(β(1)∗),ψ(β(2)∗)) does not hold and by how much it is violated.

create needles, slits or flaps in the graph of the function ψ̃ . Denote by R+ and R−
the sets

R+ = {(ϑ1, ϑ2)|min[cos(ϑ1) cos(ϑ2), sin(ϑ1) sin(ϑ2)] > 0},
R− = {(ϑ1, ϑ2)|max[cos(ϑ1) cos(ϑ2), sin(ϑ1) sin(ϑ2)] < 0}

on which ψ̃(B∗) reaches its minimum value when μ ≥ 0.5 and μ ≤ 0.5, respec-
tively (see middle and bottom center plots in Figure 4). For μ = 0, the top center
graph illustrates that ψ̃(B∗) is equal to 2 except for the cases of matrices B∗

S with
disjoint support, corresponding to the discrete set D = {(k π

2 , (k ± 1)π
2 ), k ∈ Z} for

which it equals 1. The top rightmost graph illustrates that, as shown in Corollary 3,
the inequality always holds for an uncorrelated design. For μ > 0, the inequality
ψ(B∗) ≤ max(ψ(β(1)∗),ψ(β(2)∗)) is violated only on a subset of S ∪ R−; and
for μ < 0, the inequality is symmetrically violated on a subset of S ∪ R+ (see
Figure 4).
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2.4. Illustrative simulations. In this section, we present the results of simula-
tions that illustrate the sharpness of Theorems 1 and 2, and furthermore demon-
strate how quickly the predicted behavior is observed as elements of the triple
(n, p, s) grow in different regimes. We explore the case of two regressions (i.e.,
K = 2) which share an identical support set S with cardinality |S| = s in Sec-
tion 2.4.1 and consider a slightly more general case in Section 2.4.3.

2.4.1. Threshold effect in the standard Gaussian case. The first set of experi-
ments was designed to reveal the threshold effect predicted by Theorems 1 and 2.
The design matrix X is sampled from the standard Gaussian ensemble, with i.i.d.
entries Xij ∼ N(0,1). We consider two types of sparsity:

• logarithmic sparsity, where s = α log(p), for α = 2/ log(2), and
• linear sparsity, where s = αp, for α = 1/8

for various ambient model dimensions p ∈ {16,32,64,256,512,1024}. For a
given triplet (n,p, s), we solve the block-regularized problem (12) with the reg-
ularization parameter λn = √

log(p − s)(log s)/n. For each fixed (p, s) pair, we
measure the sample complexity in terms of a parameter θ , in particular letting n =
θs log(p− s) for θ ∈ [0.25,1.5]. We let the matrix B∗ ∈ R

p×2 of regression coeffi-
cients have entries β∗

ij in {−1/
√

2,1/
√

2}, choosing the parameters to vary the an-
gle between the two columns, thereby obtaining various desired values of ψ(B∗).
Since 
 = Ip×p for the standard Gaussian ensemble, the sparsity-overlap func-
tion ψ(B∗) is simply the maximal eigenvalue of the Gram matrix ζ(B∗

S)T ζ(B∗
S).

Since |β∗
ij | = 1/

√
2 by construction, we are guaranteed that B∗

S = ζ(B∗
S), that the

minimum value b∗
min = 1, and, moreover, that the columns of ζ(B∗

S) have the same
Euclidean norm.

To construct parameter matrices B∗ that satisfy |β∗
ij | = 1/

√
2, we choose both

p and the sparsity scalings so that the obtained values for s are multiples of four.
We then construct the columns Z(1)∗ and Z(2)∗ of the matrix B∗ = ζ(B∗) from
copies of vectors of length four. Denoting by ⊗ the usual matrix tensor product,
we consider the following 4-vectors:

Identical regressions: We set Z(1)∗ = Z(2)∗ = 1√
2
�1s , so that the sparsity-overlap

function is ψ(B∗) = s.
Orthonormal regressions: Here B∗ is constructed with Z(1)∗ ⊥ Z(2)∗, so that

ψ(B∗) = s
2 , the most favorable situation. In order to achieve this orthonormal-

ity, we set Z(1)∗ = 1√
2
�1s and Z(2)∗ = 1√

2
�1s/2 ⊗ (1,−1)T .

Intermediate angles: In this intermediate case, the columns Z(1)∗ and Z(2)∗ are
at a 60◦ angle, which leads to ψ(B∗) = 3

4s. Specifically, we set Z(1)∗ = 1√
2
�1s

and Z(2)∗ = 1√
2
�1s/4 ⊗ (1,1,1,−1)T .

Figure 2 shows plots for linear sparsity (left column) and logarithmic sparsity
(right column) in all three cases and where the multivariate group Lasso was used
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FIG. 2. Plots of support union recovery probability, P[Ŝ = S], versus the control parameter
θ = n/[2s log(p − s)] for two different types of sparsity: linear sparsity in the left column (s = p/8)
and logarithmic sparsity in the right column (s = 2 log2(p)). The first three rows are based on using
the multivariate group Lasso to estimate the support for the three cases of identical regression, in-
termediate angles and orthonormal regressions. The fourth row presents results for the Lasso in the
case of identical regressions.
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FIG. 3. Plots of support recovery probability, P[Ŝ = S], versus the control parameter
θ = n/[2s log(p − s)] for two different type of sparsity: logarithmic sparsity on top (s = O(log(p)))
and linear sparsity on bottom (s = αp), and for increasing values of p from left to right. The noise
level is set at σ = 0.1. Each graph shows four curves (black, red, green, blue) corresponding to the
case of independent �1 regularization, and, for �1/�2 regularization, the cases of identical regres-
sion, intermediate angles and orthonormal regressions. Note how curves corresponding to the same
case across different problem sizes p all coincide, as predicted by Theorems 1 and 2. Moreover, con-
sistent with the theory, the curves for the identical regression group reach P[Ŝ = S] ≈ 0.50 at θ ≈ 1,
whereas the orthonormal regression group reaches 50% success substantially earlier.

(top three rows), as well as the reference Lasso case for the case of identical re-
gressions (bottom row). Each panel plots the success probability, P[Ŝ = S], versus
the rescaled sample size θ = n/[2s log(p − s)]. Under this rescaling, Theorems 1
and 2 predict that the curves should align, and that the success probability should
transition to 1 once θ exceeds a critical threshold (dependent on the type of en-
semble). Note that for suitably large problem sizes (p ≥ 128), the curves do align
in the predicted way, showing step-function behavior. Figure 3 plots data from the
same simulations in a different format. Here the top row corresponds to logarithmic
sparsity, and the bottom row to linear sparsity; each panel shows the four different
choices for B∗, with the problem size p increasing from left to right. Note how
in each panel the location of the transition of P[Ŝ = S] to one shifts from right to
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left, as we move from the case of identical regressions to intermediate angles to
orthogonal regressions.

2.4.2. Threshold effect with Toeplitz covariance matrices. The simulations in
the previous section involved the standard Gaussian design matrix; in this section,
we explore the behavior for design matrices with some dependence structure. In
particular, we report results for random designs with rows drawn from a Gaussian
with Toeplitz covariance matrix of the form 
 = (ρ|i−j |)1≤i,j≤p , for some pa-
rameter ρ ∈ [0,1). Zhao and Yu (2006) have shown that such Toeplitz matrices
satisfy the irrepresentable conditions required for support consistency. As with
our experiments in the standard Gaussian case, we consider the same two regimes
(linear and logarithmic), using the same families of regression matrices B∗ and
the same noise level. We select the support of the regression matrices as a random
subset of the p covariates of size s, and draw the design matrices from the Toeplitz
ensemble ρ = 0.5. For each pair (s,p), we consider a number of observations of
the form n = 2θs log(p) for θ ∈ [0.25,4].

Figure 4 is the analog of the previously shown Figure 3: for problems with ran-
dom designs from the Toeplitz ensemble, it plots the support recovery probabil-
ity P[Ŝ = S] versus the control parameter θ = n/[2s log(p − s)] for two different
types of sparsity—logarithmic sparsity on top (s = O(log(p))) and linear sparsity
on bottom (s = αp). The four curves (black, red, green, blue) corresponding to
the case of independent �1 regularization, and, for �1/�2 regularization, the cases
of identical regression, intermediate angles and orthonormal regressions. Qualita-
tively, note that we observe the same type of transitions as in the standard Gaussian
case; moreover, the curves shift from right to left as the angles between the regres-
sion columns vary from orthogonal to identical.

2.4.3. Empirical threshold values. In this experiment, we aim at verifying
more precisely the location of the �1/�2 threshold as the regression vectors vary
continuously from identical to orthogonal with equal length. We consider the case
of matrices B∗ of size s × 2 for s even. In Example 4 of Section 2.3, we character-
ized the value of ψ(B∗) when B∗ is a 2 × 2 matrix.

In order to generate a family of regression matrices with smoothly varying
sparsity-overlap function consider the following 2 × 2 matrix:

B1(α) =

⎡⎢⎢⎣
1√
2

1√
2

cos
(

π

4
+ α

)
sin
(

π

4
+ α

)
⎤⎥⎥⎦ .(27)

Note that α is the angle between the two rows of B1(α) in this setup. Note, more-
over, that the columns of B1(α) have varying norm.
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FIG. 4. Plots of support recovery probability, P[Ŝ = S], versus the control parameter
θ = n/[2s log(p − s)] when the covariance matrix is a Toeplitz matrix with parameter ρ = 0.5,
for the same protocol as described in Figure 3.

We use this base matrix to define the following family of regression matrices
B∗

S ∈ R
s×2:

B1 :=
{
B1s(α) = �1s/2 ⊗ B1(α),α ∈

[
0,

π

2

]}
.(28)

For a design matrix drawn from the standard Gaussian ensemble, the analysis of
Example 4 in Section 2.3 extends naturally to show that the sparsity-overlap func-
tion is ψ(Bs1(α)) = s

2(1 +| cos(α)|). Moreover, as we vary α from 0 to π
2 , the two

regressions vary from identical to orthonormal and the sparsity-overlap function
decreases from s to s

2 .
We fix the problem size p = 2048 and sparsity s = log2(p) = 22. For each value

of α ∈ [0, π
2 ], we generate a matrix from the specified family and angle. We then

solve the multivariate group Lasso optimization problem (12) with sample size
n = 2θs log(p − s) for a range of values of θ in [0.25,1.5]; for each value of θ ,
we repeat the experiment (generating random design matrix X and observation
matrix Y each time) over T = 500 trials. Based on these trials, we then estimate
the value of θ50% for which the exact support is retrieved at least 50% of the time.
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FIG. 5. Plots of the Lasso sample complexity θ = n/[2s log(p − s)] for which the probability of
support union recovery exceeds 50% empirically as a function of | cos(α)| for �1-based recovery and
�1/�2-based recovery, where α is the angle between Z(1)∗ and Z(2)∗ for the family B1. We consider
the two following methods for performing row selection: Ordinary Lasso (�1, green triangles) and
multivariate group Lasso (blue circles).

Since ψ(B∗) = 1+| cos(α)|
2 s, our theory predicts that if we plot θ50% versus | cos(α)|,

the plot should lie on or below the straight line 1+| cos(α)|
2 . We also perform the

same experiments for row selection using the ordinary Lasso and plot the resulting
estimated thresholds on the same axes.

The results are shown in Figure 5. Note first that the curve obtained for Ŝ�1/�2

(blue circles) coincides roughly with the theoretical prediction, 1+| cos(α)|
2 (black

dashed diagonal) as regressions vary from orthogonal to identical. Moreover, the
estimated θ50% of the ordinary Lasso remains above 0.9 for all values of α, close
to the theoretical value of 1. However, the curve obtained is not constant, but is
roughly sigmoidal with a first plateau close to 1 for cos(α) < 0.4 and a second
plateau close to 0.9 for cos(α) > 0.5. The latter coincides with the empirical value
of θ50% for the univariate Lasso for the first column β(1)∗ (not shown). There
are two reasons why the value of θ50% for the ordinary Lasso does not match
the prediction of the first-order asymptotics: first, for α = π

4 [corresponding to
cos(α) = 0.7], the support of β(2)∗ is reduced by one half and therefore its sample
complexity is decreased in that region. Second, the supports recovered by individ-
ual Lassos for β(1)∗ and β(2)∗ vary from uncorrelated when α = π

2 to identical
when α = 0. It is therefore not surprising that the sample complexity is the same
as a single univariate Lasso for cos(α) large and higher for cos(α) small, where
independent estimates of the support are more likely to include, by union, spurious
covariates in the row support.



24 G. OBOZINSKI, M. J. WAINWRIGHT AND M. I. JORDAN

3. Proof of Theorem 1. In this section, we provide the proof of Theorem 1,
which gives sufficient conditions for success of the multivariate group Lasso. Sub-
sequently, in Section 4, we provide the proof for the necessary conditions as given
in Theorem 2. For the convenience of the reader, we begin by recapitulating the
notation to be used throughout both of these arguments:

• The sets S and Sc are a partition of the set of columns of X, such that |S| = s,
|Sc| = p − s.

• The design matrix is partitioned as X = [XSXSc ], where XS ∈ R
n×s and XSc ∈

R
n×(p−s).

• The regression coefficient matrix is also partitioned as B∗ = [ B∗
S

B∗
Sc

]
, with

B∗
S ∈ R

s×K and B∗
Sc = 0 ∈ R

(p−s)×K . We use β∗
i to denote the ith row of B∗.

• The regression model is given by Y = XB∗ + W , where the noise matrix
W ∈ R

n×K has i.i.d. N(0, σ 2) entries.
• The matrix Z∗

S = ζ(B∗
S) ∈ R

s×K has rows Z∗
i = ζ(β∗

i ) = β∗
i‖β∗
i ‖2

∈ R
K .

3.1. High-level proof outline. At a high level, the proof is based on the notion
of a primal–dual witness: we construct a primal matrix B̂ along with a dual matrix
Ẑ such that:

(a) the pair (B̂, Ẑ) together satisfy the Karush–Kuhn–Tucker (KKT) conditions
associated with the second-order cone program (12), and

(b) this solution certifies that the multivariate group Lasso recovers the union of
supports S.

For general high-dimensional problems (with p � n), the multivariate group Lasso
of (12) need not have a unique solution; however, a consequence of our theory is
that the constructed solution B̂ is the unique optimal solution under the conditions
of Theorem 1.

We begin by noting that the block-regularized problem (12) is convex, and not
differentiable for all B . In particular, denoting by βi the ith row of B , the subdif-
ferential of the �1/�2-block norm over row i takes the form

[∂‖B‖�1/�2]i =
⎧⎨⎩

βi

‖βi‖2
, if βi �= �0,

Zi such that ‖Zi‖2 ≤ 1, otherwise.
(29)

We define the empirical covariance matrix


̂ := 1

n
XT X = 1

n

n∑
i=1

XiX
T
i ,(30)

where Xi is the ith row of X. (This definition is natural under our standing assump-
tion of zero mean for the variables Xi ; note, however, that our proofs extend readily
to the case of nonzero mean, in which case we would center the variables and use
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the usual definition of the empirical covariance matrix.) We also make use of the
shorthand 
̂SS = 1

n
XT

S XS and 
̂ScS = 1
n
XT

ScXS as well as �S = XS(
̂SS)−1XT
S

to denote the projector on the range of XS .
At the core of our constructive procedure is the following convex-analytic result,

which characterizes an optimal primal–dual pair for which the primal solution B̂

correctly recovers the support set S:

LEMMA 2. Suppose that there exists a primal–dual pair (B̂, Ẑ) that satisfies
the conditions

ẐS = ζ(B̂S),(31a)

−λnẐS = 
̂SS(B̂S − B∗
S) − 1

n
XT

S W,(31b)

λn‖ẐSc‖�∞/�2 :=
∥∥∥∥
̂ScS(B̂S − B∗

S) − 1

n
XT

ScW

∥∥∥∥
�∞/�2

< λn,(31c)

B̂Sc = 0.(31d)

Then (B̂, Ẑ) is a primal–dual optimal solution to the block-regularized problem,
with Ŝ(B̂) = S by construction. If 
̂SS � 0, then B̂ is the unique optimal primal
solution.

See Appendix B for the proof of this claim. Based on Lemma 2, we proceed to
construct the required primal–dual pair (B̂, Ẑ) as follows. First, we set B̂Sc = 0,
so that condition (31d) is satisfied. Next, we specify the pair (B̂S, ẐS) by solving
the following restricted version of the SOCP (12):

B̂S = arg min
BS∈Rs×K

{
1

2n

∣∣∣∣∣∣∣∣∣∣∣∣Y − X

[
BS

0Sc

] ∣∣∣∣∣∣∣∣∣∣∣∣2
F

+ λn‖BS‖�1/�2

}
.(32)

Since s < n, the empirical covariance (sub)matrix 
̂SS = 1
n
XT

S XS is strictly posi-
tive definite with probability one, which implies that the restricted problem (32) is
strictly convex and therefore has a unique optimum B̂S . We then choose ẐS to be
the solution of equation (31b). Since any such matrix ẐS is also a dual solution to
the restricted SOCP (32), it must be an element of the subdifferential ∂‖B̂S‖�1/�2 .

It remains to show that this construction satisfies conditions (31a) and (31c). In
order to satisfy condition (31a), it suffices to show that no row of the solution B̂S

is identically zero. From equation (31b) and using the invertibility of the empirical
covariance matrix 
̂SS , we may solve as follows:

(B̂S − B∗
S) = (
̂SS)−1

[
XT

S W

n
− λnẐS

]
=: US.(33)

Note that for any row i ∈ S, by the triangle inequality, we have

‖β̂i‖2 ≥ ‖β∗
i ‖2 − ‖US‖�∞/�2 .
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Therefore, in order to show that no row of B̂S is identically zero, it suffices to show
that the event

E (US) := {‖US‖�∞/�2 ≤ 1
2b∗

min
}

(34)

occurs with high probability [recall from equation (14) that the parameter b∗
min

measures the minimum �2-norm of any row of B∗
S ]. We establish this result in

Section 3.3.
Turning to condition (31c), by substituting expression (33) for the difference

(B̂S − B∗
S) into equation (31c), we obtain a (p − s) × K random matrix VSc , with

rows indexed by Sc. For any index j ∈ Sc, the corresponding row vector Vj ∈ R
K

is given by

Vj := XT
j

(
[�S − In]W

n
− λn

XS

n
(
̂SS)−1ẐS

)
.(35)

In order for condition (31c) to hold, it is necessary and sufficient that the probabil-
ity of the event

E (VSc) := {‖VSc‖�∞/�2 < λn}(36)

converges to one as n tends to infinity. Consequently, the remainder (and bulk) of
the proof is devoted to showing that the probabilities P[E (US)] and P[E (VSc)] both
converge to one under the specified conditions.

3.2. Analysis of E (VSc): Correct exclusion of nonsupport. In this section, we
prove the first claim of Theorem 1(a), namely that rows not in the support are al-
ways excluded. For simplicity, in the following arguments, we drop the index Sc

and write V for VSc . In order to show that ‖V ‖�∞/�2 < λn with probability con-
verging to one, we make use of the decomposition 1

λn
‖V ‖�∞/�2 ≤∑3

i=1 T ′
i where

T ′
1 := 1

λn

‖E[V |XS]‖�∞/�2,(37a)

T ′
2 := 1

λn

‖E[V |XS,W ] − E[V |XS]‖�∞/�2,(37b)

T ′
3 := 1

λn

‖V − E[V |XS,W ]‖�∞/�2 .(37c)

We deal with each of these three terms in turn, showing that with high probability
under the specified scaling of (n,p, s), we have T ′

1 ≤ (1−γ ), and T ′
2 = op(1), and

T ′
3 < γ , which suffices to show that 1

λn
‖V ‖�∞/�2 < 1 with high probability.

The following lemma is useful in the analysis:

LEMMA 3. Define the matrix � ∈ R
s×K with rows �i := Ui/‖β∗

i ‖2. As long
as ‖�i‖2 ≤ 1/2 for all row indices i ∈ S, we have

‖ẐS − ζ(B∗
S)‖�∞/�2 ≤ 4‖�‖�∞/�2 .
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See Appendix G for the proof of this claim.

3.2.1. Analysis of T ′
1. Note that by definition of the regression model (4), we

have the conditional independence relations

W ⊥⊥ XSc |XS, ẐS ⊥⊥ XSc |XS and ẐS ⊥⊥ XSc |{XS,W }.
Using the two first conditional independencies, we have

E[V |XS] = E[XT
Sc |XS]

(
[�S − In]E[W |XS]

n
− λn

XS

n
(
̂SS)−1

E[ẐS |XS]
)
.

Since E[W |XS] = 0, the first term vanishes, and using E[XT
Sc |XS] = 
ScS
−1

SS XT
S ,

we obtain

E[V |XS] = λn
ScS
−1
SS E[ẐS |XS].(38)

Using the matrix-norm inequality (57a) from Appendix E and then Jensen’s in-
equality yields

T ′
1 = ‖
ScS
−1

SS E[ZS |XS]‖�∞/�2

≤ |||
ScS
−1
SS |||∞E[‖ZS‖�∞/�2 |XS](39)

≤ (1 − γ ).

3.2.2. Analysis of T ′
2. Appealing to the conditional independence relationship

ẐS ⊥⊥ XSc |{XS,W }, we have

E[V |XS,W ]
= E[XT

Sc |XS,W ]
(
[�S − In]W

n
− λn

XS

n
(
̂SS)−1

E[ẐS |XS,W ]
)
.

Observe that E[ẐS |XS,W ] = ẐS because (XS,W) uniquely specifies B̂S through
the convex program (32), and the triple (XS,W, B̂S) defines ẐS through equa-
tion (31b). Moreover, the noise term disappears because the kernel of the orthogo-
nal projection matrix (In − �S) is the same as the range space of XS , and

E[XT
Sc |XS,W ][�S − In] = E[XT

Sc |XS][�S − In]
= 
ScS
−1

SS XT
S [�S − In] = 0.

We have thus shown that E[V |XS,W ] = −λn

n

ScS
−1

SS ẐS , so that we can con-
clude that

T ′
2 ≤ |||
ScS(
SS)−1|||∞‖ẐS − E[ẐS |XS]‖�∞/�2

≤ (1 − γ )E[‖ẐS − Z∗
S‖�∞/�2] + (1 − γ )‖ẐS − Z∗

S‖�∞/�2(40)

≤ (1 − γ )4{E[‖�‖�∞/�2] + ‖�‖�∞/�2},
where the final inequality uses Lemma 3. Under the assumptions of Theorem 1,
this final term is of order op(1), as will be shown in Section 3.3.
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3.2.3. Analysis of T ′
3. This third term requires a little more care. We begin by

noting that conditionally on XS and W , each vector Vj ∈ R
K is normally distrib-

uted. Since Cov(X(j)|XS,W) = (
Sc|S)jj In, we have

Cov(Vj |XS,W) = Mn(
Sc|S)jj ,

where the K × K random matrix Mn = Mn(XS,W) is given by

Mn := λ2
n

n
ẐT

S (
̂SS)−1ẐS + 1

n2 WT (�S − In)W.(41)

We begin by noting that by its definition (31a), the candidate dual matrix ẐS

is a function only of W and XS . Therefore, conditioned on the pair (W,XS), the
matrix Mn is fixed, and we have

(‖Vj − E[Vj |XS,W ]‖2
2|W,XS)

d= (
ScSc|S)jj ξ
T
j Mnξj ,(42)

where ξj ∼ N(�0K, IK). By definition of ρu(
ScSc|S) = maxj (
ScSc|S)jj , we have
(
ScSc|S)jj ≤ ρu(
ScSc|S) ≤ Cmax and

max
j∈Sc

(
ScSc|S)jj ξ
T
j Mnξj ≤ ρu(
ScSc|S)|||Mn|||2 max

j∈Sc
‖ξj‖2

2,

where |||Mn|||2 is the spectral norm.
We now state a result that provides control on this spectral norm, in particular

showing that the rescaled random matrix n
λ2

n
Mn concentrates around the determin-

istic matrix M∗ := Z∗
S
T (
SS)−1Z∗

S . This concentration establishes the link to the
sparsity-overlap function (16), which is given by the spectral norm |||M∗|||2. For
any δ ∈ (0,1), define the event

T (δ) :=
{
λ2

nψ(B∗) + σ 2

n
(1 − δ) ≤ |||Mn|||2 ≤ λ2

nψ(B∗) + σ 2

n
(1 + δ)

}
.(43)

Moreover, recall the definition of � from Lemma 3. The following result provides
sufficient conditions for the event T (δ) to hold with high probability.

LEMMA 4. Suppose that s
n

= o(1) and ‖�‖�∞/�2 = o(1). Then for any δ ∈
(0,1), there is some c1 = c1(δ) > 0 such that P[T (δ)c] ≤ c1 exp(−c0K log s) → 0.

See Appendix H for the proof of this lemma.
Given the assumptions of Theorem 1 and the bound (46), we observe that the

hypotheses of Lemma 4 are satisfied, and we can now complete the proof. For any
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fixed but arbitrarily small δ > 0, we have

P[T ′
3 ≥ γ ] ≤ P[T ′

3 ≥ γ |T (δ)] + P[T (δ)c].
Since P[T (δ)c] → 0 from Lemma 4, it suffices to deal with the first term. Condi-
tioning on the event T (δ), we have

P[T ′
3 ≥ γ |T (δ)] ≤ P

[
max
j∈Sc

‖ξj‖2
2 ≥ γ 2

ρu(
ScSc|S)

n

(ψ(B∗) + σ 2/λ2
n)(1 + δ)

]
.

Now define the quantity

t∗(n,B∗) := 1

2

γ 2

ρu(
ScSc|S)

n

(ψ(B∗) + σ 2/λ2
n)(1 + δ)

,

and note that t∗ → +∞ under the specified scaling of (n,p, s). By applying
Lemma 11 from Appendix I on large deviations for χ2-variates with t = t∗(n,B∗),
we obtain

P[T ′
3 ≥ γ |T (δ)] ≤ (p − s) exp

(
−t∗

[
1 − 2

√
K

t∗

])
(44)

≤ (p − s) exp
(−t∗(1 − δ)

)
for (n,p, s) sufficiently large. Now denoting θu := ρu(
ScSc|S)/γ 2, we have, by
assumption, that n ≥ 2(1 + ν)θuψ(B∗) log(p − s). Given that λ2

n = f (p) log(p)
n

, we

have σ 2

λ2
n

log(p − s) ≤ σ 2 n
f (p)

= o(n) so that for any ε > 0, we have

n ≥ 1 + ν

1 + ε

(
2θuψ(B∗) log(p − s) + 2σ 2

λ2
n

log(p − s)

)
once n is sufficiently large. This inequality implies that (1 − δ)t∗(n,B∗) ≥
(1+ν)(1−δ)
(1+ε)(1+δ)

log(p − s). Thus for δ and ε sufficiently small, the bound (44) tends
to zero at rate O(exp(−ν/2 log(p − s))) which establishes the claim.

3.3. Analysis of E (US): Correct inclusion of supporting covariates. This sec-
tion is devoted to the analysis of the event E (US) from equation (34), and in partic-
ular showing that its probability converges to one under the specified scaling. This
allows us to establish the �2/�∞ bound in Theorem 1(a), as well as the correct
support recovery claim in part (b).

If we define the noise matrix W̃ := 1√
n
(
̂SS)−1/2XT

S W , then we have

US = 
̂
−1/2
SS

W̃√
n

− λn(
̂SS)−1ẐS.
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Using this representation and the triangle inequality, we obtain

‖US‖�∞/�2 ≤
∥∥∥∥(
̂SS)−1/2 W̃√

n

∥∥∥∥
�∞/�2

+ λn‖(
̂SS)−1ẐS‖�∞/�2

≤
∥∥∥∥(
̂SS)−1/2 W̃√

n

∥∥∥∥
�∞/�2︸ ︷︷ ︸

T1

+λn|||(
̂SS)−1|||∞︸ ︷︷ ︸
T2

,

where the form of T2 in the second line uses a standard matrix norm bound [see
equation (57a) in Appendix E], and the fact that ‖ẐS‖�∞/�2 ≤ 1.

Using the triangle inequality, we bound T2 as follows:

T2 ≤ λn{|||(
SS)−1|||∞ + |||(
̂SS)−1 − (
SS)−1|||∞}
≤ λn

{
Dmax + √

s|||(
̂SS)−1 − (
SS)−1|||2}
≤ λn

{
Dmax + √

s|||(
SS)−1|||2|||(X̃T
S X̃S/n)−1 − Is |||2}

≤ λn

{
Dmax +

√
s

Cmin
|||(X̃T

S X̃S/n)−1 − Is |||2
}
,

which defines X̃S as a random matrix with i.i.d. standard Gaussian entries. From
concentration results in random matrix theory (see Appendix F), for s/n → 0,
we have |||(X̃T

S X̃S/n)−1 − Is |||2 ≤ 6
√

s
n

with probability 1 − 2 exp(−s/2) −
exp(−�(n)). Overall, we conclude that

T2 ≤ λn

{
Dmax + 6

Cmin

√
s2

n

}

with probability 1 − 2 exp(−s/2) − exp(−�(n)).
Turning now to T1, let us introduce the notation vec(A) to denote the vectorized

version of a matrix A, obtained by stacking all of its rows into a single vector.
Conditioning on XS , we have (vec(W̃ )|XS) ∼ N(�0s×K, Is ⊗ IK). Combined with
the definition of the block �∞/�2 norm, we obtain

T1 = max
i∈S

∥∥∥∥eT
i (
̂SS)−1/2 W̃√

n

∥∥∥∥
2
≤ |||(
̂SS)−1|||1/2

2

[
1

n
max
i∈S

ζ 2
i

]1/2

,

where the variates {ζ 2
i } are an i.i.d. sequence of χ2-variates with K degrees of free-

dom. Using the tail bound in Lemma 11 (see Appendix I) with t = 2K log s > K ,
we have

P

[
1

n
max
i∈S

ζ 2
i ≥ 4K log s

n

]
≤ exp

(
−2K log s

(
1 − 2(2 log s)−1/2))→ 0.
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Define the event T := {|||(
̂SS)−1|||2 ≤ 2
Cmin

}; the bound P[T ] ≥ 1 − exp(−�(n))

then follows from known concentration results in random matrix theory (see Ap-
pendix F). Thus, we obtain

P

[
T1 ≥

√
8K log s

Cminn

]
≤ P

[
T1 ≥

√
8K log s

Cminn

∣∣∣T
]

+ P[T c]

≤ P

[
1

n
max
i∈S

ζ 2
i ≥ 4K log s

n

]
+ exp

{
−n

(
1

2
−
√

s

n

)}
(45)

= O(exp(−c0K log s)) → 0,

where c0 > 0 is a universal constant. Combining the pieces, we conclude with
probability 1 − exp(−c0K log s), we have

‖US‖�∞/�2 ≤ 1

b∗
min

[T1 + T2] ≤
[√

8K log s

Cminn
+ λn

(
Dmax + 6

Cmin

√
s2

n

)]
= ρ(n, s, λn),

which establishes the bound (20) from Theorem 1(a).
Moreover, under the assumptions of Theorem 1(b), we can conclude that

‖US‖�∞/�2

b∗
min

≤ ρ(n, s, λn)

b∗
min

= o(1),(46)

with probability greater than 1−�(exp(−c0K log s)) → 1. Consequently, the con-
ditions of Theorem 1(b) are sufficient to ensure that the event E (US) holds with
high probability as claimed.

REMARK. As we noted following the statement of Theorem 1, the fact that
the claims hold with probability converging to one only if s → +∞ might appear
counter-intuitive and does not allow the result to cover problems with fixed sizes
s of the row support. Here we discuss how this condition can be weakened. Note
that our assumptions imply that p − s → ∞ and that s

n
= o(1). Consequently, for

any a > 0, we have log s
na = log s

sa
sa

na = o(1), so that we may use a slightly weaker
bound on T1 in equation (45). Indeed, with the same notation as in that equation,
we have

P

[
T1 ≥

√
4(K + log s + na)

Cminn

∣∣∣T
]

≤ P

[
1

n
max
i∈S

ζ 2
i ≥ 2

n
(K + log s + na)

∣∣T
]

≤ exp

{
−na

(
1 − 2

(
1 + log s

na

)√
K

K + na

)}
→ 0,
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where the last inequality is obtained by setting t = K + log s + na in Lemma 11
of Appendix I.

4. Proof of Theorem 2. In this section, we prove the necessary conditions
stated in Theorem 2. We begin by noting that we may assume without loss of
generality that s < n, since it is otherwise impossible to recover the support (even
in the absence of noise). In order to develop some intuition for the argument to
follow, recall the definition (36) of the event E (VSc). The proof of Theorem 2 is
based on the fact that if E (VSc) does not hold, then no solution of the multivariate
group Lasso has the correct row support.

Again, to lighten notation, we write V for the quantity VSc . Recall the defini-
tions (37) of the quantities T ′

i for i = 1, 2 and 3. By the triangle inequality, we
have

1

λn

‖V ‖�∞/�2 ≥ T ′
3 − T ′

2 − T ′
1.(47)

From our earlier argument [see equation (39)], we know that T ′
1 ≤ (1 − γ ). From

the bound (40), in order to show that T ′
2 = o(1) with high probability, it suffices

to show that ‖ẐS − Z∗
S‖�∞/�2 = o(1). We reason by contradiction and assume

that in the regime considered in Theorem 2, there is a solution of the multivari-
ate group Lasso which satisfies ‖B̂ − B∗‖�∞/�2 = o(b∗

min) with high probability.

Note that this condition implies that maxi∈S
‖B̂i−B∗

i ‖2
‖B∗

i ‖2
= o(1), so that we may ap-

ply Lemma 3 to conclude that ‖ẐS − Z∗
S‖�∞/�2 = o(1) as well. Consequently, we

conclude that T ′
2 = o(1).

Considering the decomposition (47), we obtain that

T ′
3 − T ′

2 − T ′
1 = 1

λn

‖V − E[V |XS,W ]‖�∞/�2 − (1 − γ ) − o(1).(48)

Therefore, it suffices to prove that T ′
3 > 2 − γ . The remainder of the proof is de-

voted to establishing this claim.
In order to analyze T ′

3, let us recall the notation Ṽj = Vj −E[Vj |XS,W ], where
for each j ∈ Sc, the quantity Vj ∈ R

K denotes the j th row of the matrix V . As
shown earlier in Section 3.2, we can write

(‖Ṽj‖2
2|W,XS)

d= 
jj |SξT
j Mnξj ,

where for each j ∈ Sc, the random vector ξj ∼ N(0, IK). The random vec-
tors (ξj , j ∈ Sc) are not i.i.d. in general, since for each pair i, j ∈ Sc, we have

cov(ξi, ξj ) = 
ij |S√

ii|S
jj |S

IK .

The next part of the proof is devoted to analyzing the behavior of the random
variable

Vmax := max
j∈Sc

‖Ṽj‖2 = max
j∈Sc

√

jj |SξT

j Mnξj ,(49)
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with our goal in particular being to show that Vmax
λn

≥ 2 − γ with high probability.
In order to lower bound the random variable Vmax, our first step is to show that it
is sharply concentrated around its expectation.

LEMMA 5. For any δ > 0, we have

P
[|Vmax − E[Vmax]| ≥ δ|XS,W

]≤ 4 exp
{
−1

2

δ2

ρu(
ScSc|S)|||Mn|||2
}
,(50)

where ρu(
ScSc|S) = maxj∈Sc 
jj |S .

PROOF. By standard Gaussian concentration theorems [e.g., Theorem 3.8
of Massart (2003)], if X has a standard Gaussian measure on R

m and f is a Lip-
schitz function with Lipschitz constant L, then

P
[|E[f (X)] − f (X)| ≥ x

]≤ 4 exp
(−x2/(2L2)

)
.(51)

In order to exploit this result in application to Vmax, we consider the function
f : R(p−s)×K → R defined by

f (ξj , j ∈ Sc) := max
j∈Sc

√

jj |S

∥∥√Mnξj

∥∥
2,

which is equal to Vmax by construction. Let u = (uj , j ∈ Sc) and v = (vj , j ∈ Sc)

be two collections of vectors. We have

|f (u) − f (v)| = max
j∈Sc

√

jj |S

∥∥√Mnuj

∥∥
2 − max

k∈Sc

√

kk|S

∥∥√Mnvk

∥∥
2

≤ max
j∈Sc

√

jj |S

∥∥√Mn(uj − vj )
∥∥

2

≤
√

ρu(
ScSc|S)
√|||Mn|||2‖u − v‖2.

We may therefore apply the bound (51) with L2 = |||Mn|||2ρu(
ScSc|S) to obtain
the claim. �

The second key ingredient in our proof is a lower bound on the expected value
of Vmax:

LEMMA 6. For any fixed δ′ > 0, with probability 1 − o(1) as (p − s) → +∞,
we have

E[Vmax|XS,W ] ≥√|||Mn|||2
√

2(1 − δ′)ρ�(
ScSc|S) log(p − s).(52)

PROOF. We may diagonalize Mn, writing Mn = UT DU , where U ∈ R
K×K

is orthogonal, and D = diag{d1, . . . , dK} is diagonal with d1 = |||Mn|||2. Since the
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distribution of the K-dimensional normal vector ξj ∼ N(0, I ) remains invariant
under orthogonal transformations, for each j ∈ Sc, we can write√


jj |SξT
j Mnξj

d=
√


jj |SηT
j Dηj ≥

√

jj |S |||Mn|||2|ηj,1|,

where ηj,1 ∼ N(0,
jj |S). Overall, we have

E[Vmax|XS,W ] = E

[
max
j∈Sc

√

jj |SξT

j Mnξj |XS,W
]
≥√|||Mn|||2E

[
max
j∈Sc

|ηj,1|
]
,

where the vector η = (ηj,1, j ∈ Sc) is zero-mean Gaussian with covariance

ScSc|S .

Our next step is to lower bound the expectation E[maxj∈Sc |ηj,1|] by a Gaussian
comparison argument, in particular exploiting the Sudakov–Fernique inequal-
ity [Ledoux and Talagrand (1991)]. Let η̃ ∈ R

p−s be a Gaussian random vector
with i.i.d. N(0,1) entries. By the definition (18a) of ρ�(·), we have

E[(ηi − ηj )
2] = 
ii|S − 2
ij |S + 
jj |S

≥ ρ�(
ScSc|S)E[(η̃j − η̃i)
2] for all i, j .

Consequently, the Sudakov–Fernique inequality implies that

E

[
max
j∈Sc

|ηj |
]
≥
√

ρ�(
ScSc|S)E
[
max
j∈Sc

|η̃j |
]
.

From standard results on Gaussian extrema [Ledoux and Talagrand (1991)],
for any fixed δ′ ∈ (0,1), we have E[maxj∈Sc |η̃j |] ≥ √

2(1 − δ′) log(p − s) once
(p − s) is sufficiently large, which completes the proof. �

It remains to show that the random matrix |||Mn|||2 previously defined (41)
is suitably concentrated. Our approach is to show that unless the hypotheses of
Lemma 4—namely, s/n = o(1) and ‖Ẑ − Z∗‖�∞/�2 = o(1)—are both satisfied,
then the multivariate group Lasso fails. We have shown previously that the latter
condition is satisfied, so it remains to show that the condition s/n = o(1) must
hold. Note that

|||Mn|||2 ≥ λ2
n

n
|||(ẐS)T (
̂SS)−1ẐS |||2.

By definition of the sub-differential of the �1/�2 norm, we have |||ẐS |||2F = s, so
that there must be at least one column of ẐS with squared �2 norm greater than
s/K . Without loss of generality, let us assume that it is the first column Ẑ1 ∈ R

s .
We then have

|||Mn|||2 ≥ λ2
n

n
ẐT

1 (
̂SS)−1Ẑ1

≥ λ2
ns

nK
λmin((
̂SS)−1)

≥ λ2
ns

nK

1

λmax(
̂SS)
.
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From concentration of random matrix eigenvalues [see equation (60) in Appen-
dix F], we have λmax(
̂SS) ≤ 2λmax(
SS) with probability greater than 1 −
exp(−�(n)), so that we conclude that the lower bound |||Mn|||2 ≥ λ2

ns

2Kn
holds with

high probability (w.h.p.).
Substituting this lower bound into the lower bound (52) from Lemma 6, we

obtain that w.h.p. for any δ′ ∈ (0,1),

1

λn

E[Vmax|XS,W ] ≥
√

s

2Kn

√
2(1 − δ′)ρ�(
ScSc|S) log(p − s),(53)

which tends to infinity unless s/n = o(1). By the concentration around this ex-
pected value from Lemma 5, this fact implies that the multivariate group Lasso
fails w.h.p. unless s/n = o(1).

We have thus shown that the conditions of Lemma 4 are necessary conditions
for the multivariate group Lasso to succeed, and given that these conditions are
satisfied, the quantity |||Mn|||2 is concentrated. Recalling the definition of the event
T (δ) from equation (43), we can write

P

[
Vmax

λn

≤ 2 − γ

]
≤ P[T ′

3 ≤ 2 − γ |T (δ)] + P[T (δ)c],
where we are guaranteed that P[T (δ)c] → 0 by Lemma 4.

Recall that we have established that s
n

= o(1). Conditioned on the event
T (δ), the inequality |||Mn|||2 ≥ λ2

n
ψ(B∗)

n
(1 − δ) holds; combined with the lower

bound (52), for any δ′ ∈ (0,1), we have for (p − s) sufficiently large and if
s
n

= o(1) that

1

λn

E[Vmax|T (δ),XS,W ]

≥
√

ψ(B∗)
n

(1 − δ)
√

2(1 − δ′)ρ�(
ScSc|S) log(p − s).

Consequently, if the lower bound (21) holds strictly, then for (p − s) sufficiently
large, denoting θ� := ρ�(
ScSc|S)/(2 − γ )2 and δ′′ := √

(1 − δ′)(1 − δ) − 1 we
have

1

λn

E[Vmax|T (δ),XS,W ]

≥ (2 − γ )

√
2θ�ψ(B∗) log(p − s)

n
(1 − δ′′)

≥ 2 − γ√
1 − ν

(1 − δ′′) ≥ (2 − γ )

(
1 + ν

2

)
(1 − δ′′) ≥ 2 − γ + ε

with3 ε = (2 − γ )ν
3 .

3Here we have used the fact that for δ, δ′ sufficiently small, we have (1 − δ′′)(1 + ν
2 ) ≥ (1 + ν

3 ).
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Combining this lower bound with the concentration statement from Lemma 5,
we obtain

P

[
Vmax

λn

≤ 2 − γ
∣∣T (δ)

]
≤ 4 exp

{
−1

2

(
ε2

ρu(
ScSc|S)

n

ψ(B∗)(1 − δ)

)}

≤ 4 exp
{
−1

2

(
ε2Cmax

ρu(
ScSc|S)

Kn

s(1 − δ)

)}

≤ 4 exp
{
−c′ Kn

s

}
,

where we have defined the constant c′ := (2−γ )2Cmax
18γ 2θu(1−δ)

, and used the facts that ε =
(2 − γ )ν

3 and θu := ρu(
ScSc|S)/γ 2. Therefore, the probability vanishes, since the
condition s/n = o(1) is equivalent to n/s → +∞.

5. Discussion. In this paper, we have analyzed the high-dimensional behavior
of block-regularization for multivariate regression problems. Our main result is to
show that that its behavior is governed by the sample complexity parameter,

θ�1/�2(n,p, s) := n/[2ψ(B∗) log(p − s)],
where n is the sample size, p is the ambient dimension and ψ(·) is a sparsity-
overlap function that measures a combination of the sparsity and overlap proper-
ties of the true regression matrix B∗. In particular, Theorems 1 and 2 show that
the multivariate group Lasso either succeeds (or fails) depending on whether this
sample complexity parameter is larger (or smaller) than a threshold parameter de-
pending in the design covariance matrix 
.

Our results were obtained under high-dimensional scaling, in particular, assum-
ing the quantities n,p − s and s all were tending to infinity. As have discussed, the
hypothesis that s → +∞ can be relaxed at the expense of slightly weaker guar-
antees on the �2/�∞ norm of the solution. One could also imagine relaxing the
constraint p − s → +∞, but for the high-dimensional problems that motivate our
analysis, this is not as interesting, since in such a case, either the true model is
nonsparse (and hence variable selection is of questionable relevance), or we fall
back in the low-dimensional setting.

There are a number of open questions associated with this work. The current
work applies to the “hard”-sparsity model, in which a subset S of the regressors
are nonzero, and the remaining coefficients are zero. As with the ordinary Lasso,
it would also be interesting to study block-regularization under soft sparsity mod-
els (e.g., �q “balls” for coefficients, with q < 1). It is also interesting to consider
alternative loss functions such as �2 error or prediction error, as opposed to the
exact support recovery criterion considered here. We note that since this work was
first posted, other researchers have provided related results on consistency in �2
error [Lounici et al. (2009); Huang and Zhang (2009)], again under hard sparsity
constraints.
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APPENDIX A: PROOF OF COROLLARY 2

Let F (resp., F0) be the event that the thresholded ROLS method fails to re-
cover the individual supports when applied to the estimated row set Ŝ (resp., true
row set S). By a union bound, the overall probability of failure in the multi-stage
procedure is upper bounded as P[F ] ≤ P[Ŝ �= S] + P[F0 | Ŝ = S]. Under the con-
ditions of Theorem 1, the row support is recovered with probability greater than
1 − �(exp(−c0K log s)), so that P[Ŝ �= S] → 0. As for the remaining term, we
have P[F0 | Ŝ = S] ≤ P[F0]

P[Ŝ=S] , which is less than 2P[F0] for (n, s) large enough,

since P[Ŝ = S] → 1.
Consequently, it suffices to upper bound the unconditional probability that the

ROLS estimate applied to the true support fails to recover the individual supports.
Introducing the shorthand 
̂SS := 1

n
XT

S XS , some straightforward linear algebra
shows that the ROLS estimate of B∗

S takes the form B̂S = B∗
S + Ũ , where Ũ :=

(
̂SS)−1/2W̃/
√

n, and W̃ := (
̂SS)−1/2XT
S W/

√
n is an s × K noise matrix with

i.i.d. standard Gaussian entries.
Let W̃ (j) denote the j th column of W̃ , and let ei denote the ith canonical basis

vector in R
s . We then have

max
i,j

|Ũi,j | = max
i,j

1√
n

∣∣eT
i (
̂SS)−1/2W̃ (j)

∣∣≤ 1√
n

max
i

[
‖(
̂SS)−1/2ei‖max

j
|ξi,j |

]
≤ 1√

n
|||(
̂SS)−1/2|||2 max

i,j
|ξi,j |,

where (ξi,j ) forms a sequence of identically distributed standard Gaussian vari-
ables (which are dependent in general). Using a union bound and standard
Gaussian tail bounds, for all ν > 0, we have

P

[
max
i,j

|ξi,j | ≥ (1 + ν)
√

2 log(Ks)
]
≤ 2 exp(−ν log(Ks)) → 0.

A concentration bound for random matrices (see Appendix F) yields |||
̂−1/2
SS |||2 ≤√

2C
−1/2
min with probability greater than 1 − exp(−�(n)), so that we obtain

P

[
max
i,j

|Ũi,j | ≥ (1 + ν)

√
4 logKs

Cminn

]
= O(exp(−�(log s))).

This result, together with the lower bound on the smallest absolute value of the
nonzero coefficients of B∗, shows that the threshold procedure in step 3 will retain
all nonzero coefficients of B∗ while correctly setting to zero all entries for which
B∗ is actually zero.

APPENDIX B: PROOF OF LEMMA 2

Using the notation βi to denote a row of B and denoting by

K := {(w, v) ∈ R
K × R | ‖w‖2 ≤ v}(54)
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the usual second-order cone (SOC), we can rewrite the original convex pro-
gram (12) with q = 2 as

min
B∈Rp×K

b∈Rp

1

2n
|||Y − XB|||2F + λn

p∑
i=1

bi(55)

s.t. (βi, bi) ∈ K,1 ≤ i ≤ p.

We now dualize the conic constraints [Boyd and Vandenberghe (2004)], using
conic Lagrange multipliers belonging to the dual cone K∗ = {(z, t) ∈ R

K+1|zT w+
vt ≥ 0, (w, v) ∈ K}. The second-order cone K is self-dual [Boyd and Vanden-
berghe (2004)], so that the convex program (55) is equivalent to

min
B∈Rp×K

b∈Rp

max
Z∈Rp×K

t∈Rp

1

2n
|||Y − XB|||2F + λn

p∑
i=1

bi − λn

p∑
i=1

(−zT
i βi + tibi)

s.t. (zi, ti) ∈ K,1 ≤ i ≤ p,

where Z is the matrix whose ith row is zi .
Since the original program is convex and strictly feasible, strong duality holds

and any pair of primal (B�, b�) and dual (Z�, t�) solutions has to satisfy the
Karush–Kuhn–Tucker conditions:

‖β�
i ‖2 ≤ b�

i , 1 < i < p,(56a)

‖z�
i ‖2 ≤ t�i , 1 < i < p,(56b)

z�
i
T
β�

i − t�i b�
i = 0, 1 < i < p,(56c)

∇B

[
1

2n
|||Y − XB|||2F

]∣∣∣∣
B=B�

+ λnZ
� = 0,(56d)

λn(1 − t�i ) = 0.(56e)

Since equations (56c) and (56e) impose the constraints t�i = 1 and b�
i = ‖β�

i ‖2,
a primal–dual solution to this conic program is determined by (B�,Z�).

Any solution satisfying the conditions in Lemma 2 also satisfies these KKT
conditions, since equation (31b) and the definition (31c) are equivalent to equa-
tion (56d), and equation (31a) and the combination of conditions (31d) and (31c)
imply that the complementary slackness equations (56c) hold for each primal–dual
conic pair (βi, zi).

Now consider some other primal solution B̃; when combined with the opti-
mal dual solution Ẑ, the pair (B̃, Ẑ) must satisfy the KKT conditions [Bertsekas
(1995)]. But since for j ∈ Sc, we have ‖ẑj‖2 < 1, then the complementary slack-
ness condition (56c) implies that for all j ∈ Sc, β̃j = 0. This fact in turn implies
that the primal solution B̃ must also be a solution to the restricted convex pro-
gram (32), obtained by only considering the covariates in the set S or equiva-
lently by setting BSc = 0Sc . But since s < n by assumption, the matrix XT

S XS is
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strictly positive definite with probability one, and therefore the restricted convex
program (32) has a unique solution B�

S = B̂S . We have thus shown that a solution
(B̂, Ẑ) to the program (12) that satisfies the conditions of Lemma 2, if it exists,
must be unique.

APPENDIX C: CHARACTERIZATION OF THE SPARSITY-OVERLAP
FUNCTION

In this appendix, we prove Lemma 1. (a) To verify this claim, we first set Z∗
S =

ζ(B∗
S), and use Z

(k)∗
S to denote the kth column of Z∗

S . Since the spectral norm
is upper bounded by the sum of eigenvalues, and lower bounded by the average
eigenvalue, we have

1

K
tr(Z∗

S
T

−1

SS Z∗
S) ≤ ψ(B∗) ≤ tr(Z∗

S
T

−1

SS Z∗
S).

Given our assumption (A1) on 
SS , we have

tr(Z∗
S
T

−1

SS Z∗
S) =

K∑
k=1

Z
(k)∗
S

T

−1

SS Z
(k)∗
S ≥ 1

Cmax

K∑
k=1

∥∥Z(k)∗
S

∥∥2 = s

Cmax
,

using the fact that
∑K

k=1 ‖Z(k)∗
S ‖2 = ∑s

i=1 ‖Z∗
i ‖2 = s. Similarly, in the other di-

rection, we have

tr(Z∗
S
T

−1

SS Z∗
S) =

K∑
k=1

Z
(k)∗
S

T

−1

SS Z
(k)∗
S ≤ 1

Cmin

K∑
k=1

∥∥Z(k)∗
S

∥∥2 = s

Cmin
,

which completes the proof.
(b) Under the assumed orthogonality, the matrix Z∗T Z∗ is diagonal with

‖Z(k)∗‖2 as the diagonal elements, so that the largest ‖Z(k)∗‖2 is then the largest
eigenvalue of the matrix.

APPENDIX D: GROUP LASSO VERSUS ORDINARY LASSO

In this appendix, we provide the proof of Corollary 3 which characterizes the
relative efficiency of the group versus the ordinary Lasso. From the discussion
preceding the statement of Corollary 3, we know that the quantity

max
k=1,...,K

ψ
(
β

∗(k)
S

)
log(p − sk) = max

k=1,...,K
sk log(p − sk) ≥ max

k=1,...,K
sk log(p − s)

governs the performance of the ordinary Lasso procedure for row selection. It re-
mains to show then that ψ(B∗

S) ≤ maxk sk .
As before, we use the notation Z∗

S = ζ(B∗
S), and Z∗

i for the ith row of Z∗
S . Since


SS = Is×s , we have ψ(B∗) = ‖Z∗
S‖2. Consequently, by the variational represen-

tation of the �2-norm, we have

ψ(B∗) = max
x∈RK : ‖x‖≤1

‖Z∗
Sx‖2 ≤ max

x∈RK : ‖x‖≤1

s∑
i=1

(Z∗
i
T
x)2.
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Let |Z∗
i | = (|Z∗

i1|, . . . , |Z∗
ik|)T and yi = (x1 sign(Z∗

i1), . . . , xK sign(Z∗
iK))T . By the

Cauchy–Schwarz inequality,

(Z∗
i
T
x)2 = (|Z∗

i |T yi)
2 ≤ ‖|Z∗

i |‖2‖yi‖2 = ‖Z∗
i ‖2

∑
k

x2
k sign(Z∗

ik)
2

so that

s∑
i=1

(Z∗
i
T
x)2 ≤

s∑
i=1

‖Z∗
i ‖2

K∑
k=1

x2
k sign(Z∗

ik)
2 =

K∑
k=1

x2
k

s∑
i=1

sign(Z∗
ik)

2 =
K∑

k=1

x2
k sk,

and if ‖x‖ ≤ 1, we have
∑K

k=1 x2
k sk ≤ max1≤k≤K sk thereby establishing the claim.

APPENDIX E: INEQUALITIES WITH BLOCK-MATRIX NORMS

In general, the two families of matrix norms that we have introduced, ||| · |||p,q

and ‖ · ‖�a/�b
, are distinct, but they coincide in the following useful special case:

LEMMA 7. For 1 ≤ p ≤ ∞ and for r defined by 1/r + 1/p = 1 we have

‖ · ‖�∞/�p = ||| · |||∞,r .

PROOF. Indeed, if ai denotes the ith row of A, then

‖A‖�∞/�p = max
i

‖ai‖p = max
i

max‖yi‖r≤1
yT
i ai

= max‖y‖r≤1
max

i
|yT ai | = max‖y‖r≤1

‖Ay‖∞. �

We conclude by stating some useful bounds and relations:

LEMMA 8. Consider matrices A ∈ R
m×n and Z ∈ R

n×� and p, r > 0 with
1
p

+ 1
r

= 1, we have

‖AZ‖�∞/�p = |||AZ|||∞,r ≤ |||A|||∞,∞|||Z|||∞,r = |||A|||∞,∞‖Z‖�∞/�p ,(57a)

|||A|||r ≤ |||Im|||r,∞|||A|||∞,r = s1/r‖A‖�∞/�p .(57b)

APPENDIX F: SOME CONCENTRATION INEQUALITIES FOR RANDOM
MATRICES

In this appendix, we state some known concentration inequalities for the ex-
treme eigenvalues of Gaussian random matrices. Although these results hold more
generally, our interest here is on scalings (n, s) such that s/n → 0. The following
result is from Davidson and Szarek (2001).



SUPPORT UNION RECOVERY IN MULTIVARIATE REGRESSION 41

LEMMA 9. Let U ∈ R
n×s be a random matrix from the standard Gaussian

ensemble [i.e., Uij ∼ N(0,1), i.i.d.]. Then if we denote by λmin(·) and λmax(·) the
smallest and largest singular value of U , respectively, we have

P

[
1 − λmin

(
U√
n

)
≥
√

s

n
+ t

]
≤ exp

(
−nt2

2

)
,(58)

P

[
λmax

(
U√
n

)
− 1 ≥

√
s

n
+ t

]
≤ exp

(
−nt2

2

)
.(59)

As a consequence, for s/n → 0 we obtain the two following inequalities:

LEMMA 10.

P

[∣∣∣∣∣∣∣∣∣∣∣∣1nUT U

∣∣∣∣∣∣∣∣∣∣∣∣
2
≤ 1

2

]
≤ exp

{
−n

2

(
1

4
−
√

s

n

)2

+

}
,(60)

P

[∣∣∣∣∣∣∣∣∣∣∣∣1nUT U − Is×s

∣∣∣∣∣∣∣∣∣∣∣∣
2
≥ 6

√
s

n

]
≤ 2 exp

(
− s

2

)
+ exp(−�(n)) → 0.(61)

PROOF. For simplicity, we write λmin for λmin(
U√
n
) and λmax for λmax(

U√
n
).

For equation (60), we have

P

[∣∣∣∣∣∣∣∣∣∣∣∣1nUT U

∣∣∣∣∣∣∣∣∣∣∣∣
2
≤ 1

2

]
≤ P

[
λmin ≤ 1√

2

]
≤ P

[
1 − λmin ≥

√
s

n
+
(

1

4
−
√

s

n

)]

≤ exp

{
−n

2

(
1

4
−
√

s

n

)2

+

}
.

For equation (61),

P

[∣∣∣∣∣∣∣∣∣∣∣∣1nUT U − Is×s

∣∣∣∣∣∣∣∣∣∣∣∣
2
≥ 6

√
s

n

]

= P

[
max(λ2

max − 1,1 − λ2
min) ≥ 6

√
s

n

]

≤ P

[
λmax − 1 ≥ 2

√
s

n

]
+ P

[
1 − λmin ≥ 2

√
s

n

]
+ P[λmax + 1 ≥ 3] + P[λmin + 1 ≥ 3]

≤ 2 exp

{
−n

2

(√
s

n

)2}
+ 2 exp

{
−n

2

(
1

4
−
√

s

n

)2

+

}
,
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where we used that {λ2 − 1 ≥ x} ⊂ {λ − 1 ≥ x
3 } ∪ {λ + 1 ≥ 3} to obtain the first

inequality. �

These results are easily adapted to more general Gaussian ensembles. Letting
X = U

√
�, we obtain an n × s matrix with i.i.d. rows, Xi ∼ N(0,�). If the co-

variance matrix � has maximum eigenvalue Cmax < +∞, then we have

|||n−1XT X − �|||2 = ∣∣∣∣∣∣√�[n−1UT U − I ]√�
∣∣∣∣∣∣

2 ≤ Cmax|||n−1UT U − I |||2(62)

so that the bound (61) immediately yields an analogous bound on different con-
stants.

The final type of bound that we require is on the difference

|||(XT X/n)−1 − �−1|||2,
assuming that XT X is invertible. We note that

|||(XT X/n)−1 − �−1|||2 = |||(XT X/n)−1[� − (XT X/n)]�−1|||2
≤ |||(XT X/n)−1|||2|||� − (XT X/n)|||2|||�−1|||2.

As long as the eigenvalues of � are bounded below by Cmin > 0, then
|||�−1|||2 ≤ 1/Cmin. Moreover, since s/n → 0, we have [from equation (60)] that
|||(XT X/n)−1|||2 ≤ 2/Cmin with probability converging to one exponentially in n.
Thus, equation (62) implies the desired bound.

APPENDIX G: PROOF OF LEMMA 3

The analysis in Section 3.3 shows that the condition ‖�i‖2 ≤ 1/2 implies that
β̂i �= �0 and hence Ẑi = β̂i/‖β̂i‖2 for all rows i ∈ S. Therefore, using the notation
Z∗

i = β∗
i /‖β∗

i ‖2 we have

Ẑi − Z∗
i = β̂i

‖β̂i‖2
− Z∗

i = Z∗
i + �i

‖Z∗
i + �i‖2

− Z∗
i

= Z∗
i

(
1

‖Z∗
i + �i‖2

− 1
)

+ �i

‖Z∗
i + �i‖2

.

Note that, for z �= 0, the function g(z, δ) = 1
‖z+δ‖2

is differentiable with respect

to δ, with gradient ∇δg(z, δ) = − z+δ

2‖z+δ‖3
2
. By the mean-value theorem, there exists

h ∈ [0,1] such that

1

‖z + δ‖2
− 1 = g(z, δ) − g(z,0) = ∇δg(z, hδ)T δ = − (z + hδ)T δ

2‖z + hδ‖3
2

,
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which implies that there exists hi ∈ [0,1] such that

‖Ẑi − Z∗
i ‖2 ≤ ‖Z∗

i ‖2
|(Z∗

i + hi�i)
T �i |

2‖Z∗
i + hi�i‖3

2

+ ‖�i‖2

‖Z∗
i + �i‖2

(63)

≤ ‖�i‖2

2‖Z∗
i + hi�i‖2

2

+ ‖�i‖2

‖Z∗
i + �i‖2

.

We note that ‖Z∗
i ‖2 = 1 and ‖�i‖2 ≤ 1

2 imply that ‖Z∗
i + hi�i‖2 ≥ 1

2 . Combined
with inequality (63), we obtain ‖Ẑi − Z∗

i ‖2 ≤ 4‖�i‖2, which proves the lemma.

APPENDIX H: PROOF OF LEMMA 4

With Z∗
S = ζ(B∗

S), define the K × K random matrix

M∗
n := λ2

n

n
(Z∗

S)T (
̂SS)−1Z∗
S + 1

n2 WT (In − �S)W

and note that (using standard results on Wishart matrices [Anderson (1984)])

E[M∗
n ] = λ2

n

n − s − 1
(Z∗

S)T (
SS)−1Z∗
S + σ 2 n − s

n2 IK.(64)

To bound Mn in spectral norm, we use the triangle inequality,∣∣|||Mn|||2 − |||E[M∗
n ]|||2

∣∣≤ |||Mn − E[M∗
n ]|||2

(65)
≤ |||Mn − M∗

n |||2︸ ︷︷ ︸
A1

+|||M∗
n − E[M∗

n ]|||2︸ ︷︷ ︸
A2

.

Considering the term A1 in the decomposition (65), we have

|||M∗
n − Mn|||2

= λ2
n

n
|||Z∗

S
̂−1
SS Z∗

S − ẐS
̂−1
SS ẐS |||2

(66)

= λ2
n

n

∣∣∣∣∣∣Z∗
S
̂−1

SS (Z∗
S − ẐS) + (Z∗

S − ẐS)
̂−1
SS

(
Z∗

S + (ẐS − Z∗
S)
)∣∣∣∣∣∣

2

≤ λ2
n

n
|||
̂−1

SS |||2|||Z∗
S − ẐS |||2(2|||Z∗

S |||2 + |||Z∗
S − ẐS |||2).

Using the concentration results on random matrices in Appendix F, we have
the bound |||
̂−1

SS |||2 ≤ 2/Cmin with probability greater than 1 − exp(−�(n)),
and we have |||Z∗

S |||2 = O(
√

s) by definition. Moreover, from equation (57b) in
Lemma 7, we have |||Z∗

S − ẐS |||2 ≤ √
s‖Z∗

S − ẐS‖�∞/�2 . Using the bound (46)
and Lemma 3, we have ‖Z∗

S − ẐS‖�∞/�2 = o(1) with probability greater than
1 − c1 exp(−c0K log s), so that from equation (66), we conclude that

A1 = |||M∗
n − Mn|||2 = o

(
λ2

ns

n

)
w.h.p.(67)
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Turning to term A2, we have the upper bound A2 ≤ T
†

1 + T
†
2 , where

T
†
1 := λ2

n

n
|||Z∗

S |||22
∣∣∣∣∣∣∣∣∣∣∣∣ n

n − s − 1
(
SS)−1 − (
̂SS)−1

∣∣∣∣∣∣∣∣∣∣∣∣
2

and

T
†
2 := 1

n2 |||WT (In − �S)W − σ 2(n − s)IK |||2.

Since |||Z∗
S |||22 ≤ s, and ||| n

n−s−1 (
SS)−1 − (
̂SS)−1|||2 = o(1) with high prob-

ability (see Appendix F), we have T
†

1 = o(
λ2

ns

n
) with probability greater than

1 − 2 exp(−�(n)).
Turning to T

†
2 , we have with probability greater than 1 − 2 exp(−s/2) −

exp(−�(n)),

T
†
2 = O

( √
s

n
√

n

)
= o

(
1

n

)
,

using the random matrix bound (61) once again. Overall, we conclude that

A2 = |||M∗
n − E[M∗

n ]|||2 = o

(
λ2

ns + 1

n

)
w.h.p.(68)

Finally, turning to |||E[M∗
n ]|||2, from equation (64), we have

|||E[M∗
n ]|||2 = λ2

nψ(B∗)
n

n

n − s − 1
+ σ 2

n

(
1 − s

n

)
(69)

= (
1 + o(1)

)[λ2
nψ(B∗) + σ 2

n

]
.

Finally, we combine bounds (67), (68) and (69) in the decomposition (65), and
apply Lemma 1(a) to obtain that ψ(B∗) = �(s); combining these facts yields that

(1 − δ)

[
λ2

nψ(B∗) + σ 2

n

]
≤ |||Mn|||2 ≤ (1 + δ)

[
λ2

nψ(B∗) + σ 2

n

]
with probability greater than 1 − c1 exp(−c0K log s), which establishes the claim.

APPENDIX I: LARGE DEVIATIONS FOR χ2-VARIATES

LEMMA 11. Let Z1, . . . ,Zm be i.i.d. χ2-variates with d degrees of freedom.
Then for all t > d , we have

P

[
max

i=1,...,m
Zi ≥ 2t

]
≤ m exp

(
−t

[
1 − 2

√
d

t

])
.(70)
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PROOF. Given a central χ2-variate X with d degrees of freedom, Laurent and
Massart (2000) prove that P[X − d ≥ 2

√
dx + 2x] ≤ exp(−x), or equivalently

P
[
X ≥ x + (√

x + √
d
)2]≤ exp(−x),

valid for all x > 0. Setting
√

x + √
d = √

t , we have

P[X ≥ 2t] (a)≤ P
[
X ≥ (√

t − √
d
)2 + t

]≤ exp
(−(√t − √

d
)2)

≤ exp
(−t + 2

√
td
)

= exp

(
−t

[
1 − 2

√
d

t

])
,

where inequality (a) follows since
√

t ≥ √
d by assumption. Thus, the claim (70)

follows by the union bound. �
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