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Abstract 

In times of ever-growing and flexible demand for freight transports, the ability to quickly create efficient tour plans 

becomes increasingly important. Currently, this process is often carried out manually and requires trained 

personnel with years of experience. Due to the increasing number of goods to be shipped, as well as short reaction 

and planning times, this task becomes more and more complex and time-consuming. 

 

In this paper, we present a novel approach for automated tour planning based on reinforcement learning methods. 

This enables us to learn on the basis of historical tour data, react flexibly to changes in transport conditions, and 

create tours similar to the ones created by human planners. Our focus is on short-range business-to-business 

transports, where the delivery areas are not as densely populated with customers as within the consumer transport 

sector. 
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1. Introduction 

Road freight transport accounted for over three quarters of all freight traffic in the European Union in 2016 

(Eurostat, 2018), thus being an important contributor to as well as an enabler of the modern economy. The ideas 

behind the terms Industry 4.0 and Internet of Things push the logistics and transport sector to be more flexible, 

connected and automated. Additionally, increasingly fast-paced times where goods need to be delivered on short 

notice leave very little time to plan their delivery.  

 

The capability to plan deliveries quickly by creating a set of time and cost efficient tours becomes ever more 

essential. For transport companies, this has a strong savings potential since customer wishes can be accommodated 

more quickly and subsets of orders can be delegated to subcontracting transport services earlier. Not only does this 

capability benefit individual companies, but also society as a whole, since the efficiency of tours corresponds with 

fuel expenditure to a large degree and thus also with emitted pollution.  

 

Many different problems of this nature have been formalized and can be solved using mathematical optimization 

methods (e.g. (Laporte, 1992), (Zirour, Liong, Ismail, & Omar, 2008)). However, since formalized problem 

definitions often do not capture all the specifics of reality, the solutions generated by optimization methods often 

need to be modified and fine-tuned by human planners. Due to this and the required calculation time of traditional 

methods, the process of creating tours is often still carried out entirely manually by human experts.  

 

To reduce the time needed to create tours, we do not attempt to eliminate humans from the process entirely, but 

focus on the creation of initial tours so that these can be further adapted by experts. Thus, the goal is to provide 

transportation tours, which are easy to work with for the human planners, i.e. are similar to expert tours and require 

only few modifications to be applied in practice. Since it is not clear how the goal of creating tours, which mimic 

expert tours, can be stated as a precise mathematical objective, traditional optimization methods are not well suited 

to this particular problem. Instead, we turn our attention to the field of machine learning.  

 

While there have been some initial attempts at utilizing machine learning for combinatorial optimization (e.g. 

(Bengio, Lodi, & Prouvost, 2018), (Nazari M. , Oroojlooy, Snyder, & Takác, 2018)), they remain well within the 

realm of foundational research, without direct applicability to real-world problems. Although tailor-made machine 

learning methods could one day yield promising results for combinatorial optimization problems, we investigate 

if already existing techniques can be transferred and utilized to solve a problem of this kind. Specifically, we apply 

methods from reinforcement learning, a sub-field of machine learning where autonomous agents learn behaviors 

by receiving rewards and/or punishments while interacting with an environment.   

 

Our research in this paper is guided by the following set of questions: Can a reinforcement learning agent learn to 

create transport tours similar to those created by human experts? How should the reward function be designed to 

enable the agent to achieve this overall goal in a time, resource and distance efficient way? Is it possible to do so 

receiving rewards for individual steps in the process of creating a solution, rather than one reward that judges the 

quality of the overall solution? How can the quality of the overall solution be measured? 

 

We answer these questions in the remainder of this paper, which is structured as follows. In section 2, we describe 

the tour planning problem examined here in detail. Section 3 describes the state of the art concerning problems of 

a similar kind as well as a general introduction to reinforcement learning. In section 4, the solution approach is 

presented, including the system modeling and a tailored reinforcement learning implementation. Subsequently, 

section 5 shows the results achieved using the described methodology, both in terms of quality and speed. This is 

followed by a discussion as well as some considerations regarding improvements of the employed methods in 

section 6. At the end, a brief conclusion is given. 

 

2. Problem Statement 

The task examined here is the creation of initial tours in a certain geographical area for a given day. This area is 

generally small enough so that each order can be delivered on a single day.    

 

Specifically, given a set of orders, which need to be delivered to various locations, the goal is to create a set of 
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tours such that every order is assigned to exactly one tour. Each order has the following properties: a weight 

measured in kilograms, a space requirement measured in the amount of pallets required, as well as a delivery 

location and a pickup location. The pickup location is usually a central warehouse from which the majority of the 

orders are dispatched, although this can differ in some cases.  

 

A tour is subject to a set of constraints consisting of (1) a weight limit 𝑤𝑚𝑎𝑥  given in metric tons (2) a space limit 

𝑠𝑚𝑎𝑥 measured in the maximum number of pallets, and (3) a maximum duration 𝑡𝑚𝑎𝑥 given in hours. While 

variations of the exact constraints are conceivable, for the proof-of-concept described here we assume the 

following values based on a typical vehicle used in practice:  

 wmax = 7.5 

 𝑠𝑚𝑎𝑥 = 11  

 𝑡𝑚𝑎𝑥 = 9 

We further assume that the loading of goods into the vehicle is performed before the beginning of the tour and 

consequently does not contribute to the tour duration, while the unloading of goods does contribute to the duration 

of the tour and takes a fixed amount of 15 minutes.     

 

Apart from the general idea that orders need to be assigned to tours, an explicit objective function, which needs to 

be minimized or maximized, is not given. Instead, the goal pursued in this article is to create tours that mimic those 

created by a human tour planner. The challenge is therefore to create a reward function that enables the agent to 

follow the implicit goal of minimizing the number of tours and the traveled distance. 

 

3. State of the Art 

3.1. The Vehicle Routing Problem 

The vehicle routing problem (VRP) is concerned with the delivery of goods from a depot to a set of customer 

locations such that the overall distance driven is minimized (Clarke & Wright, 1964). In its most basic form, the 

VRP is already NP-hard, i.e. we cannot hope to find optimal solutions to large problem instances efficiently 

(Lenstra & Kan, 1981). Many variations on the basic VRP exist, varying in their objective functions (Lee & Ueng, 

1999) (Giannikos, 1998), their constraints (Kumar & Panneerselvam, 2012) and the considered time horizons 

(Francis, Smilowitz, & Tzur, 2008).  

 

Due to the above-mentioned NP-hardness of even the basic VRP formulation, exact solution methods tend to be 

prohibitively time-consuming in practice. Instead, heuristics and meta-heuristics can be used to compute solutions 

which may not be optimal, but are usually good enough for practical concerns (Laporte, 1992).  

 

How viable these methods are depends on the specific needs of each individual business. Although there are use-

cases where a solution only needs to be computed once and is from then on set in stone, in many cases changing 

circumstances require the solution to be modified or created from scratch many times in a short period of time. 

Even then, resulting solutions are frequently not perfectly suited for deployment in practice because of edge cases 

the solution method is not aware of. Handling these edge cases often requires knowledge, which cannot easily be 

formalized, but is important for the successful execution of the delivery process. In these cases, human experts, 

equipped with the aforementioned implicit knowledge, are required to ensure that all edge cases are covered. As a 

result, in many cases, the tour planning process is carried out by human experts either entirely, or with the help of 

common vehicle routing software.  

3.2. Reinforcement Learning 

Reinforcement Learning is an area of machine learning in which an agent can interact with an environment and 

observe its state with the goal to learn how to accomplish a certain task (Sutton & Barto, 2018). At all times, the 

agent is in some state 𝑠 ∈ 𝑆, which it perceives as an observation 𝑜, and can perform some action 𝑎 ∈ 𝐴, where 

both the state space 𝑆 and the action space 𝐴 may be either discrete or continuous. Upon performing an action, the 

agent transitions to a new state 𝑠′ and receives some reward 𝑟. In which state 𝑠′ the agent arrives in, when 

performing action 𝑎 in state 𝑠, may or may not be defined deterministically. The aim of the agent is to learn some 

policy 𝜋, i.e. a mapping from states to actions, in order to maximize not its immediate, but rather its long-term 

cumulative reward.  
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Once the environment has been sufficiently explored and a good policy has been found, it is prudent to stick to the 

learned policy rather strictly to maximize rewards and avoid an unexpected behavior. In the early stages of training, 

however, a good policy has not been found yet and thus rather than strictly following the current policy, some 

mechanism to encourage exploration is needed. How much exploration and how much exploitation of the current 

policy should be performed at which stages of training is often called the exploration-exploitation trade-off. A 

popular approach to the exploration-exploitation problem is the 𝜖-greedy method (Watkins, 1989), where, at each 

step, a random action is chosen with a probability of 𝜖 while the best action according to the current policy is 

chosen with probability 1 − 𝜖. 

 

One of the more popular variants of reinforcement learning is Q-learning (Watkins, 1989), where an action-value 

function 𝑄(𝑠, 𝑎) is estimated, i.e. a function describing the long-term expected reward when performing action 𝑎 

in state 𝑠. In the basic Q-learning algorithm, this action-value function is usually represented by a simple table. At 

each time-step, the action 𝑎 with the highest Q-value in the current state 𝑠 is chosen, a reward 𝑟 is collected, and 

the Q-table is updated as follows: 
    

𝑄(𝑠, 𝑎) =  𝑄(𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾 𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′) –  𝑄(𝑠, 𝑎)] (1) 

where 𝛼 is the step-size, which describes how strongly the value estimates are affected by new information, and 𝛾 

is a discount factor, describing to which degree estimated rewards from future actions are taken into account.  

 

In recent times, an approach called Deep Q-learning has gained popularity. Here, the Q-values are computed by a 

(deep) neural network. Additionally, Deep Q-learning approaches are usually characterized by the usage of 

experience replay buffers (Lin, 1993) as well as target networks (Mnih, et al., 2015), which are both employed to 

stabilize the learning process. Experience replay describes the act of keeping a buffer of a certain size filled with 

past experiences. During training, this buffer is periodically sampled from such that the agent is not only exposed 

to its current situation in the environment, but also to past experiences, thus decorrelating successive inputs to the 

agent. This prevents the agent from overadapting to its current situation while losing the power to generalize to 

different situations. The second addition, a target network is a second network which is used to compute the Q-

value of the best future action in equation 1. This second network is a copy of the first network but its parameters 

are updated less frequently, which means that the agent has a stable target to converge to. 

 

4. Methods 

We approach the problem described in the section 2 by training a reinforcement learning agent to iteratively assign 

orders to tours. Note that the agent only groups orders to a tour, but does not determine in which sequence the 

orders in each tour are delivered. The latter is instead computed heuristically by first applying a greedy algorithm 

and further optimizing the resulting solution using the 2-OPT heuristic (Croes, 1958) to minimize the tour’s overall 

distance. This computed result is used within the reward function (c.f. section 4.2) of the agent. 

4.1. Environment 

Given the general introduction to reinforcement learning in the preceding section, we now describe how we model 

the problem at hand in order to solve it in a reinforcement learning context.  

 

As our approach mimics a human approach, it requires the agent to build tours in a step-wise manner. At each step, 

the agent is presented with observations from a single order and a single tour (illustrated in Fig. 1). Initially, the 

tour is empty and the order is randomly selected from the list of all unassigned orders 𝒪𝑢.  

It can then choose between four possible actions: (1) skip the current order, (2) assign the current order to the 

current tour, (3) finish the current tour, and (4) terminate the episode. In case of actions (1) and (2), the agent is 

presented with a new unassigned order. When performing action (3), a new tour is created and the agent is 

presented with one of the remaining orders. Finally, action (4) terminates the entire tour planning process.  

 

The agent aims to maximize its long-term reward by choosing between the different actions based on a set of 

observations pertaining to its state and especially to the current order and tour. Observations describing the current 

tour include how much space is left in the vehicle, how much additional weight the vehicle can carry, and how 
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much longer the duration of the tour can be without violating constraints.  

An observation concerning both the current tour and the current order is the size of the angle 𝛼, which is the angle 

in which the combination of the current tour and the current order operate in geographically. More specifically, 

given a set of lines 𝐿, where each 𝑙 ∈  𝐿 is defined by two points of which one is the depot and one the location of 

an order already in the current tour, 𝛼 is defined as the maximum angle between any 𝑙 ∈  𝐿 and the line defined by 

the locations of the depot and the current order. 

 

Other observations describing the current order include the required weight and space, as well as the change in 

tour duration which would result when adding this order to the current tour. In addition, the agent receives the 

weight of the lightest and heaviest orders, as well as the space requirements of the largest and smallest unassigned 

orders. Finally, the agent can observe the remaining number of unassigned orders as well as the current number of 

inactive steps, i.e. the number of consecutive skipping actions. 

4.2. Reward function 

Although a precise objective function is not known in our scenario, the quality of a given planning can be judged 

in the same way that human planners assess the quality of their work - not by evaluating a mathematical function 

in their mind but by checking for the presence of certain desirable properties. Among them: (1) The number of 

tours in the solution should be as low as possible, (2) The overall distance driven should be as low as possible. (3) 

The average tour should be as full as possible (in the sense that it should not be possible to add many more orders 

without violating constraints) (4) Orders with delivery locations in geographical vicinity should be in the same 

tour.   

 

The properties given above are not necessarily comprehensive and not necessarily hard rules, but rather guidelines, 

raised when imitating the reasoning of expert tour planners.  Properties (1) and (3), as well as (2) and (4) may 

share similar goals. On the one hand, (1) and (2) take a global view on the entire solution and on the other hand 

Fig. 1: Diagram of the agent and the environment it interacts in. Note that this only serves illustration 

purposes, exact numbers of e.g. state elements or neural network nodes differ in the actual implementation 
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(3) and (4) take a local view on individual tours in the solution. As our proposed system build tours one by one, 

the reward function defined below focuses on the individual properties (3) and (4) rather than (1) and (2).  

 

Depending on which action is performed in which state, a reward or punishment (i.e. negative reward) is given 

according to a predefined reward function. The reward function posed in the following has several components. 

The first component, 𝑟𝑜, is the reward the agent receives when assigning an order to a tour. It is a step-wise function, 

which is roughly inversely proportional to the change in distance Δ𝑑 of the given tour, precisely specified by 

equation 2: 

𝑟𝑜 =

{
 
 

 
 
10,     𝛥𝑑 = 0      
3,        𝛥𝑑 ≤ 10    
0.5,     𝛥𝑑 ≤ 50    
0.1,     𝛥𝑑 ≤ 100  
0.01,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)   

This serves to satisfy property (4) described above.  

 

To address property (3), whenever a tour is closed, the agent is punished proportionally to the amount of space 𝑠 
or weight 𝑤 left in the vehicle, whichever is lower (see equation 3). 

    

𝑟𝑡  =  −min (1 − 
𝑠

𝑠𝑚𝑎𝑥
, 1 − 

𝑤

𝑤𝑚𝑎𝑥
) (3) 

 

To encourage the agent to assign each order to a tour, the agent receives a negative reward equal to the number of 

unassigned orders 𝒪𝑢 when an episode is terminated (see equation 4).  

     

𝑟𝑒 = −|𝒪𝑢| (4) 
 

In order to limit the amount of skip actions the agent chooses, a small penalty of −0.01 is given whenever the 

agent skips an order. Once the agent has skipped over the complete list of unassigned orders without adding an 

order or closing a tour, the next skip action is associated with a penalty of −10 and the current tour is closed. A 

penalty of −10 is also applied whenever the agent violates one of the hard constraints. Additionally, constraint 

violations lead to the termination of the current episode.  

4.3. Agent  

The agent presented here utilizes a neural network to compute Q-values. This network is an ordinary feed-forward 

network with three hidden layers having 30, 25, and 12 units, respectively. The hidden layers use Rectified Linear 

Units (ReLUs) (Nair & Hinton, 2010) as activation functions while the final output layer uses a simple linear 

activation. To stabilize training, the agent makes use of a target network which is updated every 10,000 steps as 

well as experience replay with a replay buffer of length 100,000. During training, the agent follows an 𝜖-greedy 

policy with 𝜖 = 0.1, i.e. it chooses the  best action (by its own estimation) 90% of the time and a random action 

the remaining proportion of the time. In the experiments and results presented in the following section, the agent 

was trained for 500,000 steps. 

 

5. Results  

The results in this section are obtained by training the agent described in the previous section on historical tour 

data spanning a period of one year, i.e. round about 27000 orders, and one hub location. This historical data 

includes information about actual orders including their characteristics, such as weight and destination, as well as 

how these were delivered in tours during the daily operations of a mid-sized logistics company. Selected parts of 

this data are excluded during training to serve as a test set for later evaluation of the agent's performance.  

 

To perform this evaluation, we let the agent create tours on the excluded test set and compare those to the actual 

expert tours associated with the data. Hence, for a given set of orders 𝒪, the agent generates a set of tours 𝒯 

including a tour 𝑡|𝒪|+1 containing all unassigned orders. A mapping between the orders and their corresponding 

tours can be defined as follows. 



Kemmerling et al. / TRA2020, Helsinki, Finland, April 27-30, 2020 

 

6 

 

 

Definition 1 Let 𝒪 be a set of orders and 𝒯 the generated tours. Then the function 

 

               𝑇: 𝒪 → 𝒯  
𝑇(𝑜) ≔ {  𝑡 ∈ 𝒯 ∣∣  𝑜 𝑖𝑠 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒𝑑 𝑜𝑛  𝑡 } (5) 

 

is called Order-To-Tour-function (OTT-function).  

 

We visualize  tours with such an OTT-function computed by the agent in Fig. 2 (b), where each vertex represents 

an orders’ delivery location, the edges in between them indicate the order in which these vertices were visited. 

Each color represents a distinct output of 𝑇(𝑜). The agent managed to assign all but two of the 46 given orders 

without breaking any restrictions. Overall, the orders within a tour form a coherent picture, i.e. their delivery 

locations are within some limited geographical area. Especially in the bottom half of the plot, some tours heavily 

overlap with each other, while the expert tours in Fig. 2 (a) maintain a much clearer spatial separation between the 

different tours. However, two of the expert tours break hard restrictions that our agent does not break, giving the 

experts an advantage. 

 

To measure this geographical separability of tours mathematically, we define the Neighborhood Relation Quotient 

(NRQ) 

 

Defintion 2 Let 𝒪 be a set of orders, 𝑇(𝑜) the OTT-function (c.f. definition 1), and 𝒩(𝑜) a defined 

neighborhood for each order 𝑜 ∈ 𝒪. 

 

Then the Neighborhood Relation Quotient 𝑁𝑅𝑄𝒩(𝒪) is given by 

    

𝑁𝑅𝑄𝒩(𝒪) ≔ 
1

∑ |𝒩(𝑜)𝑜∈ 𝒪 |
∑ ∑ 𝛿(𝑇(𝑜), 𝑇(𝑜′))

𝑜′∈𝒩(𝑜)𝑜∈𝑂

(6) 

where  

 

𝛿(𝑇(𝑜), 𝑇(𝑜)) ≔ {
1, 𝑖𝑓 𝑇(𝑜) = 𝑇(𝑜′)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7) 

 

 Intuitively, it measures how often orders with geographically close delivery locations (i.e. in the same 

neighborhood) are assigned to the same tour. For our evaluation we use two alternative definitions of the 

neighborhood. One of them, dubbed 𝒩𝑟(𝑜), describes the neighborhood as the subset of orders within a radius 𝑟 

from 𝑜. 

𝑁𝑅𝑄𝑟(𝒪) ≔ 
1

∑ |𝒩𝑟(𝑜)𝑜∈ 𝒪 |
∑ ∑ 𝛿(𝑇(𝑜), 𝑇(𝑜′))

𝑜′∈𝒩𝑟(𝑜)𝑜∈𝑂

(8) 

Fig. 2:  (a) tours built by expert planners; (b) tours built by the agent 
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The other one, dubbed 𝒩𝑘(𝑜), defines the neighborhood as the 𝑘 geographically nearest orders to 𝑜 using the 

Euclidean distance. 

 

𝑁𝑅𝑄𝑘(𝒪) ≔ 
1

𝑘|𝒪|
∑ ∑ 𝛿(𝑇(𝑜), 𝑇(𝑜′))

𝑜′∈𝒩𝑘(𝑜)𝑜∈𝑂

(9) 

If the neighborhoods are all empty or contain too many orders the NRQ loses its informative value. Thus, finding 

a suitable radius for 𝑁𝑅𝑄𝑟 requires careful fine-tuning to each individual instance of the problem while choosing 

a neighborhood size 𝑘 is more straightforward. 𝑁𝑅𝑄𝑟 is still of interest, however, since it yields more accurate 

results when order destinations are spread out very irregularly, which is the case with the data at hand. 

 

As can be seen in Fig. 3 (a), regardless of how 𝑘 is chosen, the 𝑁𝑅𝑄𝑘 scores of the expert tours are consistently 

higher than those of the agent tours. The same observation can be made in 4 (b) which shows the 𝑁𝑅𝑄𝑟 scores for 

both solutions with varying values for the radius 𝑟. Comparing 𝑁𝑅𝑄𝑟 and 𝑁𝑅𝑄𝑘 scores, it is apparent that 𝑁𝑅𝑄𝑟 

scores are generally higher due to the irregular distribution of order destinations. Additionally, 𝑁𝑅𝑄𝑟 scores show 

a smaller difference between expert and agent tours. These results are consistent with our observations from Fig. 

2. 

 

Possibly related to the issue of tour separability is the total sum distance that the delivery vehicles need to travel. 

For the expert tours, the total distance is 1,750km while the agent's tours have a total travel distance of 1,975km 

(excluding both unassigned orders). Again, the agent achieves a reasonable result, but cannot quite reach the 

quality of the tours created by experts. Some of the supposed reasons and further opportunities for improvement 

are discussed within the next section. 

 

One aspect where the agent can clearly outperform human experts is the time required to create tours (see Fig.  4). 

On average, it can assign up to 600 orders in a minute. Although the build duration is exponential in the number 

of orders, it is still extremely fast compared to amount of time a human expert spends on the planning of tours, 

which is on the order of multiple hours. The agent can still create solutions to problems with 2,000 orders within 

minutes.  

As can be seen in Fig. 5, the training duration of 500,000 steps is sufficient for the average Q-values to converge, 

which corresponds to a training duration of approximately half an hour. Thus, the adaptability of the methodology 

is extremely high, since the agent can easily be retrained every time there is a change in external conditions or 

constraints. But even without retraining, the trained agent was successfully applied to another hub location and 

generated results with the same overall quality. 

 

 

Fig. 3 (a) Neighborhood Relation Quotient with k-neighborhoods; (b) Neighborhood Relation Quotient with r-neighborhoods 
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6. Discussion  

Our approach presented in section 4 can be used to automatically create initial tours, which come reasonably close 

to the quality of final tours created by experts, as seen in section 5. Thus, the overall time spent creating daily tours 

is minimized, by delivering a support tool, which computes high-quality initial tours.  A few challenges and 

opportunities for improvement can be identified.   

 

First, note that the way we built our test data favors the expert tours because only orders from finished tours are 

included. In reality, not all given orders are assigned to a tour on a given day, instead, many orders are moved to 

different days. Since our data does not include information about which orders were moved to different days, we 

can only evaluate the agent against the "perfect" end result. In other words, human experts have the ability to defer 

orders to a future date, while the agent does not. Additionally, two of the expert tours break hard restrictions that 

our agent does not break, giving the experts an advantage. 

 

Fig.  5: Development of the best action's Q-value over time. Each datapoint shown here is an average over one 

episode 

Fig.  4: Average time to build tours on a notebook (quad-core CPU with 2.20GHz) 

depending on the number of orders 
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Nevertheless, the quality of the tours created by the agent offers room for improvement. We observe that the 

quality of the tours depends strongly on how the order list is sorted initially. While this poses a non-negligible 

challenge to the robustness of agent-based tour creation, it also offers the potential to integrate expert feedback 

into the system. Every manual change made to a created tour by the domain expert can be saved and provide a 

basis to a two-level approach. The second layer can be seen as learning agent with the goal to improve the tour 

creation by changing the order of the incoming list and thereby generating insights on how the assorting influences 

the tour generation process. Hence, this second agent can learn from the changes made by domain experts and 

adapt the sorting policy accordingly to reflect these changes in the future. 

 

An alternative approach to address the problem of sensitivity to the ordering of the list might be to circumvent it 

entirely by simply evaluating the utility of all the orders in parallel and selecting the most promising one. This 

may negatively affect the average run time, since compared to the current approach, at least equally as many but 

likely more computations need to be performed. These computations, however, can be performed in parallel rather 

than sequentially, thus potentially limiting the additional computation time given suitable hardware. More 

investigation is needed to characterize the trade-off between run time and solution quality with this approach more 

precisely. 

 

It is also conceivable that the quality of the agent's decision-making can be further improved by providing it with 

a set of observations that describe the state of the problem more thoroughly. This is challenging because the size 

of the problem, i.e. the number of orders given as input is not determined in advance and can vary in each episode. 

A possible way to approach this issue may be the use of some type of recurrent neural network such as Long Short-

Term Memory networks (Hochreiter & Schmidhuber, 1997), which can be presented with multiple inputs one after 

the other, while retaining information about previous inputs in their states.  

 

The reward function presented in subsection 4.2 is built to reflect insights of the tour planning experts. Although 

this makes it unlikely to discover novel, advantageous patterns in the tour planning process, it guarantees a certain 

compatibility between automatically and manually created tours. In this first automated tour planning approach 

the main goal was to show the capability of a reinforcement learning agent to learn the necessary patterns to 

generate valid tours which are comparable to manually created ones. In the future, we will investigate agents which 

receive less specific guidance in terms of very granular rewards for each possible action. Instead, they will only 

receive information regarding hard constraints and rewards pertaining to the goal of minimizing the number of 

tours required to serve all given orders. They will thus have more freedom to discover useful rules and behavioral 

patterns themselves.  

 

Finally, as the system presented here is only a first proof-of-concept, many more details and additions to the 

problem can be considered and implemented. For instance, we only consider short-range deliveries here, i.e. orders 

which can be delivered within a single day. Of course, this does not reflect reality, as there are also depots from 

which mostly long-range deliveries are dispatched, as well as depots from which a mixture of short- and long-

range deliveries are dispatched. A different aspect related to this issue is the size of the utilized vehicles, i.e. larger 

vehicles can often be used for long-range deliveries due to regulations. Hence, for a more mature system, a method 

like ours should be able to work with vehicles of varying sizes, ideally not predefined. 

 

7. Conclusion 

In the preceding text, we present a novel approach to solve practical tour planning problems based on 

reinforcement learning. This approach drastically reduce the overall time required to plan initial tours for any given 

day even with big varieties between delivery days, order sizes or locations. This is of great significance due to the 

highly dynamic nature of the logistics sector, where orders are often received or changed on short notice, such that 

tour planning cannot start far in advance. 

 

With our approach, initial tours can be created within minutes in such a way that only minimal modifications by 

human experts are required afterwards. Hence, the time to properly plan a full day of deliveries is significantly 

reduced. 

 

We show that these initial tours created by our reinforcement learning agent are not only valid (i.e. the agent 

successfully learns not to violate any hard constraints), but also that their quality, measured by the total travel 
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distance of the tours as well as the introduced Neighborhood Relation Quotient (defined in section 5), comes close 

to the quality of the manually created and conducted tours. Thus, while speed is the main advantage of the 

automated approach, it can also compete with human experts in terms of quality. By using reinforcement learning, 

our approach is highly adaptable to a variety of situations, such as different hub location or number of orders to be 

delivered.  

 

Further, we point out that  better results can potentially be achieved by modifying the set of observations received 

by the agent, exploring different reward functions, and taking a more sophisticated approach to the ordering of the 

initial order list. These additions and modifications have the potential to reduce the planning time even further. 

 

Nevertheless, even without further improvements, our approach can already be successfully applied to real-world 

scenarios, creating added value for businesses for two reasons. First because human domain experts do not need 

to start the tour planning from zero at any given point in time. Second the developed solution can be transferred 

and easily adapted to other locations and transport conditions. 
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