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ABSTRACT

We present a modular framework for generating synthetic power grids that consider the heterogeneity of real power grid dynamics but
remain simple and tractable. This enables the generation of large sets of synthetic grids for a wide range of applications. For the first time, our
synthetic model also includes the major drivers of fluctuations on short-time scales and a set of validators that ensure the resulting system
dynamics are plausible. The synthetic grids generated are robust and show good synchronization under all evaluated scenarios, as should
be expected for realistic power grids. A software package that includes an efficient Julia implementation of the framework is released as a

companion to the paper.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0155971

Power systems will be reconfigured as conventional generation is
replaced by renewable energy sources (RES). The latter are often
connected to the grid via inverters. The exact dynamical behav-
ior and, especially, the stability of these inverter-based networks
is not well understood. Thus, the availability of adequate syn-
thetic power system models remains limited. However, it is vital
to simulate future power grids to verify that this transformation
does not result in undesired effects and blackouts. We intro-
duce a framework for realistic synthetic power systems that can
be used to study collective dynamical effects. We combine estab-
lished methods such as realistic grid topologies and active power
set points. This framework opens new avenues for predicting the
stability of future power grids using advanced techniques such as
graph neural networks.

I. INTRODUCTION

Synthetic power grids have become an important tool for
studying the dynamics of power systems. Traditionally, most
dynamical simulation studies in the engineering literature were per-
formed using benchmark test cases, such as the “New England”

IEEE 39-Bus System' or the IEEE Reliability Test System-1996.” The
advantage of this approach is that models and parameters can be
specified in great detail and the test cases are, therefore, highly realis-
tic. Further, the use of standardized benchmark test cases guarantees
comparability of different dynamic models and analytical methods.
However, for many emerging research questions, this approach can
be quite limiting and the use of automatically generated synthetic
grid models might be beneficial. This is, for instance, the case when
the power system in a specific region should be studied but the
detailed topology and parameters of the real grid are not publicly
accessible. Often there is enough data or knowledge available to gen-
erate a synthetic grid that resembles the main properties of a real
grid to a reasonable degree. An example is the algorithm by Birch-
field et al.>* that generates realistic transmission network topologies
from spatial load distributions based on geographic population data.
The algorithm is expanded in Ref. 5 to also enable transient stabil-
ity analysis of the synthetic power grids. Besides the transmission
system, synthetic grids are also required for studying mid- and low-
voltage grids as their exact structure is often unknown.® For German
medium and low-voltage grids, the DingO model’ is an extensive
and well-documented option to generate topologies’ and supply and
demand distributions.” DingO is part of the larger research project
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open eGo and is open-source software that uses freely available
data.

Another important use case for synthetic power grid mod-
els is to generate large data sets of synthetic test cases that can be
used to investigate the system dynamics with methods of machine
learning.”'” A number of studies have shown that the network topol-
ogy of grids has a direct influence on their dynamic stability.'' ="
However, most of these studies are based on simplistic compo-
nent models for synchronous machines. Furthermore, unrealisti-
cally homogeneous parameters for the nodes and lines are used, even
though it is known that heterogeneities, for example, due to the het-
erogeneous line lengths that directly impact the admittances, play an
important role.'” Graph-Neural-Networks have been shown to be a
powerful method that could potentially extend these stability anal-
yses to more realistic power grid models.''**" The training of such
neural networks requires large data sets of realistic grids that are, for
example, generated by a synthetic grid model.

Finally, synthetic grid models will be crucially important for the
investigation of the dynamic effects of future power grids. Within
the next decades, the power system will undergo a fundamental
transformation as new transmission infrastructure is built and con-
ventional machines are replaced by renewable energy sources (RES).
A major challenge is that the exact dynamical behavior of gener-
ation units is widely unknown as renewable generation units are
connected to the grid via inverters with various control schemes.
In order to maintain stability in such inverter-based grids, a certain
share of these controls must be grid-forming. Today, most RES are
still equipped with grid-following control schemes and, hence, there
is a lack of practical knowledge on the collective dynamical behavior
of a large number of grid-forming generation units. It is, therefore,
of great importance to do simulation studies of these systems to
ensure that new technology being integrated into the grid does not
lead to unexpected collective effects and blackouts.”’ Unfortunately,
there is a lack of both benchmark test cases and synthetic power
grid models for studying such inverter-based grids. In this work,
we enable the possibility of modeling power grids with high shares
of inverter-based generation units. For this, we bypass the problem
that the exact dynamical models of such systems are still uncertain
by using a technology-neutral model, introduced in Ref. 22, that
has been shown to reproduce the behavior of a large class of dif-
ferent inverter controls. However, we also point out open research
questions for improving the modeling of future power grids.

In this paper, we present a modular framework for generating
synthetic grids that are suited for dynamic power system studies.
We give an overview of all necessary steps from the generation of
grid topologies, to the definition and parametrization of component
models and the calculation of the steady state. The paper is accom-
panied by a software repository that provides an implementation of
all algorithms described in this paper. Our approach is modular in
the sense that users can easily adapt each step in the grid genera-
tion process to their own needs, e.g., by providing their own specific
grid topologies or by using different dynamic models for the gener-
ating units in the system. We focus on extra high voltage (EHV) level
transmission grids, which in the continental European transmission
grid includes the 380-400 and the 220 kV voltage levels. Collective
dynamical effects are traditionally studied in the highest grid layer,”
which is why we can rely on a comprehensive foundation there. In
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principle, the approach presented here can be extended to all grid
layers.

The framework is designed to be capable of efficiently generat-
ing large numbers of synthetic grids with very limited input data.
At the same time, the component models and parameters have a
comparatively high level of realism: Generator and inverter models
feature voltage dynamics, the active power production, and demand
are heterogeneous and the parametrization of line admittances is
according to data of the German transmission grid. The framework
is, therefore, well-suited for applying machine learning methods,
e.g., to predict dynamical stability from the structural properties of
the grid.

The main focus of the framework presented in this work is
to enable the transient analysis of the collective dynamics of future
power grids and especially their transient stability. The target audi-
ence of this work are interdisciplinary researchers without a strong
background in power systems engineering. This framework offers
them a tool to generate synthetic grids and their dynamics which
finds a balance between simplicity and tractability and realism. The
underlying simulation software PowerDynamics™ that is used for
this framework focuses on transient stability analysis and on elector-
mechanical phenomena and is applicable for simulations in the
range of seconds to several minutes.

Il. SYNTHETIC POWER GRID FRAMEWORK

For this project, we have chosen a framework to structure the
synthetic power grid generation process. A framework in software
development is defined as a semi-complete code basis that provides
a reusable structure to share among applications.” Users can inte-
grate the framework into their own software and extend it to include
specifically needed functionalities. The modularity and expandabil-
ity of frameworks are needed for this project as researchers are
interested in various properties and effects common in power grids
which can be included in the framework over time. Furthermore, as
more information on the structure of power grids under renewables
becomes available it can easily be included in the existing software.
As typical for frameworks we have developed a default structure that
can be employed immediately by users. As the framework is modu-
lar each step can be interchanged as long as it adheres to the general
structure. The default structure of the framework is shown in Fig. 1.
In the default structure, the first step is to generate a topology or net-
work structure for the synthetic power grid. Then, active power set
points for the nodes in the network are defined. The next step is to
specify the node and line models in order to populate the networks
with dynamics. Then, an operation point, that fulfills certain stabil-
ity criteria, is determined. In the last step, we validate the synthetic
grids and ensure that the dynamic network properties are similar to
those of real power grids that are carefully planned.

Most of the steps presented here have been used and validated
individually in research projects before, however, they are now, for
the first time, combined as a comprehensive package that is avail-
able for further research. Particularly, it is the first step toward a
synthetic model of future power grids with high integration of RES.
Each section contains a summary of a step in the framework as well
as a critical analysis of the state-of-the-art. Secs. IT A-II E, we give an
outlook and show which additional work could be done to improve
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FIG. 1. The default structure of the software framework. The user only needs to input the dynamic model of the nodes and the size of the power grid. Further steps, such
as the generation of the topology and the power flow in the network, are performed automatically. Before the power grid is returned by the software, its behavior is validated
to fulfill the stability criteria of real power grids. This flow chart only shows the currently implemented default structure, however, as the framework is modular further options

can be added over time.

the model, particularly for the representation of future power
grids.

For the analysis of the resulting grids, we also provide stochastic
models that characterize fluctuation processes that are typical at the
timescale of interest.

A. Grid topology

The default topologies in our framework are generated using
the random growth algorithm introduced in Ref. 26. We choose
this model as it is conceptually straightforward to generate a large
number of interesting and plausible topologies and as it has little
computational complexity, which is convenient for generating large
ensembles of synthetic test cases. However, it is at the conceptual end
of the synthetic grid spectrum. If the interest is to study dynamics on
more realistic topologies, other models should be employed. Two
examples of algorithms that generate such realistic network topolo-
gies are introduced in Refs. 3 and 7. The advantage of these models
is their high degree of realism and their ability to depict real-world
electricity grids instead of only reproducing statistical properties.
However, both algorithms are only able to produce a limited number
of topologies, which hinders their usage in certain machine learn-
ing projects that aim at studying the dynamics stability such as in
Refs. 10 and 19.

The random growth algorithm™ generates synthetic networks
that resemble real-world EHV power grids with respect to the expo-
nentially decaying degree distribution and the mean degree. The
algorithm includes first an initialization phase, where a spatially
embedded minimum spanning tree is generated, and then a growth
phase. The growth phase makes use of a heuristic target function
for the trade-off between the total line length, which determines
the costs, and the smallest number of edges that would need to be
removed to disconnect the grid into two parts, which influences the
redundancy.

The default parameters of the growth algorithm have been set
to [No,p,g,1>s] = [1,1/5,3/10,1/3,1/10], as employed in Ref. 16,
where Nj is the initial number of nodes in the minimum spanning
tree, p, g are the probabilities for generating a new redundant line, r

is the exponent for the trade-off between redundancy and cost, and
s is the probability of splitting an existing line.

Since distribution grids typically exhibit rather different net-
work structures (mostly radial and ring topologies’), these parame-
ters have to be adapted when the growth algorithm should be used
for modeling lower voltage levels.

For the default step, we assume that there is no correlation
between the grid topology and the positioning of generation units in
future grids. We, thus, assume that the transmission system topology
will remain very similar to today, even if the position of generation
units will be correlated to the renewable energy potentials and the
location of the generation, thus, changes. This may not be entirely
realistic and future studies should consider that the grid will be
expanded and adapted to the new supply sources. However, such
changes are expensive and time-consuming’’ and, thus, likely to be
limited. To properly incorporate these aspects, a synthetic geograph-
ical model, potentially incorporating economic optimization, such
as in Ref. 28, is needed.

B. Active power distribution

In order to correctly represent the dynamics of the power grid,
a realistic distribution of power in the grid is required. For this
purpose, the ELMOD-DE” data set, an open-source spatially dis-
tributed, nodal dispatch model for the German transmission system
is consulted. This data set has been chosen as it contains real data
on demand and generation and has been accumulated from reli-
able sources such as the German Transmission Operators and the
European Network of Transmission System Operators for Electricity
(ENTSO-E). The ELMOD data set represents the current load and
capacity distribution, which means that RES are still in the minor-
ity. The analysis shown here is suitable for the distribution of active
power in synthetic grids, which should represent the status quo as
most buses are either generation-heavy or load-heavy. Following
Ref. 30, which also analyses the data set, we examine the net power
AP at each node given in the data set.

The ELMOD data set includes a time series for the total demand
P,y in all of Germany. The demand is distributed to the individual
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nodes by introducing the nodal load share Is,,, which specifies the
proportion of the consumption of a node m from the total demand
Py It is distinguished between two different types of load scenarios,
off-peak and on-peak. Egerer” define on-peak and off-peak as the
highest and lowest load level meaning the maximum and minimum
of Py, respectively. The data set gives the load shares Is,, for both
scenarios the off-peak and on-peak. Following the calculations of
Ref. 30, we will always work with the off-peak scenario. However,
simulating the on-peak scenario can easily be achieved by using the
on-peak load shares and repeating the following calculations. The
consumption at a node P, is then given by

Pcon,m = Ptot N l$m~ (1)

The ELMOD data set includes the installed capacity for each gen-
eration unit ¢¢, which is the maximum power output the unit k
connected to node m can produce. As multiple power plants can be
connected to a node m, the nodal capacity C,, is given by the sum
of all capacities at the node C,, = >, ¢*,. Typically, the full capacity
of a generation unit is not available. In addition to the approach by
Taher et al.,” we also include the availability factors a'" for each
technology during the off-peak scenario. The nodal availability A,,
is then given by

A, = Z &k -ath, (2)
k

The total available power is defined as A = ) _,, A As there are
no data about how much power each node generates at a given time
point we follow the approach given in Ref. 30 and reduce the nodal
availability A,, by the factor x = Z‘Zi, such that generation and con-
sumption are balanced. The nodal generation Py, is, thus, given by

Pgenm = A - x. Finally, we can define the net nodal power AP, as

AP, = Pgen,m - Pcon,m- (3)

Figure 2 shows the distribution of the net nodal powers AP as a
histogram. It can be seen that the distribution is bimodal and asym-
metric and that the power generation is heavy-tailed. The heavy
tail in the power distribution can be explained by the structure of
today’s power grid where the power is mostly produced by a small
number of large generators. In the ELMOD data set, 301 nodes are
classified as net consumers, while only 137 are net generators. For a
future RES-heavy scenario, the capacities and availabilities should
be replaced with a model for the deployment of wind and solar
renewable resources.

Following Ref. 30, the active power P of each node is sampled
from a bimodal distribution, given by

1 (P — Py)’ (P + Py)’
PPy = 2021 (eXP 207 TP T ) @

in this work, we will use Py = AP35 ~ 131 MW.

The topologies used here mimic the extra high voltage 380 kV
transmission grids. All following calculations are performed in a
Per-Unit-System (p.u.), meaning that an appropriate base power
Py, and base voltage Vi, have to be chosen. As this work only
examines the highest voltage layer of the grid, the base voltage is
simply chosen as Vj,;, = 380 kV. To define the base power for the
380 kV level, we extract all nodes that are connected to 380 kV lines
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FIG. 2. Histograms of the net nodal generation and consumption in the
ELMOD-DE® data set during the off-peak scenario. The distribution is bimodal
and asymmetric. The power generation shows a heavy tail with a small share of
net producers that generate more than 750 MW.

and calculate the mean AP;g ~ 131 MW. Based on the available
data, we choose Py, = 100 MW as the base power for the synthetic
power grids.

For this work, we will adopt the bimodal model which was
introduced in Ref. 30. How this distribution will change due to the
increasing share of RES but also changing consumption remains
an open research question. A promising possibility is to base the
distribution of active power supply on the renewable potentials of
geographical areas. For this purpose, established software packages,
such as atlite,”’ could be consulted. For the consumption side, new
sectors with additional loads will be connected to the electric grid,
for example, electric cars or hydrogen production.

Furthermore, it should also be taken into account that the set
points for the power change in the grid over time due to the evolu-
tion of the demand over the day and year. Typically, these set points
are updated every 15 min based on a cost optimization procedure.
It would be valuable to study a grid and its dynamics under differ-
ent load scenarios. Moreover, the demand is not constant between
two dispatch times, but fluctuates, for example, studied in Ref. 32.
In Sec. 111 B, we will apply the model for realistic demand fluctua-
tions, which has been derived in Ref. 32, to our power grids. Future
work could also consider that the generation is typically distributed
via an optimal power flow calculation to find the optimal dispatch.
Additionally, it could be considered that the demand is typically not
randomly distributed in space but centered around population cen-
ters or industry-rich regions. This clustering could result in a higher
loading of lines that connect production- and consumption-heavy
centers, as we can, for example, see in the German power grid.*”

C. Power grid model

On the most abstract level, we will mathematically describe
power grids as systems of differential-algebraic equations (DAEs).
The algebraic constraints are most commonly introduced via the
load models, but can also appear when several generation units are
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present at a bus. Explicit DAEs are defined as
x = flx,y), ®)

0= g(x ), (6)

where Egs. (5) and (6) represent the differential and algebraic equa-
tions, respectively. The vector x holds the differential variables,
whose derivatives appear in the DAE, while the vector y gives the
algebraic variables, whose derivatives do not appear.

The specific models for the nodes and lines as well as for the
networks are introduced in Secs. I C 1 and IT C 2.

1. Node models

Our synthetic grids will consist of grid-forming components,
for example, power plants and novel types of inverters that con-
tribute to grid stability and components without grid-forming capa-
bilities, such as loads or grid-following inverters, that have to rely
on an already stable grid. For this work, we have decided to use
elementary nodal models to depict components with and with-
out grid-forming abilities that are able to cover a large range of
dynamical actors.

In this work, PQ-buses’ are used to represent the components
without grid-forming behavior. The PQ-bus locally fixes the active
and reactive power of node m,

0= (Pser,m + iQser,m) —Vm Ijn) (7)

where Py, and Qg are the active and reactive power set points of
the node, and v,, and i,, are the complex voltage and current of node
m, which completely describe the physics of a balanced three-phase
AC system.”” The model can depict either loads or sub-networks of
consumers and RES that are connected to the grid via grid-following
inverters. The PQ-bus (7) is a constraint equation as given in Eq. (6)
and forces us to use the DAE description of the power grids.

To represent grid-forming components, we use the normal-
form, a technology-neutral model for grid-forming actors, that has
been introduced in Ref. 22. It has been shown that various models
of grid-forming components, such as droop-controlled inverters”
and synchronous machine models,” can be expressed by the normal
form. The normal form has been validated by numerical simulations
and lab measurements of a grid-forming inverter so far, and work to
identify normal form parameters for a wide range of grid-forming
actors is ongoing. A normal form at node m with a single internal
variable, the frequency w,,, is given by

s«
m’>

@ = A% 4 BP"8,, + CO"8V,, + GP"5P,y + HO"8Q,,  (8)

Vy = Vv

T A B8, + Cv,, + GV6P,, + HSQ,

m

where v,, is the complex voltage. §P,, and §Q,, represent the differ-
ence between the active and reactive power to the set points. §v,, is
the difference in the squared voltage magnitude v,, to the squared
voltage set point. The other coefficients are the modeling parame-
ters that capture all the differences between the various models the
normal form can represent. The parameters A" and A" are zero
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when the system is, as in our case, defined in the co-rotating refer-
ence frame. In the normal form, all structural differences between
models are absorbed in the parametrization.

The free parameters for the normal form can be gathered by
approximating other models; moreover, it is also possible to derive
them from experimental data, which has also been performed in
Ref. 22 for a specific type of inverter in a lab. For the example
provided in this work, we will use a normal form approximation
of a droop-controlled inverter’> whose parameters can be derived
analytically.

The exact ability of the normal form to cover all needed dynam-
ics is a subject of current research. Future work will include mea-
surements on different types of inverters and deriving the parame-
ters of the normal form from the data. This is a crucial step to study
the dynamics and stability of realistic future power grids, which will
consist of a variety of interacting grid-forming inverters.

In addition, we use a slack bus’* for the load flow calculation.
The slack bus locally fixes the voltage v,, of node m,

0= Vsetim — Vm> (9)

where vy, is the set point voltage. The voltage magnitude |y | of
the slack is typically set to 1 p.u. and its voltage angle is ¢, = 0°. The
slack bus is not included in the resulting dynamic synthetic power
grid. It is only an ancillary component that is used as the reference
for all other buses in the system while solving the load flow problem,
as described in Sec. IT D. The active and reactive power of the slack
bus are free to change to compensate for the power imbalance in
the network. Therefore, it is assumed that the slack bus has a large
amount of energy stored, which can be released quickly. The slack
bus is typically considered to be a large power plant or battery, a
connection point to a higher grid layer, or another part of the power
system which is not modeled explicitly.

2. Line model

For this work, the Pi-Model, see, for example, Ref. 37, is used.
In the Pi-Model, the impedance Z;,, = # is placed in the center
of the line. The capacitance between the line and the ground is also
taken into account by introducing the shunt admittance Yy, which
is placed, in parallel, at both ends of the line. The current on the lines

connecting node k and m is then given by”’

ikm = Yem(Vk — Vi) + YokmVis (10)

ik = Ykm(vm - Vk) + Ysh,kmvm) (11)

where Yy, is the admittance of a line connecting node k and m and
Yaukm is the shunt admittance. v, and v, are the complex nodal
voltages. Combining the nodal and line models, we obtain the full
network model. The current injected at node k is given by

=) ik (12)

and the power flow in the network is defined as
Sk = vy, = P +iQx, (13)

where Sy is the apparent power at node k and Py and Qy are the real
and reactive power injected at k, respectively.”
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TABLE |. Standard overhead line parameters according to Ref. 38 for the typical
number of cables and wires.

pubs.aip.org/aip/cha

TABLE II. Comparison of transmission line lengths between different models.
The values for the synthetic grid were calculated by generating 10 000 different topolo-
gies. The mean line length is given by (/), the standard deviation of the line length is

Voltage level R (2/km) X (Q/km) Cg, (nF/km) o1, and the minimal line length by /nn.
380kV 0.025 0.25 13.7 () (km) o1 (km) I (km)
SciGRID™ 37.13 36.59 0.06
29

The impedance and shunts are calculated according to the dena gLM}? D,_DE, 4 ;1(7)?2 ;i? 832
model of standard 380kV overhead power lines™ given in Table L. ynthetic grids : : :
The model includes the resistance and reactance per unit length
R and X, respectively. Furthermore, the model includes the shunt
capacitance per unit length Cih, which is used to calculate the shunt Lk = € dt. (19)

admittances.

As X is specified for the nominal frequency of 50 Hz, which
is why we use a static line model here. The total admittances are
calculated according to

k.= —, (14)
Ct
k= —, (15)
Wt
kck,
Vi = ——o—— (16)
- .wCs )kckw
Youkm = 0+ s (17)

where I, is the line length in kilometers. For consistency, we fix
the grid frequency w, in the shunt admittance Y, to the nomi-
nal frequency. The coefficients k. and k,, define the ratio between
the typical number of cables ¢, and wires w; and the actual numbers
of cables ¢ and wires w in the line.” The typical numbers of cables
and wires are 3 and 4, respectively, for transmission lines in the
380kV level in Germany.” In the default version of the algorithm,
we assume that all transmission lines have the typical number of
cables and wires. In Sec. IT E 4, we introduce an additional step in the
algorithm where probabilistic power flow scenarios are considered.
The line capacities are increased, by adding new cables to existing
lines, if a load scenario leads to an overload.

To calculate the line properties, the lengths of the transmission
lines are needed. As the model of Ref. 26 generates an embedded
topology, but does not provide a spatial scale, we need an additional
step to determine the spatial scale. This is done by requiring that the
line lengths of the synthetic grids resemble the line lengths of real
EHYV grids.

The line lengths [, in kilometers are obtained by converting
the Euclidean distances d,, of the lines, which are generated by the
random growth model.” The conversion factor ¢ is given by the
mean length () of overhead lines in the extra high voltage (EHV)
level, that concerns voltages equal or greater than 220kV, divided
by the mean euclidean distance (d),

o

=, 18
@ (18)

(@]

Additionally, we used the shortest line I, in the EHV level as a
threshold. The admittances of lines that are shorter than [, are set
to the threshold impedance of the shortest line.

The mean line length was determined from the SciGRID data
set,”” which consists of openly available geographic data of the Ger-
man power grid. At the time of the creation of the data set, the
coverage of the EHV level in Germany was around 95%,’’ which thus
offers an excellent basis for such a study.

The ELMOD data set” also offers a network topology that
is based on network plans by the transmission system operators
(TSOs) and OpenStreetMap data. Since the data in SciGRID are
better documented and the study deals much more intensively
with the network topology, we base our transmission line lengths
on SciGRID. Still, for completeness, we will also analyze the data
from ELMOD. A comparison between SciGRID, ELMOD, and our
synthetic grids, which are based on SciGRID, is given in Table II.

In Table 11, it can be seen that the mean line length, as well as
the standard deviation of the line length of SciGRID and ELMOD,
matches well. Furthermore, it can be seen that our synthetic grid
line length shows a standard deviation that matches the SciGRID as
well as the ELMOD. The most significant difference between the two
data sets is the minimum line length I;,, which is about 400 m in
ELMOD and about 60 m in SciGRID. For the reasons that were stated
above, we have adopted I, from SciGRID.

Future work would also include not only analyzing the mean
and standard deviation of the length but also matching the distribu-
tions of line lengths (see Appendix A). This goes beyond the random
growth algorithm’ which is currently used and would require an
algorithm that considers line lengths, node locations, and a spatial
embedding. A preliminary study'’ on extending the algorithm which
uses different node positioning rules has been performed but it does
not deal with recovering the correct line length distribution.

D. Operation point and reactive power

Finding a stable operation point for synthetic power grids is
challenging as power systems are generally non-linear and multi-
stable. The AC load flow has no guarantee for convergence. Even if
it converges only the synchronous fixed points whose voltage mag-
nitudes are all close to 1 p.u. are physically meaningful for power
grids. Securing the voltages to be close to their nominal values is
a difficult task to accomplish. Typically, the reactive powers of the
nodes are adjusted to control the voltage magnitudes in the power
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grid.”* However, for many synthetic grid models, there is no prior
information about the reactive power flow.

Reactive power planning is considered to be one of the most
intricate problems in power grid planning."’ The review article"
gives an excellent overview of the objectives and constraints that
are considered in reactive power planning. Instead of implement-
ing one of the complex established models presented in Ref. 41, we
use a straightforward method to solve the reactive power flow. We
employ the voltage stability objective, which is also a standard objec-
tive according to Ref. 41, and assume that it has to be met perfectly.
This requirement uniquely determines the reactive powers at the
nodes.

We generate an ancillary power grid with the same topology
and line models as the full power grid. The ancillary power grid con-
sists of PV buses where all nodes are constrained to have voltages
magnitudes of V,,, = 1p.u. and the same active power that they gen-
erate in the actual power grid. One of the nodes is randomly turned
into the slack bus (9) of the system that accounts for any power
imbalances, for example, due to line losses. The reactive powers of
the ancillary grid are found by using the power flow calculation of
PowerModel. j1" and a root-finding algorithm to find a steady
state. The operation point of the ancillary grid is used as the initial
guess for the operation point search of the actual grid.

As the synthetic grids generated in this work have less than
10000 nodes, our approach still leads to feasible power flow solu-
tions. Once the grids become bigger, a more in-depth reactive power
flow planning algorithm, such as in Ref. 43, will be needed to find
feasible operation points.

E. Validators

Real-life power grids are planned carefully to lead to stable
operations. Synthetic processes can never fully capture this plan-
ning stage. Instead, we use a rejection sampling approach. Synthetic
power grids whose dynamics do not satisfy the stability properties
of real-life power grids are rejected. In this section, we introduce a
set of validators that review the stability of the synthetic power grids
in their operation point. To assess our default settings, we gener-
ated a set of synthetic networks with different sizes and studied the
number of rejections. We generated power grids ranging from 100
to 1300 nodes with a step size of 25 nodes. For each grid size, we
generate 100 power grids and can report that no grid was rejected.

1. Voltage magnitude

First, we verify that the nodal voltage magnitudes fulfill the
standard of the EN 50160 report.** The report specifies that the aver-
age 10 min root mean square voltage has to stay within the bounds
of £10% for 95% of the week. We assure this by validating that
all nodal voltage magnitudes are V'~ 1p.u. in the operation point.
If the set points of the system and the parametrization have been
chosen properly, the voltage condition should be fulfilled. Even if
the reactive power is chosen to ensure a stable power flow with
good voltage magnitudes, incorrectly specified control dynamics
or machine parameters, can still lead to a violation of the voltage
conditions in the operating point. Thus, even in this case, the verifi-
cation of the voltage condition is still essential in order to catch such
unrealistic parametrizations.

pubs.aip.org/aip/cha

2. Line loading stability margin

In a stable operation of the power grid, no line is overloaded.
There are different thresholds for the allowed loading of a trans-
mission line. In this work, we focus on the threshold which is
determined by the stability margin and depends on the physically
possible limit of the line Pp,.

The power flow transferred over a line connecting node m and
k, neglecting the reactive power flow and line losses, is given by

YmVk .

Pmk = - Sln(emk)x (20)
ka

where v,, and v, are the nodal voltage magnitudes, X, is the line

reactance, and 0, is the difference in the voltage angles of node

m and k. The transferred power becomes maximal when 6,,x = 7.

Thus, the physically possible limit of the line is Py = ‘g;"mi" . To
assure a stable power system, transmission lines are operated well
below this limit and the so-called stability margin sm is introduced.”
The transferred power of a line P,y must, therefore, be below a
threshold given by Py eq < Pmax(1 — sm). In this study, we choose
sm = 0.3 as suggested in Ref. 45. If any line loading in our power
grid violates this threshold, we reject the power grid.

3. Small signal stability analysis

Since the grids we consider in this work are described by DAEs,
we cannot simply study the eigenvalues of the Jacobian in the equi-
librium to determine the linear stability of the system. Instead,
we perform a small signal stability analysis for DAEs according to
Ref. 46.

In this approach, the eigenvalues of the so-called reduced Jaco-
bian, or state matrix J,.4 are examined. The reduced Jacobian is set
up by decomposing the full Jacobian matrix J into the following
blocks containing the partial derivatives:

<[4 o],
08 98

where for a function h and a variable z, the matrix of partial
derivatives of h with respect to z is given by 0,h. Again, the differ-
ential equations and the algebraic equations are given by fand g,
respectively.

Following Ref. 46, the reduced Jacobian is defined as

Jred = axf_ D, (22)

(21)

D=0,f(3,9)  dg (23)

where D is the degradation matrix. The eigenvalues of J,.; can be
examined as usual again, meaning that power grids whose eigenval-
ues of J,.s have positive real parts are classified as linearly unstable.
Power grids whose operation point is linearly unstable would not
exist in reality and, therefore, have to be rejected before any further
investigations are performed.

4. Probabilistic capacity expansion

So far we have only assured that the synthetic power grids are
stable under a single power set point that was drawn from the prob-
ability distribution (4) or any other source. However, in real power
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grids, the set points are updated regularly, e.g., in Germany, a new
demand plan is implanted every 15 min. Therefore, it is important
to also verify the stability of the grid under different set points. In
principle, all validators can be applied to an ensemble of set points.
In this work, we only focus on the capacity of lines, as this is the
most directly affected by the demand, and assure that there is always
enough line capacity to cover the expected load cases.

We sample completely new set points from the bimodal dis-
tribution (4) but double the mean power P, in order to study the
system under more stress. A more realistic analysis of high-stress
power flow scenarios would require an extensive investigation of the
expected set points and is, therefore, beyond the scope of this paper.

For each new scenario, we calculate the load flow in the grid
and then analyze the line loading as given in Sec. II E 2. If a line is
overloaded, we add three additional cables to the line to increase its
admittance as in Eq. (16). This approach is repeated for N differ-
ent scenarios. So far no new cables were added for all performed
simulations. This is to be expected since, in the SciGRID* data
set, more than 90% of the EHV transmission lines have the typi-
cal number of cables. It is nevertheless important to validate the grid
under different load scenarios to assure its stability. Furthermore,
this capacity evaluation could become important once more realis-
tic load scenarios are evaluated, which in the future could include
the weather-dependent time series generated by atlite.”’

While these validators cover the most basic functioning of the
grid, further conditions can also be considered. A natural extension
would be to ensure N-1 security,’” meaning that any component may
fail and all other components stay within their operational bounds.

I1l. NODAL FLUCTUATIONS

Due to the increasing share of variable RES, i.e., wind and solar
energy, power grids are exposed to new sources of fluctuations.
RES are fluctuating at different time scales™" and, particularly,
have intermittent fluctuations at short time scales.”” Along with
supply-side fluctuations, recent studies of high-resolution recorded
electricity consumption demonstrate intermittent fluctuations on
the demand-side’>"*? as well. To generate synthetic power grids that
imitate the dynamics of real power systems at such short time scales,
fluctuations have to be considered both on the supply and demand
side.

Here, we introduce the stochastic processes that generate fluc-
tuating wind and solar power, as well as demand time series. These
models have been derived to ensure that these synthetic time series
have the same short time-scale stochastic characteristics as empir-
ically observed in real data. Therefore, one can confidently use the
synthetic time series for further research in power grids and consider
the response of power systems to these fluctuations. The effects on
the grid frequency are illustrated in Sec. I'V.

In addition to the supply and demand fluctuations, the fluctu-
ating time series of the measured grid frequency can also be analyzed
directly. The authors of Ref. 53 have introduced a data-driven model
to generate realistic synthetic frequency trajectories that reproduce
critical statistical properties such as heavy tails in the probability
distributions. The authors have shown that market activities induce
frequency fluctuations. Specifically, the probability to observe large

ARTICLE pubs.aip.org/aip/cha

deviations from the nominal frequency is increased by market activ-
ities. Future work should, therefore, take markets into account as
drivers of fluctuations.

A. Supply fluctuations

The intermittent nature of wind speed and solar irradiance,
along with their turbulent-like behavior, which transfers to wind
and solar power and, consequently, to power grids has been widely
discussed.*>*****> As demonstrated in these studies, wind and solar
power are non-Gaussian time series and have heavy-tailed proba-
bility distribution functions (PDFs). Extreme fluctuations, such as
a 90% reduction in power in just a few seconds, occur often in RES.
These fluctuations can present additional challenges for maintaining
the stability of power systems.

Here, we employ a non-Markovian Langevin-type stochastic
process,” as well as a jump-diffusion model” to generate respec-
tively wind and solar power with similar short time-scale charac-
teristics as the empirical data sets. The Langevin-type model used
here is

; Pwin (t)
Pwind(t) = Pwind(t) (F - T’:) + Y, Kpi/md(t)n(t) (24)

where T" and P, are constant parameters and « is a parameter with
which one can tune the intensity of the noise n. The exact values
of the parameters used in our simulations are given in Sec. I'V. The
noise # is obtained from the following Langevin equation:

n(t) = —yn(®) + ¢, (25)

where ¢ is a Gaussian noise with (¢(f)) =0 and ({(t)g“(t/))
= 8(t — {'). The jump-diffusion model emulating short time-scale
fluctuations in solar power is

dPsolar(t) = D(l) (Psolur: t)dt + v D® (Psolar’ t)dW(t) + ﬂd](t)> (26)

where D'V and D are, respectively, the drift and diffusion coeffi-
cients. In Eq. (26), dw is the Wiener process and dJ is the Poisson
process with jump size 7, which is assumed to be a normally dis-
tributed random number, i.e., 7 ~ N(0,0,). The Poisson process
comprises also a jump rate, which we call A. The advantage of the
jump-diffusion model is that it is a non-parametric model. All model
parameters, the drift and diffusion coefficients, and the jump rate,
can be calculated from empirical data sets. For the estimation of the
parameters, we refer the interested reader to Ref. 57.

B. Demand fluctuations

Standard load profiles used to balance energy in the grid in
advance have a time resolution of 15 min. Shorter time scales are
balanced by control mechanisms rather than by trading. To study
the dynamics at short time scales, the load profiles are, thus, of lim-
ited use. Instead, we consider empirical measurements of loads that
have a high enough resolution to reveal short-term fluctuations such
asin Refs. 32, 51, and 58.

Here, we apply the superstatistics model introduced in Ref. 32
to generate the short time-scale fluctuations of the demand side. Fol-
lowing the superstatistical approach, the demand fluctuations are
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obtained by taking the L2 norm of several Gaussian distributions
plus a constant offset 15,

P(t) = \/ @) + @O + -+ (G0 + 1, (27)

where we use ] = 3 as discussed in Ref. 32, and z;(¢) is obtained from
the following Langevin equation:

dz;(t) = yz;(H)dt + edw;, (28)

where dw; is the Wiener process with a mean 0 and standard devi-
ation o = €/4/2y. We employ the same parameter values wysp, ¥,
and € as reported in Ref. 32.

It should be noted that the stochastic time series we have intro-
duced here is based on empirical measurements of power grid actors
that are typically not directly connected to the highest level of the
power grid. As not all producers and consumers connected to a
bus are perfectly correlated, the fluctuations would be attenuated in
reality. Unfortunately, few or no measurements of the actual corre-
lations of fluctuations exist, which is why we need to leave this point
to future work.

IV. SIMULATION EXAMPLES

In this section, we generate a fully electrified synthetic power
grid, whose structure is shown in Fig. 3, and study its behavior
in response to the three different fluctuation processes that have
been introduced in Sec. I11. The synthetic grid that we consider here
consists of 100 nodes with an equal share of grid-following and grid-
forming inverters. We expect that future power grids will have a
high share of variable renewable energies and, therefore, we con-
sider multi-node fluctuations in this example. We assume that the
grid-forming inverters are equipped with sufficiently large storage
units. Hence, the RES fluctuations are only fed into the grid via the
grid-following inverters.

The fluctuations Pp,;(t) are added to the set points Py of the
nodes. This results in the following equation for the active power P;
at node i:

Pi(t) = Pset,i + Pﬂuc,i(t)~ (29)

® Grid-forming

A Grid-following
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TABLE lll. Performance measures for completely correlated fluctuations.

||L| |sync ||£||dev Afmax(HZ) ROCOFmax(HZ/S)

Wind 0.027 1.237 0.787 0.734
Demand 0.081 2.044 1.446 7.545
Solar 1.619 0.698 0.454 15.295

For the different processes, we will analyze the two edge cases, com-
pletely correlated fluctuations, meaning that all nodes have the same
fluctuating time series Pg,(t), and second, completely uncorrelated
fluctuations where all nodes have different fluctuating time series.

In order to compare the results, we will study four perfor-
mance measures, the synchronization norm [|£||y,,’ the L, norm
of the average deviation from the nominal grid frequency || L[|z,
the maximal absolute frequency deviation Afy.y, and the maximal
absolute Rate of Change of Frequency RoCoF,x,

1 71 XN: 1 XN: ’
||£||s nc = T / = <wm(t) - wk(t)> dt) (30)
’ TJo N m=1 N k=1

1T & )

ey — - - m(t) — 3 1
el = |7 N 2 ontt) — " d (1)
A = ! t 32
fmax - E mrax(|a>( ) - w0|)> ( )

1 .
RoCOF,.x = — max |w(t)|, (33)

2wt

where w, is the nominal angular grid frequency. The indices m, k
run over all N grid-forming inverters as the grid-following inverters
have no internal frequency dynamics (7).

The synchronization norm (30) measures the synchronicity in
the power grid. A large synchronization norm expresses a lack of
synchronization. The synchronization norm, however, neglects any
fluctuation of the so-called bulk,” the joint response of the entire
power grid, of synchronous frequencies. Therefore, the authors of
Ref. 60 introduce the deviation norm [|£||4y, which measures the
contribution of the bulk to the fluctuations. In Ref. 60, it has been
shown that the bulk is the dominant contributor in response to
single-node renewable energy fluctuations.

The results are summarized in Tables III and IV. In the cases
of wind and demand fluctuations, it can be seen that the deviation
norm [|L||4, is larger than the synchronization norm. This indi-
cates that the bulk fluctuations are the main contributors for both

TABLE IV. Performance measures for completely uncorrelated fluctuations.

||£| |sync ||£| |dev Afmax(HZ) RoCoF yax (HZ/S)

Wind 0.027 0.181 0.118 0.096

FIG. 3. Network structure of a synthetic power grid. Triangular and circular nodes Demand 0.074 0.302 0.176 0.274

depict grid-following and grid-forming inverters, respectively. Solar 1.344 0.101 0.218 9.713
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FIG. 4. Probability density function of the frequency response to the uncorrelated fluctuation processes. Bold lines represent the PDFs determined via kernel density
estimation. The dashed lines show the best-fitted normal distribution. Each subfigure includes the coefficient of determination R? of the fitted normal distribution.

edge cases, the correlated or uncorrelated fluctuations. In the case of
solar power, we can see that the synchronization norm is larger than
the deviation norm, which expresses a lower degree of synchroniza-
tion potentially induced by the jump-like nature of the fluctuations.
For all processes, we can see that the deviation norm is smaller for
the uncorrelated case than for the correlated case, which is to be
expected.

Furthermore, it can be seen that the maximal absolute fre-
quency deviation Afp,, and the maximal absolute Rate of Change
of Frequency RoCoF,,x are always smaller in the uncorrelated cases
than in the correlated cases as expected. As mentioned in Sec. 111 B,
the actual fluctuations should be attenuated as typically multiple
producers and consumers are connected to a single node whose fluc-
tuations are not perfectly correlated. Thus, the result that we present
here should be considered a worst-case estimate. This explains why

the frequency response for the uncorrelated fluctuations is relatively
severe and even surpasses 0.1 Hz.

For all fluctuation processes considered in this work, we find
that the voltage magnitudes of the nodes stay close to the set point
of 1 p.u.,, which is to be expected as we simulate active power
fluctuations which couple to the frequency.”

Figure 4 shows the probability density function for the fre-
quency deviations in the uncorrelated cases determined via kernel
density estimation and the corresponding fitted normal distribution.
Furthermore, we have calculated the coefficient of determination
R? for all fits and can see that R*> > 0.99 for all three processes.
Although, all fluctuation processes for the demand and the supply
are non-Gaussian the response of the frequency is again Gaussian.
This is in contrast to the results found for the frequency distribution
in Refs. 62 and 53, which show non-Gaussian statistics. However,

0.4}
T 02 B
=
3 oo}
~0.2}
0 25 50 75 100

tls]

FIG. 5. Results for completely correlated demand fluctuations at the nodes. The figure on the left shows the active powers of the grid-following inverters. The frequency
response of the grid-forming inverters is shown in the figure on the right side. The parameters [y, €, uug] = [0.016, 33.81,0.03], as in Ref. 32, were used to generate the

demand fluctuations.
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FIG. 6. Results for completely uncorrelated demand fluctuations at the nodes. The figure on the left shows the active powers of the grid-following inverters. The frequency
response of the grid-forming inverters is shown in the figure on the right side. The parameters [y, €, uus] = [0.016, 33.81, 0.03], as in Ref. 32, were used to generate the

demand fluctuations.

our model does not include market activities that have been shown
to increase the probability of large frequency deviations.” Further-
more, we do not expect the synthetic case of our renewable-inverter
scenario to reflect the type of frequency dynamics that occur in
today’s grid where the dynamics are mostly driven by synchronous
generation and a lower share of RES. This result further underlines
the importance of studying fluctuation processes in power grids and
including market activities in future studies.

In the following, we will go into more detail about the results
of the demand fluctuations. The results for the wind and solar
fluctuations can be found in Appendix B.

Figures 5 and 6 show the results for the correlated and uncorre-
lated demand fluctuations, respectively. In this example, we use the
coefficients for the stochastic process, introduced in Ref. 32, which
have been extracted from the NOVAREF data set® that consists of
high-resolution demand profiles. In a transmission grid, the number
of consumers is significantly higher than in the data sets analyzed in
Ref. 32.

These results show that our fluctuation model cannot be con-
sidered fully realistic on the system level. While the individual time
series of demand, solar, and wind are close to those observed in
reality, the model does not include realistic correlations between
separate injections. We assume perfect correlation at the nodal level,
leading to unrealistically large jumps in energy at individual nodes.
In addition, full or no correlation across nodes is assumed where
the latter leads to incorrect Gaussian behavior for the whole sys-
tem statistics.”” The question of the correlation of short-time scale
fluctuations at the length scales relevant to the grid is still open. To
our knowledge, no direct measurements exist, and thus data-driven
models are not available.

Yet, these extreme examples demonstrate that we are able to
generate robust and stable synthetic grids. Having highly robust
synthetic grids also opens the door to future research that stud-
ies grids that are under severe stress, possibly from compound

events, meaning that multiple stressors occur at once. Extreme sce-
narios that can destabilize grids include the loss of multiple lines,
as grids are built N-1 secure, special weather conditions that can
cause storage to be locally depleted, causing grid-forming invert-
ers to have to compromise on their grid-forming capabilities and
to inject fluctuations as well.

V. CONCLUSIONS

In this work, a framework to generate synthetic power grid
models for studying collective dynamical effects has been intro-
duced. For the first time, the following established methods are
combined to obtain synthetic power grids: realistic grid topologies,”
active power set points**’ and short-term fluctuations, node’” and
line models. Finally, we introduce validators that ensure our power
grid and its operation point fulfill established stability criteria*>*®
and reject the sample otherwise. Each element in the framework can
be substituted as long as it adheres to the general structure, thus
making the approach modular. For the default elements, we have
chosen methods that have already been used and validated in various
research projects. We have reviewed these established approaches
and draw attention to possible improvements in Secs. II A-II E,
in particular, in order to investigate electricity grids with a high
share of renewable energy. We have identified two elements that
need improvement, the generation of network topologies and the
distribution of active power supply.

The topologies created with the random growth model*® cannot
reflect the distribution of transmission line lengths in the empirical
SciGRID data set.”” The model has been designed to resemble net-
work properties, such as the degree distribution, of real EHV power
grids. However, the positioning of the nodes is uniformly random,
which does not reflect the growth of real power grids. Grid growth
is driven by population and demand growth processes that are far
from uniform. We assume that it is possible to correct the length
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distribution by introducing an additional step in the algorithm that
considers the geographical location of the nodes. Furthermore, we
have assumed that the transmission system topology will remain
very similar to today. Future studies should consider how the energy
transition influences the topology, as, for example, RES are con-
nected to the grid differently than large power plants and the grid
evolves to adapt to the new locations.

The major issue in the distribution of active power supply for
our synthetic model is that the ELMOD-DE" specifies scenarios that
reflect the current power supply. As we are interested in study-
ing future dynamics as well, a new method for generating active
power distributions is needed. Atlite’ is a software tool that gener-
ates weather-dependent power generation potentials and time series
for renewable energy technologies. These potentials and time series
are promising and could be used to update the active power supply
in our model. Further, as the time series depend on the weather, they
could also be used to study the synthetic grid under multiple supply
scenarios.

Besides the generation of the synthetic grid dynamics in stable
operation points, we also include the major drivers of fluctuations
at short time scales. We have implemented the three major drivers
of short-term fluctuations in future power grids, solar, wind, and
demand. As an example, we study a fully synthetic power grid under
these fluctuations. We have decided to add the fluctuations only to
the components without grid-forming capabilities as grid-forming
components will usually be equipped with sufficient storage. We
find that the synthetic grid shows good synchronicity under all three
fluctuation scenarios. We saw that there is a relevant contribution to
the joint response of synchronous frequencies.

It remains a challenge to find a balance between the simplicity
and tractability of the model and realism. We have outlined a wide
range of points at which realism can be increased. In the current
state, the complete model is already well suited to be used in further
research projects. This includes developing methods to study com-
pound and extreme events that particularly stress the system. More
immediately, it will allow us to advance the study of dynamic power
grid stability using graph neural networks.'*'>? It enables for the
first time to generate a large and robust set of heterogeneous DAE
models that will challenge the GNN models and allow us to take one
step closer to predicting the dynamic stability of real power grids.
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APPENDIX A: LINE LENGTH DISTRIBUTION

See Fig. 7 for histograms of the line lengths in the SciGRID data
set’ and of our synthetic model.
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FIG. 7. Histograms of the line lengths in the SciGRID data set™ and of our syn-
thetic model. Both distributions show heavy tails. The data for the SciGRID lines
indicate a scale-free distribution but the quantity of data is too small to make
accurate statements. Further investigations are necessary.
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APPENDIX B: RES FLUCTUATION EXAMPLES
The results for the wind (Figs. 8 and 9) and solar fluctuations (Figs. 10 and 11).
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FIG. 8. Results for completely correlated wind power fluctuations. The parameters [D, y, g, €] = [0.1,1.0,0.5, 1.0], as in Ref. 56, were used to generate the wind power
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FIG. 9. Results for completely uncorrelated wind power fluctuations. The parameters [D, v, g, €] = [0.1, 1.0, 0.5, 1.0], as in Ref. 56, were used to generate the wind power
fluctuations.
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FIG. 10. Results for completely correlated solar power fluctuations. The parameters [D®, A, o,,] = [0.001, 0.01,0.02], as in Ref. 57, were used to generate the solar power
fluctuations.
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FIG. 11. Results for completely uncorrelated solar power fluctuations. The parameters [D), A, o;,] = [0.001,0.01,0.02], as in Ref. 57, were used to generate the solar
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