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Abstract 

Recognising and understanding the complex visual world is the ultimate goal of 

intelligent vision systems. Computer vision and artificial intelligence have been a long-

lasting research hotspot with increasing major discoveries and breakthroughs. Human 

action understanding is one of the crucial topics due to its potential value in both 

academia and industry. Various steep challenges remain due to semantically implicit and 

ambiguous definitions of video events and their inherent signal complexities from streamed 

videos ill-affected by target occlusion and variation of illumination conditions. 

Classic strategies and techniques for addressing these critical challenges of human 

action understanding have been investigated in this research. An innovative machine 

learning-augmented analytical framework for visual behaviour understanding has been 

proposed. The corresponding operational pipeline first integrates the discrete wavelet 

transform technique into the dense trajectory model to gain more defining human action 

features. Then the end-to-end multimodality neural networks are deployed for 

automatic feature learning and action classification. Performance enhancement has 

been achieved through the innovation of an efficient two-stream aggregation network 

by adopting optical flow-guided features and spatial-temporal fusion blocks in a 

cascaded spatial and temporal space. 

This research has also addressed the context-biased problem causing long 

aggravation to the deep-learning community when dealing with generalisation issues. 

A long-short-term motion encoding scheme is presented to interpret human actions 

based on their semantic meanings embedded in pose skeletons, which has greatly 

alleviated the open-set action recognition problem by introducing the Euclidean and 

Additive Angular Margin Loss. 

To facilitate the real-world implementation of the devised human action 

understanding models and techniques, the state-of-the-art and future trends of edge 

computing have also been explored. Corresponding experiments have demonstrated the 

viability and effectiveness of open format-based transferrable model generation for 

rapid and mass deployment in live. 



VI 

 

List of Symbols & Abbreviations 

1D   One Dimensional 

2D   Two Dimensional 

3D   Three Dimensional 

ACL  Arm Compute Library 

ArcFace  Additive Angular Margin Loss 

AI   Artificial Intelligence 

ANN  Artificial Neural Network 

BN   Batch Normalization 

BOF  Bag of Feature 

BoSVW  Bag of Spatio-visual Words 

BOVW  Bag of Visual Words 

BOW  Bag of Word 

C2LSTM Correlational Convolutional LSTM 

C3D  Convolutional 3D 

CBP  Compact Bilinear Pooling 

CCTV  Closed-circuit Television 

CNN  Convolutional Neural Network 

CPU  Central Processing Unit 

CUDA  Compute Unified Device Architecture 

DAG  Directed Acyclic Graph 

DGNN  Directed Graph Neural Network 

DNN  Deep Neural Networks 

DT   Dense Trajectory 

DWT  Discrete Wavelet Transform 

EP   Execution Providers 

FC   Fully Connected 

FCNN  Fully Connected Neural Network 

FLOPs  Floating Point Operations per Second 



VII 

 

FPS   Frames Per Second 

FstCN  Factozed spatio-temporal Convolutional Networks 

FV   Fisher Vector 

GCN  Graph Convolutional Network 

GEMM  General Matrix Multiplication 

GFLOPs gigaFLOPS (109 FLOPs) 

GMM  Gaussian Mixture Model 

GPU  Graphics Processing Unit 

HCI   Human Computer Interaction 

HMM  Hidden Markov Model 

HOF  Histogram of Optical Flow 

HRI   Human Robot Interaction 

HRNet  High-Resolution Net 

I3D   Two-stream Inflated 3D CNN 

iDT   improved Dense Trajectory 

IoT   Internet of Things 

IoU   Intersection-over-Union 

IP   Intellectual Property 

KLT  Kanade-Lucas-Tomasi 

KVMF  Key Volume Mining Framework 

LCR-Net Localization-Classification-Regression Network 

LDA  Latent Dirichlet Allocation 

LRCN  Long-term Recurrent Convolutional Networks 

LSF   Long-short-term Spatiotemporal Features 

LSME  Long-short-term Semantic Motion Encoding 

LSTM   Long Short-term Memory 

LTC  Long-term Temporal Convolutions 

MA   Multi-assignment 

MBH   Motion Boundary Histogram 

MLP  Multi-layer Perceptron 



VIII 

 

MTC3D  Multi-scale Trajectory-pooled 3D Convolutional Descriptor 

NN   Neural Network 

NLP  Natural Language Processing 

NPU  Neural Processing Unit 

NVDLA  NVIDIA Deep Learning Accelerator 

ONNX  Open Neural Network Exchange 

ORT  ONNX Runtime 

P3D  Pseudo-3D Residual 

PAF  Part Affinity Fields 

PCA  Principal Component Analysis 

PD   Platform-dependent 

PIM  Platform Independent Model 

PTQ  Post-Training Quantization 

QAT  Quantization-Aware-Training 

ReLU  Rectified Linear Unit 

RMPE  Regional Multi-person Pose Estimation 

RNN  Recurrent Neural Network 

SDH  Software Defined Hardware 

SFV  Stacked Fisher Vector 

SIFT  Scale Invariant Feature Transform 

SGD  Stochastic Gradient Descent 

SIMD  Single Instruction Multiple Data 

SoC   System-on-a-chip 

STFB  Spatial-temporal Fusion Block 

ST-GCN Spatial Temporal Graph Convolutional Networks 

STIP  Space-Time Interest Point 

STV  Spatio-temporal Volume 

STT  Spatial-temporal Texture 

SURF  Speeded Up Robust Features 

SVM  Support Vector Machine 



IX 

 

TFLOPS Trillion Floating-point Operations Per Second 

TCN   Temporal Convolutional Network 

TDD  Trajectory-pooled Deep-convolutional Descriptor 

TIN   Temporal Interlacing Network 

TS   Trajectory Shapes 

UK   United Kingdom 

VIBE  Video Inference for Body Pose and Shape Estimation 

 



X 

 

List of Figures 

Figure 1-1. Five categories of human actions. ............................................................... 3 

Figure 1-2. The procedure of human action recognition systems. ................................. 6 

Figure 1-3. Summarisation and thesis structure. .......................................................... 11 

Figure 2-1. Pipeline and components of handcrafted approaches. .............................. 12 

Figure 2-2. Pipeline and components of learning-based approaches. .......................... 13 

Figure 2-3. The 1D multi-level Mallat wavelet decomposition algorithm. ................. 15 

Figure 2-4. The 1D multi-level Mallat wavelet reconstruction algorithm. .................. 15 

Figure 2-5. The demonstration of the multi-level 2D wavelet decomposition. ........... 15 

Figure 2-6. Visualization of the two flow algorithm results. ....................................... 18 

Figure 2-7. Visualization of human optical flow dataset and the results on both synthetic 

and scenes (Ranjan et al., 2020). .................................................................................. 18 

Figure 2-8. Visualization of RNN Unit........................................................................ 24 

Figure 2-9. Visualization of LSTM Unit. .................................................................... 24 

Figure 2-10. The generic architecture of LRCN. ......................................................... 25 

Figure 2-11. A specific instantiation of the LRCN model for human action recognition.

...................................................................................................................................... 26 

Figure 2-12. An overview of Ng’s approach. .............................................................. 26 

Figure 2-13. Five types of Feature Pooling Architectures ........................................... 26 

Figure 2-14. The five stacked LSTM layers architecture. ........................................... 27 

Figure 2-15. LTC-CNN based network architecture. .................................................. 28 

Figure 2-16 Sample frames from the action recognition datasets. ............................... 37 

Figure 3-1. The handcrafted feature processing and representations based pipeline of 

the human action recognition model. ........................................................................... 41 

Figure 3-2. The processing steps of DWT-driven DT-based feature extractor. .......... 42 

Figure 3-3. A demonstration of DWT pre-processing for a video frame coming from 

the UCF 101 action dataset. ......................................................................................... 42 

Figure 3-4. Feature points extracted from an original spatial scale. ............................ 43 

Figure 3-5. Feature points extracted from DWT coefficients. ..................................... 43 



XI 

 

Figure 3-6. The encapsulated STV block for storing feature trajectories. ................... 44 

Figure 3-7. The computation progress of the HOG3D descriptor. .............................. 47 

Figure 3-8. Producing BoTFtc instances based on the BoF and the CoTrans templates.

...................................................................................................................................... 50 

Figure 3-9. Visualization of trajectory results. ............................................................ 53 

Figure 3-10. The obtained trajectories from a “walking” action video. ...................... 53 

Figure 3-11. Visualization of optical flow and the corresponding motion boundaries.

...................................................................................................................................... 54 

Figure 4-1. The CNN-RNN based dual-stream network architecture. ........................ 61 

Figure 4-2. The architecture of the two-stream concurrent interactive spatial-temporal 

aggregation model. ....................................................................................................... 63 

Figure 4-3. The structure of an OFF layer. .................................................................. 67 

Figure 4-4. STFB in a residual block pair.................................................................... 69 

Figure 4-5. Accumulating visual and motion features of a video across time. ............ 72 

Figure 4-6. The baseline network design of CNN-based optical flow estimation. ...... 75 

Figure 4-7. The structure of a 3-level pyramid network. ............................................. 76 

Figure 4-8. Visualization of optical flows estimation methods ................................... 78 

Figure 4-9. Feature maps extracted from the “TaiChi” action video in the UCF dataset.

...................................................................................................................................... 79 

Figure 5-1. Examples of misleading and absent contexts. ........................................... 86 

Figure 5-2. Examples of the human-masked-out video frames. .................................. 87 

Figure 5-3. The proportions of the accuracy change per class action. ......................... 88 

Figure 5-4. The proposed long-short-term semantic motion encoding architecture for 

human action understanding. ....................................................................................... 90 

Figure 5-5. Architectural element in a three-layer 2D TCN structure. ........................ 96 

Figure 5-6. The architecture of 2D TCN blocks. ......................................................... 96 

Figure 5-7. The accuracy/complexity trade-off on NUT-60 action dataset. .............. 102 

Figure 6-1. The architecture of Arm NN. .................................................................. 107 

Figure 6-2. The architecture of ONNX Runtime. ...................................................... 108 

Figure 6-3. The processing flow of ONNX runtime inference. ................................. 109 



XII 

 

Figure 6-4. The overall workflow of the AI on edge scheme. ................................... 110 

Figure 6-5. Case study of fully connected layer ONNX graphs. ............................... 113 

Figure 6-6. Case study of convolutional layer ONNX graphs. .................................. 113 

Figure 6-7. The comparison accuracy (in %) of original and quantized models. ...... 117 

 

 



XIII 

 

List of Tables 

Table 3-1. The recognition accuracy rate (in %) of different features and event 

representations on the UCF 50 dataset......................................................................... 55 

Table 3-2. Performance comparison to the state-of-the-art approaches on UCF 50, 

HMDB51 and JHMDB51 datasets (in %). .................................................................. 56 

Table 4-1. Architecture of visual and motion streams. ................................................ 65 

Table 4-2. The recognition accuracy of different CNN in the dual-stream deep learning 

architecture on the UCF 50 dataset. ............................................................................. 80 

Table 4-3. The comparison results of OFF and baseline two-stream networks........... 80 

Table 4-4. The classification results for STFB integration into different network 

locations. ...................................................................................................................... 80 

Table 4-5. The accuracy (in %) of different number of STFBs insertion on UCF-101.

...................................................................................................................................... 82 

Table 4-6. Comparison of various streams in combination with a 3D sub-network (in %).

...................................................................................................................................... 82 

Table 4-7. Performance comparison between the proposed aggregation model with 

other state-of-the-art methods on UCF101 and HMDB51 datasets. ............................ 83 

Table 4-8. Extensibility on UT-Interaction dataset. ..................................................... 84 

Table 5-1. Accuracy (in%) when testing the pre-trained DNN models on the Kinetics-

400 dataset by using the original videos and masked videos, respectively. ................ 88 

Table 5-2. Classes with the increased accuracy (in %) on the original training set and 

tested on original and masked Kinetics-400 settings. .................................................. 89 

Table 5-3. The architectures of the 3D CNN sub-network and spatial fusion network.

...................................................................................................................................... 94 

Table 5-4. The mean accuracy (in%) and computational performance of different 

backbones. .................................................................................................................. 100 

Table 5-5. The mean accuracy (in%) of different pose methods. .............................. 100 

Table 5-6. The mean accuracy (in%) of different sequence modelling methods. ..... 102 



XIV 

 

Table 5-7. Comparison of mean accuracy (in %) between the proposed model with other 

state-of-the-art methods on the NTU-60 action dataset. ............................................ 102 

Table 5-8. Comparison of accuracy among skeleton-based methods in out-of-context 

datasets. ...................................................................................................................... 103 

Table 5-9. The mean accuracy (in%) on unseen actions. .......................................... 104 

Table 6-1. Comparison of model size between fp32 and uint8 types. ....................... 116 

Table 6-2. The developing and testing platform setups. ............................................ 117 

Table 6-3. The comparison processing time (in milliseconds) of original and quantized 

models on different computational platforms. ........................................................... 117 

 



XV 

 

Table of Contents 

An Investigation of Machine Learning-Augmented Vision Systems for Human Action 

Understanding ............................................................................................................................ I 

Copyright Statement .................................................................................................................. II 

Acknowledgements ................................................................................................................. III 

List of Publications .................................................................................................................. IV 

Abstract ..................................................................................................................................... V 

List of Symbols & Abbreviations ............................................................................................ VI 

List of Figures ........................................................................................................................... X 

List of Tables ......................................................................................................................... XIII 

Table of Contents ................................................................................................................... XV 

CHAPTER 1 Introduction ........................................................................................................ 1 

1.1 Motivation .......................................................................................................... 1 

1.2 Background ......................................................................................................... 2 

1.2.1 Categories of Human Actions ............................................................................. 2 

1.2.2 Applications ........................................................................................................ 3 

1.2.3 Approaches ......................................................................................................... 4 

1.3 Key Challenges for Human Action Recognition ................................................ 6 

1.4 Project Objectives and Thesis Structure ............................................................. 8 

CHAPTER 2 Literature Review ............................................................................................. 12 

2.1 Pipeline for Human Action Recognition .......................................................... 12 

2.2 DWT for Data Pre-processing .......................................................................... 13 

2.3 Handcrafted Feature Extraction ........................................................................ 16 

2.3.1 Spatial-temporal Features ................................................................................. 16 

2.3.2 Flow based Features ......................................................................................... 16 

2.3.3 Trajectory Features ........................................................................................... 19 

2.4 Feature Representation ..................................................................................... 20 

2.4.1 Bag of Features ................................................................................................. 20 

2.4.2 Fisher Vector .................................................................................................... 21 

2.5 Action Classification ........................................................................................ 22 

2.5.1 Support Vector Machine ................................................................................... 22 

2.5.2 Artificial Neural Network ................................................................................. 22 

2.6 Deep Learning Approaches .............................................................................. 22 

2.6.1 Deep Learning Techniques ............................................................................... 23 

2.6.2 Long-term Recurrent Convolutional Networks ................................................ 24 

2.6.3 Long Time Periods-based Networks ................................................................ 26 

2.6.4 Long-term Temporal Convolutions .................................................................. 27 

2.6.5 Two-stream Networks ...................................................................................... 28 



XVI 

 

2.6.6 3D CNN based Models ..................................................................................... 30 

2.6.7 Learning Temporal Features ............................................................................. 31 

2.7 Skeleton based Approaches .............................................................................. 32 

2.7.1 Pose Estimation ................................................................................................ 32 

2.7.2 Skeleton for Action Recognition ...................................................................... 34 

2.8 Model Inference on Edge Computing ............................................................... 36 

2.9 Datasets ............................................................................................................. 36 

2.9.1 Traditional Datasets .......................................................................................... 36 

2.9.2 Modern Datasets ............................................................................................... 38 

2.10 Summary ........................................................................................................... 39 

CHAPTER 3 Feature Engineering for Video Analysis .......................................................... 40 

3.1 Introduction ...................................................................................................... 40 

3.2 Overview System Design ................................................................................. 41 

3.3 DWT-based Decomposition ............................................................................. 41 

3.4 Motion Feature Extraction ................................................................................ 43 

3.4.1 Dense Trajectory Formation ............................................................................. 43 

3.4.2 Low-level Feature Extraction ........................................................................... 44 

3.5 Video Event Representation ............................................................................. 47 

3.5.1 Spatial-temporal Bag of Features ..................................................................... 47 

3.5.2 Soft Assignment ............................................................................................... 48 

3.5.3 BoTF Formulation ............................................................................................ 49 

3.6 Action Classification ........................................................................................ 50 

3.6.1 Feature Fusion and Dimensionality Reduction ................................................. 50 

3.6.2 SVM based Classifier ....................................................................................... 51 

3.7 Experimental Results ........................................................................................ 52 

3.7.1 Visualisation of Trajectories ............................................................................. 52 

3.7.2 Camera Motion Removal Effect ....................................................................... 54 

3.7.3 Feature Descriptor Efficiency ........................................................................... 54 

3.7.4 Event Representation Validation ...................................................................... 56 

3.7.5 Comparison With the Other Approaches .......................................................... 56 

3.8 Summary ........................................................................................................... 56 

CHAPTER 4 Multimodality Neural Networks ....................................................................... 58 

4.1 Introduction ...................................................................................................... 58 

4.2 Learning Video Features by DNN .................................................................... 59 

4.2.1 Pre-trained Feature Adaptation ......................................................................... 59 

4.2.2 Dual-stream CNN-RNN Network .................................................................... 60 

4.2.3 Training ............................................................................................................ 62 

4.2.4 Transfer Learning ............................................................................................. 62 

4.3 Concurrent Spatial-temporal Network .............................................................. 63 



XVII 

 

4.3.1 The Overall Network Architecture ................................................................... 63 

4.3.2 Baseline Two-stream Network ......................................................................... 64 

4.3.3 OFF Fundamentals ........................................................................................... 65 

4.3.4 OFF Layers ....................................................................................................... 66 

4.3.5 OFF based Motion Stream ................................................................................ 68 

4.4 Spatial-temporal Aggregation ........................................................................... 68 

4.4.1 STFB ................................................................................................................. 69 

4.4.2 Stream Fusion ................................................................................................... 70 

4.4.3 3D CNN Representation ................................................................................... 71 

4.4.4 Network Implementation and Training Strategy .............................................. 73 

4.5 Learning Optical Flow ...................................................................................... 74 

4.5.1 CNN for Optical Flow Estimation .................................................................... 74 

4.5.2 Spatial Pyramid Networks ................................................................................ 75 

4.6 Experimental Results ........................................................................................ 77 

4.6.1 Visualisation of Feature Maps .......................................................................... 77 

4.6.2 Comparison of Pre-trained DNNs .................................................................... 79 

4.6.3 OFF Efficiency ................................................................................................. 80 

4.6.4 STFB Location ................................................................................................. 81 

4.6.5 Numbers of STFB ............................................................................................. 81 

4.6.6 Evaluation of 3D Sub-network ......................................................................... 82 

4.6.7 Comparison With the State-of-the-art Results .................................................. 82 

4.6.8 Applicability and Extensibility ......................................................................... 83 

4.7 Summary ........................................................................................................... 84 

CHAPTER 5 Towards Understanding Human Actions .......................................................... 85 

5.1 Introduction ...................................................................................................... 85 

5.2 Understanding the Biases for Action Recognition ........................................... 87 

5.2.1 Human Masked Data Processing ...................................................................... 87 

5.2.2 Biased Models in Action Recognition .............................................................. 87 

5.2.3 Analysis and Discussion ................................................................................... 89 

5.3 Encoding Semantic Human Actions ................................................................. 90 

5.3.1 Human Pose Sequence Extraction .................................................................... 90 

5.3.2 3D Pose Heatmap ............................................................................................. 91 

5.3.3 Long-short-term Learning Strategy .................................................................. 92 

5.3.4 Short-term Semantic Motion Encoder .............................................................. 93 

5.3.5 Long-term Semantic Action Encoder ............................................................... 95 

5.4 Action Recognition ........................................................................................... 96 

5.4.1 Softmax-based Classification ........................................................................... 96 

5.4.2 Recognition for Unseen Actions ....................................................................... 97 

5.4.3 Spatial Fusion ................................................................................................... 99 



XVIII 

 

5.5 Experimental Results ........................................................................................ 99 

5.5.1 Evaluation of Backbones .................................................................................. 99 

5.5.2 Evaluation of Pose Methods ........................................................................... 101 

5.5.3 Evaluation of Sequence Modelling ................................................................. 101 

5.5.4 Comparison with State-of-the-art Methods .................................................... 102 

5.5.5 Comparison of Out-of-Context Dataset .......................................................... 103 

5.5.6 Evaluation of Unseen Actions ........................................................................ 103 

5.6 Summary ......................................................................................................... 104 

CHAPTER 6 Model Inference on Edge Computing ............................................................. 105 

6.1 Introduction .................................................................................................... 105 

6.2 Computational Platforms ................................................................................ 106 

6.2.1 GPU ................................................................................................................ 106 

6.2.2 Arm NN .......................................................................................................... 106 

6.2.3 NPU ................................................................................................................ 107 

6.3 Platform Independent Model Design .............................................................. 107 

6.3.1 ONNX ............................................................................................................. 107 

6.3.2 ONNX Runtime .............................................................................................. 108 

6.4 Workflow of AI on Edge ................................................................................ 109 

6.5 Model Quantization ........................................................................................ 110 

6.5.1 Concept of Quantization ................................................................................. 110 

6.5.2 Case: Fully Connected Layer ......................................................................... 112 

6.5.3 Case: Convolutional Layer ............................................................................. 114 

6.6 Model Partitioning .......................................................................................... 114 

6.7 Experimental Results and Validation ............................................................. 115 

6.7.1 Evaluation of Quantization Methods .............................................................. 115 

6.7.2 Evaluation on Accelerators ............................................................................. 116 

6.8 Summary ......................................................................................................... 117 

CHAPTER 7 Conclusion and Future Work .......................................................................... 119 

7.1 Contributions to Knowledge ........................................................................... 119 

7.2 Future Work .................................................................................................... 120 

References ............................................................................................................................. 123 

 

 



1 

 

CHAPTER 1 Introduction 

1.1 Motivation 

Recognising and understanding the complex visual world is a relatively easy task 

for the human visual system, but it is complicated for computer systems (Li et al., 2009). 

Computer vision has been a long-lasting research hotspot for about half-a-century with 

prominent discoveries and breakthroughs in every decade, namely a few, pictorial and 

geometrical representation in the 70s, quantitative image and scene analysis in the 80s, 

recognition in the 90s, feature engineering at the turn of the millennium, and deep 

learning in the 2010s. Research on computer vision systems has drawn wide attention 

from academia and industry, primarily because of the incrementally growing number 

of closed-circuit surveillance television (CCTV) cameras that produce an enormous 

amount of video data every second. Discovering semantic information from these video 

data has potential value in daily life, public safety, and industrial areas, while manual 

data processing is critical, painstaking, and not scalable. Consequently, increasing 

achievements have been gained in computer vision, such as image classification, object 

tracking, and facial recognition have achieved great successes (Felzenszwalb et al., 

2010; Krizhevsky et al., 2012; Li et al., 2020). However, these algorithms and 

approaches are still struggling to cope with the demands of the applications of 

understanding various complex scenes and activities. There is no single, universal, 

intelligent, flexible, and robust approach to recognise complicated human activities. 

Human behaviour analysis or human action recognition is one of the most intriguing 

research areas in computer vision due to its wide range of applications in abnormal 

behaviour detection, novel human-computer interaction (HCI) design, intelligent video 

surveillance, healthcare system, and even game and entertainment. However, human 

action recognition remains a challenging task due to the semantic implicit and 

ambiguous definitions of video events, e.g., the classification and categorisation of 

individual and crowd motions (Sigurdsson et al., 2017), never mention the inherent 

signal complexities from recorded or streamed videos’ ill-affected by target occlusion 
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and variation of illumination conditions (Sargano et al., 2017; Sigurdsson et al., 2017). 

This research aims to extract, model, and recognise motion patterns to build a general-

purpose, high-performance, and flexible machine vision system for human action 

recognition and interpreting human actions based on their semantic definitions. It is 

anticipated that the contributions made in this research will be valuable for real-world 

applications and problem-solving such as autonomous vehicles, public security, game 

and metaverse. These methodologies will push a new paradigm for edge intelligence 

where the Internet of Things (IoT) is evolving to the Internet of Intelligent Things, and 

to the Intelligent Internet of Intelligent Things. 

1.2 Background 

1.2.1 Categories of Human Actions 

Intuitively, an action is considered a human agent performing a sequence of basic 

or atomic movements, so recognising actions from still images is very difficult and has 

low accuracy. In contrast, a video contains sequences of frames representing one or 

more movements; thus, researchers mainly focus on recognising actions from videos. 

According to human behaviour complexity and semantic definition, human actions 

can be classified into five categories (Sargano et al., 2017), i.e., gesture, individual 

action, human-human interaction, human-object interaction, and group activities, as 

shown in Figure 1-1. A gesture is a basic movement of human body parts that presents 

some meanings, e.g., “head shaking”, “hand waving”, and the OK gesture. Individual 

action is performed by a single person, “walking”, “running”, “jumping”, and “Tai Chi” 

are cases of it. Interactions are performed by at least two actors that can be divided into 

human-human and human-object interactions, e.g., “handshaking”, “ice dancing”, and 

“wrestling between two persons” are the former interactions, whilst “playing the guitar”, 

“golf driving” and “a person uses a phone” are the latter case. Group activity, also called 

crowd behaviour, is performed by a group of people, containing typically gestures, 

individual actions, and interactions, e.g., “cheerleading”, “marathons”, and “a crowd of 

people dispersing” are cases of it. 
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Gesture Individual action
Human-object 

interaction
Group activity

Human-human 
interaction

 

Figure 1-1. Five categories of human actions. 

1.2.2 Applications 

Human action recognition is one of the important research areas in computer 

vision because of its wide range of potential areas (Guo & Lai, 2014; Sargano et al., 

2017; Sigurdsson et al., 2017), including intelligent video surveillance, HCI, and 

autonomous vehicles, etc. 

a) Intelligent Video Surveillance 

During the last decade, there is an increasing number of cameras have been set up. 

For example, up to 2018, it was estimated that approximately 5.9 million CCTV video 

cameras had been deployed in city centres, bus and railway stations, airports, 

supermarkets, and even private areas in the UK, averagely of one camera for every 11 

people in Britain. These cameras produce a great deal of video data every second. 

However, these video data are limited values with conventional surveillance systems 

and manual video analysis platforms since they require laborious human monitoring 

and process an insufficient quantity of “shallow” information, e.g., the systems can only 

detect the change of motion and background. In contrast, intelligent video surveillance 

and analysis systems, driven by modern computer vision and artificial intelligence (AI) 

techniques, aim to analyse the semantic representations automatically and recognise 

events intelligently from streaming videos. With these advantages, the video analysis 

and monitoring workload will be significantly reduced, while more high-level and 

semantic information and activity patterns are discovered. 

b) Human-Computer Interaction 

Human gestures and actions provide natural ways to interact with robots and 

computers without using a keyboard and mouse. Vision-based HCI is becoming very 

popular in home and industry because users do not be required to remember any 
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instructions and operation steps of mouse clicks. They just perform natural actions with 

their body to express purposes and instructions (Kong & Fu, 2016). With this property, 

HCI applications require real-time data processing and response, i.e., when a person 

acts, the computer should recognise it and give feedback immediately. Furthermore, 

since robots are becoming a part of our lives, robots must be capable of understanding 

human actions and behaviours and even interacting and cooperating with humans. In 

this case, human-robot interaction (HRI) typically uses the camera installed in the robot 

for real-time video capturing, and the on-chip algorithms are performed to recognise 

human actions. Unlike the offline video analysis, this application requires a real-time 

perception of human activities and identifying the action before its completion, which 

is a complex challenge. 

c) Autonomous Vehicles 

Human action recognition techniques are also applied to assist drivers. It is a 

reasonable solution to avoid accidents by recognising and alerting the violation 

behaviours of drivers, e.g., smoking, eating, and answering the phone while driving the 

vehicle. More significantly, the self-driving car requires recognising the actions of 

pedestrians to determine the following operations. 

1.2.3 Approaches 

Historically, there are two main research strategies for human action recognition, 

i.e., 1) using “handcrafted” features for representing and identifying action types, and 

2) using “learned” features in an end-to-end manner for classifying behaviours (Herath 

et al., 2017). The prior follows a bottom-up strategy, which consists of three phases: 

foreground detection, feature extraction and representation, and action classification. 

For instance, the Gaussian Mixture Model (GMM) method is usually applied for 

background and foreground detection (Chauhan & Krishan, 2013); the Scale Invariant 

Feature Transform (Ju et al., 2009), Harris detector (Laptev, 2005) and dense sampling 

(Wang et al., 2013) functions are then performed for visual feature extraction and 

representation; and finally, the machine learning based classifiers are used to predict 

the action types. Among these works, the motion trajectory-based approaches have 
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shown significant breakthroughs compared to frame-to-frame processing methods 

coming from the traditional image processing era because the motion-trajectory 

methods process spatial and temporal features simultaneously, such as optical flow, 

trajectory shapes, and time series. Moreover, spatial-temporal features can be obtained 

from spatio-temporal volume (STV) data structure in a 3D coordinates system denoted 

by x-, y- and t- (time-dimension) axes, which is followed by spatial-temporal texture 

(STT) (Hao et al., 2017) and sequence algorithms for feature representation and 

classification, e.g., Hidden Markov Model (HMM) (Bahl et al., 1986). Among these 

algorithms, the dense trajectory (DT) and its enhanced models (e.g., improved dense 

trajectories (iDT) (Wang & Schmid, 2013) and stacked fisher vector (SFV) (Peng et al., 

2014) offer improved accuracy and recall rate on human action types that are defined 

not just by their rigid postures over video frames, but corresponding information on 

motion pattern and even camera pose. DT-based models were mainstream research 

strategies in the pre-deep learning era. Nevertheless, the handcrafted approaches 

heavily depend on sophisticated feature engineering design and domain-dependent 

representations. As a result, the handcrafted feature models are weak in generalisation 

and robustness. For instance, the SFV model shows high accuracy on the YouTube 

action dataset (93.38%), but it gains relatively poor performance on the HMDB51 

action dataset (66.79%) (Peng et al., 2014). 

Machine learning, especially the recent deep learning wave, supports direct feature 

abstraction and pattern recognition that has become a mainstream pipeline due to its 

brute force approach and robustness for certain application tasks such as image 

classification (Chang et al., 2017) and object detection (Liu et al., 2016; Redmon et al., 

2016). The ground-breaking Convolutional Neural Network (CNN), the foundation of 

deep learning, avoids the laborious feature crafting steps, hence initiating a paradigm 

shift from an “engineering” one to an “architectural” one. Recently, deep learning based 

human action recognition has seen significant breakthroughs, including the two-stream 

(spatial and temporal) CNN and 3D CNN models (Ji et al., 2013; Simonyan & 

Zisserman, 2014; Tran et al., 2015). However, these designs only track a short period 

for the temporal features in video clips (normally processing 16 frames), leading to 
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difficulty when handling “longer” video events. Another interesting work focused on 

handling sequential temporal information in videos by integrating Recurrent Neural 

Networks (RNN) and long-term temporal convolution techniques (Li et al., 2017; Varol 

et al., 2018). To date, many deep learning methods have since been piloted, producing 

the varied level of “performance gain” in different signal spectrums, from spatial, 

frequency and temporal. 

1.3 Key Challenges for Human Action Recognition 

Feature Extraction and 

Representation

Raw Video Data 
Obtaining and 
Preprocessing

Human Action Recognition

Feature 
Engineering

End-to-end 
Feature 

Learning
Classifiers FCNN

GCN/
TCN

Inferences

Server
Edge 

Computing

Possible Redesign to Meet 

Deployment Request

Applications

Algorithm developing and training

Model deployment
 

Figure 1-2. The procedure of human action recognition systems. 

As illustrated in Figure 1-2, the four main phases involved data capturing, 

algorithm developing and training, and model deployment must be implemented to 

obtain the results for human action recognition systems. Raw video data received from 

either surveillance cameras or movies is pre-processed by digital image processing 

methods such as denoising and background subtraction. For the second phase, visual 

and motion features are extracted by either handcrafted or end-to-end learning 

algorithms and encoded as high-level semantic representations. Features are fused as 

holistic descriptors for action classification by using machine learning-based classifiers, 

fully connected neural network (FCNN), graph convolutional network (GCN) (Yan et 

al., 2018) and temporal convolutional network (TCN) (Bai et al., 2018), etc. Once the 
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model is obtained, the next phase is deploying the algorithm into target platforms such 

as graphics processing unit (GPU) servers and edge computing devices for real-world 

applications. Redesigning and adopting the algorithm may be involved to meet the 

specific deployment requests. This research tackled three essential issues in the 

algorithm development and deployment phases. The main challenges of human action 

recognition systems are listed as follows. 

⚫ In the research of human action recognition and video analysis, a wide range 

of features and descriptors have been explored. One question remains on 

identifying the approximate features and descriptors for better performance 

on human action recognition, which includes both feature engineering and 

designing sophisticated neural networks for feature extraction and high-level 

semantic abstraction. Therefore, the critical challenge is investigating both 

handcrafted and learned features to achieve successful motion detection and 

classification. The most significant challenge is extracting and representing 

temporal information in videos which plays a fundamental factor in event 

representation. Another open-up problem is how to bridge the semantic gaps 

between handcrafted features often carrying distinctive “meanings” and the 

automated latent ones “hidden” in the ever-sprawling webs and deeper layers. 

⚫ As the research continues, the explainable of models becomes a key challenge, 

i.e., exploring the evidence or parameters of the perception results, and 

investigating the differences between computer vision and human vision 

systems. Recent models have shown reasonable performance on video action 

recognition according to the benchmarks (Feichtenhofer, 2020; Ji et al., 2013; 

Jiang et al., 2021; Mao et al., 2021; Tran et al., 2018; Xu et al., 2019a). 

However, these approaches tend to model static contexts such as objects and 

scenes instead of interpreting human actions based on their semantic 

definitions (Weinzaepfel & Rogez, 2021). For instance, the model tends to 

predict the “shooting goal” result on football field background videos. In 

contrast, humans have different strategies for understanding the actions, e.g., 

it is straightforward to distinguish the actions of “yoga” and “shooting”, 
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regardless of whether the actions are played indoors or on a football field. An 

interesting example is a mime performed by body language given by mime 

artists without using any props. Human vision can still understand the typical 

actions despite the absence of contexts, but computer vision shows weak 

performance in that case. 

⚫ After the action recognition algorithms are obtained, another major challenge 

is encountered, i.e., how to deploy models into edge computing systems such 

as mobile phones and autopilots, which are powered by embedded GPUs and 

neural processing units (NPU) (Lee, 2021; Shi et al., 2016), known as AI on 

edge, which requires real-time data processing on resource-constrained and 

heterogeneous edge devices while maintaining high performance obtained in 

the developing environment, hence to support the real-world problem-solving. 

1.4 Project Objectives and Thesis Structure 

To tackle the three challenges encountered above, this research aims to investigate 

some possible innovative computer vision and AI techniques for the human action 

recognition task by hybrid handcrafted and learned features to improve the performance 

of real-time vision systems. The main objectives of this research are listed as follows. 

⚫ Exploring the state-of-the-art handcrafted features and descriptors which will 

bring effective man-made “meaningful” contexts. The handcrafted model 

processes the raw video data by a sequence of computer vision and machine 

learning algorithms, including pre-processing by discrete wavelet transform 

(DWT) technique, dense sampling for feature point extraction and tracking, 

STV data construction, high-level video feature describing and representation. 

⚫ Devising novel multimodality neural network architectures with advanced 

techniques for video analysis to support automatic feature extraction and 

action classification and enhance its accuracy, computational performance, 

and generalisation. The method learns motion information from videos with 

an end-to-end scheme by the multiple network streams constructed by CNN 
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and long short-term memory (LSTM) with advanced loss functions and 

learning strategies. 

⚫ Evaluating the influence of biases of the learned models contributing to the 

final recognition results, so as to design the semantic action encoding method 

for better understanding the human action definitions. This object aims to 

understand generically semantic representation and interpret human actions 

from pose skeletons. 

⚫ Deploying the algorithms into edge computing systems for real-time model 

inference. The open neural network exchange (ONNX, 2021), which is an 

open format built to represent machine learning models, is applied for 

platform-independent model (PIM) design. The quantization strategy will be 

investigated to map a large machine learning model to a lightweight one 

suitable for real-time data processing on resource-constrained platforms such 

as NPU-based edge computing. 

The contributions made in this thesis are summarised below: 

1) In the feature extraction and representation phase, a DWT-driven DT model 

is devised to dissect videos in the form of multi-resolution representations and 

extract textural features representing motion characteristics for harnessing 

their distinctive characteristics over the spatial and temporal spaces. Then a 

Fisher Vector and bag-of-temporal-features-based model are proposed to 

encode holistic event representation. This contribution attempts to handle 

various orientations and separable frequencies in multiple scales of video 

actions and enables video-based event representation. 

2) In the learned-based feature learning phase, a concurrent spatial-temporal 

aggregation model is introduced to improve feature extraction effectiveness 

and efficiency and learn the hybrid spatial and temporal pattern in a video. 

The appearance features rich in the modality of RGB video frames while the 

motion pattern is formulated in optical flows. Therefore, the devised 

multimodality neural network is capable of the coarse-to-fine scene and 
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motion interactions from the joint spatial-temporal exploitation, which is 

critical in the action recognition process.  

3) To explain what knowledge and biases are truly learned from a model, this 

research evaluated the influence of biases of the learned model, which shows 

that most models tend to model contextual features instead of interpreting 

inherent human actions. Therefore, a human pose skeleton-based model is 

developed for encoding long-short-term action representation to understand 

the semantic definition of video actions. This contribution attempts to solve 

the open-set action recognition challenge in modern AI-powered applications, 

where the large-scale training dataset is unavailable. 

4) In the model inference phase, the methodologies of ONNX-based PIM design, 

model quantization, graph partitioning and edge computing are introduced. 

This contribution attempts to tackle the challenges of low-precision arithmetic, 

computational graph optimization, parallel execution, and hardware 

acceleration in resource-constrained and heterogeneous systems, suggesting a 

novel solution for the research on edge intelligence. 

The rest of this thesis is organised as follows, with all chapters structured as shown 

in Figure 1-3. 

⚫ Chapter 2 offers a comprehensive literature review of the preliminaries and 

related works in the research area. 

⚫ Chapter 3 explores the work on handcrafted feature extraction, description, 

and event representation. 

⚫ Chapter 4 describes the methodology and implementation of the 

multimodality deep neural network design. Specifically, this chapter presents 

an end-to-end model for both visual and motion feature extraction, high-level 

semantic information abstraction, and feature fusion for action classification. 

⚫ Chapter 5 investigates the impact of biases contributing to the recognition 

results. Based on the observation, this chapter designs the long-short-term 

semantic motion encoding method to interpret the human action definitions 

from skeleton data and human pose sequences. 
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⚫ Chapter 6 introduces the open format machine learning representation with a 

platform-independent model. Then this chapter moves to quantize a heavy 

algorithm running on large GPUs to a lightweight model for enabling efficient, 

high-performance computation on small mobile devices and partition a 

computational graph into sub-graphs for optimisation in heterogeneous edge 

computing environments. 

⚫ Chapter 7 summarises the research and discusses the ongoing future works. 

Feature Engineering for Video Analysis

Chapter 3

Explore handcrafted feature extraction, 
description, and event representation

Multimodality Deep Neural Network

Chapter 4

Design and implementation of the multi-stream 
deep neural network design

Towards Understanding Human Actions

Chapter 5

Evaluate impact of feature biases and their 
contribution to recognition performance

Model Inference on Edge Computing

Chapter 6

Devise model adaptation schemes for 
heterogeneous networks and edge computing

Introduction

Chapter 1

Literature Review

Chapter 2

Conclusion and 

Future Work

Chapter 7

 

Figure 1-3. Summarisation and thesis structure. 
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CHAPTER 2 Literature Review 

2.1 Pipeline for Human Action Recognition 

As stated before, the traditional approach of the entire pipeline for human action 

recognition includes video capturing, video data pre-processing, feature extraction, 

feature representation, and classification, as shown in Figure 2-1. In addition, model 

deployment may also be involved when tackling real applications. Video data is 

normally recorded from either surveillance cameras or movies, and the video streams 

and frames are pre-processed by signal processing and digital image processing 

methods such as background subtraction and filtrations. Feature extractors and 

descriptors are manually designed for video feature detection and assembly. Finally, a 

trainable classifier is integrated for event classification that outputs action labels. 

Raw video 
capturing Pre-processing Handcrafted features Trainable classifier

Background 
subtraction 

Filters

Spatial-temporal 
features

Flow-based features

Trajectory features

Feature representation

BOW based (BOW, 
FV, SFV)

Model based

Supervised (SVM, 
NN)

Unsupervised (LDA)

 

Figure 2-1. Pipeline and components of handcrafted approaches. 

In the video data pre-processing phase, GMM-based methods are applied for 

background subtraction, and signal filters such as Gaussian filter and DWT are also 

integrated for image denoising and frequency analysis to generate high-quality frames 

or domain-specific images. Traditional feature methods can be classified into spatial-

temporal features, flow-based features, and trajectory features, as illustrated in Figure 

2-1. The features obtained from videos are further assembled by descriptors for high-

level event representation. These approaches include Bag-of-Word (BOW) (Bolovinou 

et al., 2013) and Fisher Vector (FV) (Peng et al., 2014), etc. In terms of action 

classification, the supervised Support Vector Machine (SVM) is a dominant model that 

has shown superior performance over others on most classification tasks, such as image 

classification and object detection (Chandra & Bedi, 2018). In recent years, neural 
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network (NN) and Latent Dirichlet Allocation (LDA) models have emerged as effective 

methods for classification applications (Liu et al., 2011; Vishwakarma & Kapoor, 2015). 

In contrast, the learning-based approaches, especially the recently emerged deep 

learning-based methods (Herath et al., 2017; Szegedy et al., 2015a), eliminate the 

handcrafted feature detectors and descriptors by using a trainable feature detector 

before a learnable action classifier is integrated to introduce a so-called end-to-end 

manner of feature extraction and action classification, as shown in Figure 2-2. 

Raw video 
capturing Pre-processing Trainable feature detector Trainable classifier

CNN

RNN/LSTM

3D CNN

Multi-stream network

FCNN

GCN

Skeleton based

TCN

 

Figure 2-2. Pipeline and components of learning-based approaches. 

2.2 DWT for Data Pre-processing 

DWT has been widely applied in research areas such as signal processing and 

computer vision. Its multi-scale analytical ability is unparalleled when abstracting 

region-of-interest and features from real-world problems (Xu et al., 2019b). 

The fundamental thought behind wavelet analysis is converting a complex 

frequency analysis into a simple scalar analysis. In 1D continuous signal processing, 

mother wavelets Ψ(x) can be constructed by the scalar factor and shift parameter, as 

shown in the following: 

 ,

1
( ) ( )a b

x b
x

aa
 

−
= , 2-1 

where a is the scalar that indicates dynamic transmission bandwidths or covers different 

frequency ranges, and b is the shift parameter defining the time location centre of a 

wavelet. In digital signal processing applications, signals are discrete data sets, so the 
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scalar factor and shift parameter also take discrete values. Discrete wavelet is 

formulated as the following: 

 2
, ( ) ( )

j
j
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where j is the scalar factor that defines the corresponding bandwidth or the range of 

frequency, k is the shift parameter, and a indicates the scalar that is the same as Equation 

2-1. A fast wavelet transform method is applied to the first-generation wavelet for 

decomposition (forward DWT) and reconstruction (inverse DWT) called the Mallat 

algorithm, which is also known as the two-channel sub-band filter or convolution 

scheme. For 1D discrete signal data, the Mallat decomposition algorithm can be defined 

as follows: 
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where X denotes the raw signal, the combination of H and G is called the filter-bank in 

wavelet decomposition, H is the low-pass coefficient while G is the high-pass filter 

coefficient, A and D represent approximation coefficients (low-frequency) and detail 

coefficients (high-frequency), respectively. The bandwidths of wavelet coefficients A 

and D in the filter outputs are half of the bandwidth of the input data, which allows 

down-sampling of the outputs A and D without losing any information. It implements 

the multi-level decomposition by using A as input data for performing the wavelet 

decomposition in the next level. The basic concept of the 1D multi-level Mallat wavelet 

decomposition algorithm is illustrated in Figure 2-3. Inverse DWT can be used to 

reconstruct the signal from wavelet approximation coefficients and the corresponding 

detail coefficients, as shown in the following: 

 [ ] [ ] [2 ] [ ] [2 ]
m m

X i A m h m n D m g m n= − + −  , 2-4 

where the combination of h and g is filter-bank in wavelet reconstruction, and h is low-

pass filter coefficients while g is high-pass filter coefficients. Definitions of A, D and X 

are the same as the Equation 2-3. There are two steps involved in the wavelet 

reconstruction, i.e., up-sampling and filtering. The up-sampling stage extends the 
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length of A and D by adding zeros in the alternate data values of them, respectively, 

and filtering performs convolution on the up-sampling outputs with filters h and g, 

respectively. Then the raw signal can be obtained by summing these convolution results. 

The basic idea of the 1D multi-level Mallat wavelet reconstruction algorithm is 

illustrated in Figure 2-4. 

In terms of image processing, 2D DWT can be realised through the two-stage 1D 

wavelet transform along its x- and y-axes separately and concurrently. With these 

properties, 2D DWT decomposes 2D data into approximation coefficients (A) and 

detailed coefficients along horizontal (H), vertical (V) and diagonal (D) directions, 

respectively. Multi-level DWT is implemented by applying A as the input data and 

continuously performing 2D DWT on the next level. As a demonstration, Figure 2-5 

shows that A1 obtained from the raw data (A0) is applied as the input data for performing 

2D wavelet decomposition on the next level; hence the multi-level 2D wavelet 

decomposition can be implemented. 2D wavelet reconstruction also performs vertical 

1D wavelet reconstruction for each column and horizontal 1D reconstruction for each 

corresponding row of a 2D input signal in sequence separately and concurrently. 

H

G D1

D2

D3

A3

...H

G

H

G

H G : convolution : down-sampling,

X

2

2

2

2

2

2

2· · 

Ai: i
th

 level approximation coefficients

Di: i
th

 level detail coefficients 
· 
· 

 

Figure 2-3. The 1D multi-level Mallat 

wavelet decomposition algorithm. 
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Figure 2-4. The 1D multi-level Mallat 

wavelet reconstruction algorithm. 

raw data (A0)

A1 H1

D1V1

A3

H2

D2V2

H1

D1V1

H3

D3V3

 

Figure 2-5. The demonstration of the multi-level 2D wavelet decomposition. 
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2.3 Handcrafted Feature Extraction 

2.3.1 Spatial-temporal Features 

When the human visual system recognises an image, different pixel areas play 

variance roles in understanding the whole context. For instance, the white background 

is less valuable, while the human and object areas are worth to be attention. In addition 

to that, the edges of humans play critical roles in recognising actions. Based on this 

consideration, researchers carried out a lot of efforts to achieve similar performance on 

computer vision systems. One of the fundamental approaches is the space-time interest 

point (STIP) detector which detects interest pixels in images and assigns them different 

weights and meanings. Laptev (2005) introduced a STIP model by extending the Harris 

detector with a significantly improved detection rate. Sipiran and Bustos (2011) 

improved the Harris operator to the Harris 3D model that can extract interest points 

from 3D data volumes effectively. Harris and Harris 3D models are sparse detectors 

which mainly extract local features. To handle global features, Wu et al. (2010) 

proposed a Scale Invariant Feature Transform (SIFT) based model to extract feature 

points. SIFT can robustly extract features from images because of its invariance to 

uniform scaling, orientation, and illumination changes. However, SIFT fails to handle 

3D data volumes (e.g., videos). Liu et al. (2011) extended SIFT to 3D space that can 

extract interest points from 3D space-time video volumes efficiently. Generally, the 

space-time feature point approaches have shown sound effectiveness. It is suitable for 

recognising simple movements such as “hand waving” and “walking” actions in the 

KTH action dataset (Laptev & Lindeberg, 2003). 

2.3.2 Flow based Features 

The mainly used flow-based method is the optical flow which is a significant 

feature for video processing and motion analysis. Lots of research and literature suggest 

that optical flow plays an essential role in encoding movements and recognising human 

actions (Peng et al., 2014; Sun et al., 2010; Wang & Schmid, 2013). 

a) Traditional optical flows 
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Optical flow was first proposed by Gibson (1950) to describe the visual stimulus 

provided to animal movements. Lucas and Kanade (1981) proposed a local optical flow 

algorithm called the Lucas-Kanade method, which is a popular optical flow algorithm 

due to the less sensitivity to image noise, and it resolves the inherent ambiguity of the 

optical flow equation. However, this method computes optical flow for a sparse feature 

set, so it cannot provide uniform region flow information of an image. To tackle this 

disadvantage, dense optical flow algorithms were proposed. Farnebäck (2003) 

presented a dense optical flow calculated in two continuous frames. This method first 

approximates each neighbourhood of two successive video frames by quadratic 

polynomials and then estimates displacement fields from the polynomial expansion 

coefficients. The Farnebäck optical flow method is embedded in the OpenCV library 

(Bradski, 2000), and it has been used for object tracking, segmentation and human 

action recognition, etc. (Anthwal & Ganotra, 2019; Chauhan & Krishan, 2013; Sevilla-

Lara et al., 2018; Shantaiya et al., 2015). Recently, most deep learning models for video 

analysis use optical flows as one modality of input data (Simonyan & Zisserman, 2014; 

Xu et al., 2019a). However, traditional optical flow methods match pixels from one 

frame to the next one based on colour, which not only leads to erroneous results but 

also is time-consuming. These optical algorithms are relatively complicated and time-

consuming, which is unsuitable for real-time applications. Tao et al. (2012) presented 

a so-called SimpleFlow optical flow algorithm with high computational performance. 

SimpleFlow only computes a sparse set of samples in regions with a uniform motion, 

and pixels are processed independently and only once. This property guarantees the 

effectiveness of the result and low computational complexity. Moreover, SimpleFlow 

can be easily implemented on parallel architectures such as multi-CPUs (Central 

Processing Units) and GPUs to accelerate computational procedures. Figure 2-6 

illustrates the two categories of optical flows by performing Farnebäck and SimpleFlow 

algorithms to process two frames, respectively. It can be seen qualitatively that the 

result of the SimpleFlow algorithm contains more approximation information that 

indicates more detailed motions, and the histograms of the two types of optical flows 

also suggest that the SimpleFlow method is more robust than Farnebäck. 
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Figure 2-6. Visualization of the two flow algorithm results. 

b) Deep learning-based optical flows 

With the development of deep learning, these techniques are also migrated to 

support automatic optical flow generation. FlowNet, proposed by Dosovitskiy et al. 

(2015), is the first deep learning-based optical flow estimation that is constructed by 

CNN. However, the performance lags behind the traditional optical flow methods. Ilg 

et al. (2017) improved the flow accuracy by stacking several FlowNet modules and 

introducing a warping operation between intermediate optical flow and the second 

image, namely a few, FlowNet2. However, a large model costs a lot of computational 

resources and memory. To tackle this issue, Sun et al. (2018a) presented an effective 

CNN based optical flow estimator called PWC-Net by using cost volume, pyramidal 

processing and warping, which increases the accuracy but reduces the model size. 

Ranjan et al. (2018) presented a CNN based human optical flow model that extracts 

human motion directly from original video frames. They also introduced a dataset to 

train this deep learning model. Human optical flow is superior to generic flow methods. 

Figure 2-7 demonstrates the human optical flow dataset and the algorithm results on 

synthetic and real-world scenes (Ranjan et al., 2020). 

The dataset Results on synthetic scenes Results on real world scenes  

Figure 2-7. Visualization of human optical flow dataset and the results on both synthetic and 

scenes (Ranjan et al., 2020). 
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2.3.3 Trajectory Features 

Trajectories based methods show reasonable results on several datasets. Messing 

et al. (2009) developed a Harris 3D and Kanade-Lucas-Tomasi (KLT) based model to 

track feature points and obtain trajectories from videos. Ju et al. (2009) developed a 

SIFT based tracker to obtain trajectories. Later, Sun et al. (2010) combined these two 

trackers to increase the density of trajectories. However, both KLT and SIFT trackers 

are insufficient to handle the frame boundaries and describe complex motion patterns. 

To tackle this shortage, Wang et al. (2013) presented a dense trajectories (DT) 

model that densely samples feature points on each spatial scale and then tracks the 

points in the following frames with a preset length l. The trajectories (P1, P2, …, Pl) are 

obtained when the number of tracked frames is completed, where Pi indicates a feature 

point in the i-th frame. Aligned with the trajectories, four features are extracted, 

including trajectory shapes (TS), histogram of oriented gradients (HOG), histogram of 

optical flows (HOF), and motion boundary histogram (MBH). After that, the Bag-of-

features (BOF) concept is applied for feature assembly. The DT model is more robust 

in handling complex motion patterns when compared with KLT and SIFT. Since its 

appearance, the DT model has been gaining popularity and being tested on various 

action datasets with significant improvements over the state-of-the-art. It has drawn 

wide attention and optimism (Jiang et al., 2017; Peng et al., 2014; Wang & Schmid, 

2013). Wang and Schmid (2013) further improved their works (named iDT) by 

investigating Speeded Up Robust Features descriptor (SURF) and FV. Peng et al. (2014) 

proposed Stacked Fisher Vectors (SFV) with multi-layer nested FV encoding for 

human action recognition. Jiang et al. (2017) developed an action prediction method 

based on dense trajectories and dynamic image models, which is capable of predicting 

evolutional trends of actions in videos. 

Since its birth in 2012, iDT has become the baseline for performance evaluation 

in video event analysis. It remains a widely adopted benchmark even in the deep 

learning era. However, DT models lack the mechanism to distinguish dominant motions 

from secondary ones for differentiating human actions over separable frequency bands 
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and directions. This research explores the integration of wavelet techniques into the 

dense trajectory domain to gain the descriptive action patterns and better harness the 

advantages of the semantically more representative handcrafted video features. 

2.4 Feature Representation 

2.4.1 Bag of Features 

Bag of Feature (BOF) was inspired by the Bag of Words (BOW), and it is often 

referred to as bag-of-visual-words (BOVW) in computer vision studies (Bolovinou et 

al., 2013). In this case, a feature of an image or a video frame is considered a “visual 

word”. The first stage of BOF implementation is to train a codebook. All low-level 

features extracted from training videos are clustered into N categories by the K-means 

clustering scheme. Such that each centre of a quantised area of a category becomes a 

visual word, and all visual words (cluster centres) construct the corresponding 

codebook. Thus, the length of a codebook is equal to the number of visual words in this 

codebook. 

In the calculating histogram stage, the low-level features extracted from a video 

are represented as the histograms of visual words, denoted as: 
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where ci indicates the value of i-th visual word in the codebook, the value of ci is 

normalised by the maximum-minimum functions: 
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Hence, a video event can be represented as the following histogram of visual words: 
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BOF directly assigns a feature to one of the nearest visual words. This “hard” 

assignment is rigid and inaccurate. It is more flexible in assigning a feature to different 

visual word bins when the distances between the feature and these visual words can be 

“weighted”. Moreover, a feature may be assigned to other visual words when the scale 

of codebooks can be varied. This research further investigates this issue and develops 

a soft-assignment method to encode the visual words. 
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2.4.2 Fisher Vector 

Let { , [1, ]}iX x i T=   be the series of low-level features extracted and 

formulated from videos. Fisher vector assumes the generation process of X can be 

modelled by a probability density function p(u;) with parameters , the X is described 

by the gradient vector: 
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The length of the gradient vector is fixed, which only depends on the number of 

parameters (i.e., the dimensionality of ), but not the actual number of features. The 

probability density function is widely used by models such as GMM: p(u;)=wiui(x), 

and { , , , [ , ]}i i i i i K   =   , where i, i, and i are the mixture weight, mean vector 

and diagonal GMM, respectively; K denotes the mixture number of GMM. Then the 

fisher vector is formulated as follows: 
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where t(k) indicates the weight of low-level feature xi for the j-th Gaussian function, 

as shown in the following: 
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where k(xi) is D-dimensional Gaussian distribution, then the fisher vector of the set of 

features is given by the concatenation of gx
u,k and gx

,k, as shown in the following: 

 , ,
[( ) , ( ) ] , [1, ]x x

Fisher u k k
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Fisher vector encodes the average first and second-order differences between the 

features and the centres of a GMM, which can be considered a soft visual vocabulary 

demonstrating better performance than the bag of feature method for classification. To 

optimise the runtime performance of the design, the Principal Component Analysis 

(PCA) technique was first applied to reduce the low-level feature dimensionality. The 

number of Gaussians was set at K=512 to train and estimate the GMM. Therefore, a 
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single video event can be represented by a 2DK dimensional FV (see Equation 2-11) 

before a L2-normalization. 

2.5 Action Classification 

2.5.1 Support Vector Machine 

The powerful mathematical foundation of Support Vector Machine (SVM) 

enables efficient methods for classification and regression (Chandra & Bedi, 2018). 

Mathematically, SVM constructs a hyper-plane in high dimensional space. A suitable 

separation can be obtained by searching the so-called support vector that defines the 

decision boundary and gives the largest distance to the points belonging to different 

classes (Smola & Schölkopf, 2004). SVM has drawn wide attention and applications in 

the classification task, such as most traditional human action recognition methods apply 

SVM as the classifier (Peng et al., 2014; Wang et al., 2013; Wang & Schmid, 2013). 

Even in the early stage of the deep learning era, SVM is still a good choice for 

classification when the feature points are extracted from the last convolutional layers 

of CNN models (Simonyan & Zisserman, 2014). 

2.5.2 Artificial Neural Network 

An artificial neural network (ANN) or multi-layer perceptron (MLP) is an 

important supervised learning algorithm which gains insight from biological neurons. 

According to Haykin (2009), ANN can perform a similar function in the human brain 

and produces a specific task through the multi-layer artificial neurons and activation 

functions. Trained by the backpropagation algorithm, ANN performs good accuracy on 

classification tasks (Abiodun et al., 2018). Recently, ANN has evolved into deep 

learning with complex multilayers and connections (Albawi et al., 2017). 

2.6 Deep Learning Approaches 

Unlike handcrafted features, deep learning models extract features automatically 

from the input data (e.g., images and videos). Of this “unsupervised” style, it has gained 

tremendous popularity in many application domains. For example, image classification 
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tasks have experienced almost a complete overhaul through varied forms of CNN 

implementations (He et al., 2016; Huang et al., 2017). Object detection and facial 

recognition have also achieved encouraging results (Jin et al., 2017; Wu et al., 2017). 

Recently, deep learning based human action recognition has seen major breakthroughs. 

2.6.1 Deep Learning Techniques 

a) CNN 

CNN is a simple neural network module that is constructed by convolution 

operations to calculate feature maps. CNN has played a significant role in the history 

of deep learning (Goodfellow et al., 2016), and it is the first neural network to solve 

critical commercial applications. Lecun et al. (1998) proposed a CNN model named 

LeNet for document recognition. Inspired by this research, Krizhevsky et al. (2012) 

developed the AlexNet, which won the ImageNet image classification challenge. Later, 

the GoogleNet (Szegedy et al., 2015b), VGG (Simonyan & Zisserman, 2015), and 

ResNet (He et al., 2016) were proposed for better performance on image classification; 

the R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren 

et al., 2017) and SSD (single shot multibox detector) (Liu et al., 2016) were proposed 

for object detection. All these network architectures are based on CNN and have gained 

increasing achievements in vision application. 

b) RNN/LSTM 

RNN is firstly proposed by Rumelhart et al. (1986) for processing sequential data 

by preserving a memory of its hidden states over time and maintaining a feedback loop 

among them, i.e., the current hidden state of RNN units will affect the subsequent states, 

such that it supports the sequential learning, i.e., learning connections between inputs 

and the corresponding previous states continuously. The traditional RNN unit is shown 

in Figure 2-8. It maps the sequences of input, hidden states, and outputs, as shown in 

the following: 
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where g is an activation function, such as the Hyperbolic Tangent (Tanh) function or 

rectified linear unit (ReLU), xt is the input, ht is the hidden state, yt is the output at time 

t, and w indicates the weights. For a length L input sequence [x, x2, …, xL] and setting 

h0=0, the outputs are computed sequentially as [(h1, y1), (h2, y2), …, (hL, yL)]. 

LSTM is the most important RNN implementation. As shown in Figure 2-9, 

LSTM updates for timestep t given inputs xt, ht-1, and ct-1 are shown in Equation 2-13 

(Donahue et al., 2017). LSTM has performed good results on sequence-based tasks 

such as Natural Language Processing (NLP) applications (Guadarrama et al., 2013). It 

is also applied for video-based applications such as video description and human action 

recognition (Donahue et al., 2017; Varol et al., 2018). 
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Figure 2-8. Visualization of RNN Unit. 
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Figure 2-9. Visualization of LSTM Unit. 

2.6.2 Long-term Recurrent Convolutional Networks 

Donahue et al. (2017) applied RNN modules for temporal learning from a 

sequence of CNN features and developed a so-called long-term recurrent convolutional 

network (LRCN) which is a generic CNN-RNN framework for large-scale visual 

learning applications such as image description and video analysis. The architecture of 

LRCN is illustrated in Figure 2-10. It contains multiple stream deep networks, and each 

one has four components: visual input, visual feature extraction, sequence learning and 

predictions/classifications. The visual input component takes data into a visual feature 
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extraction component. This data can be the original video frames, optical flows, or both. 

The visual feature extraction is implemented by CNN, which has good capability to 

learn spatial features from still images and video frames. It can also learn temporal 

features from optical flows. The outputs of CNN are treated as the inputs for the 

subsequent RNN. The RNN can automatically discover appropriate sequential 

information, so it is the best choice for dealing with actions that have both the temporal 

model (atomic movements linked by time) and the sequential model (order information). 

However, RNN is not suitable for directly learning sequential features from high-

dimensional data, such as original frames. Therefore, using the outputs of CNN as the 

inputs of RNN is a good choice for sequence modelling. In practice, the LSTM unit is 

used to implement the recurrent module due to LSTM enables them to remember their 

states over a long period by introducing forget gate units (Goodfellow et al., 2016). The 

final part is applied for classification or prediction depending on the applications. 

In terms of human action recognition, one of the implementations based on LRCN 

is constructed as in Figure 2-11. It has two-stream CNNs that are fed by two continuous 

video frames. The outputs of CNNs are inputted into the LSTM model for sequence 

learning. Finally, the outputs of LSTM are treated as the inputs of a classifier that 

outputs an action label. LRCN only uses RGB video frames for spatial and temporal 

feature learning to speed up the computational progress. Nevertheless, the accuracy on 

UCF 101 is approximate 65.6%, which has yet to be improved. The primary reason is 

that the fine motion information is lost in the multiple layers of CNN feature maps; thus, 

the model fails to handle local human and object motions. 
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Figure 2-10. The generic architecture of LRCN. 
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Figure 2-11. A specific instantiation of the LRCN model for human action recognition. 
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Figure 2-12. An overview of Ng’s approach. 
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Figure 2-13. Five types of Feature Pooling Architectures: “CNNs” presents stacked CNNs. (Ng 

et al., 2015). 

2.6.3 Long Time Periods-based Networks 

To handle full-length temporal information, Ng et al. (2015) presented a long time 

period network architecture which contains two stages: firstly, the CNN modules are 

applied to learn spatial features from frames and optical flows; and then they proposed 

two feature aggregation approaches to model variable length videos with fixed size 

video-level feature vectors, namely, the feature-pooling and RNN. The overview of this 

model is shown in Figure 2-12. This approach firstly uses a typic CNN backbone such 

as VGG or GoogleNet to process each video frame, producing a feature vector from the 

fully connected layers and developing two temporal feature descriptors for the event 

representation and classification. 

Feature Pooling. Five types of temporal feature pooling strategies have been 

developed by Ng et al. (2015), including Conv Pooling, Late Pooling, Slow Pooling, 
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Local Pooling and Time-Domain Convolution, as shown in Figure 2-13. The Conv 

Pooling applies the max-pooling operation over the whole outputs from the final CNN 

layers of the full-length videos. The Late Pooling adds two fully connected layers for 

each final CNN layer and then applies the max-pooling layer for entire frames. Slow 

Pooling is designed as a hierarchical framework using a two-stage pooling strategy, 

which is similar to Local Pooling employing a single pooling layer followed by two 

fully connected layers before a softmax layer. The Time-Domain Convolution model 

employs a CNN layer before the pooling layer, fed by all feature maps extracted by the 

final CNN layers from full-length frames. 

LSTM based sequences learning. Ng et al. (2015) also tested different LSTM 

settings and found that the five stacked LSTM layers model shows the best performance. 

The LSTM architecture is illustrated in Figure 2-14, in which each LSTM layer contains 

512 LSTM units. A softmax function is applied in the final LSTM layer to predict 

actions for each video frame. 

To accelerate computational performance, this work only processes a single frame 

per second (FPS) (Ng et al., 2015), resulting in the loss of implicit motion information. 

Even though the optical flow is employed to compensate motion information explicitly, 

it still loses a great deal of valuable temporal information. 
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Figure 2-14. The five stacked LSTM layers architecture. 

2.6.4 Long-term Temporal Convolutions 

To model full temporal extent, Varol et al. (2018) proposed a so-called long-term 

temporal convolutions (LTC) model, as shown in Figure 2-15. It contains five 3D CNN 
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layers with 64, 128, 256, 256 and 256 filters, and 3×3×3 filters implement each layer. 

Finally, three fully connected layers of sizes 2048, 2048 and the number of action 

categories are followed by the last CNN layer. 3D CNN has a high capability to handle 

long temporal features from video frames (Ji et al., 2013). With these advantages, LTC 

has archived good results on UCF 101 and HMDB51 action datasets with accuracies of 

92.7% and 67.2%, respectively. 

The implementation of the LTC model is straightforward but highly efficient. 

Nevertheless, a video is divided into t-frame clips to learn spatial-temporal features. As 

a result, the outputs of the LTC model contain the “inner” spatial-temporal information 

of the individual clips only, whereas the “outward” temporal information between 

different video clips is lost. 

 

3D CNN1

3D CNN1

58×58×t 29×29×t 14×14×(t/2) 7×7×(t/4) 1×1×(t/16)3×3×(t/8) 2048 2048 # classes

t {16, 20, 40, 60, 80, 100} frames

3×3×3 filter

input conv1 conv2 conv3 conv5conv4 fc6 fc7 fc8  

Figure 2-15. LTC-CNN based network architecture. 

2.6.5 Two-stream Networks 

Simonyan and Zisserman (2014) presented a so-called two-stream network to 

learn spatial and temporal features simultaneously, in which a spatial stream is applied 

to extract appearance information from video frames, while the movement information 

is learned from the stacked optical flows by the temporal stream, and the last result is 

obtained by averaging the two features at the last convolutional layer. The two-stream 

model has become a classical model for extracting video features, and various improved 

solutions have been proposed for performance improvement (Gammulle et al., 2017; 

Zhao & Snoek, 2019; Zhu et al., 2019). Ye et al. (2015) tested the important factors 

relating to two-stream CNN performance, including network architecture, learning 
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parameters, model fusion and final prediction methods. Recently, ResNet has been 

integrated to implement the two-stream network due to its outstanding ability in image 

feature extraction (He et al., 2016). Feichtenhofer et al. (2016) built a two-stream CNN 

and ResNet combination model by introducing residual connections. Carreira and 

Zisserman (2017) presented a two-stream inflated 3D CNN (I3D) model that is pre-

trained on a large-scale video dataset (Kinetics). To tackle the disadvantage of lacking 

time-scale diversity in the temporal domain, Wan et al. (2020) developed a dual-stream 

convolutional network with the long-short-term spatiotemporal features (LSF CNN) 

which indicates a promising direction for consistently handling motion features in both 

spatial and temporal domains. These models have a high ability to encode both spatial 

and temporal information and achieved promising results on the human action 

recognition tasks. However, these models extract information separately from the 

spatial and temporal domains, and the joint key “nodes” of the two are ignored. 

Currently, the mainstream two-stream networks require the optical flow as one 

data modality for temporal pattern modelling, whereas computing optical flow is time-

consuming and inefficient (Ilg et al., 2017). The stage of computing optical flow 

occupies approximately 90% of the running time at both training and testing stages, 

hence it limits its application and real-time processing. Zhang et al. (2016) proposed a 

motion vector that is an optical-like feature computed directly from compressed videos. 

Later, in order to obtain the motion modality efficiently, Shou et al. (2019) proposed a 

lightweight Generator network to capture fine motion details and reduce noises in the 

motion vector; thus, it achieved a better discriminative motion representation than the 

classic optical flow methods. These optical flow generators have reduced the optical 

flow computational cost with a small amount of noise-induced and some extra 

operations. It is anticipated that the more effective mechanism is to directly extract 

optical flow-liked features with minor information loss in an online mode. 

In general, two-stream networks show reasonable performance on many video-

based applications. However, it still faces two main drawbacks: 1) the spatial and 

temporal streams are trained separately, and the final predictions are combined by 

simply averaging the corresponding outputs of two streams into the classification scores. 
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These two-stream CNN models have inherent weaknesses in learning spatial-temporal 

relationships; 2) the contemporary model has limited capacity in the temporal domain 

due to the spatial stream being fixed to operate on one video frame per cycle, while the 

temporal stream can process up to 10 continuous frames with optical flows. These two 

shortcomings have led to the failure of recognition of long-time sequence behaviours 

due to information loss. Thus, Spatiotemporal Residual Networks (ST-ResNets) 

(Feichtenhofer et al., 2016) are designed by building residual connections between the 

two streams to fuse spatial and temporal information, so that better learning results can 

be achieved by giving iterative interactions between the spatial and temporal streams. 

However, the interactions only operate on the pixels that are of low-level feature 

categories. It is widely accepted that features in different network layers are of different 

semantic levels, e.g., the bottom layer generates low-level visual features such as 

contours and edges. In contrast, features in the top layer carry semantic significance. In 

this research, different fusion approaches have been investigated to identify suitable 

information extraction techniques for the so-called concurrent two-stream CNNs. As a 

result, an innovative fusion approach has been devised to integrate information at all 

network layers between motion and visual streams through building a feature fusion 

block – the spatial-temporal fusion blocks (STFB). Hence, it enables the extraction of 

multiple level features through interactions covering the entire low, middle, and high 

feature spectrum in the spatial and temporal signal domain. 

2.6.6 3D CNN based Models 

3D CNN directly processes 3D convolution operations on the original 3D video 

volumes to learn spatial information in the RGB frames and the pixel movements along 

the time axis, hence it naturally supports spatial-temporal feature learning from videos. 

Ji et al. (2013) applied 3D convolution kernels to extract spatial-temporal features from 

videos for human action recognition. Tran et al. (2015) presented a C3D (Convolutional 

3D) model for obtaining generic spatial-temporal features by applying 3×3×3 

convolutional kernels in all layers. Sun et al. (2015) proposed a method to decompose 

the 3D convolution into a 2D space convolution followed by a 1D temporal convolution 
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for learning spatial-temporal relationships. At the same time, Qiu et al. (2017) proposed 

a so-called Pseudo-3D Residual ResNets (P3D) for training a very deep model with a 

relatively cheap computational cost and memory demand. Later, Tran et al. (2018) 

explored the effects of 2D and 3D CNN modules on action recognition. The result 

suggested the accuracy advantages of 3D CNN over 2D CNN within the residual 

learning. Then, they further factorise the 3D CNN into separate spatial and temporal 

components, named the “R(2+1)D” block, which achieves superior performance on 

action datasets. Recent work of X3D proposed by Feichtenhofer (2020) expands a tiny 

2D image classification architecture to 3D video recognition accosting space, time, 

width and depth dimensions. X3D achieved competitive performance on action datasets 

while keeping low computational cost, which is suitable for the “mobile-regime” action 

recognition. 3D CNN shows reasonable performance on video analysis. However, it 

still has a notable drawback that harms performance improvement, e.g., they tend to 

leverage contextual information such as objects and scenes. At the same time, human 

movement is weakly abstracted (Weinzaepfel & Rogez, 2021), hampering accurate 

motion information extractions. Furthermore, 3D CNN requires a lot of computational 

resources, limiting the usage of real-time applications and embedded systems. 

2.6.7 Learning Temporal Features 

Most CNN and 3D CNN based models only track a short period for the temporal 

features in video clips, e.g., 16 frames, which leads to difficulty when dealing with 

“longer” event sequences. Another significant drawback of the current CNN 

implementation is its limitation in dealing with sequential information such as plots in 

movies. Li et al. (2017) introduced a LSTM-based model for handling spatial-temporal 

features. Shortly after, Majd and Safabakhsh (2020) presented a correlational 

convolutional LSTM (C2LSTM) to handle both the spatial and motion structure of 

surveillance video data. Wang et al. (2015) presented a so-call trajectory-pooled deep-

convolutional descriptor (TDD) that embeds the features from both handcrafted and 

deep-learning models. Motivated by TDD, Lu et al. (2017) developed a multi-scale 

trajectory-pooled 3D convolutional descriptor (MTC3D) by combining dense 
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trajectories and 3D CNN. TDD and MTC3D are capable of automated learning of 

temporal features from motion trajectories. However, these models have been trained 

in a clip-level or single-frame-level loss, which has failed to capture long-term temporal 

information. To alleviate this major problem, this research proposes a long-short-term 

learning strategy training a deep neural networks (DNN) model on an entire video and 

updating the model weights in the video-level gradients. The details are discussed in 

Chapter 5.3.3. 

2.7 Skeleton based Approaches 

2.7.1 Pose Estimation 

A human pose defines the body joint positions in an image in the form of 2D or 

3D coordinates, which can be easily captured by the RGB-D depth sensors. For instance, 

Shahroudy et al. (2016) captured 56,880 RGB-D video clips by using the Microsoft 

Kinect v2 depth sensor and then proposed the NTU RGB+D dataset that has 60 classes 

of actions (NTU-60), including daily, medical, and mutual actions coming from 40 

different human subjects. Later, this dataset was extended by adding other 60 classes 

and additional 57,600 videos, hence introducing NTU RGB+D 120 (NTU-120) dataset 

(Liu et al., 2020a). The large-scale datasets enable the training of sophisticated DNN 

models for human action recognition and activity understanding. However, to the best 

of my knowledge, the hardware-based pose estimation has never been deployed to real-

world human action recognition systems in public areas since it requires special sensors 

along with surveillance cameras. The more natural way is extracting human poses from 

RGB frames directly by pose estimation methods (Cao et al., 2021; Kocabas et al., 2020; 

Rogez et al., 2020; Sun et al., 2019; Wang et al., 2021a). 

The pose estimation methods require not only identifying the human joints but 

must building the connection between joints for each person in multi-person settings. 

Pishchulin et al. (2016) proposed the DeepCut model which firstly detects all body parts 

and builds pairwise connections between the detections, then the Integer Linear 

Program is applied for body part clustering, and each clustered body parts generate a 

pose belonging to one person. To solve the time-consuming process of the Integer 
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Linear Program, an advanced pose estimation named OpenPose has been developed 

(Cao et al., 2021; Cao et al., 2017). OpenPose simultaneously learns the heatmap for 

body part localisation and the Part Affinity Fields (PAF) vector for associating body 

parts with distinct persons to achieve better accuracy while reducing the computational 

cost (Cao et al., 2021). However, the bottom-up approaches, which predict all body 

parts and then group the parts to each person, are still complex in computation, while 

the accuracy has yet to be improved when facing the multi-person setting. 

The top-down approaches, on the other hand, detect the human boxes firstly and 

then estimate joints for each person separately, and the advantages of object detection 

techniques can be applied in the first stage to generate accurate human bounding boxes 

(Fang et al., 2017; He et al., 2017). More significant, the two stages can be combined 

in an end-to-end manner to optimise the two stages simultaneously. He et al. (2017) 

proposed Mask R-CNN which is a general-purpose framework extended from Faster 

R-CNN (Girshick, 2015) for multiple vision tasks. By adding an extra mask branch 

which predicts the heatmaps for human joints localisation, it also serves as a strong 

baseline for human pose estimation (He et al., 2017). To improve the robustness of 

handling inaccurate and redundant human bounding boxes, Fang et al. (2017) proposed 

a so-called regional multi-person pose estimation (RMPE) model, which achieved good 

performance on multi-person benchmarks. Nevertheless, most deep learning methods 

follow a high-to-low feature representation and recover the high-resolution heatmaps 

from low-resolution representations, which may reduce the preciseness of spatial 

information due to the high-resolution representations are important for pose estimation. 

To tackle this issue, Sun et al. (2019) proposed High-Resolution Network (HRNet) to 

maintain the high-resolution representations during the entire process. As a result, the 

predicted pose heatmaps are spatially more precise and more accurate. This work is 

then extended to position-sensitive vision tasks and achieved good performances on 

pose estimation, object detection, and semantic segmentation (Wang et al., 2021a). 

Besides the 2D human pose estimation, 3D approaches can also predict 3D poses; 

e.g., Rogez et al. (2020) proposed a so-called Localization Classification Regression 

Network (LCR-Net) pose estimation which can predict 2D and 3D poses of multiple 
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persons concurrently. Kocabas et al. (2020) presented the Video Inference for Body 

Pose and Shape Estimation (VIBE) to exploit temporal information for estimating 3D 

pose motions of the body from videos by developing improved temporal pose and shape 

regression networks. 

2.7.2 Skeleton for Action Recognition 

Most human action recognition methods employ appearance and optical flow 

modalities (Jiang et al., 2021; Simonyan & Zisserman, 2014; Tran et al., 2015), while 

the modelling of body skeletons has received less attention. Human body skeletons are 

natural body language representations which have a strong capacity against context 

change and scene variation. Early approaches for skeleton-based action recognition rely 

on handcrafted formulations. These could be relative position joints, rotations, and 

translations between body parts. For instance, a “fall” action can be defined from the 

condition that the angle between the head and hip is small. Although it is very easy, 

these handcrafted methods are less robust when facing complex actions. The recent 

success of deep learning has led to automatic learning event representation from human 

poses. In general, human poses in a video can be presented by a sequence of coordinates 

and then learning the action pattern by recurrent structures (Shahroudy et al., 2016). 

RNN can learn temporal information from the sequences, but the local spatial 

information of joint locations is ignored. Liu et al. (2017) presented an image-based 

model for spatial-temporal skeleton representation. In this method, the sequence joints 

are transformed into pseudo-image series, and then a CNN-based model is applied to 

extract features from the pseudo-images along with RGB frames. However, the context-

biased problem is still existed due to the image-based approaches replay on appearance 

features. 

To understand actions from skeletons, the spatial information which represents 

joint locations and the temporal describing the movements of joints are both important, 

and the relationships between near joints are also more significant than the distant joints. 

Moreover, an action normally performed by several body part movements, e.g., the 

“walk” action contains “hand swing”, “foot lifting”, and “foot setting down”. Therefore, 
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a better action recognition model should learn local (body parts) spatial-temporal 

features from human pose sequences, which is similar to the small (33) convolutional 

kernels used in the image classification tasks (Simonyan & Zisserman, 2015). Based on 

this consideration, Yan et al. (2018) constructed the skeletons as the form of spatial-

temporal graphs, where the nodes correspond to the human joints, and the spatial edges 

conform to the natural connectivity of joints, while the temporal edges connect the same 

joints across continues frames. Then a so-called Spatial Temporal Graph Convolutional 

Networks (ST-GCN) model is designed to handle the graph-based skeletons. Graph 

Convolutional Networks (GCN)-based methods have drawn wide attention since it was 

first proposed because of their notable performance on human action recognition. To 

incorporate human joint and bone information, Shi et al. (2019) constructed the skeleton 

data as a directed acyclic graph (DAG), and the joint, bone and their relationships are 

extracted by the specific-designed directed graph neural network (DGNN), hence 

improving the performance of action recognition. Liu et al. (2020b) presented a MS-

G3D model that can remove redundant dependencies between node features by 

applying the multi-scale aggregation scheme, and it can directly learn cross-spacetime 

joint dependencies by using the unified spatial-temporal graph convolution (G3D) 

operators. Although the good accuracy, the computational complexity of GCN-based 

approaches is extremely heavy, e.g., the ST-GCN model costs 16.2 GFLOPs for 

recognising a video clip, while the complexity of the DAG-based GCN model is 

approximate 100 GFLOPs (Cheng et al., 2020). The inflexibility of both spatial and 

temporal graphs is another critical issue. Cheng et al. (2020) proposed the lightweight 

shift graph convolutional network (Shift-GCN) to cope with these drawbacks, which 

achieves remarkable improvements in both accuracy and computational cost. However, 

the GCN-based methods are still limited in the aspects of robustness, interoperability, 

and scalability. This research directly learns the action embedding from 3D heatmap 

volumes that implicitly contain human pose representations instead of using explicit 

joint coordinates by the advanced 3D CNN model, which is simpler, effective, efficient, 

and robust. 
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2.8 Model Inference on Edge Computing 

Along with the rapid developments in deep learning and edge computing 

technologies, deploying models on mobile devices is a trend for modern applications. 

However, the resource-constrained and heterogeneous edge devices fail to cope with 

complicated model inference. Edge computing (Shi et al., 2016) and edge intelligence 

(Deng et al., 2020), although in the early stage, are pushing a brand-new computation 

and AI paradigm, which has the potential to tackle the cues of hardware and bandwidth 

cost-saving, real-time response, and data privacy and security. There exist several 

challenges and opportunities for further investigation (Shi et al., 2016), and carrying 

out AI to edge computing (namely a few, AI on edge) has various brand-new challenges 

due to the energy and cost of an edge device are always limited for processing such 

large volumes of data by a complicated model, such as the platform-independent model 

(PIM) design, quantized computation (Krishnamoorthi, 2018; Nagel et al., 2021), 

computation graph optimization, AI hardware design, and software-defined hardware 

(SDH), which have drawn wide attention of research. Edge intelligence is considered 

to be one of the key absent components in 5G networks, and it will be an essential factor 

for future 6G networks (Gupta et al., 2021b; Peltonen et al., 2020). It is envisioned that 

there is a transition from IoT to the Internet of Intelligent Things, and to the Intelligent 

Internet of Intelligent Things for the future of 6G Intelligent edges. 

2.9 Datasets 

2.9.1 Traditional Datasets 

Lots of action datasets were introduced for training and evaluating human action 

recognition algorithms. The most popular ones are the KTH, Weizmann, Hollywood2, 

UCF and HMDB51, UT-Interaction datasets, etc. Sample videos of these datasets are 

shown in Figure 2-16. 

⚫ The KTH (Schuldt et al., 2004) dataset has six classes of actions: running, 

walking, boxing, jogging, waving, and clapping. Each action occurred in four 

scenarios: indoors and outdoors with various clothes and scales. 
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Walking Jogging Running Boxing Hand waving Hand clapping

DriveCar AnswerPhone GetOutCar SitDown HandShake HugPerson

Kick ball Kiss Laugh Pick Pour HugPersonPullup

Walk Run Jump Gallop sideways Bend One-hand wave

Hand Shaking Hugging Kicking Pointing Punching Pushing  
Figure 2-16 Sample frames from the action recognition datasets. From top to bottom: KTH, 

Weizmann, Hollywood2, UCF 101, HMDB51 and UT-Interaction. 

⚫ The Weizmann (Gorelick et al., 2007) dataset has ten actions with static 

background: walk, jump, bend, run, two-hands wave, gallop sideways, jump 

in place, one-hand wave, skip, and jumping jack. 

⚫ The Hollywood2 (Marszalek et al., 2009) dataset was collected from 69 

different movies, and it contains 12 action types: eating, running, sitting down, 

standing up, kissing, hugging, handshaking, fighting, driving a car, getting out 

of a car, and answering the phone. These videos have severe camera motions 

of the special (and old movie) effects of the scenes. 

⚫ The UCF 11 dataset is an annotated version of YouTube clip collections (Liu 

et al., 2009). It includes 11 individual actions, namely, basketball shooting, 

cycling, diving, golf swinging, horse riding, football juggling, swinging, 

tennis swinging, trampoline jumping, volleyball spiking, and walking with a 

dog. UCF 50 (Reddy & Shah, 2013) is an extension of UCF 11 that contains 

50 action categories collected from YouTube; UCF 101 (Soomro et al., 2012) 

is an extension of UCF 11, having 13,320 videos from 101 action categories. 
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⚫ The HMDB51 (Kuehne et al., 2011) dataset has been collected from YouTube 

videos and movies, and there are 51 action classes. 

⚫ The UT-Interaction (Ryoo & Aggarwal, 2010) contains six types of human-

human interactions: shake hands, point, hug, push, kick and punch. The videos 

are divided into two sets of different environment settings. 

The KTH and Weizmann action datasets are relatively simple since the 

background is static and homogeneous, whereas the Hollywood2, UCF and HMDB51 

datasets are complex in action types and background, and these datasets can be 

considered real-life videos. 

2.9.2 Modern Datasets 

Deep learning requires a huge amount of training video data, while the above 

datasets are not so large as the ImageNet dataset that is used on image classification. 

Therefore, large-scale datasets have been introduced in recent years, e.g., Kinetics is 

an action dataset of up to 306,245 videos with 400 action categories (Kinetics-400) 

(Kay et al., 2017), which is extended to larger datasets covering 400/600/700 human 

action classes (Carreira et al., 2018; Smaira et al., 2020). All videos come from 

YouTube, including individual actions, human-object interactions, and human-human 

interactions with various backgrounds. 

Mimetics (Weinzaepfel & Rogez, 2021) is a specially collected dataset for out-of-

context human action recognition because backgrounds and objects are absent in most 

videos. The Mimetics dataset contains 50 action categories and 713 video clips of 

mimed human actions. This dataset is only used for testing purposes due to its small 

scale. Skeleton-Mimetics, proposed by Gupta et al. (2021a), is another dataset for 

evaluating out-of-context action recognition. 

NTU RGB+D (Shahroudy et al., 2016) action recognition dataset has 60 action 

categories (NTU-60) with 56,880 samples. Each dataset is captured by three Microsoft 

Kinect V2 cameras to obtain the RGB videos, depth maps, IR videos and skeletal data 

concurrently. Later, this dataset was extended by adding additional 57,600 video 
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samples of other 60 action categories, hence introducing the NTU RGB+D 120 (NTU-

120) dataset (Liu et al., 2020a). 

2.10  Summary 

In this chapter, a comprehensive literature review for a full pipeline of human 

action understanding is given. The traditional techniques are firstly introduced, 

including digital image processing, feature engineering and machine learning-based 

classification. The mainstream techniques of deep learning are reviewed, and the 

skeleton-based approaches are surveyed. Then the trend of edge intelligence is 

introduced. Finally, as one of the key elements of research, a taxonomy of action 

datasets is summarised. 
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CHAPTER 3 Feature Engineering for Video 

Analysis 

3.1 Introduction 

Among handcrafted features based human action recognition approaches, 

trajectories-based methods show better performance than others due to it guarantees not 

only coverage of dense interest points but temporal tracks as well. The dense 

trajectories method and its improved model (iDT) offer accurate recording of motions 

over time that is rich in dynamic information (Wang et al., 2013; Wang & Schmid, 

2013). Since its appearance, the DT model has been gaining popularity and being tested 

on various action datasets with significant improvements over the state-of-the-art. It has 

drawn wide attention and optimism, and it has become the mainstream of handcrafted 

methods and is still important even in the deep learning era. However, DT models lack 

the mechanism to distinguish dominant motions from secondary ones over separable 

frequency bands and directions. To take advantage of semantical meaningful and 

“handcrafted” video features through feature engineering, this research integrates the 

DWT technique into the DT model for gaining more descriptive human action features. 

Another drawback is that the BoF method in DT encodes the low-level features as an 

unordered set, causing a large loss of spatial and temporal information. To tackle this 

problem, Bolovinou et al. (2013) presented the Bag of Spatio-Visual Words (BoSVW) 

to encode ordered spatial information for scene classification. Later, Zhao et al. (2014b) 

further improved this model by combining multiscale features, and it gained better 

performance on scene classification. BoSVW significantly improved the BoF encoder 

by integrating spatial context. Inspired by these achievements, this research explores a 

so-called bag-of-temporal-features (BoTF) technique to encode temporal information, 

i.e., it can encapsulate the ordered motion information of action in a video clip. This 

chapter introduces the methodology and theoretical model involved in the handcrafted 

feature extraction, event representation, and action classification. Then, the prototype 

modules and experiments are explained, as well as the discussion of the results. 
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3.2 Overview System Design 

Videos
DWT driven 

DT

STV (optical flows)

Fisher 

Vector

TS

BoTF

Feature 

fusion
SVM

Motion feature extraction Video event representationPreprocessing Event classification

Actions
STV (video clip)

Trajectories

HOG

HOF

MBH

Low-level features

 

Figure 3-1. The handcrafted feature processing and representations based pipeline of the 

human action recognition model. It contains four stages. The raw pixel data are pre-processed by 

DWT and DT. After getting the low-level features by the motion feature extractions from training 

videos, Fisher Vector and BoTF schemes are applied to generate the codebook. At the end of the 

pipeline, SVM is applied for action recognition. 

The processing pipeline of the handcrafted human action recognition model is 

shown in Figure 3-1, in which an input video is pre-processed for feature point 

extraction and tracked by the DWT-enabled DT model. The outputs are a series of low-

level handcrafted features describing the trajectory patterns inherited from the STV data. 

Then, the handcrafted features are encoded into Fisher Vector and annotated by the 

proposed BoTF representation scheme. Finally, all video features are fused into a 

holistic video event representation scheme. It will then be classified by a SVM classifier 

for action recognition. The sections below explain the relevant techniques in detail. 

3.3 DWT-based Decomposition 

Traditional DT-based approaches extract feature points and then track them in 

video frames, which lacks detail and interpretable information on the separable 

frequency and movement orientation. Wavelet transform has the ability to record the 

coarse-to-fine presentation of spatial features. It has been demonstrated that DWT 

models can not only dissect an image in the form of multi-resolution representations 

but also extract textural features representing motion characteristics, hence contributing 

to semantic feature representation such as the BoW models (Zhao et al., 2014a). 

Inspired by the pilot work, the proposed technique decomposes video frames into 

different frequencies and orientations of multiple scales by applying the DWT filter. In 

practice, the lifting scheme is applied, and the Daubechies 4 wavelet is chosen to 
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compute wavelet coefficients. Note that other types of mother wavelets can also be used 

in this stage. As shown in Figure 3-2, the single level 2D DWT algorithm is applied to 

decompose a video frame into A, H, V and D components, where A is the approximation 

coefficients and H, V, and D donate detailed coefficients along horizontal, vertical and 

diagonal orientations, respectively. Figure 3-3 demonstrates a sample of a video frame 

coming from the UCF dataset and the corresponding DWT transform result. Compared 

with the original video frame, these four components are smaller in total size, and A 

contains information on the overall context. In contrast, H, V and D possess dominant 

movement information along varied orientations. Hence this approach enables a more 

effective feature extraction and tracking model.  

A video frame

Videos

{TS, HOG, HOF, MBH}

{TS, HOG, HOF, MBH}

...

{TS, HOG, HOF, MBH}

{TS, HOG, HOF, MBH}

...

{   }

{   }

...

{   }

{   }

...

{   }

{   }

...

Dense Trajectories

One level wavelet decomposition

A H V D

Dense 

Trajectories

Handcrafted 

low-level 

features

 

Figure 3-2. The processing steps of DWT-driven DT-based feature extractor. This model 

decomposes the original video frames into four coefficients. Along with the original frame, the DT 

method is applied to generate the trajectories (red and blue curves) and the low-level features. 

 
a) An original video frame 

A H

V D

 
b) The DWT decomposition result 

Figure 3-3. A demonstration of DWT pre-processing for a video frame coming from the UCF 

101 action dataset. (a) illustrates a video frame from a “TaiChi” action video clip, while (b) shows 

the corresponding DWT coefficients. 
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3.4 Motion Feature Extraction 

3.4.1 Dense Trajectory Formation 

This research samples feature points densely on a grid of 55 for the input frames. 

In this process, the first spatial scale data is the input frame itself, and its spatial scale 

increases by a factor of 1/√2. To reduce the amount of trivial and redundant feature 

points in homogeneous areas, a threshold T is deployed on the eigenvalues for each 

scale as shown in the following equation: 

 
1 2( , )
i i

i I
T k max min  


=  , 3-1 

where 1 2

i i （ ， ） are the eigenvalues of i-th point in the spatial scale data I and its 

corresponding DWT coefficients. The value of k is taken as 0.001 for A, H and V of the 

original spatial scale data, while k is set as 0.01 for D. Dense sampling across all spatial 

scales ensures the comprehensiveness of feature points extracted and their motion 

potentials. For example, Figure 3-4 demonstrates the feature points extracted from the 

original (first) spatial scale, while Figure 3-5 illustrates the feature points extracted from 

the corresponding downward scales. 

 
Figure 3-4. Feature points extracted from an original spatial scale. 

 
A  

H 

 
V 

 
D 

Figure 3-5. Feature points extracted from DWT coefficients. 
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Feature points from continuous input frames are then batch processed and tracked 

on each spatial scale respectively, before median filtering is performed on the dense 

optical flow fields mt. The feature point tracking strategy is shown as the following: 

 1 1 1
( , ) ( , ) ( )

t t t t t t
P x y x y M m

+ + +
= = +  , 3-2 

where Pt+1 is a tracked point in the consecutive frames, M is a median filtering kernel 

with the size of 33, and (xt, yt) indicates a feature point in the t-th frame, and mt is the 

dense optical flow. 

The length of a typical action tracked is set at 15 frames (roughly two-thirds of a 

second) based on human behavioural studies (Wang et al., 2013). Once a tracked action 

is completed, a trajectory will be obtained in the form of (Pt, Pt+1, Pt+2, …, Pt+14). For 

storing feature trajectories, this research has devised a STV structure for encapsulating 

motions denoted by tracked features from all 15 video frames, as shown in Figure 3-6. 

Furthermore, this research also encapsulates the corresponding optical flows for later 

feature descriptions. The design ensures a compact and comprehensive representation 

of motion and context information inherited from a video event (human action) under 

study. 

A trajectory (pt, pt+1, pt+2,  , pt+L-1)

STV data block 

N

N = 32 pixels

nt

nx

ny

HOG HOF MBH

Trajectory descriptors

 

Figure 3-6. The encapsulated STV block for storing feature trajectories. The left red curve is a 

trajectory that is constructed by 15 tracked points. 

3.4.2 Low-level Feature Extraction 

Once the STV formatted video clip and the corresponding optical flows are 

obtained, four handcrafted motion and contextual feature descriptors are formulated, 

i.e., Trajectory Shapes, three categories of 2D histogram descriptors and their 3D 

counterparts. 
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a) Trajectory Shapes (TS) Descriptor 

TS is denoted by a vector (Pt, Pt+1, Pt+2, …, Pt+14) based on a trajectory (Pt, 

Pt+1, Pt+2, …, Pt+14), in which 
1

( , )
t t t t t

P x y P P
+

 =   = − . TS records the normalised derivative 

of the trajectory tendency that can be calculated as the following: 
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where ||x|| is the L2-norm method. TS calculation is rooted in the tracked point 

coordinates, reflecting the shape information of a trajectory representing movements at 

each spatial scale and orientation. As the trajectory length is fixed at 15 frames and each 

point contains 2-dimensional coordinates, a single TS descriptor is a 30-component 

vector. 

b) 2D Appearance and Motion Descriptors 

To handle dynamic structures in the video clip, this research computes the 

histogram descriptors to encode appearance and motion information. As shown in 

Figure 3-6, given a STV cuboid with the size of N  N pixels and L frames, it is divided 

into a set of spatial-temporal cells with nx  ny  nt in size, where nx = ny = 2, and nt =3, 

and the green cell is one of the subdivided cells. The research computes histogram 

descriptors in each cell and then merges all descriptors as the final descriptors. 

Histogram of Oriented Gradients (HOG) encodes static appearance information 

from video frames, and it especially focuses on the structure and shape information of 

objects. Followed the HOG computation method developed by Laptev et al. (2008), his 

research computes the HOG of each cuboid and sets eight quantization bins for gradient 

weighting. Then, these histograms in the grid are normalised by the L2 norm and 

concatenated into the final HOG descriptor vectors. The HOG descriptor outputs a 96-

component (2238) vector. 

Histogram of Optical Flow (HOF) formulates local motions from optical flows; 

its computation method is the same as HOG, except that the input data is replaced by 

the extracted dense optical flow. Optical flow is a significant feature of video 

processing. It tracks the motion information between two sequential frames, such that 

the HOF can encode the movements efficiently. The dense optical flows have already 
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been computed in the tracking stage, so the feature descriptor stage can reuse the optical 

flows and compute HOF directly. This research computes the HOF of each cuboid, and 

the number of quantization bins has been increased to nine to accommodate the zero 

bin. The HOF descriptor outputs a 108-component (2239) vector. 

Motion Boundary Histogram (MBH) is proposed to correct the camera motion 

that often occurs in realistic videos. Optical flow estimates the global motion between 

two frames, including foreground and background motions. The foreground motion is 

normally captured from human and object movements, which is significant for 

recognising human actions. On the other hand, the background motion is caused by the 

camera motion, such as zooming, tilting, and rotation. In addition to that, the tracking 

shot is typically used in films. It will cause side effects if the camera motion is encoded 

in the foreground motion. Noted that, in many cases, the movements caused by camera 

motion are varied smoothly and regularly. Based on this oversedation, Dalal et al. (2006) 

presented the motion boundary coding to resist dynamic backgrounds, in which local 

constant camera motions are removed while preserving human and object motions 

through computing derivatives of optical flows, as shown in follows: 

 

| ( , )
| ( , )

| ( , )
| ( , )

t t t

x t t t

t t t

y t t t

w x y
w dw x y dx

x

w x y
w dw x y dy

y

  = = 


 = =
 

. 3-4 

where xw  and yw  are the horizontal and vertical motion boundaries, respectively. 

Aligning a trajectory, this research stacks the motion boundaries along the x- and y-

axis for all continuous optical flows and then compute the histograms for each stacked 

motion boundary. The computation process is the same as HOG, and the number of 

quantization bins is set to eight, hence generating two histograms along X (MBHx) and 

Y (MBHy) directions with the size of (2238), and the final MBH descriptor (192-

component (22382) vector) is a concatenation of these two histograms. 

c) Histogram of 3D Gradient Orientations 

The 2D histogram descriptors come from the concepts of visual recognition in 

static images and are extended to video sequences by integrating normalisation across 
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the video frames. However, many 2D descriptors have derived their 3D counterparts, 

e.g., Klaeser et al. (2008) proposed HOG3D, which generalizes the HOG concepts to 

3D, whose overview is illustrated in Figure 3-7 (Klaeser et al., 2008). Based on this 

idea, the HOG, HOF, and MBH can be extended followed the same operations. For a 

given STV cuboid with the size of N N pixels and L frames, it is divided into a set of 

spatial-temporal cells with nx  ny  nt in size, which is the same as the 2D programme. 

The 3D gradient in each cell is then computed through a fast computation before it is 

quantized by using regular polyhedrons. Afterwards, the final 3D descriptor is a 

concatenation of all cell histograms. This research does not furth divide the cell into 

blocks because the frame is only 3232 in size, which is very small; hence, the cell 

histogram is directly obtained without summing up all blocks. This research applies a 

so-called Fast HOG3D algorithm proposed by Li et al. (2014) to compute 3D 

histograms due to it is more compact and computational effect than the classical 

HOG3D algorithm. This research computes the 3D histograms by using the same 

parameters, and the bin number is set to 26, hence the HOG3D and HOF3D descriptors 

are 312-component (22326) vectors and the final MBH3D descriptor is a 624-

component (223262) vector. 
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Figure 3-7. The computation progress of the HOG3D descriptor. a) a STV cuboid is subdivided 

into a grid of cells, and each one can be furth subdivided into blocks; b) the 3D gradient in each 

block is computed and summed up to the cell histogram; c) a regular polyhedrons-based 

quantization method is performed on each gradient orientation; d) the gradient is obtained from the 

whole videos. 

3.5 Video Event Representation 

3.5.1 Spatial-temporal Bag of Features 

The extracted spatial-temporal features are used as input features for high-level 

video event representation. This research applies the BOF approach to encode the 
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trajectory shape, HOG, HOF, MBHx, MBHy, and their 3D counterparts separately. The 

first step is visual vocabulary generation and codebook creation. In this method, each 

trajectory generates a feature x with the length of L. Supposing each video clip contains 

M trajectories, then an action can be represented as a matrix 𝐴 ∈ 𝑅𝑀×𝐿, and each row 

is a single feature generated from the corresponding trajectory. Therefore, the training 

set is a concatenation of all video actions, i.e., 𝑇𝐴 = 𝐴1⋂𝐴2⋂ … ⋂𝐴𝑁, where N is the 

number of training videos, and the total number of rows, which equals the total 

trajectory number in the training dataset, is calculated by 
1

N

ii
TM M

=
=  . 

Given a training set TA, a codebook is obtained using the K-means clustering 

algorithm. Then, each centre of a quantized area of a cluster is defined as a visual word, 

and the cluster number is set to K=1024, which shows great performance on action 

datasets. A subset of 100,000 features is randomly selected from the whole training set 

to reduce the computational cost. Once the codebook is constructed, the BOF 

representation assigns each feature to the nearest visual word and accumulates the 

account of visual words. Then the histogram is normalised to characterise video event 

representation; thus, an action matrix A is represented as a K-component feature vector. 

3.5.2 Soft Assignment 

This research has applied a “soft-assignment” approach to rectify the 

aforementioned disadvantages based on the multi-assignment (MA) technique that can 

“split” a feature into multiple visual words (Bolovinou et al., 2013). In this case, a top-

N nearest visual words method is devised for computing the weights for each visual 

word, and then the weights for a complete video sequence can be calculated as: 

 1 1 1

1
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where uk indicates the weight of k-th visual word, Mi describes the number of features 

whose i-th nearest neighbour is the visual word k, and function sim(j, k) calculates the 

similarity between the feature j and visual word k. Generally speaking, N = 4 achieves 

notable improvements compared with the previous work (Bolovinou et al., 2013). 

Finally, a video event can be represented by the vector TV=[u1, u2, …, uK]. 
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3.5.3 BoTF Formulation 

As stated earlier, a BOF encodes a video event as a set of unordered local features. 

As a result, it struggles to deal with the temporal sequences of features, which could 

lead to problems in distinguishing “longer” or various actions that constitute similar 

atomic components but in different orders, such as the motions of standing up and 

sitting down. To address this issue, this research devises a new feature representation 

method: Bag-of-Temporal-Features (BoTF) that embeds temporal information into 

BOF representation by employing the visual word correlograms and a co-occurrence 

transaction (CoTrans) scheme (Kieu et al., 2017). A correlogram not only contains the 

global spatial feature distribution of a video frame but also has the corresponding spatial 

and temporal information encapsulated together (Bolovinou et al., 2013). Moreover, 

the CoTrans template has been applied to form feature patterns and calculate the BoTF 

instances. 

As a live implementation strategy, DT produces a set of low-level feature vectors 

V={vi}, where vi represents a low-level feature of a video event. To explore the temporal 

information, this research introduced the time information into vi, so the feature is 

extended as [t, v], where t indicates the time coordinate. In particularly, t is the time 

centre belonging to its trajectory. All features of a video event are ordered by temporal 

sequences (frame indexes), see Figure 3-8. Under the proposed system, the sequence 

for an event in a given time range l is denoted as: PT = [tc, l, ori, v], where tc is the time 

centre, l denotes the number of frames on the time-axis for the corresponding patch, 

ori=±1 represents the orientation of polar axis, so a patch is defined as the following: 

 ( , , , ) {[ , , , ]},c c i iPT t l ori v t l ori v v V=  . 3-6 

And then, the CoTrans template is applied to calculate the BoTF instances based on all 

defined feature patches. The histogram h(tc, l, ori) encodes features in a feature patch 

PT by calculating the number of every visual word in PT. It is defined as the following: 

 
1 2

( , , ) ( , ,..., )
c k

h t l ori c c c= . 3-7 

where k is the length of the codebook and ci is the number of features in patch PT 

belonging to the i-th visual word. 
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In this step, similar to BOF, all low-level features extracted from a training dataset 

are clustered by using K-means for generating the codebook (a visual word set) of BoTF, 

and the vector length of h(tc, l) is equal to the length of the codebook generated by BOF. 

Moreover, the radial axis (R) is divided into Nr = 4 bins (Nr is equal to the number of 

feature patches on a quadrant of the radial axis), the length of R is 60 frames, and the 

polar axis (±th) is divided into N±th =2 bins, which is equal to the number of orientations 

of the polar axis, see Figure 3-8. Finally, the BoTF descriptor can be formulated as the 

following: 

 
1 1 4 4[ ( , ,1) , ( , , 1) ,..., ( , ,1) , ( , , 1) ]tc c c c cB h t l h t l h to l h lT tF = − − . 3-8 

The set of CoTrans reference time centres is denoted as C={t1, t2, …, tn} that are 

sampled from the time-axis by the successive 30 frames. With the BoTF descriptor, 

input video streams can be represented as a set of BoTFtc descriptor instances. In 

conclusion, a video event is first described as a histogram of BoTF based visual words, 

and then the Equation 3-5 will be applied to assign a BoTFtc into multiple visual words. 

tc

a  BoF codebook with length 
K=5 (5 visual words):

a low-level feature 
belonging to a 
visual word 

a trajectory

h(tc,  l, 1)1=[2, 0, 1, 1, 0]

h(tc,  l, -1)1=[0, 1, 0, 0, 0]

h(tc, l,  1)2=[0, 0, 0, 1, 0]

h(tc, l, -1)2=[0, 0, 0, 0, 0]

h(tc, l, 1)3=[0, 0, 0, 0, 1]

...
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Figure 3-8. Producing BoTFtc instances based on the BoF and the CoTrans templates. 

3.6 Action Classification 

3.6.1 Feature Fusion and Dimensionality Reduction 

The feature fusion strategy developed in this work enabled robust human action 

classification through a SVM based classifier. The three event representations (FV, 

BOF and BoTF) derived from the aforementioned models are fused into a final holistic 

video representation: 

 
1 2 3[ , ]fv FV BOF BoTF  = ， , 3-9 
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where λi (i = 1, 2, 3) indicates the weight of each feature vector, this research considers 

all feature representations are equally weighting with a normalised λi = 1, so a video 

event can be represented as the holistic feature vector in real-time: [FV, BoF, BoTF]. 

FV, BOF and BoTF event representation have 1024-competent feature vectors for each 

category of feature descriptors; hence the length of the combination of FV, BOF and 

BoTF is 10243=3072. For classifying human actions, one or more types of feature 

descriptors can be used, i.e., either a single descriptor or the random combination of 

these descriptors can be used for event representation. Consequently, the holistic video 

representation is very high dimensionally. For instance, when fusing the TS, HOG, 

HOF and MBH, the length of the final feature vector reaches 10245=5120, the curse 

of dimensionality is a critical problem in this method due to directly using the finite 

high-dimension feature set to train a SVM classifier will cause low convergence rate 

(Spruyt, 2014). Therefore, the dimensionality reduction method is indispensable in this 

method. This research adopts the unsupervised Principal Component Analysis (PCA) 

technique to reduce the holistic video event representation dimensionality. The PCA 

method projects each data point in the original space onto the first few principal 

components to map low-dimensional data while still retaining the maximal data 

variance. In practice, the fused holistic vector is projected into a lower dimension of a 

1024-component vector. Noted that if only a single descriptor (e.g., TS) and one 

representation (e.g., BOF) are used, the PCA method is not required. 

3.6.2 SVM based Classifier 

SVM is the optimal choice for dealing with relatively small sizes of handcrafted 

features. Thus, to test and evaluate the validity and efficiency of the devised framework, 

this research investigated a SVM based classifier by comparing its performance when 

handling different handcrafted features and representations. To classify multiple 

categories of actions, multi-SVM units have been generated, and each performs the 
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“one-versus-the-rest” multi-class evaluation. In this research, a dataset splits into three 

parts, i.e., the training subset (70%), the validation subset (10%) and the test subset 

(20%). A cross-validation strategy (Wong, 2015) has been applied to train the SVM-

based classifier to ensure accuracy and repeatability. 

3.7 Experimental Results 

The experiments are carried out on UCF 11, UCF 50, HMDB 51 and JHMDB 51 

datasets. Details of the datasets can be found in Section 2.9. In this experiment, single-

level DWT is performed to decompose the original video frames into low scales, and 

the following settings are defined: in the trajectory phase, the window size of tracked 

frames is 3232 pixels, and the trajectory length L=15; in the event representation phase, 

the cluster number K=1024 is used for the K-means clustering algorithm, which 

constructs a 1024 length codebook, and a feature is assigned into its top-4 nearest visual 

words by their Euclidean distances; the fused event representation is reduced to a 1024-

component vector by PCA dimensionality reduction before it is fed into the Gaussian 

kernel SVM classifier. 

3.7.1 Visualisation of Trajectories 

For qualitative analysis of the DWT-based dense sampling and tracking effect, this 

experiment chooses three action videos from the UCF 50 dataset for visualisation, i.e., 

“basketball shooting”, “football juggling”, and “walking” actions. DWT algorithm is 

applied to decompose the original frame and then extract and track the spatial-temporal 

interest points by dense sampling and median filter methods on each scale. The results 

are shown in Figure 3-9, where the red points indicate the interest points extracted by 

dense sampling, and the green lines are trajectories. It can be seen that the obtained 

trajectories are mainly located in the human and movement areas. Taking the “football 

juggling” action as an example, almost all trajectories are generated by the player, while 

the background is eliminated. Based on this observation, the DWT driven DT method 

can character movements gracefully, and the trajectories have the capacity to embed 

human motions for later processing. Nevertheless, the sample of “walking” action is 
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not good enough; the trajectories not only occur in the motion areas but in the 

background as well. More significantly, as shown in Figure 3-10, many trajectories are 

generated in the background area in the latter part of the video clip since the viewport 

is smoothly moving. This camera motion causes the side effect on motion description. 

The following section will discuss the camera motion removal experiment. 
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Figure 3-9. Visualization of trajectory results. 

 

Figure 3-10. The obtained trajectories from a “walking” action video. 
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Frame t

Frame t+ t

Optical flow Horizontal motion boundaries (X-axis )

Vertical motion boundary (Y-axis )  

Figure 3-11. Visualization of optical flow and the corresponding motion boundaries. 

3.7.2 Camera Motion Removal Effect 

For qualitative analysis of the motion boundary for camera motion removal, this 

experiment computes and visualises the original frames and their corresponding optical 

flow and the motion boundaries along with X and Y directions, respectively. Two 

consecutive frames of a “walking” action video coming from the UCF dataset are 

extracted. These video frames contain both human movement and camera motion; then, 

the dense optical flow is computed by performing the Farnebäck method (Farnebäck, 

2003), and the result is shown in the middle of Figure 3-11, in which the human shapes 

can be seen clearly, and there is also plenty of noises in the background area. Then, the 

method from Equation 3-4 is furth performed, resulting in the horizontal and vertical 

motion boundaries, as shown in the right of Figure 3-11, in which the human shapes 

are kept while the inherent noises came from the camera motions are removed. This 

result qualitatively proved the performance gain of MBH and MBH3D descriptors. 

3.7.3 Feature Descriptor Efficiency 

To evaluate the effectiveness of different feature strategies, this experiment 

compares various combinatory feature descriptors involving TS, HOG, HOF, MBH and 

their 3D counterparts. The combined video representation based on the BOF, FV and 

BoTF methods was applied to encode a video event as a holistic feature vector that 

reduced dimensionality before going through a SVM classifier for action classification. 

The UCF 50 dataset was used, and the results are shown in Table 3-1. It can be seen 
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that a single TS feature generally offers the weakest performance, while the MBH(3D) 

achieves the best accuracy rate among those individual features due to the MBH 

descriptor focuses on tracking human foreground motions, whilst the camera motions 

and background change are removed. Unsurprisingly, the combined descriptor 

demonstrates the best performance by harnessing the advantages of underlying feature 

types, with the recognition rate reaching 93.8%. One possible reason is that certain 

actions in UCF videos have more salient motion information (e.g., “TaiChi” and “High 

Jump” actions) while other actions possess less distinctive motions within different 

scenes, e.g., “biking” and “horse-riding” actions. An individual feature descriptor (e.g., 

MBH) can extract motion information on the former type of action, and it often falls 

short in handling actions of the latter type, resulting in the loss of overall accuracy. In 

contrast, when applying the combination features, both motion and scene information 

can be extracted more thoroughly, and the temporal can also be encoded by the BoTF 

event representation to improve recognition rates for a wider spectrum of action types. 

As shown in Table 3-1, the performance of the combined handcrafted features (i.e., 

the combinations of TS, HOG, HOF and MBH) is better than any individual one, which 

indicates the relevance of all aspects of handcrafted features towards the final prediction 

results. Based on this observation, this research integrated the combined handcrafted 

features for the rest of the work. Moreover, this research also tested the performance of 

2D and 3D descriptors separately to gain insight into their respective impacts on the 

outcome. The 3D appearance and motion descriptors have further demonstrated their 

superiority over the 2D-based feature descriptors on all tested benchmarks drawn from 

ablation studies. 

Table 3-1. The recognition accuracy rate (in %) of different features and event representations 

on the UCF 50 dataset. 

Features 
Representations 

BOF FV FV+BoTF 

TS 67.2 75.2 76.5 

HOG 68.0 82.6 83.6 

HOF 68.2 85.1 87.5 

MBH 82.2 88.9 90.3 

TS+HOG+HOF+MBH 84.5 91.2 92.5 

HOG3D NA NA 85.8 

HOF3D NA NA 89.3 

MBH3D NA NA 92.6 

TS+HOG3D+HOF3D+MBH3D NA NA 93.8 
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3.7.4 Event Representation Validation 

The performance of BOF, FV and BoTF have been applied to the UCF50 dataset 

for evaluation. Table 3-1 illustrates the recognition accuracy variation of these three 

event representation approaches. It is shown that the pure FV implementation is better 

than the BOF method on TS, HOG, HOF and MBH descriptors. Unsurprisingly, when 

combined with FV and BoTF, it achieves the best performance on tested UCF50 

instances. One key reason is that the BoTF representation encodes the features in 

different time patches, and it can describe the temporal sequences of features to handle 

the “longer” and various actions. The superiority is rooted in the presence of both local 

and global features over the spatial and temporal domains. 

3.7.5 Comparison With the Other Approaches 

This experiment has compared the proposed handcrafted model with other 

trajectories-based methods on UCF 50, HMDB51, and JHMDB51 datasets, including 

the classical DT model (Wang et al., 2013), iDT (Wang & Schmid, 2013)), SFV (Peng 

et al., 2014). HMDB51 and JHMDB51 datasets are more complex than UCF datasets 

in terms of action types, video quality, and background. Experiments show a superior 

output from the devised model in this research, as highlighted in Table 3-2. The 

performance of the devised model consistently levels up or surpasses the current 

benchmark approaches. The superior performance stems from the trajectory-based 

features among multiple scales, separable frequency bands and directions, and the 

spatial-temporal video event representations. 

Table 3-2. Performance comparison to the state-of-the-art approaches on UCF 50, HMDB51 

and JHMDB51 datasets (in %). 

Method UCF50  HMDB51 JHMDB51 

DT 84.5 46.6 NA 

iDT 91.2 57.2 62.8 

SFV NA 66.79 69.03 

TS+HOG+HOF+MBH 91.3 68.3 70.4 

TS+HOG3D+HOF3D+MBH3D 92.5 70.2 71.8 

3.8 Summary 

In this chapter, to tackle the shortfalls of lacking orientations and separable 

frequencies in multiple scales of traditional DT-based action classification models, this 
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research has developed an innovative DT model by integrating the DWT technique. 

The 2D DWT method is employed to decompose the video frames into separable 

frequency and orientation components for abstracting motion information. The dense 

trajectories method is applied to extract feature points for tracking through consecutive 

frames. FV and a novel handcrafted event representation - BoTF, have been developed 

to encode the “longer” temporal information on video clips. The holistic representation 

of video-based events over time, specifically human actions in this research, enables 

efficient and accurate analysis through SVM-based classification. The preliminary 

experiments carried out on the UCF and HMDB datasets show that the proposed 

handcrafted model has a superior recall, robustness, and extensibility performance over 

benchmarked systems and approaches. However, the handcrafted approaches have 

critical drawbacks when facing real-world applications: 1) it primarily depends on 

expert-designed and dataset-specific feature extractions and representations, which are 

less robust; 2) the real-time processing is always unavailable since the methods are 

complex and, it requires a lot of computational resources. In addition, the volume of 

storage and memory are also indispensable for storing the middle features; 3) only the 

classifier is learnable, while the other stages are manual work which cannot be evolved 

automatically from observational data. A better strategy is building end-to-end 

mechanisms and automatically searching for the best formulas for feature design and 

action prediction. The following chapters concentrate on the deep learning-based 

methodology to explore these mechanisms. 
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CHAPTER 4 Multimodality Neural Networks 

4.1 Introduction 

The deep learning technique offers end-to-end feature extraction and classification 

by contracting sophisticated network architectures based on neural models such as CNN, 

RNN, LSTM, and GCN (Goodfellow et al., 2016; Spinelli et al., 2021). Since its birth 

almost ten years ago, deep learning has gained tremendous interest and outstanding 

results in tasks such as image classification (He et al., 2016), object detection (Ren et 

al., 2017; Wang et al., 2021b), natural language processing (NLP), and many other 

industrial applications. Complex video analytical tasks such as single human and crowd 

behaviour understanding are still ongoing challenges due to many ill-posed real-world 

application problems. The most remarkable approach is the two-stream CNN model 

(Simonyan & Zisserman, 2014), in which a spatial stream is designed for “appearance” 

feature extraction, and an additional temporal stream is integrated for motion feature 

learning. The multi-stream based method has drawn wide attention, and many improved 

models have been developed. The details have discussed in Chapter 2.6.5. 

The multimodality deep neural networks have shown great potential in handling 

complex spatial-temporal features that are essential for video event analysis. However, 

the two-steam network only provides a coarse integration of both appearance and 

motion features, which omits critical information such as spatial and temporal 

interactions. Furthermore, since the temporal stream only receives ten consecutive 

optical flow images in most two-stream models (Simonyan & Zisserman, 2014; Xu et 

al., 2019a; Ye et al., 2015), it may be confused if two actions are similar in such a short 

snippet, even they are different in the longer timeframe. Moreover, extracting optical 

flows from video frames is a time-consuming operation; as a result, the two-stream 

network method can only be trained and tested in offline mode. 

To tackle these shortcomings, this research first constructs a novel two-stream 

network model based on residual networks, which boosts the learning capability of each 

stream. Then, this research significantly reduces the computational cost by integrating 
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the devised Optical Flow-guided Feature (OFF) layers in the motion stream. In this 

design, the time-consuming optical flow extraction stage is no longer required, hence 

supporting online training and testing. Furthermore, the proposed concurrent two-

stream aggregation network can learn the coarse-to-fine scene and motion interactions 

from the joint spatial-temporal exploitation by building residual connections between 

the motion and the visual streams, named spatial-temporal fusion blocks (STFB). In the 

constructed network, each stream is trained separately, and the outputs (feature maps) 

from each stream are accumulated in time sequences, which is followed by a 3D CNN 

sub-network for learning long-term semantic information in both spatial and temporal 

domains. Finally, a softmax layer is adopted for action classification. The concurrent 

interactive spatial-temporal aggregation model achieved promising improvements. 

4.2 Learning Video Features by DNN 

4.2.1 Pre-trained Feature Adaptation 

Training DNN models is very time-consuming and requires a huge amount of 

labelled data. However, many popular action datasets are not adequate for the particular 

task, which limits the applications of DNN models. On the other hand, a deep learning 

model is constructed as a hierarchical structure, whose bottom level primarily focuses 

on general image features such as STIP and edges, while the abstract object and motion 

features are described in a multilayer nonlinear structure. The top layers, which are 

consistently implemented by FCNN and softmax modules, are task-specific functions 

for particular classification or recognition decisions (Samek et al., 2017). Based on this 

concept, a pre-trained DNN model can be considered a general feature extractor. Here, 

a DNN architecture can be depicted as follows: 
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where w and w’ are learnable weights belonging to CNN kernels and the fully-

connected layers, respectively, b and b’ are learnable biases, I indicates an image or a 

video frame, f(·) is a learnable function which presents the CNN layers of deep learning 

architecture, while g(·) indicates the fully-connected layers. According to Zeiler and 
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Fergus (2014), f(·) is more generic, and it extracts image features such as interest points, 

lines and edges in different CNN layers, so it is reasonable to apply the pre-trained 

CNN models to extract features. In practice, this research extracts the vector values 

from the fully connected layer of the networks and removes the rest layers since only 

the specified features from CNN models are of interest. In this method, only the first 

(fc1) and second (fc2) fully-connected layers of G in Equation 4-1 are kept. It is worth 

noting that various pre-trained networks and fully-connected layers can be integrated, 

e.g., AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zisserman, 2015), and 

ResNet (He et al., 2016). Both of them were pre-trained on the ImageNet ILSVRC-

2014 classification dataset. 

From a given video clip, it can be formalized as V = {Ii | i  [1, L]}. This research 

firstly extracts the learned image feature hi from each frame Ii by the pre-trained CNN 

model. A series of image feature vectors H = {hi | i  [1, L]} of the clip can be obtained, 

and then the feature fusion method is applied by averaging the series of feature vectors, 

which outputs a video feature p, where 
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4.2.2 Dual-stream CNN-RNN Network 

This research explores a dual-stream CNN-RNN architecture due to its remarkable 

capacity to encode visual (RGB) and motion (optical flow) features simultaneously in 

the spatial and temporal domains. The dual-stream model has achieved reasonable 

results on human action recognition at the accuracy of 88.0% and 59.4% on UCF 101 

and HMDB51, respectively (Simonyan & Zisserman, 2014), and the performance 

achieves the benchmark level of the improved DT method in the pre-DL era. However, 

the dual-stream CNN model neglects the intrinsic differences between temporal and 

spatial domains. To alleviate this shortcoming, the devised framework incorporates the 

strengths of both the 3D CNN in the spatial domain and the RNN for handling the 

temporal features. The whole network design is shown in Figure 4-1. 



61 

 

C3D 

(3D CNN)

VGG-16

Aligned STV

Compute 
optical flow

Stacked optical flow

Visual stream

Motion stream

Spatial-temporal 
feature

LSTM

 
Figure 4-1. The CNN-RNN based dual-stream network architecture. The visual (RGB) stream 

(on top) is designed by combing 3D CNN and LSTM to extract “appearance” context and sequence 

information from raw pixels of STV data, while the motion (optical flow) stream (on bottom) learns 

motion information from optical flows by the CNN-LSTM structure. 

The visual (RGB) stream is comprised of two components: the 3D CNN-based 

“appearance” feature extractor and the RNN-based sequential descriptor. In practice, 

this research applies the C3D model as the CNN component. C3D uses 3D convolution 

and 3D pooling operations on each layer. This research uses a 333 convolution 

kernel for convolutional layers, and all pooling layers are max pooling with kernel size 

222. With this configuration, C3D is trained on 15 consecutive frames (STV) with 

the input size of 3 (channel) × 15 (frames) ×112 (pixel)×112 (pixel) and outputs 2049 

units in the last fully connected layer, which is followed by a RNN structure for 

sequential modelling. The RNN units can automatically discover appropriate sequential 

information (Zhang et al., 2017), i.e., learning connections between inputs and the 

corresponding previous states continuously, which is ideal for extracting temporal 

information in videos. However, RNN is not suitable for directly learning sequential 

features from high-dimensional data. Therefore, in this design, the features generated 

by CNN become the input of the subsequent RNN for optimisation. A LSTM model 

has been applied in this design instead of the traditional RNN module for its unique 

ability to remember “states” over a long period of time by using the “forget” mechanism. 

The devised RNN structure has two LSTM layers, and each of them has 1024 hidden 

states, so the RNN component outputs a 1024-component feature vector. 

The motion (optical flow) stream is also constructed by the CNN and RNN 

components. Different from the visual stream, the motion stream mainly extracts 
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temporal action features from the successive flow fields. This research adopts the VGG-

16 network as the CNN component. With this configuration, VGG-16 is trained on a 

stacked optical flow computed from the STV block, so the input size is 2 (channel) × 

15 (frames) ×112 (pixel)×112 (pixel), and the output is a 2049-component vector in the 

last fully connected layer that is followed by a RNN for sequential modelling. 

4.2.3 Training 

For training the 3D CNN model, this research applied the same parameter settings 

in accordance with Tran et al. (2015), and the C3D network was trained directly by 

using UCF 101 video clips. The developed CNN models (i.e., VGG and C3D) are used 

as general feature extractors, whilst temporal features are identified through training 

LSTM-based sequence models. In practice, the features from the last fully connected 

layer are fed into LSTM units with M inputs <x1, x2, …, xM> and M outputs <y1, y2, …, 

yM>, where xi presents a feature vector and yi is the corresponding action label. The 

learnable weights (WR) of the LSTM-based sequence components can be optimised by 

maximising the likelihood of the ground truth outputs yt calculated on the input data 

and the action labels. For a given training sequence (xm, ym) Mm=1, this study minimises 

the negative log-likelihood 
1: 1: 11

( ) log ( | , )
M

WR m m mm
L WR P y x y −=

= − using stochastic 

gradient descent (SGD) (Lecun et al., 1998) with a backpropagation algorithm to 

compute the gradient of the objective L with respect to the weights (WR). 

4.2.4 Transfer Learning 

It is a challenge when handling real applications where datasets are often referring 

to noisy and untrimmed videos. As a result, many deep learning methods only achieved 

a low performance that is even worse than the shallow handcrafted representations. 

Transfer learning suggests a significant advancement to utilise and be benefitted from 

small datasets (Yosinski et al., 2014), i.e., through training an initial network from 

scratch on a very large dataset (e.g., an ImageNet-like dataset) and then fine-turning the 

model on a task-specific dataset. However, the datasets used in this research are 

different from ImageNet. Directly applying transfer learning will cause the underfitting 
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problem. Motivated by this analysis, this research developed a multi-stage training 

strategy based on transfer learning. A public CNN model (e.g., VGG-16 or ResNet) 

pre-trained on the ImageNet ILSVRC-2014 dataset was adopted as the initial network. 

These pre-trained models can be derived from online model repositories such as 

PyTorch Hub (Paszke et al., 2019). Then the model is fine-tuned on a small action 

dataset (e.g., UCF action dataset) to ensure the robustness of the trained model. The 

small action dataset supplies sufficient videos to fine-tune the entire network from 

image classification to motion analysis. 

4.3 Concurrent Spatial-temporal Network 

4.3.1 The Overall Network Architecture 
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Figure 4-2. The architecture of the two-stream concurrent interactive spatial-temporal 

aggregation model. It contains two network streams: the visual stream that learns spatial features 

from a video frame, and the motion stream that derives temporal features from visual feature maps 

by OFF and residual blocks. 

The proposed concurrent interactive spatial-temporal aggregation model is shown 

in Figure 4-2, which is constructed by the classic two-stream network model with 

several improvements: firstly, instead of using the original convolutional filters of the 

two-stream network, this research applies ResNet and removes the last fully-connected 

layer for both visual and motion streams, which is considered the baseline network of 

this research. Then, this design removes the first convolutional layer of ResNet in the 

motion stream and breaks the rest layers into four convolutional modules, whose 

module contains several residual blocks, and each module integrates an OFF layer in 

the front part to derive motion information. This research also injects the constructed 
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fusion blocks (STFB) between motion and visual stream to generate more 

comprehensive spatial-temporal interactions at different residual blocks, hence 

introducing the joint coarse-to-fine motion-visual interactions. In this devised spatial-

temporal aggregation network, only the successive RGB video frames are required for 

the inputs, and the spatial and temporal feature maps can be generated concurrently and 

stacked in time order. Finally, a 3D CNN sub-network is integrated for abstracting the 

long-term semantic and event representation in spatial and temporal domains. 

4.3.2 Baseline Two-stream Network 

The devised concurrent two-stream aggregation model stems from the classic two-

stream idealism: the visual stream extracts appearance information from RGB frames, 

and the motion stream is used to extract movement information by using the optical 

flow that is a robust motion descriptor. A residual network has been applied to 

implement both the visual stream and motion stream because ResNet shows an 

acceleration of the training speed and the outstanding capacity for feature extraction 

(Zhu et al., 2016). Different configurations of ResNets (e.g., ResNet-18/34/50/101/152) 

(He et al., 2016) can be applied in this model, and this research applies ResNet-50 for 

both visual and motion streams for balancing the performance and computational cost 

trade-offs. The ResNet-50 contains three major components: a first convolutional layer 

with a kernel size of 7 × 7, a max-pooling layer with a kernel size of 3 × 3, and four 

convolutional modules, i.e., conv2_x, conv3_x, conv4_x, conv5_x, respectively, and 

each have several residual blocks followed by a pooling layer. Finally, a fully connected 

layer is followed for classification. The main advantage of ResNet is that it has a bypass 

function directly connecting the convolutional layer to a latter layer. This operation is 

defined as a residual block, as shown in the following: 

 ( , )iy F x W x= + , 4-3 

where x and y represent input and output tensors of the target layer, respectively, the 

function F(x,Wi) defines the residual mapping to be learnt. The bypass function allows 

the latter layer to learn residual representations to maintain gradients for improving the 

learning accuracy and reducing the learning complexity. The detailed network setups 
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of ResNet-50 for the two streams are presented in Table 4-1. In this design, the last 

fully connected layer of both visual and motion streams is removed due to this design 

only preserves the feature maps from the final convolutional layer before stacking them 

to learn long-term semantics and relationships in both spatial and temporal domains. 

Further, the first convolutional layer (conv1) in the motion stream is also removed 

because this model does not process optical flows. 

Table 4-1. Architecture of visual and motion streams. This research applies ResNet-50 to 

construct both streams. Other settings of ResNets (ResNet-18/34/101/152) can also be adopted. 

Layers/modules 
Residual Blocks 

Vision Stream Motion Stream 

Conv1 

Pool1 

Conv2_x [
1 × 1, 64 
3 × 3, 64 
1 × 1, 256

] × 3 STFB [
1 × 1, 64 
3 × 3, 64 
1 × 1, 256

] × 3 

Conv3_x [
1 × 1, 128 
3 × 3, 128 
1 × 1, 512  

] × 4 STFB [
1 × 1, 128 
3 × 3, 128 
1 × 1, 512

] × 4 

Conv4_x [
1 × 1, 256 
3 × 3, 256 
1 × 1, 1024

] × 6 STFB [
1 × 1, 256 
3 × 3, 256 
1 × 1, 1024

] × 6 

Conv5_x [
1 × 1, 512 
 3 × 3, 512 
 1 × 1, 2048

] × 3 STFB [
1 × 1, 512 
3 × 3, 512 
1 × 1, 2048

] × 3 

Pool 7×7 avg, stride 1 

4.3.3 OFF Fundamentals 

Instead of taking optical flows directly as inputs for temporal information learning, 

this model generates motion features from the feature maps of the visual stream based 

on the constructed OFF layers in the motion stream. The OFF was firstly presented by 

Sun et al. (2018b), and it was inspired by the traditional optical flow to capture the 

motion information of a video. In principle, the traditional optical flow assumes the 

brightness of any pixel at time t to t+t remains constant, i.e., supposed that a pixel of 

a video frame I at the position (x, y) and time t is donated by I(x, y, t), then the 

corresponding pixel at time t+t is I(x+x, y+y, t+t), where x and y are the spatial 

displacements along the x- and y-axis, respectively, and: 

 ( , , ) ( , , )I x y t I x x y y t t= +  +  +  . 4-4 

At the feature level, Equation 4-4 is rewritten as: 
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 ( ; )( , , ) ( ; )( , , )I x y t I x x y y t t   = +  +  +  , 4-5 

where 𝜙(𝐼; 𝜃)  is a convolutional network based feature extraction and 𝜃  is the 

trainable parameters. By calculating derivatives of Equation 4-5 and assuming q = (x, 

y, t), then: 

 
( ; )( ) ( ; )( ) ( ; )( )

0
I q I q I q

x y t
x y t

       
 +  +  =

  
, 4-6 

by dividing t of Equation 4-6, the following equation can be calculated: 

 
( ; )( ) ( ; )( ) ( ; )( )

0x y

I q I q I q
v v

x y t

       
+ + =

  
, 4-7 

where (vx, vy) is the speed of the feature point q along with two directions. The first two 

fractions are the spatial gradients along the x- and the y-axis, respectively, and the third 

fraction is the time gradient along the t-axis. If the 𝜙(𝐼; 𝜃) function meets the constant 

brightness constraint, i.e.,𝜙(𝐼; 𝜃) = 𝐼(𝑞), then according to the optical flow definition, 

(vx, vy) is the optical flow which can be computed by solving the constraint optimization 

problem of each pixel point q by using Equation 4-6, as shown in the following: 

 
( ; )( ) ( ; )( ) ( ; )( )

( ; )( ) [ , , ]
I q I q I q

Q I w q
x y t

     →   
=

  
, 4-8 

where 𝜕𝜙(𝐼; 𝜃)(𝑞)/𝜕𝑡 denotes the differentiation of two continuous video frames. 

Based on this definition, this research optimises the optical flow representation from 

I(q) into the feature 𝜙(𝐼; 𝜃)(𝑞), such that (vx, vy) becomes the feature flow (Sun et al., 

2018b); Q(I;w)(q) is complementary to the feature flows and is also orthogonal to the 

optical flow; thus, it contains the optical-like spatial-temporal information and is guided 

by the feature; hence an Optical Flow guided Feature (OFF). It can replace the time-

consuming optical flow computation for keeping entire motion information and 

significantly reduce computational cost. 

4.3.4 OFF Layers 

According to the OFF principle, this research designs a so-called OFF layer for 

formulating feature flows. Figure 4-3 illustrates the OFF-layer structure that contains a 
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1 × 1 convolutional layer to reduce the channel number of feature maps outputted from 

the visual stream. The element-wise subtraction obtains the temporal gradient, and 

Sobel obtains the spatial gradient. After the feature flows have been produced, a final 

concatenation operation is integrated to fuse the temporal and spatial gradients along 

with the last low-level feature flows, and then the combined features will be outputted 

to the residual modules for obtaining the fine spatial-temporal features. According to 

Equation 4-7, OFFs have both spatial and temporal gradients. The devised network 

applies the Sobel operator to get the spatial gradient, as shown in the follows: 

 

1,0,1

1,0,1 ( , ) | 0... 1

1,0,1

x cG I n n N

 −  
  

= −  = −  
  −  

, 4-9 

 

1,     1,    1

0,    0,    0 ( , ) | 0... 1

1, 1, 1

y cG I n n N

  
  

=   = −  
  − − −  

. 4-10 

where Gx and Gy express the spatial gradients of OFFs along with x and y directions, 

respectively;  is a convolution operation; 𝜙(𝐼; 𝑛) is n-th channel of feature map 

𝜙(𝐼) that has Nc channels. The element-wise subtraction is integrated to compute the 

temporal gradient Gt, formulated in the following: 

  ( , ) ( , ) | 0..., 1t t t t cG I n I n n N  −= − = − . 4-11 

Along with the corresponding feature flows, the OFF layer fuses the three gradients Gx, 

Gy and Gt to form the OFF outputs for learning the fine spatial-temporal features. 

Feature maps at t Feature maps at t+1 Low-level feature flows

11 conv 11 conv

S -

Spatial gradient Temporal gradient

C

OFF outputs

OFF layer

Sobel Subtract

Concat

 

Figure 4-3. The structure of an OFF layer. It contains two 1  1 CNNs followed by a Sobel and 

a subtracter generating spatial and temporal gradients concurrently. A final concatenation operation 

fuses the gradients and the last low-level feature flows. 
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4.3.5 OFF based Motion Stream 

In the devised motion stream, the ResNet-50 is broken into four residual modules, 

and an OFF layer has been constructed at the front of each module, hence the OFF-

based motion stream consists of four OFF layers and four residual modules having 

different resolutions on different feature levels. As shown in Figure 4-2, two successive 

video frames are served as two inputs for the two visual streams, respectively, to obtain 

basic features (feature maps). Only the same network layers will have the same 

resolution feature maps that can be concatenated by the corresponding OFF layers, e.g., 

the feature maps outputted from conv2_x in the visual stream are served as the input of 

the first OFF layer in the motion stream. Based on the improved network design, the 

motion stream does not require any optical flow computation but directly extracts 

spatial-temporal features and their joint information at multiple convolutional levels. 

The visual and temporal streams are also processed concurrently on processors, hence 

greatly reducing the computational cost in addition to the enhanced human action 

representation abilities for the network. 

4.4 Spatial-temporal Aggregation 

The OFF based network predicts action labels from visual and motion streams 

separately, and a single score-based classifier is used to fuse the two contributions. This 

coarse fusion method ignored the finer grain interactions between motion and visual 

streams at variant levels. It is unreliable to represent the object (or human) in the visual 

stream and abstract movements in the motion stream concurrently. To better fuse the 

predictions of the two streams, this research enables a fine interaction and fusion from 

bottom-to-top levels through three innovative steps: 1) injecting STFB to achieve low-

level motion and spatial interactions; 2) performing the summing operation at the last 

convolutional layer to fuse the middle-level visual and motion features; 3) applying 3D 

CNN sub-network for high-level semantic and event representation. 
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4.4.1 STFB 

It is widely accepted that different convolutional layers in a convolutional network 

extract the different levels of features, i.e., from bottom to top layers, they refer to STIP, 

edges, lines, objects, semantic abstraction, and event representation. It is anticipated 

that comprehensive connections between visual and motion streams can gain fine 

interactions at different feature levels. The ST-ResNets model integrates spatial-

temporal information by injecting temporal information into the spatial stream 

(Feichtenhofer et al., 2016). Accordingly, this research explores the STFB module to 

achieve coarse-to-fine interactions between motion and visual streams. 
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Figure 4-4. STFB in a residual block pair. This research inserts STFBs between motion and visual 

streams with the corresponding residual block pair. 

As shown in Figure 4-4, this research devised a residual connection mechanism 

for implementing the two-stream fusion called STFB. The core component in the 

devised STFB is the integrated compact bilinear pooling (CBP) structure for combining 

spatial-temporal features in the compact representation, which is of vital importance to 

high-quality information learning for human action recognition. A good fusion strategy 

should maximize the interaction of features while best preserving spatial-temporal 

information; so, the bilinear fusion is applied through the cross-product calculation on 
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the two feature maps, which allows all spatial-temporal features of different dimensions 

to interact with each other and integrates all channels of the feature maps from the two 

streams. The fusion function can be calculated as the following: 

 , ,

0 0

H W
bil s T t

i j i j

i j

y x x
= =

=  , 4-12 

where xsRC×H×W and xtRC×H×W. However, the high dimensionality of fused features 

severely limits its application in real-world problems. To overcome this drawback, CBP 

is explored to retain the effect of the bilinear fusion while reducing the size of fusion 

features substantially. This research applies the Tensor Sketch projection proposed by 

Gao et al. (2016) to realise CBP. After CBP fusion operation, a CNN layer with the 1×1 

convolution kernel is performed, followed by a Batch Normalization (BN) and ReLU 

activation to resize the channel number of feature maps. Finally, this research adds the 

resized feature maps into the visual stream, see Figure 4-4. Assuming interactions are 

established between the visual stream (xs
l) and the motion stream (xt

l), then the visual 

stream inputs can be formulated as: 

 ([ , ], )s s s f

l l l l iy x F x x W= + , 4-13 

where ys
l is the outputs of l-th layer, and xf

l represents the fusion feature of xs
l and xt

l; 

F() is the 1 × 1 convolutional layer. 

In the two-stream concurrent CNN model, these two streams have the same 

network architecture and the same input size, and each pair of layers between the two 

streams have the same feature map size, such that the two-stream structure can interact 

with spatial-temporal information at any layer in a concurrent manner. In the 

preliminary test, this research injects STFBs from the motion stream into the 

corresponding visual steam for a hybrid spatial-temporal action representation. 

4.4.2 Stream Fusion 

The visual and motion streams represent different features respectively, and both 

of them can provide various contextual information alone for intelligent video analysis 

applications. This research aims to fuse the feature maps of both streams on the last 

convolutional layer of ResNet-50. It is based on the assumption that different channels 
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(spatial regions) in the current visual stream are responsible for different visual regions 

(head, hand, etc.), and different channels in the motion network are responsible for 

different sizes of motion periods. Thus, the devised fusion model first defines a sum 

function f: Xa
t, X

b
t → yt to aggregate two feature maps Xa

t  RC×H×W and Xb
t  RC×H×W at 

time t, which then generates a feature map yt  RC×H×W, where W and H denote the width 

and height of the feature map, respectively; C is the number of channels. This study 

defined a fusion function fsum() to sum the feature maps of the last layer of the visual 

stream and the motion stream, as shown in the following: 

 ( , )sum sum a by f X X= , 4-14 

two feature maps are summed across the feature channel d in the same spatial position 

(i, j), as shown in the following: 

 , , , , , ,

sum a b

i j d i j d i j dy x x= + , 4-15 

where Xa, Xb, yRC×H×W and 1≤i≤H, 1≤j≤W, 1≤d≤C. Because channel numbers are 

arbitrary, the sum fusion also defines an arbitrary number of connectors, such that 

subsequent learning can maximize this flexible design and optimizes the filters on all 

streams. This interwoven structure aggregates the corresponding feature map pairs to 

combine hierarchical contextual information between appearance information from the 

visual stream and movement information from the motion stream. 

4.4.3 3D CNN Representation 

A human action video clip typically contains hundreds if not thousands of frames. 

Classic two-stream models, including the baseline network model adopted in this 

research, only take a single RGB frame from the visual stream and ten successive 

optical flows from the motion stream concurrently. Hence, only short-term spatial-

temporal patterns can be encapsulated. These short-term spatial-temporal features can 

be applied to classify instantaneous actions such as “golf swinging” and “diving” 

actions in the UCF101 dataset. However, it falls short of handling long duration and 

complicated actions such as “triple jump” and “TaiChi” movements also coming from 

the UCF101 dataset. 
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To enable the learning of long-term semantic event representations from a video 

clip, this research accumulates visual and motion features of a video across the timeline, 

as shown in Figure 4-5. The successive video frames are continuously processed by the 

visual stream, so the feature maps belonging to different frames are obtained. Then, 

each consecutive feature map is further processed on the corresponding motion stream 

using the devised OFF layers and residual blocks. The devised network model 

accumulates the visual (Si) and motion (Mi) feature maps in time order to obtain the 

stacked spatial-temporal feature maps. It is then followed by a 3D CNN sub-network 

for learning long-term semantic event representation and action predictions. 

Considering the computational complexity of the whole model, this research only 

applies one 3D CNN layer and a 3D pooling on the stacked spatial-temporal feature 

maps. The 3D CNN sub-network can learn the inherent correlations between the highly 

abstract information of visual and motion streams, hence capturing long-term 

information on a refined time scale. 
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Figure 4-5. Accumulating visual and motion features of a video across time. The successive 

video frames are processed by the visual stream across the time sequence, and the motion stream 

processes every two continuous feature maps outputted by the visual stream. The successive visual 

(Si) and motion features (Mi) are then accumulated into the stacked spatial-temporal feature maps. 

According to Tran et al. (2015), when the domain depth is fixed at 3, the best time 

domain depth information can be captured; thus, the 3×3×3 convolution kernel is used 
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to implement the convolutional fusion for convolving the inputs XRH×W×T×D with a 

sequence of D filters 𝜙 and the biases bRn, as shown in the following: 

 to X b=  + , 4-16 

where 𝜙 indicates a 3D convolution kernel in size of 3×3×3×2n, and n is the channel 

number. After the 3D convolution operation, the 3D max-pooling with the size of W × 

H × T is applied to the stacked data, such that it extends the 2D pooling directly into 

the time domain. 

4.4.4 Network Implementation and Training Strategy 

The overall concurrent spatial-temporal network is implemented using PyTorch 

(Paszke et al., 2019). This research begins with the implementation and training of the 

visual stream with individual video frames based on ResNet-50, in which all activation 

functions are ReLU, and the pooling method is Max Pooling. This research initializes 

the visual stream with the ResNet-50 model pre-trained on the ImageNet to extract 

visual features. This research removes the fully connected layer and only preserves the 

convolutional layer since only the outputted feature maps are of interest. For training 

the visual stream, the batch size is set to 64, the dropout rate is 0.8, and the number of 

training epochs is 200. It starts with an initial learning rate of 0.001, which decreases 

to 1/10 at the 20-th epoch and the 40-th epoch. 

The parameters of the motion stream are learned by the mini-batch stochastic 

gradient algorithm through an initial learning rate of 0.02, which is gradually decreased 

with a factor of 1/10 at the epoch of 9000, 13000 and 16000; the total epoch is 20000. 

In this stage, the trained visual stream with all the weights frozen is applied to produce 

visual feature maps, and only the weights of the motion stream should be learned, i.e., 

the OFF layers calculate spatial and temporal gradients of the feature maps from the 

visual stream, and the channel number of OFF layers is decreased to 128. Then, several 

residual blocks are connected in the rear part of the OFF layers at different levels. 

This research applies the trained visual and motion models to train the interactive 

two-stream network based on the devised STFBs. The network is trained with 100 
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epochs by an initial learning rate of 0.001, which is reduced by a factor of 1/10 at the 

epoch of 30-th and 50-th. Once the training stage of the STFB-based interactive two-

stream network is completed, the feature maps outputted by both visual and motion 

streams on the last convolutional layer are summed and accumulated. Finally, the 3D 

sub-network based action representation is trained by using the stacked feature maps, 

it is followed by the softmax layer to gain the action classification results. 

4.5 Learning Optical Flow 

Most optical flow estimation methods are derived from a “traditional formulation”, 

i.e., various assumptions about video frames have been made for solving the optical 

flow estimation problem, including brightness constancy to spatial smoothness 

assumptions. As a result, these assumptions cause low accuracy and are less robust. In 

recent years, researchers proposed a new route that abandons the traditional 

formulations and assumptions while using CNN architectures to learn flow generation. 

These works suggest a new direction for developing “learnable” methods for optical 

flow estimation. This research started with learning optical flow from image pairs by a 

simple CNN architecture and then improving the model by integrating the advantages 

from both traditional formulation and recent neural networks. 

4.5.1 CNN for Optical Flow Estimation 

According to the image classification and semantic segmentation applications, a 

CNN model should provide an end-to-end manner that directly extracts image (video) 

features and outputs the results. Computing optical flow has to solve two problems: 1) 

to estimate the long-range correlation and 2) to compute precise motion boundaries and 

detailed sub-pixel optical flow (Ranjan & Black, 2017). Ideally, a deep neural network 

would learn to solve both problems end-to-end. Based on this consideration, this 

research developed a baseline CNN architecture to learn optical flow, as shown in 

Figure 4-6, in which all CNN layers use 77 convolutional kernels, and it is followed 

by a ReLU active function. The numbers of feature maps of each layer are: 32, 64, 32, 

16 and 2. The output is a 2-channel optical flow. To keep the same size of each feature 
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map, this study sets stride = 1 and padding = 3 for each convolutional kernel. Two 

successive video frames (RGB image with 3 channels) are stacked as an image pair (6 

channels) before being inputted into a network that outputs a 2-channel optical flow 

image. 

CNN-based optical flow model
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Figure 4-6. The baseline network design of CNN-based optical flow estimation. 

This research trained the network on the Flying Chairs dataset that is a simulated 

video dataset with the ground-truth optical flow (Dosovitskiy et al., 2015). The Adam 

learning algorithm and mean squared error loss function is applied to train the network. 

The learning rate is initialized to 0.004, and the total epoch is formed to 100. After the 

training stage is finished, the CNN model can generate flow fields from the input frame 

pairs, as shown in Figure 4-8. It is clear that CNNs have the capacity to learn optical 

flow from image pairs and the ground-truth data by a supervised learning scheme. 

However, it is impossible to solve the challenge with a simple convolutional network. 

4.5.2 Spatial Pyramid Networks 

The original CNN model fails to provide an accurate optical flow solution, and 

one of the main reasons is that the network performs a weak ability to solve the short- 

and long-range correlations (one of the optical flow estimation problems) since the 

network only extracts image features in a single spatial scale. To tackle this problem, 

Dosovitskiy et al. (2015) presented a so-called FlowNet model that learns spatial-

temporal filters for optical flow estimation by using CNNs. The motion information is 

first spatially compressed in a contractive part of the network, and the refinement part 

is applied to refine the coarse feature maps (low-resolution flows) to the high-resolution 

optical flow prediction. FlowNet and its improved model - FlowNet 2.0 (Ilg et al., 2017), 
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show promising results. However, the computational performance is relatively low 

since the complex network design and a lot of parameters, and it fails to support real-

time applications, especially for developing embedded and mobile applications. To 

tackle this shortage, Ranjan and Black (2017) presented the so-called SpyNet model by 

combining a traditional spatial pyramid, image warping and tidy convolutional neural 

networks. Inspired by this original work, this research developed a pyramid and deep 

learning based model for coarse-to-fine optical flow estimation. A 3-level structure of 

this approach is shown in Figure 4-7, in which the two input frames (I1 and I2) are down-

sampled into three pyramid levels. Each level trains a CNN model (G) from low-level 

to high using the images at corresponding pyramid levels and the up-sampled flow from 

its preview level. 
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Figure 4-7. The structure of a 3-level pyramid network. 

a) Spatial Pyramid Sampling 

Let I be a video frame with m  n pixels in size that are powers of 2. Let d(x) be a 

down-sampling function with the factor of 2, i.e., the output d(I) is a low-resolution 

image with (m/2)  (n/2) pixels in size. Let u(x) be an up-sampling function with the 

factor of 2, i.e., the output of u(I) is a high-resolution image with (m2)  (n2) pixels 

in size. In Figure 4-7, It
k indicates the t-th video frame at k-th spatial pyramid level; vk 

is the residual flow at k-th spatial pyramid level while Vi is the corresponding optical 

flow. Accordingly, suppose the number of pyramid levels is K, then I1
K and I2

K are the 

raw video frames, while Vk is the full-resolution optical flow that is the target of the 

pyramid network. 
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b) Pyramid Networks 

Let {G0, …, GK} are K trained CNN optical flow estimation models (e.g., the 

baseline model, see Figure 4-6). Each CNN model learns the residual flow at the 

corresponding pyramid level, as shown in the following: 

 
1 2

1 1( , ( , ( )), ( ))k k k k k kv G I w I u V u V− −= , 4-17 

where vk is the residual flow at k-th spatial pyramid level. The CNN model Gk is used 

to learn vk from video frames I1
k and I2

k, and the up-sampled optical flow u(Vk-1) from 

the previous pyramid level. The w(I2
k, u(Vk-1)) is a standard warping function that warps 

the second video frame and the up-sampled optical flow, and the warping operator 

comes from the traditional approach for optical flow estimation (Brox et al., 2004), 

which outputs a 3-channel (RGB) image. After vk is obtained, the optical flow at k-th 

level Vk is then computed by the following: 

 1( )k k kV u V v−= + . 4-18 

This method repeats the operations (warping, CNN model and up-sampling) from 

the low-pyramid level to the high, as shown in Figure 4-7. It is worth noting that the 

zero-level optical flow is initialized to zero to compute the optical flow V0 = 0 + v0. 

In practice, this research implements a 5-level pyramid (K = 4) and trains each 

CNN model {G0, …, GK} independently at the corresponding spatial pyramid level. 

The previous optical flow output from the low level is applied to train the next-level 

CNN model. Therefore, this structure has the capacity of a coarse-to-fine scheme for 

estimating optical flow. Figure 4-8 demonstrates the flow images computed by the 

pyramid networks. Compared to the simple CNN model, the pyramid network-based 

model performs with better accuracy and robustness. 

4.6 Experimental Results 

4.6.1 Visualisation of Feature Maps 

For qualitative analysis of the DNN models, this experiment extracts and 

visualises some feature maps from different CNN layers in the vision and motion 

streams. Two consecutive frames are extracted from a video that performs the “TaiChi” 
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action coming from the UCF dataset. The frame is then inputted into the visual stream, 

while the corresponding optical flow image is fed into the motion stream. The original 

images and feature maps of Conv1, Conv2 and Conv5 of the two-stream network are 

visualised in Figure 4-9, where the bottom-up “appearance” features are extracted 

automatically. For example, the human body can be easily seen from the feature maps 

of Conv1, whereas Conv5 describes more abstract information. Meanwhile, the 

temporal stream also encodes the optical flow into “high-level” motion information. 
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Figure 4-8. Visualization of optical flows estimation methods 
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Figure 4-9. Feature maps extracted from the “TaiChi” action video in the UCF dataset. 

4.6.2 Comparison of Pre-trained DNNs 

This experiment examines different CNN architectures in the dual-steam deep 

learning models to identify a suitable one for the devised framework. Four popular 

CNN models for image classification were implemented to extract video features, 

namely, AlexNet (Krizhevsky et al., 2012), VGG-16, VGG-19 (Simonyan & Zisserman, 

2015), and C3D network (Tran et al., 2015). The former three CNN models are pre-

trained by the ImageNet image classification dataset (Krizhevsky et al., 2017), and the 

C3D was trained by the UCF 101 dataset. Then, the FC and softmax layers are applied 

for action classification. The UCF 50 dataset was used to test these implementations. It 

is clearly shown in Table 4-2 that the accuracies of AlexNet for both streams are lower 

than the VGG models, while the performance of VGG-16 is identical to VGG-19. 

However, VGG-19 requires more computational resources than VGG-16 due to its 

extra network depth. Hence, in this research, parameters from the pre-trained VGG-16 

are inherited as the generic learned feature extractor to achieve the best accuracy-cost 

trade-offs. It is worth noting that the performance improvement is significant when 

adapting the C3D network in the visual stream, and the main reason is that the 3D CNN 

used in C3D is more effective when extracting spatial-temporal features from STV data. 

However, the accuracy does not improve when adopting the C3D network in the motion 

stream; one of the main factors is that C3D mainly focuses on capturing high-level 

abstract and semantic information from RGB video clips, while optical flow only 

abstracts motion information. According to the performance comparison and 

processing time, this research has adopted the C3D and VGG-16 networks to implement 

the transferred feature extractors. 
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This experiment compared the dual-stream model with the individual stream 

settings (i.e., using either visual or motion stream), and the result is shown in Table 4-2. 

Unsurprisingly, the dual-stream model performed consistently better than the single-

stream settings. According to the experimental result, this research adopted the C3D 

and VGG-16 configurations in the dual-stream network for further experiments. 

Table 4-2. The recognition accuracy of different CNN in the dual-stream deep learning 

architecture on the UCF 50 dataset. 

Deep feature model 
Accuracy (%) 

Visual stream Motion stream 

AlexNet AlexNet 76.4 

VGG-16 VGG-16 85.6 

VGG-19 VGG-19 85.8 

C3D VGG-16 89.6 

C3D VGG-19 89.8 

C3D 

C3D 

- 

C3D 

- 

VGG-16 

86.4 

85.2 

79.5 

Table 4-3. The comparison results of OFF and baseline two-stream networks. 

Method Speed (fps) Accuracy (%) 

Baseline visual stream (RGB) 268 82.3 

Baseline motion stream (Optical Flow) 30 79.1 

Baseline two-stream (RGB + Optical Flow) 14 87.6 

OFF-based two-stream (RGB) 203 90.6 

Table 4-4. The classification results for STFB integration into different network locations. 

Network setting 
STFB location 

Visual (%) Motion (%) Two-stream (%) 

Visual stream 91.9 87.1 90.8 

Motion stream 91.2 83.4 89.7 

Two streams 93.5 89.8 91.7 

4.6.3 OFF Efficiency 

As an ablation exploration, the performance of OFF under the proposed network 

architecture is evaluated using the UCF101 dataset. For a fair comparison, the OFF-

based models are trained and tested using the same ResNet-50 configurations described 

in Section 4.3.2. This experiment evaluates the processing speeds and accuracies 

between the baseline and the OFF-based two-stream implementations. The results are 

listed in Table 4-3. When applying OFF in motion stream, 90.6% of the competitive 

accuracy can be obtained on UCF101 by using RGB frames as inputs. This result is 

comparable with most two-stream based approaches (Simonyan & Zisserman, 2014). 

More significantly, the OFF-derived two-stream network is more effective as it can run 
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on over 200 FPS which is almost the same as the visual stream in the baseline network. 

In comparison, the baseline two-stream network model only achieves 14 FPS due to the 

computation for optical flows, which occupies over 90% of processing time, and the 

motion stream in the baseline network only archives 30 FPS. These experimental results 

indicate that the OFF application in the motion stream can effectively improve the 

human action recognition rate by reducing computational workload. 

4.6.4 STFB Location 

This experiment evaluates the STFB effectiveness by inserting STFB constructs 

at different locations of the two-stream network. As can be seen in Table 4-4, when 

inserting STFBs into the visual stream, the performance has a significant improvement, 

and this indicates that the STFB can augment significant movement information in the 

motion stream to the corresponding object features in the visual stream, such that fine 

spatial-temporal interaction representation can be extracted. By contrast, when 

inserting STFBs into the motion stream or both streams, the performance appears 

inefficient, and the accuracies are even inferior to the pure visual stream integration. 

One of the main contributing factors is that the pure motion stream STFB integration 

makes it dominant in the whole architecture, which helps to eliminate the side effects 

of the visual stream. Therefore, this experiment concluded that the additive spatial and 

temporal interactions in the visual stream could improve the performance of human 

action recognition. The effectiveness of pure visual stream STFB integration is superior 

to the pure motion stream one or two-stream integration. 

4.6.5 Numbers of STFB 

This experiment further explores the effect of varied numbers of STFB by 

inserting multiple STFBs into different layers of the residual models in the visual stream. 

Compared with inserting only one STFB in the first layer, the accuracy can be improved 

by 1.4% when inserting STFBs in the first three layers. However, the accuracy dropped 

by 1.1% when inserting STFB into all layers, see the results in Table 4-5. The main 
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reason is that high-level features extracted by Conv5_x are sparse and lack correlation. 

Thus, this research inserts STFBs into the first three layers for the rest of the work. 

4.6.6 Evaluation of 3D Sub-network 

Another benchmarking study compares the influence of the 3D CNN sub-network 

for action representation. This experiment tests individual streams, i.e., the visual 

stream and the motion stream, and the combined two-stream network with a 3D sub-

network. It is clearly illustrated in Table 4-6 that simply appending a 3D sub-network 

in the visual stream has limited performance gain. The main reason is that although 3D 

convolution can capture the object appearance information, it has a certain extent of 

overlap with the corresponding visual network. By contrast, adding the 3D sub-network 

in the motion network can greatly improve the performance due to its capacity to learn 

the motion interactions across time from the continuous streamed frames. Therefore, 

the 3D sub-network generates richer dynamic information that has a significant effect 

on performance improvement. Moreover, the combination of the 3D sub-network and 

the two-stream network boosted outstanding performance due to the concurrent 

interactive feature extraction ability from the two-stream structure and the high-level 

semantic representation advantage from the 3D CNN model. 

Table 4-5. The accuracy (in %) of different number of STFBs insertion on UCF-101. 

Insert position Accuracy 

Conv2_x 92.1 

Conv2_x, Conv3_x 92.7 

Conv2_x, Conv3_x, Conv4_x 93.5 

Conv2_x, Conv3_x, Conv4_x, Conv5_x 92.4 

Table 4-6. Comparison of various streams in combination with a 3D sub-network (in %). 

Model 

UCF101 HMDB51 

Baseline 

network 
With 3D sub-network  

Baseline 

network 

With 3D sub-

network  

Visual stream 75.5 78.4 48.4 50.2 

Motion stream 86.8 89.4 58.5 59.6 

Two-stream 92.9 93.7 65.4 66.9 

4.6.7 Comparison With the State-of-the-art Results 

This experiment has compared the proposed two-stream aggregation model with 

the state-of-the-art approaches on UCF101 and HMDB51 datasets, including iDT 
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(Wang & Schmid, 2013), C3D (Tran et al., 2015), MTC3D (Lu et al., 2017), Factozed 

spatio-temporal convolutional networks (FstCN) (Sun et al., 2015), trajectory-pooled 

deep-convolutional descriptors (TDD) (Wang et al., 2015), ST-ResNets (Feichtenhofer 

et al., 2016), key volume mining framework (KVMF) (Zhu et al., 2016), the two-stream 

model (Simonyan & Zisserman, 2014) and its improved methods, namely a few, two-

stream with LSTM (Gammulle et al., 2017), hidden two-stream (Zhu et al., 2019), two-

in-one stream (Zhao & Snoek, 2019) and C2LSTM (Majd & Safabakhsh, 2020). The 

experimental results shown in Table 4-7 show that the recognition rate of the proposed 

aggregation model on UCF101 and HMDB51 are 94.6% and 67.5%, respectively, 

which is better than the current handcrafted and deep learning methods. The superior 

performance stems from the effective OFF-based two-stream network and the coarse-

to-fine joint between spatial and temporal dimensions. It is also contributed by the long-

term semantic action representation ability of the integrated 3D CNN sub-network. 

Table 4-7. Performance comparison between the proposed aggregation model with other 

state-of-the-art methods on UCF101 and HMDB51 datasets. 

Method UCF101 (%) HMDB51 (%) 

IDT (2013) 86.4 61.7 

C3D (2015) 85.2 NA 

FstCN (2015) 88.1 59.1 

TDD (2015) 90.3 63.2 

Two-stream (2014) 88.0 59.4 

Two-stream + LSTM (2017) 88.6 NA 

Hidden Two-stream (2017) 90.3 60.5 

two-in-one stream (2019) 92.8 NA 

C2LSTM (2020) 92.8 61.3 

MTC3D (2019) 90.1 64.5 

KVMF (2016) 93.3 63.3 

ST-ResNets (2016) 93.4 66.4 

The proposed aggregation model 94.6 67.5 

4.6.8 Applicability and Extensibility 

To investigate and evaluate the generalisation of the proposed hybrid model, this 

research also tested extended human action categories such as those depicted in UT-

Interaction dataset that mainly focuses on human-human interactions (Ryoo & 

Aggarwal, 2010). The same configuration settings described in Section 5.3 have been 

adopted for the test. Since videos in this series (set1 and set2) contain combinatory 

actions, segmented datasets were deployed in this experiment. Compared to the BoF 
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(Ryoo, 2011) with the deep representation proposed by Lee and Lee (2019), the devised 

framework demonstrates the robustness and greatly extended applicability to complex 

human interactions evidenced by the state-of-the-art performances shown in Table 4-8. 

In conclusion, with the holistic features and coarse-to-fine interactions, the proposed 

models have gained significant performance advancements in both human actions and 

interactions with convincing promise on crowd action understanding. 

Table 4-8. Extensibility on UT-Interaction dataset. 

Method Set #1 (%) Set #2 (%) 

BoF 81.67 80.00 

deep representation 90.22 89.40 

Dual-stream model 91.35 91.50 

Aggregation model 93.26 93.45 

4.7 Summary 

In this chapter, the DNN models for the end-to-end video feature extraction and 

event prediction have been introduced. Then, this research devised a two-stream 

concurrent interactive network model by exploring innovative techniques, including 

OFF layers, STFB blocks, and 3D CNN for action representation. The breakthroughs 

of this innovation include: 1) the use of OFFs in the motion stream to replace the time-

consuming optical flow computation with proven promising results; 2) the innovation 

of STFB constructs to build compact fusion representations for spatial and temporal 

feature interactions; 3) and the long-term semantic event representation is enabled by 

the 3D CNN sub-network. Another important finding is that different fusion locations 

have significant and varied contributions to the final action classification outcome. It 

has been evaluated to identify optimal settings by inserting different amounts of STFBs 

on different feature levels. The devised concurrent spatial-temporal aggregation model 

shows better performance than the state-of-the-art action recognition methods. 

As a portion of the research, the CNN and spatial pyramid based optical flow 

approach with a supervised learned style has been investigated, which shows good 

robust and effective, suggesting a new direction of optical flow estimation by learning 

algorithms and combing the engineered architectures. 
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CHAPTER 5 Towards Understanding Human Actions 

5.1 Introduction 

Human action recognition has achieved competitive performance on various 

benchmarks because of the advancement of DNN and the large-scale training datasets 

(Chen et al., 2019; Jiang et al., 2021; Simonyan & Zisserman, 2014; Tran et al., 2015; 

Xu et al., 2019a; Zhao & Snoek, 2019). However, these approaches tend to model static 

contexts such as objects and scenes instead of interpreting human actions based on their 

semantic definitions. Taking the two-stream model as an example, its spatial stream 

achieves 73% accuracy on the UCF 101 dataset, while the accuracy only increases by 

13.9% when fusing the temporal stream (Simonyan & Zisserman, 2014). Considering 

the spatial stream extracts appearance information from frames only, the performance 

improvement is not significant from the temporal stream that encodes motion 

information. Moreover, the two-stream model only gains 58.0% accuracy on the 

HMDB 51 dataset, which is far less than UCF 101. One of the main reasons is that the 

backgrounds and scenes in HMDB 51 videos are very complex and diverse, while the 

spatial stream focuses on learning static scenarios and it is less robust in handling 

various contexts, resulting in a context-biased model that fails to generalise (Bahng et 

al., 2020). For example, the model tends to predict the “shooting goal” result on football 

field background videos. However, actions may be occurred in a misleading context or 

even missing content. As shown in Figure 5-1, in the first video, the football players 

are mimicking a “bowling” action on a football field, and the last video is a mime 

performance where a mime artist is mimicking the “drinking” action with a black 

background and an “imaginary” bottle. 

To evaluate the impact of biases on action recognition, this research measures the 

recent DNN models on the revised datasets by masking all humans in the videos. 

According to the evaluation, the DNN models have still gained a very high performance 

when considering they have never detected any human in the testing videos. The results 

show that the predictions mainly rely on the objects and scenes instead of the semantic 
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definitions of human actions, and the human movements are not correctly interpreted 

by the models. In contrast, humans have a more robust and intelligent vision system to 

recognise actions. For instance, a person who has never seen mime performances can 

still understand the mime actions from the body language given by actors while the 

objects and scenes are absent. Therefore, although the scene and object information are 

important, a robust intelligent vision system should also be capable of extracting the 

fundamental meanings of various actions, even in the absence of contextual information. 

 
Figure 5-1. Examples of misleading and absent contexts. First row: the players are mimicking a 

“bowling” action on a football field; the second is a mime performance mimicking a “drinking” 

action without using any objects. 

Human pose skeletons leverage a high-level body language which is not affected 

by circumstances and backgrounds, and it explicitly exploits the spatial shapes and 

relationships of the human joints (Sun et al., 2019). Consequently, encoding the 

semantic representations and understanding the true human actions based on pose 

skeletons have become the upcoming frontiers and received increasing attention 

recently (Gupta et al., 2021a; Shi et al., 2019; Yan et al., 2018). However, the 

performance has yet to be improved when considering the limited performance gain on 

the dataset-specific action models, and it is less robust on generic videos. It is still an 

open challenge to understand the semantic action representations, which is especially 

true when facing the unseen actions in videos. To tackle this problem, this research 

presents a long-short-term semantic motion encoding (LSME) method to abstract the 

high-level action representation from pose skeleton sequences. Furthermore, a novel 

method is proposed to recognise unseen actions for real-world applications, where a 

large-scale training dataset is unavailable. Experiments show that the proposed model 

achieved better performance on human action recognition. Further, this method can 

predict new actions which are never occurred in the training set. 
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5.2 Understanding the Biases for Action Recognition 

5.2.1 Human Masked Data Processing 

To understand which biased weights are leveraged by the spatial-temporal CNN 

based action recognition models, this research firstly revises the action datasets by 

masking out humans in videos. To do that, humans are detected in each video frame by 

using the Faster R-CNN algorithm which is a general object detection model (Ren et 

al., 2017). Only the “human” label is extracted in the detect results, and the bounding 

boxes are tracked over continuous frames by matching the highest Intersection-over-

Union (IoU) score between the current and next frames and performing linear 

interpolation in the missing frames. The tracking is stopped if there is no match during 

10 continuous frames and starting a new trajectory for the next bounding box. Finally, 

all human tubes are masked by colouring them grey. These videos are called masked 

action datasets. Examples coming from Kinetics-400 are shown in Figure 5-2. These 

videos are considered a no-action dataset because there is no human in the videos. 

Riding a bike Golf driving Shooting goal (soccer)
 

Figure 5-2. Examples of the human-masked-out video frames. The top shows the original frames, 

while the bottom shows the corresponding masked frames. 

5.2.2 Biased Models in Action Recognition 

This research measures the problem of biased weights on four DNN models, i.e., 

R(2+1)D (Tran et al., 2018), X3D (Feichtenhofer, 2020), TIN (Shao et al., 2020), and 

TimeSformer (Bertasius et al., 2021) models. These models are tested by only using 

RGB frames and without any other modality fusion and evaluated the top-1 and top-5 

accuracies, respectively, on the Kinetics-400 dataset. To understand which bias is 

learned by the models, the pre-trained models are applied to the standard training set 
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and tested on the masked test set. From Table 5-1, the R(2+1)D model yields 57.47% 

top-1 accuracy and 78.02% top-5 accuracy, respectively, on the masked test videos. Its 

top-1 accuracy only drops by 9.54% compared to the test result on the original test set, 

while the top-5 accuracy only decreases by 8.82%. The results of other models show a 

similar situation. Overall, the top-1 accuracies of all models on masked data are over 

50%, and the top-5 accuracies are extremely high when considering the models have 

never detected humans in test videos. This observation proves that these models classify 

human actions primarily by modelling static contextual information instead of 

interpreting human actions based on their semantic definitions. 

To better understand the context-bias problem, the accuracy change of the pre-

trained TimeSformer model (Bertasius et al., 2021) is evaluated by calculating the 

accuracy of each action in original and masked settings, respectively. As shown in 

Figure 5-3, 27 categories of actions increase their accuracy when masking out the 

humans at the testing stage, which counts for 6.75% of total actions, and about 4.75% 

of action classes keep the same accuracies as the original setting. Moreover, 176 

categories of actions decrease their accuracy by less than 15%, which counts for 44% 

of total actions. 

Table 5-1. Accuracy (in%) when testing the pre-trained DNN models on the Kinetics-400 

dataset by using the original videos and masked videos, respectively. 

Model 
Top-1 Top-5 

Original data Masked data Diff. Original data Masked data Diff. 

R(2+1)D 67.01 57.47 -9.54 86.84 78.02 -8.82 

X3D-S 70.68 52.66 -18.02 89.45 73.4 -16.05 

TIN 69.55 51.23 -18.32 88.92 71.38 -17.54 

TimeSformer 74.25 59.17 -15.08 91.75 77.86 -13.89 

 

Figure 5-3. The proportions of the accuracy change per class action. 
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Table 5-2. Classes with the increased accuracy (in %) on the original training set and tested 

on original and masked Kinetics-400 settings. 

Class (27) Original data Masked data Diff. 

shooting basketball 28.87 40.21 11.34 

cleaning floor 54.64 62.89 8.25 

triple jump 50.52 58.76 8.25 

recording music 49.48 55.67 6.19 

cleaning gutters 81.82 87.88 6.06 

driving car 76.40 79.78 3.37 

trimming trees 69.47 72.63 3.16 

cooking on campfire 70.53 73.68 3.16 

playing cards 71.88 75.00 3.13 

cleaning windows 68.37 71.43 3.06 

bobsledding 64.77 67.05 2.27 

faceplanting 18.95 21.05 2.11 

dunking basketball 67.01 69.07 2.06 

garbage collecting 78.35 80.41 2.06 

springboard diving 85.57 87.63 2.06 

grooming horse 85.71 87.76 2.04 

kicking field goal 85.71 87.76 2.04 

training dog 68.37 70.41 2.04 

sailing 84.69 86.73 2.04 

diving cliff 94.95 96.97 2.02 

using remote controller (not gaming) 77.08 78.13 1.04 

cooking sausages 61.86 62.89 1.03 

surfing crowd 90.72 91.75 1.03 

swimming butterfly stroke 71.43 72.45 1.02 

changing oil 96.94 97.96 1.02 

building cabinet 86.87 87.88 1.01 

strumming guitar 46.46 47.47 1.01 

This research then shows the classes with increased accuracy on the masked 

testing set. From Table 5-2, it can be seen that several actions are very dependent on 

props and venues, such as “cleaning floor”, “cleaning gutters”, “bobsledding”, and 

“cooking sausages”; thus, they achieved higher accuracy than the original data which 

seems like the “human noise” is removed when masking out the human areas. Moreover, 

other actions, which mainly depend on body movements, also increase the accuracies 

in the masked set. For instance, the “shooting basketball” action dramatically increases 

its accuracy on masked data by 11.34%. 

5.2.3 Analysis and Discussion 

Most DNN models tend to learn static contextual information such as objects and 

scenes, and the context-biased weights benefit from the masked videos. Although the 

recognition accuracy is quite high, these models do not differentiate humans from other 

contextual settings in the videos. Therefore, a robust intelligent action recognition 
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model should be capable of understanding the fundamental meanings of various actions, 

even in the absence of context information. To tackle this challenge, this research 

presents a semantic encoding algorithm based on pose skeletons to encode semantic 

action definition and understand human actions and then introduces a novel method for 

unseen action recognition in the test data. 

5.3 Encoding Semantic Human Actions 

This research presents LSME based on pose skeletons. The framework of the 

proposed method is shown in Figure 5-4, where humans are detected by the Faster R-

CNN object detector before a HRNet-based pose estimation is performed to extract 

human pose from each video frame, followed by an IoU-based tracker to obtain human 

pose sequences across over an entire video. Then a 3D CNN sub-network is designed 

to encode short-term spatial-temporal features from the stacked 3D pose heatmap 

volume before a 2D temporal convolution network (TCN) is developed for modelling 

long-term semantic action representation, hence generating an encoded action 

representation for human action understanding in the wild. 
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Figure 5-4. The proposed long-short-term semantic motion encoding architecture for human 

action understanding. 

5.3.1 Human Pose Sequence Extraction 

Human pose skeletons fundamentally determine the action representation and 

recognition performance. Human poses can be captured correctly by specific sensors. 
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However, this solution is neither affordable nor deployable in real applications. Pose 

estimation is an alternative method for extracting human poses from RGB frames (Cao 

et al., 2021; Kocabas et al., 2020; Sun et al., 2019). This research uses 2D poses instead 

of 3D poses because of the unstableness and computational complexity of existing 3D 

pose estimators. In contrast, the top-down 2D pose estimation approach shows 

outstanding performance and effectiveness, and these advantages are still preserved 

when applied for action recognition. To encode poses over time in a video, it needs to 

detect and track each individual and then obtain human pose sequences. To do that, the 

Faster R-CNN algorithm (Ren et al., 2017) is firstly performed and filtering only the 

“human” label to obtain the bounding boxes in every frame. Then the human boxes are 

tracked in the following frames based on the IoU threshold, i.e., matching the detections 

from the highest score of IoU which is over 0.3. The linear interpolation is also applied 

in the missing frames. It stops the tracker if there is no match during 10 continuous 

frames, hence obtaining a human sequence which performs an individual action. 

Then HRNet (Sun et al., 2019) trained on the COCO-keypoints dataset is 

performed to detect poses for all frames in a human tube, hence obtaining a human pose 

sequence labelled by the corresponding action class. Noted that various pose estimation 

approaches can be used in this process, and the pose quality will sensitively influence 

the final recognition accuracy. Based on this aspect, HRNet is a good solution for pose 

estimation because of its superior results over benchmarks. Moreover, it maintains 

high-resolution representations during the entire process for more accurate and spatially 

precise heatmaps (Sun et al., 2019). This advantage is preserved for spatial-temporal 

feature extraction when facing human action understanding tasks. 

5.3.2 3D Pose Heatmap 

Once human poses are extracted, the skeletons can be represented by sequence 

vectors, pseudo-images, and spatial-temporal graphs, for learning action patterns 

through recurrent networks (Shahroudy et al., 2016), convolutional networks (Liu et al., 

2017), and GCNs (Shi et al., 2019; Yan et al., 2018), respectively. These approaches 

depend on handcrafted formulations or specific-designed convolutional kernels, which 
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are complex and inefficacy. On the other hand, the heatmaps from the pose estimation 

models at the last convolutional layer should implicitly contain pose representation. 

These heatmaps could carry information about both 2D and 3D poses, according to the 

corresponding pose approaches. Inspired by this prospect, this research transfers the 

heatmaps as mid-level features for further event encoding instead of using explicit joint 

coordinates. Here, for a given heatmap, it is defined by 𝑀 ∈ ℝ𝐾×𝐻×𝑊, while K is the 

number of joints, H and W indicate the height and width of the frame, respectively. This 

research accumulates a sequence of heatmaps over T continues frames as a 3D heatmap 

volume, defined as 𝑀𝑆 ∈ ℝ𝐾×𝑇×𝐻×𝑊, and a whole video can be divided several groups 

of 3D heatmap volumes, i.e., 𝑀𝑆 ∈ 𝑀𝑉 ∈ ℝ𝐺×𝐾×𝑇×𝐻×𝑊, where G is the number of 

groups. This research directly uses the heatmap M assigned to the corresponding 

bounding box location, and it is zero-padded to fit the original size of the frame. It is 

worth noting that this process assumes a single person setting, but the multi-person case 

can be extended by repeating the heatmap extraction for each human tube and matching 

the locations according to the corresponding human bounding boxes of all detections. 

In the cases of only joint coordinates of skeletons are given, or for storage saving, 

since storing such large heatmaps requires a great deal of storage, the heatmap M can 

be reconstructed by performing a K Gaussian blob for every joint (Cao et al., 2021), as 

shown in the following: 
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where xk and yk are the coordinates of k-th joint, ck is the confidence score of the 

corresponding joint, and σ is set to 0.5 which controls the variance of gaussian maps. 

5.3.3 Long-short-term Learning Strategy 

As shown in Figure 5-4, all heatmaps from an entire video are grouped into G 

heatmap volumes 𝑀𝑉 ∈ ℝ𝐺×𝐾×𝑇×𝐻×𝑊, and then each one is fed into the 3D CNN sub-

network sequentially. The learnable parameters of 3D CNN are shared on all 3D 

heatmap volumes, and the long-term semantic sequence encoder fuses the feature maps 

at the last convolutional layer to yield a video-level prediction. Unlike the previous 

works, which normally randomly select a fixed length of frames for training and 
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updating weights in a clip-level or single-frame-level gradients, this research trains the 

3D CNN on an entire video and updates weights in the video-level gradients. 

In this design, the short-term spatial-temporal parts are extracted by a 3D CNN 

sub-network, while the long-term semantic information is characterized by a semantic 

sequencing encoding method to represent the overall pose skeletons in a video. A whole 

video heatmap volumes MV is then divided into G heatmap volumes MV = {MS1, MS2, 

MS3, …, MSG} ordered by time. Then, G feature maps are obtained by performing the 

3D CNN sub-network on each 3D heatmap volume, followed by an aggregating model 

to encode video-level features. The whole process is formulated as the following: 

 1 2( ( ; ); ( ; ); ; ( ; ))v GY Q F MS W F MS W F MS W= , 5-2 

where F(MSi;W) represents the 3D CNN sub-network with the shared weights W and 

the heatmap volume MSi, and Q(X) is the aggregating method which generates the final 

class score Yv. 

The differentiability of the temporally aggregating method allows for updating the 

3D CNN parameters by using backpropagation by extending the standard cross-entropy 

loss function on whole parts, formulated in the following: 
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where N indicates the number of classes and yi is the ground-truth label of i-th class. 

Based on the loss function, the gradients of the weights on the 3D CNN sub-network 

can be calculated by the following: 
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In this optimization, the parameters are updated through the global differentiability 

derived from all 3D heatmap volumes. 

5.3.4 Short-term Semantic Motion Encoder 

Considering an action may be performed very fast, e.g., the “shooting goal” action 

may occur in less than one second, and the body movements of the “dancing” action 

are changed very quickly. However, previous models that sample frames by random 

steps will lose the fine temporal information. Such a network should maintain a high 
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temporal rate to effectively model the inherently fast-changing movement. Therefore, 

the architecture of the devised 3D CNN sub-network is inspired by the Fast pathway of 

SlowFast (Feichtenhofer et al., 2019) which achieved competitive results in RGB-based 

action recognition. The Fast pathway has a fine representation along with the temporal 

dimension by its high frame rate ratio and high temporal resolution features. The 

architecture of the 3D CNN sub-network is shown in Table 5-3. Compared to the 

original Fast pathway (Feichtenhofer et al., 2019), this research introduces three 

improvements for better adopting pose skeleton data: 1) the smallest temporal stride 

𝜏 = 1 is used, i.e., all heatmaps are used without sampling, which keeps the finest 

motion information for fast actions; 2) the Pose Fast pathway has no down-sampling 

layers to maintain a high resolution of feature maps; 3) the res2 layer is removed due 

to the 3D heatmap volumes are already considered mid-level features for event 

representation. The Pose Fast pathway is very lightweight because it is designed to have 

fewer feature channels (the green colour numbers in Table 5-3) because this network 

primarily focuses on learning temporal information concerning body joint movements. 

Table 5-3. The architectures of the 3D CNN sub-network and spatial fusion network. The 3D 

CNN model is implemented by the Fast pathway, while the spatial network comes from the Slow 

pathway. The ResNet50 is used as the backbone. 

Stage Pose Fast pathway RGB Slow pathway Output sizes T×S2 

data modality 3D heatmap volume raw RGB frames  

data layer stride 1, 1 stride 16, 1 
Pose: 3×562 

RGB: 5×2242 

conv1 5×72, 8 1×72, 64 
Pose: 3×562 

RGB: 5×2242 

pool1 N.A. 1×32, max 
Pose: 3×562 

RGB: 5×2242 

res2 N.A. [
1 × 12, 64

1 × 32, 64

1 × 12, 256

] × 3 
Pose: 3×562 

RGB: 4×562 

res3 [

3 × 12,

1 × 32,
 
16
16

1 × 12, 64 

] × 4 [
1 × 12, 128

1 × 32, 128

1 × 12, 512

] × 4 
Pose: 3×282 

RGB: 5×282 

res4 [

3 × 12,

1 × 32,
32
32

1 × 32, 128

] × 6 [

3 × 12,

1 × 32,
256
256

1 × 32, 1024

] × 6 
Pose: 3×142 

RGB: 5×142 

res5 [

3 × 12,

1 × 32,
64
64

1 × 32 , 256

] × 3 [

3 × 12,

1 × 32,
512
512

1 × 32, 2048

] × 3 
Pose: 3×72 

RGB: 5×72 

 

Global average pool 
 

TCN N.A. 

Later fusion, FC # Classes 
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5.3.5 Long-term Semantic Action Encoder 

As mentioned above, the feature maps over the entire video are aggregated for the 

video-level parameter optimisation. The classical aggregation functions such as average 

pooling, maximum pooling, weighted pooling and attention pooling will cause the 

missing of temporal information, while other sequence methods derived from the CNN-

RNN concept (Donahue et al., 2017) are difficult to train. In contrast, recent research 

shows that convolutional architectures are better than recurrent networks in sequence 

modelling (Bai et al., 2018; Dauphin et al., 2017; Zecha et al., 2018). This research 

presents a 2D temporal convolutional network (2D TCN) based on the work of Bai et 

al. (2018) by extending 1D sequence modelling to a 2D task. In practice, the feature 

map output from the Pose Fast pathway is a feature vector after the global average 

pooling process, defined as 𝑥 ∈ ℝ𝐺×𝐿, where L is the length of the feature vector, and 

G is the number of feature vectors concerning the number of 3D heatmap volumes, then 

a whole video generates a sequence of feature vectors: {x1, x2, x3, …, xG}. Formally, the 

sequence function is defined as: 𝐹: 𝑥 ∈ ℝ𝐿 → y ∈ ℝ𝐿, i.e., the length of the output is 

the same as an input sequence, just like RNNs. Based on the TCN idealism, sequence 

modelling can be achieved by performing causal convolutions and dilated convolutions 

(Bai et al., 2018). In the 2D sequence situation, the causal and dilated convolution is 

defined as the following: 

 
1 1

( , ) ( )( , ) ( , ) ( , )
k N

u v

F i j X df i j x i d u j v K u v
= =

=  = −  −  , 5-5 

where d presents the dilation factor, K is the convolutional kernel with the size of L×k, 

hence i-d×u indicates the skipping units in the direction of the past. Noted that a dilated 

convolution transfers to a standard convolution if d=1, and the larger dilation factor 

enables characterising a wide range of temporal (past) features, hence encoding long-

term information. Figure 5-5 demonstrates an architectural element in a three-layer 2D 

TCN structure, the dilation factors d=1, 2,4 are set for the dilated causal convolutions, 

and the last output feature vector can cover all history values from the input sequence. 
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Figure 5-5. Architectural element in a three-layer 2D TCN structure. 
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Figure 5-6. The architecture of 2D TCN blocks. 

Therefore, this research stacks the dilated causal convolution blocks into a deep 

network for long-term semantic sequence encoding. To preserve longer information 

while keeping the network lightweight and efficient, the dilation factor is set to d=2q, 

where q is the number of dilated causal convolution blocks. A typical 2D TCN block is 

shown in Figure 5-6, where the batch normalization (BN) and ReLU activation are 

integrated. In addition, the residual connections (He et al., 2016) are added between the 

convolutional layers to prevent the gradient vanishing problem. Such that the 2D TCN 

can encode long-term semantic information concerning pose skeleton-based action 

representation. 

5.4 Action Recognition 

5.4.1 Softmax-based Classification 

Following the 2D TCN, a linear classifier that uses the softmax activation function 

is applied for action classification. For an action dataset with N types of action labels, 
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the classifier outputs a vector with N length: P={p1, p2, p3, …, pN}, where element pi 

refers to the probability belonging to i-th action label. The softmax activation function 

ensures that the sum of whole probabilities is 1. Noted that this classifier is a dataset-

specific model, so one should train different models for various action datasets. 

5.4.2 Recognition for Unseen Actions 

When LSME is trained, one of the biggest challenges is the generalisation in the 

wild action videos, such as recognising the unseen action classes. Most human action 

recognition methods focus on the closed-set classification task and achieve good 

performances; however, these methods are not critical for the open-set action 

recognition challenge, i.e., a model trained on the NTU-60 action dataset can only test 

on the same dataset but cannot classify the videos from the Kinetics datasets, and the 

model even cannot recognise the “cross arms” action existing in the NTU-120 dataset 

but not in the NTU-60 dataset, such actions are considered “unseen” actions due to the 

model has never seen these classes of actions in the training stage, and it will never 

output these classes in the test stage. However, there are hundreds of thousands of 

actions in real-world scenarios. It is impossible to train such large identities with limited 

computational capacity and training videos. Therefore, a generic recognition model 

should be capable of identifying unseen actions with negligible data and computational 

cost adjunction, i.e., a model should directly learn an embedding instead of a multi-

class classifier. A similar task is face recognition which can recognise an unknown face 

by comparing it with known faces in a specific database (Kortli et al., 2020). 

By observing that the feature vectors of the 2D TCN-based long-term semantic 

action representation are conceptual similarities centres of each action class, unseen 

actions can be identified and verified by measuring their similarity and distances when 

the features have small intra-class and large inter-class distances (Deng et al., 2019). 

Formally, given a set of features 𝐹 ∈ ℝ𝐿×𝐶 encoded from C classes of actions and L 

is the length of each feature vector, and an unknown video action with the feature 𝑓 ∈

ℝ𝐿, the identification function is defined as: 𝐷: (𝑓, 𝐹) → 𝑆 ∈ ℝ𝐿, and the highest score 

of 𝑠𝑖 ∈ 𝑆 indicates its probability of belonging to i-th action. This research designs 
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two measurement methods, i.e., the Euclidean distance and the ArcFace-based (Deng 

et al., 2019) learnable method. 

Euclidean distance computes the direct distance between two vectors. Suppose 

there are two feature vectors P and Q, the Euclidean distance is defined as the following: 

 2

1
( , ) ( )

n

E i ii
d P Q p q

=
= − . 5-6 

Then, this research matches the unknown video with known actions stored in a specific 

database by starting from the minimum scored distance and setting the threshold to 0.5. 

Deng et al. (2019) presented a so-call Additive Angular Margin Loss (ArcFace) 

function for the maximum capacity of the discriminative power for large-scale face 

recognition. This research extends this idealism to unseen action recognition by 

learning the centres of each action class in a specific action database. The ArcFace is 

derived from the softmax loss function which is widely used for classification tasks (He 

et al., 2016; Simonyan & Zisserman, 2015), as shown in the following: 
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where N indicates the number of classes, B is the batch size; 𝑥𝑖 ∈ ℝ𝑑  is an embedding 

feature vector of i-th action video belonging to yi-th class, d is the length of the feature, 

𝑊𝑗 ∈ ℝ𝑑 is the j-th columns of weight 𝑊 ∈ ℝ𝑑×𝑛, and 𝑏𝑖 ∈ ℝ𝑑 is the bias term; By 

transforming 𝑊𝑗
𝑇𝑥𝑖 = ‖𝑊𝑗‖‖𝑥𝑖‖ cos 𝜃𝑗 , where 𝜃 is the angle between the feature xi 

and the weights Wj, and the weights are also normalised by the L2 norm: ‖𝑊‖ = 1, 

while the embedding feature ‖𝑥𝑖‖  is fixed by L2 norm and rescaled to s. Then, 

Equation 5-7 is rewritten as the following: 
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The embedding features are distributed around each feature centre. Therefore, an 

additive angular margin penalty m between xi and 𝑊𝑗
𝑦

 is introduced to enhance the 

similarity for intra-class and diversity for inter-class. Then, ArcFace is defined as: 
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To recognise unseen actions, this research freezes the parameters of the model 

trained on a large-scale dataset (e.g., NTU-60 action dataset) and replaces the softmax 

layer after the last convolutional layer by the ArcFace module. Then, the fully 

connected-based classifier is trained with litter video samples (10 to 20 videos per class) 

in a specific action database. 

5.4.3 Spatial Fusion 

One main drawback of the LSME method is the absence of contextual information. 

However, this minor weakness can be adapted by fusing an additional contextual model 

for integrating object and scene information. In a typical action video, the context is 

changed slowly, i.e., the progress of the “shooting goal” action does not change the 

identification of the player, football, and football field backgrounds. Therefore, this 

research applies the Slow pathway of the SlowFast model (Feichtenhofer et al., 2019) 

to provide spatial information from RGB video frames. The detailed architecture of the 

RGB Slow pathway is illustrated in Table 5-3, and a large temporal stride 𝜏 = 𝑇/4 is 

used, i.e., only four RGB frames are randomly sampled for training the Slow pathway. 

Finally, both features are fused by a weighted pooling function which produces a set of 

linear weights to perform element-wise weighted linear fusion between the two feature 

vectors, defined as: ∑ 𝑤𝑐 ∙ 𝐹𝑐
𝐶
𝑐=1 , where C=2, and Fc indicates the category of feature, 

wc is fusion weight. Noted that both network parameters and fusion weights can be 

optimised simultaneously by end-to-end. In practice, this weight pooling function can 

be implemented by a convolutional layer with the kernel size of (L1+L2) × 1, where L1 

and L2 indicate the length of two feature vectors, respectively. 

5.5 Experimental Results 

5.5.1 Evaluation of Backbones 

This research developed the short-term semantic encoding method based on the 

Fast pathway of the SlowFast model. However, the model is designed by using 3D 

heatmap volumes as input data, and it supports various 3D CNN backbones for the 3D 

sub-network implementation. This experiment evaluates different backbone settings by 
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measuring the top-1 and top-5 accuracy for performance comparison and static analysis 

of model efficiency. The number of parameters is used to define the model complexity, 

i.e., the large number of parameters corresponds to a heavy model which costs more 

computational resources and memory. Floating-point operations per second (FLOPs) is 

another sensitive measure of computational performance since it reflects a hardware-

agnostic measure of model complexity. 

This experiment compared the performance and computational cost of the I3D, 

R(2+1)D and Fast pathway networks. In practice, two types of Fast pathway network 

settings are explored, i.e., Fast pathway-50 and Fast pathway-101 based on ResNet-50 

and ResNet-101, respectively. The NTU-60 skeletal data is used, and the experimental 

result is provided in Table 5-4. The result shows that although the lowest computational 

cost of the I3D model, the accuracy is very low. In contrast, the R(2+1)D backbone 

achieves a better performance than I3D because it has the largest trainable parameters 

and costs a lot of computational resources. Unsurprisingly, the Fast pathway backbones 

achieve the best performance, and its top-1 accuracy is just over 91%, while the top-5 

accuracy is almost 100%. Furthermore, both Fast pathway-50 and Fast pathway-101 

have significantly lower parameters than I3D and R(2+1) models, and the GFLOPs (109 

FLOPs) of Fast pathway-50 backbone is also lower than R(2+1)D, which is capable of 

supporting real-time video analysis. Based on this observation, this research applies the 

Fast pathway-50 backbone to implement the 3D CNN-based sub-network for better 

performance and computation trade-off. 

Table 5-4. The mean accuracy (in%) and computational performance of different backbones. 

Backbone Top-1 Top-5 Parameters (million) GFLOPs 

I3D 74.58 88.328 28.26 5.03 

R(2+1)D 87.46 93.596 63.89 14.27 

Fast pathway (50) 91.26 99.995 2.03 11.48 

Fast pathway (101) 92.31 99.998 3.78 22.52 

Table 5-5. The mean accuracy (in%) of different pose methods.  

Pose method Top-1 Top-5 

Joints 91.26 99.995 

HRNet (Heatmaps) 91.27 99.998 

HRNet (Joints) 91.25 99.983 

LCR-Net++ (Heatmaps) 90.54 99.960 

LCR-Net++ (Joints) 91.04 99.948 
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5.5.2 Evaluation of Pose Methods 

The proposed LSME model allows the use of any off-the-shelf pose methods or 

even directly reconstructing heatmaps from joint coordinates by performing a Gaussian 

blob. Table 5-5 provides the top-1 and top-5 accuracy on the NTU-60 dataset from three 

pose methods. For HRNet and LCR-Net++ pose estimation methods, each method is 

tested by two settings. i.e., the models were tested directly using heatmaps and 

reconstructing heatmaps from joints. The result shows that different pose methods have 

less influence on the final action recognition. Based on this observation and for storage-

saving, HRNet is performed to extract human poses and store joint coordinates for each 

frame in the pose-processing stage. Then, the joint coordinates are transferred to 

heatmaps for model training in the training stage. In contrast, the heatmaps outputted 

from HRNet have directly applied for action recognition in the test process. 

5.5.3 Evaluation of Sequence Modelling 

As an ablation exploration, the performance of sequence modelling under the 

proposed LSME model has been evaluated by using the NTU-60 skeleton dataset. The 

skeletons are transferred into 3D heatmap volumes for training a 3D sub-network. Then 

different sequence models are integrated for sequence modelling, including LSTM, 

GRU and the proposed 2D TCN modules. For a fair comparison, the 3D sub-network 

and linear classifier are implemented by the same structures and hyperparameters and 

trained on the same dataset (i.e., NTU-60). This experiment evaluates the accuracy of 

the three sequence models, as shown in Table 5-6. It can be seen that all of the sequence 

modules achieved good performance, which is over 90% for top-1 accuracy and greater 

than 99% in terms of top-5 accuracy. The possible reason is that the sequence of input 

feature vectors has a good short-term motion representation, while the order of feature 

vectors has remarkable sequence definitions; thus, the simplest recurrent modules can 

handle the temporal information gracefully. Nevertheless, 2D TCN is applied for long-

term sequence modelling due to the TCN module shows not only the better performance 

among these sequence modules but also simpler and clear architecture, and it supports 

parallelisation in both training and test stages. 
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Table 5-6. The mean accuracy (in%) of different sequence modelling methods. 

Sequence module Top-1 Top-5 

LSTM 90.24 99.987 

GRU 90.23 99.960 

2D TCN 91.26 99.995 

Table 5-7. Comparison of mean accuracy (in %) between the proposed model with other state-

of-the-art methods on the NTU-60 action dataset. 

Method Accuracy Parameters (million) GFLOPs 

ST-GCN 81.5 2.8 16.7 

DGNN 89.9 NA 126.8 

1s-Shift-GCN 87.8 NA 2.5 

LSME with softmax 91.26 2.03 11.48 

+ Spatial Fusion 93.82 +31.63 +36.1 

LSME with ArchFace 90.35 2.04 11.49 

+ Spatial Fusion 92.59 +31.63 +36.1 

 
Figure 5-7. The accuracy/complexity trade-off on NUT-60 action dataset. 

5.5.4 Comparison with State-of-the-art Methods 

This research then compared the proposed model with the state-of-the-art GCN-

based methods, including ST-GCN (Yan et al., 2018), DGNN (Shi et al., 2019) and 

Shift-GCN (Cheng et al., 2020). In practice, the 1-stream setting of Shift-GCN (1s-

Shift-GCN), which only uses the joint coordinates, was tested. The experimental result 

is shown in Table 5-7, where the accuracy of the Shift-GCN model is stability higher 

than ST-GCN and DGNN models because it is composed of spatial and temporal shift 

graph convolutions for adjusting the receptive field adaptively. The LSME method 

exceeds all skeleton-based methods. The superior performance of the proposed 

approach stems from the implicit pose representation of 3D heatmap volume and the 

fine motion encoding of the Pose Fast pathway. The performance gain is also 

contributed by the long-term semantic action representation ability of the 2D TCN 

module. Unsurprisingly, performance improvement can be further achieved when 

fusing the spatial Slow pathway model, as shown in Table 5-7. 
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The number of parameters and computational cost are also compared. As shown 

in Table 5-7, the GCN-based methods have a lot of parameters. In contrast, the Pose 

Fast pathway-based LSME model has the smallest number of parameters; thus, it is 

more lightweight than GCN-based implementations. When considering the processing 

speed, the ST-GCN costs 16.7 GFLOPs for a video clip, while DGNN reaches 126.8 

GFLOPs because of the complex DGN blocks and multi-stream fusion mechanism. By 

contrast, the Pose Fast pathway costs low computational resources because it preserves 

fewer feature channels in the network, and the input size is 3×562 which is smaller than 

other models. The trade-off between accuracy and complexity is illustrated in Figure 

5-7, showing that the LSME method has the best accuracy and computation trade-off. 

5.5.5 Comparison of Out-of-Context Dataset 

Skeleton-Mimetics is a very complicated action dataset because of the absent or 

misleading backgrounds, objects, and scenarios in most video samples which are out of 

context. From Table 5-8, all methods obtain relatively poor performance in this dataset, 

i.e., MS-G3D and 4s-Shift-GCN achieve approximately 50% accuracy in the Skeleton-

Mimetics dataset, while the accuracies in the NTU-60 dataset are 91.5 % and 85.9%, 

respectively. In conclusion, although LSME achieves better accuracy, which is still 

poor in the Skeleton-Mimetics dataset compared to the results in the NTU-60 dataset. 

Table 5-8. Comparison of accuracy among skeleton-based methods in out-of-context datasets. 

Method 
Skeleton- Mimetics (in %) 

Top-1 Top-5 

MS-G3D 49.22 NA 

4s-Shift-GCN 51.10 NA 

LSME with softmax 52.83 78.59 

LSME with ArchFace 51.04 75.32 

5.5.6 Evaluation of Unseen Actions 

This research evaluated the performance of the proposed LSME model in the 

unseen action scenario. 10 action categories are selected as unseen action videos from 

the NTU-60 action dataset. Then, the model is retrained by using the other 50 action 

categories of NTU-60. Finally, this experiment separately tested the performance in the 

unseen action videos by using Euclidean distance and ArcFace methods, respectively. 
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The experimental result shown in Table 5-9 obviously indicates that the performance 

in the seen actions is similar to the model trained on the original datasets, with a minor 

improvement since there are fewer action categories. The performance on unseen 

actions is 55.6% and 60.34% for Euclidean and ArcFace methods, respectively. 

Considering the model has never seen these actions in the training stage, this 

performance is encouraging. 

Table 5-9. The mean accuracy (in%) on unseen actions.  

Method 
NTU-60 

Seen (50) Unseen (10) 

Euclidean distance 
93.53 

55.6 

ArcFace (NS =10) 60.34 

5.6 Summary 

Although the encouraging performance of recent DNN methods on human action 

datasets, the influence of biases of the learned models is less explored. According to 

the evaluation described in this chapter, most DNN models tend to model contextual 

features instead of interpreting inherent action definitions and semantic representations, 

which fails to cope with the cases of video actions in the absence and misleading context. 

This research has presented a human pose skeleton-based LSME model for encoding 

long-short-term action representation to understand the semantic definition of actions. 

By introducing Euclidean and ArcFace methods, this research aims to solve the open-

set action recognition challenges. Experiments carried out on the NTU and Skeleton-

Mimetics datasets show better performance than previous works and a good trade-off 

between accuracy and computational cost, suggesting a vital direction of research on 

understanding human actions and solving action recognition problems in real-world 

applications, where the large-scale dataset is unavailable. 
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CHAPTER 6 Model Inference on Edge 

Computing 

6.1 Introduction 

When a DNN algorithm is trained, an ongoing stage is to deploy the model into 

modern applications, known as model inference. A typical solution is deploying an AI 

model into a cloud-based service which consumes original data (e.g., videos) coming 

from distributed edge devices (e.g., cameras, robots, and kiosks) and gives responses 

from server to client for decision-making, namely a few, AI on Cloud. This 

implementation requires expensive AI infrastructures such as energy-consuming GPUs, 

large amounts of memory, and extensive communication bandwidth; thus, it is far from 

practical when facing hundreds of thousands of Internet of Things (IoT) devices (Shi et 

al., 2016). For instance, gigabytes (GB) of videos will be captured by an autonomous 

vehicle every second, and the real-time response of data processing is required to 

determine the next operations. The unreliable network connection fails to cope with the 

correct decision-making if all original videos send to the cloud service for processing. 

Data privacy is another sensitive problem under the General Data Protection Regulation 

(GDPR) (Voigt & Bussche, 2017) since transferring such a large quality of videos 

crossing the Internet will easily cause personal information leakage. In contrast, edge 

computing technology has the potential to tackle the cues of energy/cost saving, real-

time response, and data privacy and security (Deng et al., 2020; Shi et al., 2016). In that 

case, the models are deployed at the mobile devices where data are produced for storing, 

processing, and analysing, while only the valuable results are posted into cloud services, 

hence supporting more efficient data processing, shorter response time, and reliable 

decision making, namely a few, AI on Edge, or edge intelligence. 

Carrying out AI to edge computing has various brand-new challenges due to the 

energy and cost of an edge device are always limited for processing such large volumes 

of data by a complicated model. To tackle these issues, this research firstly explores the 

characteristics of different edge accelerators, followed by the Open Neural Network 
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Exchange (ONNX)-based PIM model representation. Then, this research investigates 

the core concepts and technologies of model quantization to transfer a heavy model to 

a lightweight one, followed by a partitioning mechanism to partition a computational 

graph into sub-graphs for parallel execution in accelerators in a heterogeneous system. 

6.2 Computational Platforms 

The classic practice of algorithm development is training and testing DNN models 

on GPU-enabled servers or workstations, which is neither affordable nor energy-saving 

for massive applications. Since the birth of edge computing, there have been alternative 

computing platforms for model inference, i.e., models are trained on GPUs and 

deployed into edge platforms and hardware, e.g., Arm NN and NPU. 

6.2.1 GPU 

Enabled by the Compute Unified Device Architecture (CUDA), modern GPUs are 

not only powerful graphics engines but also parallel arithmetic and programmable 

processors. All deep learning frameworks support CUDA acceleration since training a 

model requires a great deal of computational cost and a large amount of memory, while 

GPU naturally support parallel arithmetic, such as convolution and GEMM (general 

matrix multiplication) (Kurzak et al., 2012; Qin et al., 2020) which are the basic 

modules of DNN architectures. However, GPU is not suitable for mobile and embedded 

systems due to the restricted hardware budget, limited energy supply and small space 

for hardware integration. Therefore, the more applicable edge chips are required for 

lightweight model inference, such as system-on-a-chip (SoC). 

6.2.2 Arm NN 

The Arm NN is a machine learning platform optimized for the Arm NEON SIMD 

(Single instruction multiple data) architecture, which uses the Arm Compute Library 

(ACL) as a backend to map target programmable cores. Arm NN supports machine 

learning programs on the edge and mobile devices through a set of software and tools, 

hence providing a bridge between general deep learning frameworks and the power-
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efficient embedded CPUs, Ethos NPUs, and Mali GPUs for model inference. The 

software supports models created from other deep learning frameworks and transfers 

the models into internal Arm NN format particularly designed for the target hardware. 

The architecture of Arm NN is shown in Figure 6-1. 

Arm NN

ACL
Ethos NPU 

Driver
Partner IP Driver

Cortex-A CPU Ethos NPUMali GPU Third-party IP

Driver

Hardware & 

Accelerator

Platform

 

Figure 6-1. The architecture of Arm NN. 

6.2.3 NPU 

NPU is an AI accelerator of a specialised microprocessor that implements all the 

necessary controls and arithmetic logics to execute deep learning models. It is specific-

designed for executing CNN and RNN modules, typically in the low-precision (e.g., 

8/4-bit (unsigned) integer) arithmetic for high-performance acceleration. Noted that 

NPU cannot be used for general-purpose computing due to it may be a part of a large 

SoC. Some of the current NPU engines are AWS Inferentia, NVIDIA Deep Learning 

Accelerator (NVDLA), Neural Engine by Apple, Rochchip NPU, Samsung NPU, etc. 

However, different accelerators require hardware-specific SDKs. It is inflexible and 

less robust to transfer an AI application from one platform to another. 

6.3 Platform Independent Model Design 

6.3.1 ONNX 

Different deep learning frameworks have various internal formats for model 

storing. However, most inference platforms do not directly support these formats; thus, 

it is necessary to transfer a framework-specific format to a hardware-specific format, 

which is still inefficient when facing various platforms. It is especially true when the 

quantization process is involved in numerical optimization. To tackle this problem, the 

Open Neural Network Exchange (ONNX) was developed by Facebook and Microsoft 

(ONNX, 2021). ONNX is an open format built to represent models, including both deep 

learning and machine learning algorithms. It provides a definition of an extensible 
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computation graph model and definitions of build-in operations and standard data types. 

As shown in Figure 6-5 and Figure 6-6, the fully connected and CNN models are 

represented as Directed Acyclic Graph (DAG) formats, in which a node is an operation, 

and the arrow indicates the direction of dataflow. Current deep learning frameworks 

support ONNX export, such as torch.onnx and Tensorflow-ONNX tools for PyTorch 

and TensorFlow model converting, respectively. 

6.3.2 ONNX Runtime 

Executing models on accelerators is very dependent on hardware-specific 

programming libraries and does not compatible with other platforms. ONNX Runtime 

(ORT), developed by Microsoft, is a model inference framework supporting multiple 

software platforms and hardware accelerations (Microsoft, 2021). ORT provides 

performance improvements compared to the original frameworks benefiting from its 

built-in optimizations. Furthermore, an extensible Execution Providers (EP) framework 

is also designed to optimally execute an ONNX model on the target hardware platforms 

(Microsoft, 2022), hence supporting various acceleration libraries and hardware, as 

shown in Figure 6-2 (Microsoft, 2021). Based on this concept, ORT partitions a model 

represented by a graph into sub-graphs based on available hardware-specific 

accelerators, and then it assigns the sub-graphs into different EP libraries in supported 

hardware for execution. The ORT-based model inference process is shown in Figure 

6-3 (Microsoft, 2022). This research builds a Linux version of ORT using the open-

source code within the Arm NN and extended EP libraries to support model execution 

on NPUs. 

Platform
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CUDA
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C/C++ Python Java JS

Linux Windows Android/iOS Web Browser

 

Figure 6-2. The architecture of ONNX Runtime. 
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Figure 6-3. The processing flow of ONNX runtime inference. 

6.4 Workflow of AI on Edge 

In contrast with the model training process on cloud-based systems, the inference 

stage on edges is considerably less expensive due to the limited compute and storage 

capacity. How to carry out the model inference on resource-constrained edge devices 

is a serious issue. Approaches primarily improve the existing frameworks and libraries 

to make them more suitable for edge computing by forming model adaptation to 

hardware acceleration (Deng et al., 2020). Inspired by this direction, this research 

mainly explores model partitioning and quantization for hardware acceleration. Figure 

6-4 shows the overview of the AI on edge scheme. Starting from a trained model 

exported by a specific deep learning library, e.g., PyTorch and TensorFlow. A model 

is represented as a DAG in standardised ONNX format. Then, the quantization method 

converts the full-precision model into low-precision. It is followed by a partitioning 

approach to partition the model into sub-graphs according to the supported operations 

enabled by target accelerators, i.e., the CPU supports all operations, but the 

computational performance is relatively lower. In contrast, the accelerators only 

support a portion set of operations (e.g., the 3D CNN, Einsum, and Gemm operations 

cannot execute on the NPU) with high-speed execution, so the DAG is spitted into sub-

graphs, and the sub-graphs contain unsupported operations execute on CPU. In contrast, 

others sub-graphs support running on NPU or Arm Mali GPU accelerators. Finally, the 

sub-graphs are compiled to generate a platform-dependent (PD) model for inference on 
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disparate edge devices. Note that the compilation stage is not required when applying 

ONNX Runtime for model inference. 
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Figure 6-4. The overall workflow of the AI on edge scheme. 

6.5 Model Quantization 

6.5.1 Concept of Quantization 

Reducing the computational cost, communication latency, and power consumption 

is a key challenge of model inference on edge devices. One mechanism is to develop 

efficient network architectures such as MobileNets (Howard et al., 2019; Sandler et al., 

2018). Although the processing speed is improved, the performance is dropped because 

of the fewer learnable parameters and simplified model structures. Furthermore, this 

approach requires re-designing and training the specific models instead of applying the 

state-of-the-art models in applications. Therefore, the other strategy is to optimize 

existing models for reduced model size and improved efficiency by performing neural 

network quantization (Nagel et al., 2021), and then accelerating the processing speed 

through SIMD processors. 

The fundamental of quantization is representing full-precision (i.e., 32-bit 

floating-point – FP32) arithmetic to low-precision, e.g., 8-bit integer number (int8 or 

uint8), which can naturally reduce a mode size by a factor of 4, and the computational 

cost for convolution operation reduces by a factor of 16. Further, moving 8-bit integer 

numbers is more efficient than the 32-bit floating-point data, and the AI accelerators 

efficiently support 8-bit integer arithmetical computation. Supposed a convolutional 
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layer of a deep learning model is defined as Y=WX+B, where X is the input tensor, W 

and B are weight and bias, respectively, and Y indicates the output tensor. Two quantizer 

parameters are defined: the scale factor s, and the zero-point z, to map a FP32 value to 

an 8-bit integer number. Then, the quantized convolutional layer is defined as: 

 
Q Q Q QY X W B=  + , 6-1 

where XQ, WQ and BQ are quantized input data, weight, and bias, respectively, defined 

as follows: 
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where SX, SW and SB are scale factors for X, W and B, respectively, while ZX, ZW and ZB 

are the corresponding zero-points; Nlevel=28=256 for 8-bit integer;    is the round-to-

nearest operation to convert a floating-point number to an integer, and the clamping 

function is defined as the following: 
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Once the quantized output YQ is obtained, the de-quantization operation is performed 

to obtain the full-precision output, as shown in the following: 

 Q Y

Y

Y Z
Y

S

−
= , 6-6 

where SY and ZY are scale factor and zero-point, respectively, for the final output data Y 

in full precision. The above definition is called asymmetric quantization. By restricting 

the zero-point to 0, a simplified symmetric quantization version can be defined. In that 

case, the calculation of XQ in Equation 6-2 can be rewritten as follows: 

 ( ;0; 1)Q level

X

X
X clamp N
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 
= − 

 
, for unsigned integers (uint8), 6-7 
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 1 1( ; ; 1)Q level level

X
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X clamp N N

s
− −

 
= − − 

 
, for signed integers (int8). 6-8 

The calculation of WQ and BQ have the same definition, and Y=YQ/SY. Symmetric 

quantization has higher efficiency than asymmetric quantization due to it does not deal 

with the zero-point offset operations. 

Based on the quantization definition, the key is to determine the quantizer 

parameters, which can be implemented by two main classes of algorithms, i.e., Post-

Training Quantization (PTQ) and Quantization-Aware-Training (QAT). PTQ directly 

converts a pre-trained FP32 model into a low-precision model without re-training the 

model, which allows for quantization with data-free or small calibration data (Nagel et 

al., 2021). According to the experiments carried out by Krishnamoorthi (2018), the per-

channel asymmetric quantization performs close accuracies to the floating-point of 

various neural network models. However, the accuracy will decrease when facing 

extremely low-bit quantization, e.g., 4-bit precision. In contrast, QAT quantizes models 

during the training stage, allowing the network weights bias quantized models to 

provide higher accuracy than PTQ. This method starts fine-tuning a floating-point pre-

trained model by using a similar training dataset and then updating the weights in float 

points with the gradients before quantization operations are applied to quantize weights. 

The SGD based weight updating is given as follows: 
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where 
QL w   is the backpropagation error of the loss function. QAT can mitigate the 

quantization noise during the finetuning stage. Therefore, it improves the performance 

of quantized models and enables lower bit inference with negligible accuracy decrease. 

6.5.2 Case: Fully Connected Layer 

As a basic case, Figure 6-5 shows two fully connected (FC) layers with a ReLU 

activation, which can be executed within the ORT. The original (left) and quantized 
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(right) ONNX models are visualised as DAG by using the Netron tool (Roeder, 2017). 

A single linear layer is converted into quantization, int8 matrix-matrix-multiply, and 

rescaling operations, and the DynamicQuantizeLinear operation quantize the input, 

model weights, and biases of layers from FP32 into int8 types. Then, the MatMulInteger 

operation performs 1D convolution within the int8 type, which outputs an int32 result. 

Finally, the quantized result is rescaled into full precision by casting, multiplication 

with scale parameter, and adding zero-point parameters. 

FC

Quantized FC

Quantize fp32 input, weights, biases into uint8 or int8 type

Input [uint8] * Weights [uint8] -> int32

Casting int32 to fp32

Rescaling fp32 by multiplying quantized scale -> fp32  

Adding quantized shift ->fp32

 
Figure 6-5. Case study of fully connected layer ONNX graphs. 

Quantize fp32 input, weights, biases into uint8 or int8 type

Input [uint8] * Weights [uint8] -> int32

Casting int32 to fp32

Rescaling fp32 by multiplying quantized scale -> fp32  

Adding quantized zero-point ->fp32

 
Figure 6-6. Case study of convolutional layer ONNX graphs. 



114 

 

6.5.3 Case: Convolutional Layer 

The same as a fully connected layer graph, the quantized 2D CNN layer based 

ONNX graph has similar processing operations. As shown in Figure 6-6, a single 

convolution layer is converted into quantization, 2D integer Convolution, and rescaling 

operations. All the operations process 2D data with the same programs of the fully 

connected graph. Followed by the two cases, other complicated models have the same 

graph formulation, and both original and quantized ONNX graphs can be executed 

using ORT. It is worth noting that for a specific accelerator, the ONNX graphs can 

compile into a target platform model for faster inference, i.e., the scale and zero-point 

parameters can be calculated in advance to reduce the computational cost. 

6.6 Model Partitioning 

Due to the unbalanced development between software and hardware technologies, 

the advanced operations may not be supported by accelerators. For instance, most NPUs 

cannot execute 3D CNN and Einstein notation (Laue et al., 2020) operations; as a result, 

the whole network cannot be loaded on the accelerators. Zecha et al. (2018) partition a 

neural network model into two parts and offload the computationally intensive one to 

the cloud, while the lightweight part performs at the local edge to reduce the latency 

and speed up the applications on mobile devices. This concept can migrate into edge 

intelligence, i.e., edge devices should be able to execute a model in a heterogeneous 

platform with disparate processors and accelerators. To do that, a DAG model is defined 

as 𝐺 = (𝑉 ∪ {𝑒, 𝑐}, ℒ), where the set of vertices 𝑉 = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛} indicate the 

operations of DNN models, which can be convolutional layers or activations, etc. e and 

c are the input and output nodes. (𝑣𝑖 , 𝑣𝑗) ∈ ℒ denotes a link representing the output of 

vi feeds to vj. Let P={pi} represents all operations of DNN models, and Pcpu is the set 

of supported operations by CPU, and Pcpu = P since CPU supports all operations. In 

contrast, accelerators only support a portion of operations, denoted by 𝑃𝑛𝑝𝑢 ⊆ 𝑃 for 

NPU accelerator. Due to the processing speed on accelerators is faster than CPU, the 

operations should be maxillary assigned to accelerators, and only the unsupported 

operations should be performed on the CPU. Mathematically, the set of vertices 𝑉𝑠 ⊆
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𝑉  represent the unsupported operations, where 𝑣𝑖 ∈ 𝑉𝑠  if 𝑣𝑖 ∉ 𝑃𝑛𝑝𝑢 , then 𝑉𝑠 ∩

𝑃𝑛𝑝𝑢 = 𝜙. Removing Vs causes the rest of G (denoted by VE=V-VS) becomes several 

disconnected components, and each one is a sub-graph. Finally, two groups of sub-

graphs are obtained, i.e., ⋃ 𝐺𝑖
𝑐𝑝𝑢 = 𝑉𝑠 that performs on CPU, and ⋃ 𝐺𝑖

𝑛𝑝𝑢 = 𝑉𝐸 that 

executes on NPU. Noted that although the above partitioning process assumes a single 

accelerator in a heterogeneous system, it can be easily extended to the cases containing 

disparate accelerators. 

Based on the partitioning definition, this research defines 𝑡𝑖
𝑐𝑝𝑢

 and 𝑡𝑖
𝑛𝑝𝑢

 as the 

processing time of operation vi on CPU and NPU, respectively. Then, the processing 

time on CPU is 
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And the processing time on NPU is 
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v V
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The data communication time can be ignored because CPU and NPU share the same 

memory on edge devices; then, the total executing time is T=Tcpu+Tnpu. In practice, CPU 

and NPU can execute parallelly, so the real executing time 𝑇̂ ≤ 𝑇. 

6.7 Experimental Results and Validation 

6.7.1 Evaluation of Quantization Methods 

Transferring models from 32-bit to 8-bit integer mode allows for a smaller model 

size. This experiment compared the model sizes between full precision and low 

precision by using PQT and QAT quantization methods, respectively. The models are 

represented in ONNX format, except the complied ones for NPU hardware acceleration. 

As shown in Table 6-1, this experiment evaluated ResNet (He et al., 2016), DenseNet 

(Huang et al., 2017), MobileNet v2 (Sandler et al., 2018), and HRNet (Wang et al., 

2021a). The size of the PQT-based model is approximate quartern of the original model 

due to the weights being stored in 8-bit integer type, which is reduced by a factor of 4 

compared to 32-bit floating-point numbers. In contrast, the QAT-based model is 

slightly larger than PQT. The main reason is that the QAT-based ONNX graph 
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introduced extra calculations for quantization parameter estimation. Nevertheless, 

when compiling the ONNX model into an NPU-based platform-dependent model, the 

model size is reduced to the level of the PQT method. 

Table 6-1. Comparison of model size between fp32 and uint8 types. 

Model 
Model size (KB) 

Original PQT QAT QAT (Complied) 

ResNet-34 85.121 21.342 22.842 21.332 

ResNet-50 99.739 25.065 31.064 25.047 

ResNet-101 173.836 43.715 49.715 43.681 

DenseNet-169 55.862 8.442 15.012 19.886 

MobileNet v2 13.638 3.511 7.260 3.499 

HRNet 302.482 76.088 82.088 76.006 

6.7.2 Evaluation on Accelerators 

This experiment evaluated the efficiency and effectiveness of model quantization 

by comparing the processing time between original models and quantized ones. The 

experimental platforms are shown in Table 6-2. The workstation has a powerful CPU 

and GPU. In contrast, the edge device has limited computational resources, i.e., the 

computational performance of NPU is only 2.0 TFLOPS (trillion floating-point 

operations per second), and only the integer computation is supported. The image 

classification models are carried out in this experiment by using the ILSVRC2012 test 

set, including, ResNet-50, MobileNet v2, DenseNet-169, and HRNet. The accuracy 

between the original and quantized models was compared, and the result is shown in 

Figure 6-7. The accuracies of quantized models are almost equal to the original models, 

with only a slight decrease, which proves that the quantized models can still preserve 

high effectiveness. 

This research then tested the processing time of model inference on different 

computational platforms, and the experiment result is shown in Table 6-3. Both CPU 

and GPU of the workstation show high computational performance because of the 

powerful processors. However, the processing time rapidly increases when executing 

the original models on the Arm CPU because of the resource-constrained platform. 

Nevertheless, running a quantized model on the same platform requires less processing 

time which is reduced by a factor of two. The main reason is that accessing 8-bit 

numbers is faster than accessing 32-bit values. Furthermore, when compiling the 
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ONNX model into a NPU platform-dependent model, which will partition the ONNX 

graph into sub-graphs to enable the NPU acceleration, the processing time is 

significantly dropped, reaching the level of CPU of the workstation. Based on this 

observation, the quantized models perform faster inference while preserving high 

performance, suggesting a novel solution for the research on edge intelligence. 

Table 6-2. The developing and testing platform setups. 

 Workstation Edge device 

CPU AMD Ryzen 5 3600 6-Core Processor Quad core ARM Cortex-A7 

Memory 16 GB 1 GB 

Accelerator 
NVIDIA RTX 2080 Ti, 13.45 TFLOPS 

(fp32) 
NPU, 2.0 TFLOPS (int8/16) 

System Ubuntu 20.04 Linux  

Library ONNX Runtime ONNX Runtime, NPU Driver 

 
Figure 6-7. The comparison accuracy (in %) of original and quantized models. 

Table 6-3. The comparison processing time (in milliseconds) of original and quantized models 

on different computational platforms. 

Model 

Workstation Edge device 

Original 

(CPU) 

Original 

(GPU) 

Original 

(CPU) 

Quantized 

(CPU) 

Quantized 

(NPU) 

ResNet-50 15 5 3919 1787 28 

DenseNet-169 24 11 3413 2234 66 

MobileNet v2 2 7 531 619 6 

HRNet 71 18 16524 7759 122 

6.8 Summary 

Although it is in the early stage, edge intelligence has become the trend of the next 

computing paradigm, and model inference on resource-constrained edge devices is a 

huge challenge. To reduce the computational cost and speed up faster execution. This 

chapter represents a deep learning model as a DAG by using ONNX for platform-

independent design and optimisation. The computational cost and memory demand are 
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significantly reduced through model quantization, and the model partitioning scheme 

is explored for hardware acceleration on heterogeneous systems. The experiments show 

that the quantization and partitioning methods have significantly reduced the processing 

time while maintaining similar performance to the original models. This work suggests 

a vital direction of research on edge intelligence. 
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CHAPTER 7 Conclusion and Future Work 

7.1 Contributions to Knowledge 

This research aims to address key challenges of human action understanding. A 

collection of methods regarding image and video processing, feature extraction and 

learning, semantic discovery, and action classification/prediction have been presented 

in this thesis. In addition, the methodology of model inference on edge computing has 

been investigated, and the trend of edge intelligence has also been explored. These 

contributions have delivered the objectives set at the start of the research. The main 

contributions to the domain knowledge are summarised in the following aspects. 

1) In Chapter 3, the advantages and drawbacks of traditional feature methods have 

been explored, leading to the innovation of DWT-driven DT feature extractor 

and the FV, BOF, and BoTF-based event representations to identify the 

approximate features and descriptors for better performance on video analysis. 

This enables the attainment of more accurate and multi-resolution features 

within spatial space to encode the “longer” temporal information in videos. 

2) In Chapter 4, the end-to-end multimodality neural networks have been devised 

for automatic feature extraction and action classification. To improve the 

effectiveness and efficiency of spatial-temporal feature extraction and to learn 

the hybrid spatial and temporal pattern in a video, an interactive two-stream 

aggregation network based on OFF is proposed to replace the time-consuming 

optical flow computation. It further enables the coarse-to-fine scene and motion 

interactions by innovating STFB constructs between vision and motion cues. 

Then, the 3D CNN-based aggregation model is capable of representing long-

term semantic movements, which contributes to better performance on action 

classification. 

3) In Chapter 5, the context-biased problem of DNN models has been evaluated, 

which shows that the DNN models tend to leverage contextual information for 

vision classification instead of interpreting inherent human actions based on 
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their semantic definitions. To learn generically semantic representations and to 

understand human action definitions, the LSME method is proposed based on 

human pose skeletons and 3D convolutional networks. A long-short-term 

learning strategy is presented for training DNN models and updating learnable 

parameters in the video-level gradients instead of the clip-level. By introducing 

Euclidean and ArcFace methods, LSME is capable of encoding signatures of 

unseen actions for solving the open-set action recognition challenge in test videos 

from real-world applications. 

4) In Chapter 6, the opportunities and challenges of edge computing and AI on 

edge have been investigated, highlighting a trend of edge intelligence for the 

transition from IoT to Intelligent Internet of Intelligent Things based on the 

future of the 6G Intelligent Edge paradigm. Specifically, the ONNX-based PIM 

design is introduced to represent a model in the form of DAG that enables 

further graph partitioning, mathematical quantization, parallel execution, and 

hardware acceleration. The related methodologies have been explored in this 

research which suggests a novel direction of edge intelligence. 

It is demonstrated that these proposed approaches are valuable for real-world 

applications and problem-solving such as surveillance video analysis, autopilot, and 

healthcare systems. Furthermore, these methodologies and technologies have potential 

and benefits for handling other tasks in artificial intelligence, computer vision, 

computational optimization, and edge intelligence. 

7.2 Future Work 

In addition to the encouraging performance of the newly developed algorithms and 

techniques, other opportunities and challenges have risen for future exploration: 

1) Although the DNN-based methods show better performances on various 

computer vision tasks, there are still demands and opportunities to further 

research, develop, and modularise feature engineering algorithms for embedded 

and node-level usage. It is demonstrated that the image processing algorithms 

such as element-wise subtraction and Sobel operations can generate spatial and 
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temporal gradients from CNN feature maps, hence the motivation for 

developing the OFF layer in this research. 

2) One of the limitations of this research is that the devised human action 

recognition models can only process trimmed videos with clear action 

boundaries, such as the video clips from the UCF, HMDB and NTU datasets. A 

number of aspects have been explored as a preparation for the following ups, 

including tailored deep learning networks and adaptive feature weighting to 

better handle varying lengths of ambiguous crowd behavioural events. 

3) The DNN model should be further examined for what knowledge and biases are 

learned during the training process. Model complexity is another sensitive cue 

for modern DNN-based applications, which is especially true when facing 

resource-constrained mobile devices that require lightweight model size, high 

performance, and lifelong data processing. 

4) Edge intelligence, which is in its early stage, has many challenges and 

opportunities worth researching, including graph optimization, mathematical 

quantization, AI hardware design, software (AI) defined hardware, and data 

security and privacy. For example, although the hardware architectures and 

programming platforms keep on improving at a rapid rate, several advanced 

operations still cannot be supported by AI accelerators, resulting in failure to 

execute the computation-intensive DNN models on mobile devices. Inspired by 

software-defined networking that allows the control of communication 

networks flexibly by programmable interfaces. AI technologies can provide 

optimal solutions to key problems in computing infrastructure design and 

Intellectual Property (IP) development (Deng et al., 2020). 

5) In the edge computing era, data are produced and processed by widespread and 

geographically distributed IoT and mobile devices. However, high performance 

and energy-saving are incompatible simultaneously. A potential solution is the 

co-inference with device-edge synergy (Li et al., 2018), where a large amount 

of original data are pre-processed on edge devices, whilst the small middle 

features transfer to the cloud for global processing. This scheme also 
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encapsulates better data security and privacy than offloading original video data 

directly to cloud services. 

It is anticipated that these challenges and their solutions will push the advancement 

of computer vision and edge intelligence for future more ubiquitous and pervasive 

applications. I hope that this thesis can inspire professional and fruitful discussions to 

accelerate this trend. 
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