
Strategy for Database Application Evolution:
the DB-MAIN Approach

Jean-Marc Hick, Jean-Luc Hainaut
University of Namur, Computer Sciences Department

Rue Grandgagnage 21, B-5000 Namur, Belgium
{jmh, jlh}@info.fundp.ac.be, http://www.info.fundp.ac.be/libd

Abstract. While recent data management technologies, e.g., object-oriented,
address the problem of databases schema evolution, standard information sys-
tems currently in use raise challenging problems when evolution is concerned.
This paper studies database evolution from the developer point of view. It shows
how requirements changes are propagated to the database schemas, to the data
and to the programs through a general strategy. This strategy requires the docu-
mentation of the database design. When absent, this documentation has to be re-
built through reverse engineering techniques. The approach relies on a generic
database model and on the transformational paradigm that states that database en-
gineering processes can be modelled by schema transformations. Indeed, a trans-
formation provides both structural and instance mappings that formally define
how to modify database structures and contents. The paper then analyses the pro-
blem of program modification and describes a CASE tool that can assist develo-
pers in their task of system evolution.

1 Introduction

A database application is a software system that includes complex and high-volume per-
sistent data stored in a set of files or in a genuine database. Such an application must evol-
ve due to environment requirements changes.

The lack of support (methods and tools) in the database maintenance and evolution do-
main is now recognized. Systematic rules for translation of requirement modifications
into technical modifications of the application are still unknown particularly when tracea-
bility of design and maintenance processes is missing. Current CASE1 tools automatical-
ly generate incomplete DDL2 code that must be modified to be truly operational. If data-
base specifications change, these tools produce new code which is disconnected from the
updated version. In addition, data conversion and program modification are up to the pro-
grammer.

Quite frustratingly, though schema evolution has been widely studied in the scientific
literature, yielding interesting results, the latter still has to be implemented into practical
technology and methodology. The problem of database evolution has first been studied
for standard data structures. Direct relational schema modification has been analysed by
[2], [17] and [18], among others. The propagation of conceptual modifications on relatio-
nal schemas are analysed in [17] and [20]. The object paradigm is a good framework to
develop elegant solutions through the concepts of schema and instance versioning ([1],
[4], [16]).

1 Computer Aided Software Engineering.
2 Data Definition Language.

Several research projects have addressed the problem of change in information sys-
tems. For example, the NATURE project [14] has developed a requirement engineering
framework playing an important role in modification management. The SEI-CMU pro-
ject studied the evaluation of the evolution capacity of existing information systems [5].
Closer to our data-centric approach, the Varlet project [13] adopts a reverse engineering
process that consists in two phases. In the first one, the different parts of the original da-
tabase are analysed to obtain a logical schema for the implemented physical schema. In
the second phase, this logical schema is transformed into a conceptual one that is the basis
for modification activities.

This paper analyses the phenomenon of data evolution in database applications as the
modification of three system components, namely the data structures, the data and the
programs, as an answer to requirement changes at different levels of abstraction. After the
problem statement (section 2), the paper introduces the methodological foundations (sec-
tion 3). Finally, section 4 describes the evolution strategy of the DB-MAIN approach3

and section 5 closes the paper.

2 Problem Statement

The phenomenon of evolution is analysed in the framework of classical modelling ap-
proaches, that are now familiar to database developers. These approaches consider the da-
tabase design as a complex activity made up of elementary processes based on three abs-
traction levels, each of them dealing with homogeneous design requirements, i.e., the
conceptual, logical and physical levels. One generally consider three kinds of require-
ments, namely functional (to meet the user requirements in terms of system functions),
organizational (to answer the framework changes in a company) and technical (adapta-
tion to the new technical or hardware constraints). In Fig. 1, the conceptual schema meets
the organizational and functional requirements R1, while the logical schema satisfies the
DBMS4-dependent technical requirements R2 and the physical schema integrates the
physical requirements R3. The operational system contains the database (structures and
data) and the programs. According to the most commonly agreed approaches, the concep-
tual schema is translated into a DBMS model-dependent logical schema, which is in turn
enriched into the physical schema. These translation processes are basically of transfor-
mational nature.

We adopt the hypothesis that all the application specifications for each abstraction le-
vel and the trace of their design processes, i.e., the transformations, are available. This
assumption is of course unrealistic in many situations, in which the program source code
and DDL scripts (or DBMS data dictionary contents) are often the only available docu-
mentation. In this context, the strategies we are going to develop must be completed to
take the lack of high-level specifications into account.

The database application evolution translates changes in the requirements into system
changes. This paper focuses on the persistent data, i.e., the set of files or databases that
store information on the application domain. More precisely, the problem can be summa-

3 DB-MAIN stands for Database Maintenance and Evolution. This approach has been grossly
described in [7] and has been developed in detail in [12].

4 DataBase Management System.

rised as following: how must a change in a schema be propagated to (1) the lower level
schemas, including the DDL code, (2) the data and (3) the application programs.

This study relies on a non-temporal approach, according to which all the application
components (i.e., the schemas, the data and the programs) are replaced by new versions.
In particular, the data are transformed in such a way that they become unavailable in their
previous form. The application programs can use the new data only after being transfor-
med accordingly. This strategy applies on both legacy and modern database applications
and contrasts with advanced systems where the modification of the database schema is
translated into the addition of a new version. In such schema/data versioning approaches
([15],[17]), the old schema is preserved and the access to its data is stored or calculated.

For example, removing a property from a conceptual class is ultimately translated in
our approach into the removal of the corresponding column through the query: alter
table <table_name> drop <column_name>.

Fig. 1. Standard modelling approach divided into three abstraction levels.

3 Methodological Foundations

Requirement modification is translated into specification changes at the corresponding
level (we ignore the translation rules in this paper). To ensure specification consistency,
these changes must be propagated upwards and downward to other abstraction levels.
Due to the complexity of the process, it must be supported by a CASE tool, which must
meet three conditions.
• Genericity: the environment must offer a generic model of specification representation

whatever the abstraction level, the technology or the paradigm on which the applica-
tion relies.

• Formality: it must describe formally the database engineering activities.
• Traceability: the links between specifications must be rigorously recorded. They must

be analysed to provide the information necessary for the modification propagation.

Logical design

R1Conceptual level

Modelling process

DBMS Schema

Database

Programs Operational system

Conceptual schema

Data

Physical design

Logical schema

Coding/Generation

Physical schema

R2

R3

Logical level

Physical level

The DB-MAIN approach to database evolution is based on three concepts that imple-
ment these requirements: generic representation model (section 3.1), transformational ap-
proach (section 3.2) and history management (section 3.3).

3.1 Generic Model of Specification Representation

The DB-MAIN model has generic characteristics according to two dimensions:
• specification representation at each abstraction level: conceptual, logical and physical;
• coverage of the main modelling paradigms or technologies such as ERA, UML, ORM,

objects, relational, CODASYL, IMS, standard files or XML models.
It is based on the Generic Entity/Relationship model and supports all the operational

models through a specialization mechanism. Each model is defined as a sub-model of the
generic model. A sub-model is obtained by restriction, i.e., by selecting the relevant ob-
jects, by defining the legal assemblies through structural predicates, by renaming the ob-
ject according to the model taxonomy and by choosing a suitable graphical representa-
tion. Fig. 2 presents schemas according to classical sub-models for the three abstraction
levels: ERA (Merise style), relational and Oracle 8.

Fig. 2. Graphical views of conceptual, logical and physical schemas.

In Fig. 2a, PERSON, CUSTOMER, SUPPLIER, ORDER and ITEM are entity types or
object classes (ET). CUSTOMER and SUPPLIER are subtypes of PERSON (supertype).
Totality and disjunction constraints (P = partition) are defined on these subtypes. Attri-
butes NumPers, Name, Address and Telephone characterize PERSON (as well as CUS-
TOMER and SUPPLIER). Address is a compound attribute while Telephone is multiva-
lued. Attributes Number, Street and City are components of Address. Number is optional.
place, reference and offer are binary relationship types (RT). reference has an attribute.
ORDER plays two roles in place and reference. Each role has minimal and maximal car-

a) Conceptual schema b) Relational logical schema c) Relational (Oracle 8) physical schema

0-N0-N
reference
Quantity

0-N

1-1

place

0-N

1-1

offer

P

SUPPLIER
NumSup
NumVAT
id: NumSup

PERSON
NumPers
Name
Address

Number[0-1]
Street
City

Telephone[0-5]
id: NumPers

ORDER
NumOrder
Date
id: NumOrder

ITEM
NumItem
Description
Price
id: NumItem

CUSTOMER
NumCus
Account
id: NumCus

TELEPHONE
NumPers
Telephone
id: NumPers

Telephone
ref: NumPers

SUPPLIER
NumSup
NumVAT
id: NumSup

REFERENCE
NumItem
NumOrder
Quantity
id: NumOrder

NumItem
ref: NumOrder
ref: NumItem

PERSON
NumPers
NumCus[0-1]
NumSup[0-1]
Name
Add_Number[0-1]
Add_Street
Add_City
id: NumPers
id': NumCus

equ
id': NumSup

equ
exact-1: NumCus

NumSup

ORDER
NumOrder
Date
NumCus
id: NumOrder
ref: NumCus

ITEM
NumItem
Description
Price
NumSup
id: NumItem
ref: NumSup

CUSTOMER
NumCus
Account
id: NumCus

TELEPHONE
NUMPERS
TELEPHONE
id: NUMPERS

TELEPHONE
acc

ref: NUMPERS

SUPPLIER
NUMSUP
NUMVAT
id: NUMSUP

acc
REFERENCE

NUMITEM
NUMORDER
QUANTITY
id: NUMORDER

NUMITEM
acc

ref: NUMORDER
ref: NUMITEM

acc

PERSON
NUMPERS
NUMCUS[0-1]
NUMSUP[0-1]
NAME
ADD_NUMBER[0-1]
ADD_STREET
ADD_CITY
id: NUMPERS

acc
id': NUMCUS

equ acc
id': NUMSUP

equ acc
exact-1: NUMCUS

NUMSUP

ORDER
NUMORDER
DATEORD
NUMCUS
id: NUMORDER

acc
ref: NUMCUS

acc

ITEM
NUMITEM
DESCRIPTION
PRICE
NUMSUP
id: NUMITEM

acc
ref: NUMSUP

acc

CUSTOMER
NUMCUS
ACCOUNT
id: NUMCUS

acc

SPC_CUS

TELEPHONE
CUSTOMER
ORDER
REFERENCE
PERSON

SPC_SUP

ITEM
SUPPLIER

dinalities (N stands for infinity). reference is called a many-to-many relationship type and
place an one-to-many relationship type. CUSTOMER is identified by NumCus.

Fig. 2b depicts a relational schema in which PERSON, CUSTOMER, SUPPLIER, TE-
LEPHONE, ORDER, ... are tables. NumPers, NumCus and Name are columns of PER-
SON. Name is mandatory and Adr_Number is optional (nullable). PERSON has a primary
identifier (primary key) NumPers and two secondary identifiers NumCus and NumSup.
ORDER.NumCus, as well as PERSON.NumCus, are foreign keys (ref or equ) targeting
CUSTOMER. All the values of CUSTOMER.NumCus also appear as non-null values of
PERSON.NumCus. This inclusion constraint forms with the foreign key an equality cons-
traint (equ). PERSON is submitted to an exactly-one constraint (exact-1), i.e., for each
row of this table, only one column among NumSup and NumCus has a non-null value.

In Fig. 2c, the names of tables and columns are compliant with the SQL syntax and
includes physical, performance-oriented constructs. For example, Date (reserved word)
becomes DATEORD in ORDER. Indexes (access keys) are defined on columns such as
NUMPERS of PERSON and NUMSUP of ITEM. Storage spaces (called TABLESPACE
in Oracle) are defined: SPC_SUP contains the rows of tables ITEM and SUPPLIER.

3.2 Transformational Approach

Database engineering processes can be defined as a sequence of data structure transfor-
mations [3]. Adding an entity type, renaming an attribute, translating a relationship type
into a foreign key are elementary transformations. They can be combined to build more
complex processes such as schema normalization, logical schema optimization or DDL
code generation. The concept of transformation used in this paper is formally described
in [8], but we will briefly present some of its principles.

A transformation consists in deriving a target schema S' from a source schema S by
replacing construct C (possibly empty) in S with a new construct C' (possibly empty).
More formally, a transformation Σ is defined as a couple of mappings <T,t> such as: C'
= T(C) and c' = t(c), where c is any instance of C and c’ the corresponding instance of C’.
Structural mapping T explains how to modify the schema while instance mapping t states
how to compute the instance set of C' from the instances of C (Fig. 3). Structural mapping
T is a couple of predicates <P,Q> where P are the minimal preconditions C must satisfy
and Q the maximal postconditions observed in C’. We obtain: Σ = <P,Q,t>. P (resp. Q) are
second order predicates that define the properties of structure C (resp. C’).

Fig. 3. General transformation pattern.

Any transformation Σ can be given an inverse transformation Σ’ = <T’,t’> such as
T’(T(C))=C. If, in addition, we also are provided with instance mapping t’ such as:
t’(t(c))=c, then Σ (and Σ’) are said semantics-preserving or reversible. If <T',t'> is also
reversible, Σ and Σ’ are called symmetrically reversible.

Fig. 4 graphically illustrates the structural mapping T of the transformation of a rela-
tionship type into an entity type. This classical transformation appears in logical design,

C

c

C’ = T(C)

c’ = t(c)

instance-of instance-of

T

t

where complex structures, such as n-ary or many-to-many relationship types must be re-
placed with simple, flat structures. In this example, the relationship type reference is
transformed into the entity type REFERENCE and the one-to-many relationship types ro
and ri. The precondition of this transformation is void (all RT can be transformed). The
postcondition states the properties of the resulting entity type, relationship types and
constraints. The instance mapping explains how each REFERENCE entity derives from
a reference relationship. The inverse transformation, denoted T’ in Fig. 4, transforms the
entity type REFERENCE into the relationship type reference. A complete formal descrip-
tion of this transformation can be found in [8].

Fig. 4. The relationship type reference is transformed into an entity type REFERENCE.

A transformation is entirely specified by its signature, which gives the name of the
transformation, the name of the objects concerned in the source schema and the name of
the new objects in the target schema. For example, the signatures of the transformations
represented in Fig. 4 are:
T: (REFERENCE,{ro,ri}) ← RT-to-ET(reference)
T’: reference ← ET-to-RT(REFERENCE)

The first expression reads as following: by application of the RT-to-ET transformation
on the relationship type reference, a new entity type REFERENCE and two new rela-
tionship types ri and ro are created. Note that all objects must not be mentioned in a si-
gnature. Such is the case of relationship types ri and ro to which REFERENCE participa-
tes.

The notion of semantics of a schema has no generally agreed upon definition. We as-
sume that the semantics of S1 include the semantics of S2 iff the application domain des-
cribed by S2 is a part of the domain represented by S1. Though intuitive and informal,
this definition is sufficient for this presentation. In this context, three transformation ca-
tegories can be distinguished:
• T+ collects the transformations that augment the semantics of the schema (for example

adding an entity type).
• T- includes the transformations that decrease the semantics of the schema (for example

adding an identifier).
• T= is the category of transformations that preserve the semantics of the schema (for

example the transformation of a relationship type into an entity type).
Transformations in T= are mainly used in logical and physical schema production,

while T+ and T- transformations make up the basis of specification evolution process.

3.3 History

For the sake of consistency, we consider that the requirement modifications applied at a
given abstraction level must be propagated at the other levels. For example, adding a co-
lumn to a table must imply the addition of the corresponding attribute to the entity type
implemented by this table. Conversely, removing a one-to-many relationship type must
be followed by the removal of the corresponding foreign key in the logical and physical

1-10-N ro 1-1 0-Nri0-N0-N
reference
Quantity

REFERENCE
Quantity
id: ro.ORDER

ri.ITEM

ORDER
NumOrder
Date
id: NumOrder

ORDER
NumOrder
Date
id: NumOrder

ITEM
NumItem
Description
Price
id: NumItem

ITEM
NumItem
Description
Price
id: NumItem

T
⇒
⇐
T'

schemas. As far as evolution is concerned, keeping track of the design transformations is
a necessity, as we will see, to avoid manually the reformulation of the design transforma-
tion sequence for each evolution modification [7].

The trace of the transformations that produce the schema Sj from schema Si is called
the history of the transformation process, and is noted Hij. The composition of a sequence
of elementary transformations Hij is also a (macro-)transformation, so that we can use the
functional notation: Sj = Hij(Si) with Hij = Tn°...°T2°T1, that will be noted <T1 T2 ...
Tn> in the following.

Using the signature notation, the following history, named LD0, describes how the
conceptual schema of Fig. 2a has been transformed into the relational schema of Fig. 2b.
LD0 = <
 T1:(pers_cus,pers_sup) ← ISA-to-RT(PERSON,{CUSTOMER,SUPPLIER})
 T2:(REFERENCE,{ord_ref,ite_ref}) ← RT-to-ET(reference)
 T3:(TELEPHONE,have) ← Att-to-ET-inst(PERSON.Telephone)
 T4:(Add_Number,Add_Street,Add_City) ← disaggregate(PERSON.Address)
 T5:(PERSON.NumCus) ← RT-to-FK(pers_cus)
 T6:(PERSON.NumSup) ← RT-to-FK(pers_sup)
 T7:(TELEPHONE.NumPers) ← RT-to-FK(have)
 T8:(ORDER.NumCus) ← RT-to-FK(place)
 T9:(ITEM.NumSup) ← RT-to-FK(offer)
 T10:(REFERENCE.NumOrder) ← RT-to-FK(ord_ref)
 T11:(REFERENCE.NumItem) ← RT-to-FK(ite_ref)
>

When the transformations recorded in Hij are applied to Si, Hij is said to be replayed
on Si. A history can be manipulated if several rules are respected (see [9] for more de-
tails):
• Exhaustivity: the transformations are recorded precisely and completely to allow the

inversion of non semantics-preserving transformations (reversing a delete transforma-
tion requires a description of all aspects of the deleted objects).

• Normalization: the history is monotonous (no rollback) and linear (no multiple
branch).

• Non-competition: a history is attached to one schema and only one user can modify it.

4 Evolution Strategy

Our approach has been developed for evolution of relational database applications, but
other models can be coped with minimal efforts thanks to the genericity of the model and
of the transformational approach. This choice allows us to build a modification typology
and to design concrete conversion tools that can be used with systems developed in a
third-generation language such as COBOL/SQL or C/SQL.

To make database applications evolve, the design history must be available. In parti-
cular, the three levels of specification must exist and are documented, together with the
histories of the inter-level transformation processes. In other words, the database is fully
documented through its conceptual, logical and physical schemas and the histories of the
conceptual-to-logical and logical-to-physical processes. In most cases, this hypothesis is
not met: some (or all) levels are missing, incomplete or obsolete. Sometimes, only the
source code of the programs and of the data structures are available. In these cases, the
documentation and the histories must be rebuilt thanks to reverse engineering techniques
that are not addressed in this paper. The reverse engineering approach we have defined is

described in [6] and [10] while the process of rebuilding histories has been developed in
[9].

4.1 Evolution Scenarios

Three scenarios, one for each abstraction level, have been defined (Fig. 5). The initial spe-
cifications are available as the three standard schemas: conceptual (CS0), logical (LS0)
and physical (PS0) schema. The operational components are the database (D0: data and
structures) and the programs (P0). LD0 (resp. PD0) are the histories that describe the
transformations applied to CS0 (resp. LS0) to obtain LS0 (resp. PS0). The scenarios are
constrained by the following hypothesis: the change must be applied on the relevant level.
For instance, adding a new property to an application class must be translated into the ad-
dition of an attribute to a conceptual entity type, in CS0, and not by adding a column to a
table in LS0.

Fig. 5. Propagation of modifications at each abstraction level.

In the first scenario (Fig. 5a), the modifications translate changes in the functional re-
quirement into conceptual schema updates. This new state is called CS1. The problem is
the propagation of modifications towards the logical, physical and operational layers, lea-
ding to the new components LS1, PS1, P1 and D1, and to the revised histories LS1 and
PS1. The second scenario (Fig. 5b) addresses logical schema modifications. Though the
conceptual schema is kept unchanged (CS1 = CS0), the logical design history LD0 must
be updated as LD1 and the modifications must be propagated in the physical and opera-
tional layers. In the third scenario (Fig. 5c), the designer modifies the physical schema to
meet, e.g., new performance requirements. The physical design history is updated and the
operational layer is converted.

The evolution strategy comprises four steps: database schema modification (section
4.2), schema modification propagation (section 4.3), database conversion (section 4.4)
and program modification (section 4.5).

4.2 Database Schema Modification

In Fig. 5a, the requirements met by CS0 evolve from R1 to R1'. The analyst copies the
schema CS0 into CS1 and translates the changes into modifications of CS1. The transfor-
mations applied to CS0 to obtain CS1 are recorded into history CE1, so that CS1 =
CE1(CS0). In Fig. 5b, the schema LS0 is modified to obtain LS1. The logical evolution
transformations are recorded in the history LE1. Note that the designer can also modify
the logical schema by using other transformations than those used in LD0, without modi-

a) Conceptual modifications. b) Logical modifications. c) Physical modifications.

R1→R1'

CS0 CS1

LD0 LD1
CE1

LS0 LS1

PD0 PD1

Generation Conversion Modification

P0 D0 P1 D1

PS0 PS1

 CS0 CS1

LD0 LD1

LS0 LS1

PD0 PD1

Generation Conversion Modification

P0 D0 P1 D1

PS0 PS1

R2→R2'
LE1

 CS0 CS1

LD0 LD1

LS0 LS1

PD0 PD1

Generation Conversion Modification

P0 D0 P1 D1

PS0 PS1
R3→R3'

PE1

fying the conceptual objects. For example, a multivalued attribute transformed into a se-
ries of single-valued columns will now be transformed into an autonomous table. In this
case, though the conceptual schema does not change, the first scenario is used. CE1 is
empty and CS1 is equivalent to CS0, but the logical design history LD1 contains the new
transformation (cf. section 4.3). In Fig. 5c, the physical schema PS0 is transformed into
PS1 and the modification transformations are recorded in PE1.

Our approach is based on a set of standard schema modifications that accounts for
most evolution needs. A detailed study of modification typology in conceptual, logical
and physical levels is proposed in [12] and [17].

Thereafter, we are considering the first scenario for the following change: the cardi-
nality of the multivalued attribute Telephone becomes [0-2] in the conceptual schema of
Fig. 2a. This example will be analysed for each step of the evolution strategy process. The
conceptual evolution history CE1 contains one signature: change-max-card(PER-
SON.Telephone,2).

4.3 Schema Modification Propagation

At this level, all the specifications and the histories must be updated according to the mo-
difications described in section 4.2.

In the first scenario, the new conceptual schema CS1 is transformed into a logical
schema LS1 that is as close as possible to the former version LS0 and that integrates the
conceptual modifications. The LD0 history is replayed on a copy of CS1 renamed LS1.
This history contains the necessary operations to transform a conceptual schema into a
relational logical one (for example Fig. 2b). The relational transformations belong essen-
tially to the T= category.

When the LD0 history is replayed on the new conceptual schema CS1, four situations
are possible according to the type of modification:
1. Unchanged object: the transformations of LD0 concerning this object are executed wi-

thout modification.
2. Created object: the transformations of LD0 have no effect. The designer must specifi-

cally process the new object.
3. Removed object: the transformations of LD0 concerning this object can be applied but

they have no effect.
4. Modified object: for minor modifications, the transformations concerning this object

are executed. For major modifications, these transformations are no longer adapted
and processing this object is under the designer responsibility.
The transformations of LD0 augmented with those applied on the new or modified ob-

jects and without the useless transformations make up the new logical design process re-
corded as LD1 history.

After that, we proceed in the same way by replaying history PD0 on LS1 to obtain the
new physical schema PS1. PD1 contains the transformations (on physical structures: in-
dexes and storage spaces) such as: PS1=PD1(LS1).

In the second scenario, the propagation starts at the logical level but is based on similar
principles. The new logical design history LD1 is made up of LD0 augmented by the trace
of the new transformations (LE1): LD1 = LD0 ° LE1. The propagation of modifications
to the physical level is similar to that of the first scenario. If the evolution involves the
application of other transformations than those used formerly to produce the logical sche-

ma from the conceptual specifications, then LS0 is replayed step by step and the designer
replaces, when needed, the former transformations by the new ones. A second set of sche-
ma modifications includes the most useful conceptual-to-logical transformations for re-
lational schemas [12].

The third scenario is similar to the second one, applied on the the physical schema. The
new physical design history PD1 is made up of PD0 augmented by the trace of the new
transformations (PE1): PD1 = PD0 ° PE1. The physical design only copes with indexes
and storage spaces, which in most cases is sufficient to describe physical design and tu-
ning scenarios. The logical design stays unchanged (LD1 = LD0).

In the example, when the LD0 history (section 3.3) is replayed on a new conceptual
schema CS1, the designer does not transform the attribute Telephone into an entity type,
that will become the table TELEPHONE (Fig. 6a). He decides to apply the instantiation
transformation, according to which a single-valued attribute is introduced to store each
value. Telephone is therefore replaced with two optional single-valued attributes:
Telephone1 and Telephone2 (Fig. 6b). The new logical design history LD1 is equivalent
to LD0 except that the signature (Telephone1,Telephone2) ← instanciate(Te-
lephone) replaces the T3 signature and the T7 signature is removed. By simply re-
playing PD0 on the new logical schema, a new physical design history PD1 is obtained,
in which the indexes and storage space specifications related to the old TELEPHONE ta-
ble have been automatically discarded.

Fig. 6. Two popular representations of multivalued attribute Telephone.

4.4 Database Conversion

Once the specifications have been updated, the database structure and contents D0 can be
converted. The data conversion can be automated thanks to a converter generator. The
study of the evolution histories (CE1, LE1 or PE1) allows the generator to locate the mo-
difications in the three abstraction levels. A differential analysis of the design histories
(LD0, LD1, PD0 and PD1) gives the information to derive the removed, modified or ad-
ded physical structures. To shorten the notation, let us call E any evolution history, C0
and C1 any elementary or composed history in the old and in the new branch. In the first
scenario, we have: PS0 = PD0(LD0(CS0)) = C0(CS0) and PS1 = PD1(LD1(CS1)) =
C1(CS1). In the second scenario, we have: PS0 = PD0(LS0) = C0(LS0) and PS1 =
PD1(LS1) = C1(LS1). In the third scenario, C0 and C1 are empty.

According to a definite type of modification appearing in E, three distinct behaviours
are possible:

a) Telephone represented by a table in LS0. b) Telephone represented by two columns in LS1.

TELEPHONE
NumPers
Telephone
id: NumPers

Telephone
ref: NumPers

PERSON
NumPers
NumCus[0-1]
NumSup[0-1]
Name
Add_Number[0-1]
Add_Street
Add_City
id: NumPers
id': NumCus
id': NumSup
exact-1: NumCus

NumSup

PERSON
NumPers
NumCus[0-1]
NumSup[0-1]
Name
Add_Number[0-1]
Add_Street
Add_City
Telephone1[0-1]
Telephone2[0-1]
id: NumPers
id': NumCus
id': NumSup
exact-1: NumCus

NumSup

1. In case of creation, the analysis of C1 gives the new physical structures according to
the possible transformations applied successively on this object.

2. In case of suppression, the analysis of C0 provides the old physical structures to remo-
ve according to the possible transformations applied on this object.

3. The case of modification is more complex. Initially, the new structures are created on
the basis of C1. Then, the data instances are transferred from the old structures to the
new ones. And finally, the old physical structures are removed according to the analy-
sis of C0.
The analysis of E, C0 and C1 let us derive the transformation of data structures and

instances of PS0 (i.e., D0) into structures and instances of PS1 (D1). The chain of struc-
tural mappings (T parts) drives the schema modification while the chain of instance map-
pings defines the way data have to be transformed. These transformations are translated
into a converter made up of SQL scripts or programs5 in more complex cases. The trans-
lation of schema transformations into SQL scripts has been described in [12].

Some modifications bring about information losses and constraint violations. In these
cases, the conversion script produces a query to verify the violation of the constraint and
to ensure data consistency. For example, if the designer creates a primary identifier on a
previously non-unique column, the table contents can violate the uniqueness constraint,
so that the script must store the inconsistent rows, as well as the possible dependent rows
in other tables, in temporary error tables. Automating the generation of conversion scripts
is always possible, but an user intervention is sometimes necessary to manage ambiguous
or conflicting instances.

In the example, the analysis of CE1, C0 and C1 shows that the old table TELEPHONE
(in source schema PS0) must be replaced by the columns TELEPHONE1 and
TELEPHONE2 (in target schema PS1). A converter translates this transformation into the
following Oracle script, which converts both the database structure and contents, and
which stores the conflicting data, if any, into the table TEL_ERROR.
-- Creation of Telephone1 and Telephone2
ALTER TABLE PERSON ADD TELEPHONE1 CHAR(12);
ALTER TABLE PERSON ADD TELEPHONE2 CHAR(12);
-- Creation of table TEL_ERROR
CREATE TABLE TEL_ERROR(NUMPERS INT, TELEPHONE CHAR(12));
-- Transfert of data
CREATE OR REPLACE PROCEDURE Trf_data IS
 CURSOR c1 IS SELECT * FROM PERSON P
 WHERE exists(select * from TELEPHONE where NUMPERS=P.NUMPERS);
 CURSOR c2 IS SELECT * FROM TELEPHONE where NUMPERS=num;
 tP c1%ROWTYPE; tT c2%ROWTYPE; num INT; comp NUMBER;
 BEGIN
 FOR tP IN c1 LOOP
 comp := 1; num := tP.NUMPERS;
 FOR tT IN c2 LOOP
 IF comp=1 THEN
 UPDATE PERSON SET TELEPHONE1=tT.TELEPHONE WHERE NUMPERS=tP.NUMPERS; END IF;
 IF comp=2 THEN
 UPDATE PERSON SET TELEPHONE2=tT.TELEPHONE WHERE NUMPERS=tP.NUMPERS; END IF;
 IF comp>2 THEN INSERT INTO TEL_ERROR VALUES(tP.NUMPERS,tT.TELEPHONE); END IF;
 comp := comp + 1;
 END LOOP;
 END LOOP;
 END;
-- TELEPHONE destruction
DROP TABLE PHONE CASCADE CONSTRAINT;

5 Such a converter is a variant of Extract-Transform-Load, or ETL, processors.

4.5 Program Modification

Modifying the application programs P0 following database structure modification is
clearly a complex task that cannot be completely automated or only in simple cases where
the modifications are minor. To characterize the impact of data structure modifications
on programs, we defined three kinds of modifications:
• Some structure modifications do not require any modification on the programs. For

example adding or modifying physical constructs (on indexes and storage spaces) has
no impact on the programs, at least for RDBMS6. The same is valid for the addition of
a table or of columns for which no new constraints, such as not null, are defined.7

Some more complex modifications can be absorbed through the view mechanism, if it
can rebuild the former data structures.

• Other structure modifications only require minor, and easily automated, modifications
of the programs. Such is the case of a table renaming or a value domain extension.

• However, many modifications involve deeper modification of the program structure.
They often require a thorough knowledge of the application. In Fig. 2a, if the attribute
CUSTOMER.Account becomes multivalued, it translates into a table in the correspon-
ding logical schema. Following this extension of the schema semantics, the program
must either keep its former specification (one must decide how to select the unique ac-
count value) or process the multiple accounts of each customer (generally by introdu-
cing a processing loop). In either case, the very meaning of the program must be coped
with, possibly through program understanding techniques. The difficulty lies in the de-
termination of code lines that must belong to the new loop.
In most cases, the program modification is under the responsibility of the programmer.

However, it is possible to prepare this work by a code analysis that allows locating the
critical sections of code. Techniques of program analysis such as pattern searching, de-
pendency graphs and program slicing make it possible to locate with a good precision the
code to be modified. These techniques have been detailed in [10] and [21].

On the basis of E, C1 and C0 analysis (section 4.4), the schema constructs that have
changed can be identified and supplied to the program analysers (dependency graphs ana-
lysers and program slicers). The latter locates the code sections depending on these mo-
dified constructs. A generator examines the results of the program analysis and produces
a report of modifications which would be advisable to apply to the programs under the
programmer control.

In the example of the attribute TELEPHONE, the database conversion requires modi-
fications of the program structure. Before the modification, the extraction of the telepho-
ne numbers of a person required a join operator, while in the new structure, the values are
available in two distinct columns of the current PERSON row. Clearly, the processing of
these values must be rewritten manually unless the program had been written in a parti-
cularly disciplined way. To locate the code to be modified, the program analysers use pa-
rameters based on the table TELEPHONE, its columns and the variables which depend
on it.

Despite the intrinsic complexity of program evolution, new approaches are being de-
veloped, and can prove promising. One of them is based on wrapper technology8 that iso-

6 This would not be true for legacy databases, such as standard files.
7 Provided the select and insert statements use explicit column names.

lates the application programs from the data management technology. A wrapper is used
to simulate the source schema PS0 on top of the new database (schema PS1). The map-
pings T and t of the history E are encapsulated in the wrapper instead of being translated
into program changes. In this way, the programs access the new data through the old sche-
ma, so that the application logic must not be changed. File I/O primitives have to be re-
placed with wrapper calls in a one-to-one way, a process that can be easily automated.
This approach has been described and explored in [11].

5 Conclusions

The problem of the evolution of an information system, or data-centred application, in-
cludes that of the database which is at its core. The requirement evolution is translated
technically into the modification of specifications at the corresponding abstraction level.
The difficulty lies in the propagation of these modifications towards the other levels and
especially to the operational components, namely the database and the programs.

The concepts (transformational modelling, generic specification representation and
process traceability) of the DB-MAIN approach are a formal basis for the understanding
and resolution of the evolution problems. If the documentation of the system design is
available or can be rebuilt by reverse engineering, then the evolution control becomes a
formal process. This process can widely be automated as far as the database is concerned.
Unfortunately, program modification remains an open problem in the general case. It is
however possible to help the programmer to modify the code by automatically locating
the sections where occurrences of modified object types are processed.

We have developed a prototype CASE tool for relational database evolution according
to the strategy and the scenarios described in this paper. The prototype is developed in
Voyager 2 as an add-on of the DB-MAIN platform [22]. It automatically generates the
database converters corresponding to any transformation sequence. It also generates the
rules to be used by the DB-MAIN program analysers to identify the program code sec-
tions that should be modified.

An experiment has been carried out on a medium size database (326 tables and 4850
columns) in a distribution company. The application programs were made up of 180.000
COBOL lines of code distributed among 270 modules (a table appears in seven modules
on average). The experiment showed that the time of assisted conversion of the structure,
the data and the programs was less than one third of that of the manual process. With the
assisted method, an engineer propagated one elementary database modification into the
database and the programs in one day versus three days with the manual process. The
company saved forty working days for twenty modifications a year while decreasing the
risk of error. However, the assisted method required an initial investment of thirty days
to rebuild a correct and up-to-date database documentation and to adapt the data conver-
sion and program analysis tools.

8 A data wrapper is a procedural component that transforms a database from a legacy model to
another, generally more modern model. It appears as a data server to client applications and
makes them independent of the legacy model technology. For instance a set of COBOL files
can be dynamically transformed into an object store or into a relational database. Wrappers
can automatically be generated by the transformational approach described in this paper. See
[19] for more details.

References

1. Al-Jadir, L., Estier, T., Falquet, G., Léonard, M., Evolution features of the F2 OODBMS, in
Proc. of 4th Int. Conf. on Database Systems for Advanced Applications, Singapore, 1995.

2. Andany, J., Léonard, M., Palisser, C., Management of Schema Evolution in Databases, in
Proc. of 17th Int. Conf. on VLDB, Barcelona, 1991.

3. Batini, C., Ceri, S., Navathe, S.B., Conceptual Database Design - An Entity-Relationship
Approach, Benjamin/Cummings, 1992.

4. Bellahsene, Z., An Active Meta-Model for Knowledge Evolution in an Object-oriented Da-
tabase, in Proc. of CAiSE, Springer-Verlag, 1993.

5. Brown, A., Morris, E., Tilley, S., Assessing the evolvability of a legacy system, Software En-
gineering Institute, Carnegie Mellon University, Technical Report, 1996.

6. Hainaut, J.-L., Chandelon, M., Tonneau, C., Joris, M., Contribution to a theory of database
reverse engineering, in Proc. of WCRE, IEEE Computer Society Press, Baltimore, 1993.

7. Hainaut, J.-L., Englebert, V., Henrard, J., Hick, J.-M., Roland, D., Evolution of database Ap-
plications: the DB-MAIN Approach, in Proc. of 13th Int. Conf. on ER Approach, Manches-
ter, 1994.

8. Hainaut, J.-L., Specification Preservation in Schema transformations - Application to Se-
mantics and Statistics, Data & Knowledge Engineering, Vol. 19, pp. 99-134, Elsevier, 1996.

9. Hainaut, J.-L., Henrard, J., Hick, J.-M., Roland, D., Englebert, V., Database Design Recove-
ry, in Proc. of 8th CAiSE, 1996.

10. Henrard, J., Englebert, V., Hick, J.-M., Roland, D., Hainaut, J.-L., Program understanding in
databases reverse engineering, in Proc. of Int. Conf. on DEXA, Vienna, 1998.

11. Henrard, J., Hick, J-M. Thiran, Ph., Hainaut, J-L., Strategies for Data Reengineering, in Proc.
of WCRE'02, IEEE Computer Society Press, 2002

12. Hick, J.-M., Evolution of relational database applications: Methods and Tools, PhD Thesis,
University of Namur, 2001. [in French]

13. Jahnke, J.-H., Wadsack, J. P., Varlet: Human-Centered Tool Support for Database Reengi-
neering, in Proc. of Workshop on Software-Reengineering, 1999.

14. Jarke, M., Nissen, H.W., Pohl, K., Tool integration in evolving information systems environ-
ments, in Proc. of 3rd GI Workshop Information Systems and Artificial Intelligence: Admi-
nistration and Processing of Complex Structures, Hamburg, 1994.

15. Jensen, C., and al., A consensus glossary of temporal database concepts, in Proc. of Int.
Workshop on an Infrastructure for Temporal Databases, Arlington, 1994.

16. Nguyen, G.T., Rieu, D., Schema evolution in object-oriented database systems, in Data &
Knowledge Engineering (4), Elsevier Science Publishers, 1989.

17. Roddick, J.F., Craske, N.G., Richards, T.J., A Taxonomy for Schema Versioning Based on
the Relational and Entity Relationship Models, in Proc. of 12th Int. Conf. on the ER Ap-
proach, Arlington, 1993.

18. Shneiderman, B., Thomas, G., An architecture for automatic relational database system con-
version, ACM Transactions on Database Systems, 7 (2): 235-257, 1982.

19. Thiran, Ph., Hainaut, J-L., Wrapper Development for Legacy Data Reuse, in Proc. of WCRE,
IEEE Computer Society Press, 2001

20. van Bommel, P., Database Design Modifications based on Conceptual Modelling, in Infor-
mation Modelling and Knowledge Bases V: Principles and Formal Techniques, pp 275-286,
Amsterdam, 1994.

21. Weiser, M., Program Slicing, IEEE TSE, Vol. 10, pp 352-357, 1984.
22. http://www.db-main.be/ and http://www.info.fundp.ac.be/libd.

	Strategy for Database Application Evolution: the DB-MAIN Approach
	1 Introduction
	2 Problem Statement
	3 Methodological Foundations
	3.1 Generic Model of Specification Representation
	3.2 Transformational Approach
	3.3 History

	4 Evolution Strategy
	4.1 Evolution Scenarios
	4.2 Database Schema Modification
	4.3 Schema Modification Propagation
	4.4 Database Conversion
	4.5 Program Modification

	5 Conclusions
	References

