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Tensor-Based Channel Estimation for

Millimeter Wave MIMO-OFDM with

Dual-Wideband Effects

Yuxing Lin, Student Member, IEEE, Shi Jin, Senior Member, IEEE, Michail

Matthaiou, Senior Member, IEEE, and Xiaohu You, Fellow, IEEE

Abstract

We consider the channel estimation problem in millimeter wave (mmWave) multiple-input multiple-

output orthogonal frequency division multiplexing (MIMO-OFDM) systems with hybrid analog-digital

architectures. Leveraging the spatial- and frequency-wideband (dual-wideband) effects in massive MIMO

scenarios, we derive a spatial-frequency channel model with dual-wideband effects that incorporates the

multipath parameters, i.e., time delay, complex gain, angle of departure/arrival. We adopt a successive

beam training scheme and formulate the training OFDM signal as a third-order low-rank tensor fitting

a canonical polyadic (CP) model with factor matrices containing the channel parameters. Exploiting

the Vandermonde nature of factor matrices, we propose a structured CP decomposition-based channel

estimation strategy aided by the spatial smoothing method, where two dedicated algorithms with partic-

ular tensor modeling and parameter recovery operations are developed. The proposed scheme leverages

standard linear algebra, and, hence, avoids the random initialization problem and iterative procedure. An

analysis of the uniqueness condition of CP decomposition is also pursued. Simulation results indicate

that the proposed strategy achieves enhanced estimation performance, which outperforms the traditional

approaches in terms of accuracy, robustness and complexity.
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I. INTRODUCTION

Millimeter wave (mmWave) transmission technologies have been investigated as a promising

candidate against the increasing data traffic and frequency spectrum shortage as we experience

the development of next-generation communications [2]. Gigabit-per-second data rates can be de-

livered by mmWave communications in various environments and applications [3]. As a feasible

alternative to microwave systems, mmWave systems work at extremely high frequency bands (30–

300 GHz) with mm-level carrier wavelength, which supports the miniaturized implementation

of large antenna arrays [4]. Thus, massive multiple-input multiple-output (MIMO) architectures

can be efficiently integrated into mmWave systems, which guarantee a large beamforming gain

to compensate for the exacerbated free-space and penetration losses [5]. Yet, in order to achieve

considerable directional beamforming performance and transmission reliability, accurate channel

state information (CSI) should be acquired via channel estimation.

In recent years, the fundamental problem of mmWave channel estimation has been widely

investigated. By leveraging the sparse nature of mmWave channels, the estimation issue can be

equivalently formulated as a sparse signal recovery problem, which can be solved by compressed

sensing (CS) tools, e.g., orthogonal matching pursuit (OMP) [6]. Hierarchical multi-resolution

codebooks, as well as, adaptive beam training schemes have been developed to improve the

efficiency of channel estimation [7]. The work of [8] developed a generalized approximate

message passing algorithm to perform channel estimation with one-bit analog-to-digital con-

verters. The work of [9] proposed an Arnoldi iteration-based method to estimate the singular

subspaces of channels. A two-dimensional ESPRIT-based scheme was proposed to explore the

angle domain information of channels in [10]. A beamspace channel estimation scheme based on

cosparse image reconstruction principles was proposed in [11]. A denoising-aided deep learning

network was introduced to implement the CSI acquirement in [12]. Moreover, tensor-based signal

processing schemes have been exploited for the design of channel estimators [13]–[17].

As indicated in [18], [19], there exist non-negligible time delays across the array aperture

for the same data symbol in massive MIMO, leading to the so-called spatial-wideband effect

[20], [21]. Moreover, large bandwidths of frequency-selective systems induce to the frequency-

wideband effect. However, most of the existing works [6]–[17] have not jointly considered
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the spatial- and frequency-wideband (dual-wideband) effects. In practice, there exist numerous

challenges caused by dual-wideband effects in wideband MIMO systems. For example, channel

estimation or user scheduling schemes need to track the changes of the effective channel pa-

rameters. Hybrid beamforming or sidelobe control schemes should update the codebook design

against the beam squint effect. Decoding with dual-wideband effects under low-resolution analog-

to-digital converters is also an open issue [19]–[21]. For these reasons, we believe that in order

to optimize the transmission performance, the dual-wideband effects from both the spatial and

frequency domains should be taken into account for the estimation design of mmWave massive

MIMO systems.

In this paper, we precisely address the channel estimation problem of a wideband mmWave

orthogonal frequency division multiplexing (OFDM) system. The main contributions of the paper

are summarized as follows:

• By leveraging the channel sparsity in angle and delay domains, we transform the massive

MIMO channel with dual-wideband effects into a spatial-frequency wideband (SFW) model,

which is represented by limited multipath parameters, i.e., time delay, complex gain, angle

of departure (AoD) and angle of arrival (AoA).

• For the case with negligible dual-wideband effects, we implement a successive beam training

strategy within a single time slot, where the base station (BS) transmits precoded pilots

in continuous subframes and the mobile station (MS) combines the received signals with

parallel measurement streams. We formulate the training signal as a trilinear tensor fitting

the canonical polyadic (or CANDECOMP/PARAFAC, CP) model, where the factor matrices

contain the multipath parameters [22], [23]. Expanding our prior work [1], we utilize the

Vandermonde factor matrix and the spatial smoothing method to develop a Structured CP

Decomposition-based channel estimation algorithm, abbreviated as SCPD [24], [25].

• For the case with significant dual-wideband effects, we perform the beam training procedure

across sequential time slots. By introducing a new factor matrix containing time-varying path

gains, we reformulate the trilinear tensor model. Furthermore, we employ specially designed

hybrid beamforming schemes to exploit the structural information of factor matrices. With

the updated CP decomposition procedure and multipath parameter recovery operation, we

develop a Dual-Wideband Effects-oriented Structured CP Decomposition-based estimation

algorithm, abbreviated as DWE-SCPD.
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• We analyze the uniqueness condition of CP decomposition, which determines the feasible

application field of the proposed algorithms. We also evaluate the accuracy of multipath

parameter recovery, and compare it with the Craḿer-Rao bounds (CRB).

Simulation results indicate that the proposed schemes outperform the traditional methods, e.g.,

trilinear alternating least squares (TALS) [26] and complex parallel factor analysis (COMFAC)

[27], in terms of accuracy, robustness and complexity.

The rest of the paper is organized as follows. Section II introduces preliminaries about the

tensor theory and spatial smoothing method. Section III presents the channel model with dual-

wideband effects and the hybrid analog-digital architecture for mmWave MIMO-OFDM systems.

Section IV introduces the dedicated SCPD algorithm for the case with negligible dual-wideband

effects. Section V develops the DWE-SCPD algorithms for the case with significant dual-

wideband effects. Section VI presents the numerical results of the channel estimation performance

derived by the proposed schemes. Section VII draws the most important conclusions.

Notations: a, A and A denote a vector, a matrix and a tensor, respectively; (·)T , (·)H , (·)−1,

(·)−T and (·)† denote the transpose, conjugate transpose, inverse, transpose-inverse and pseudo-

inverse, respectively; [a]m, [A]m,n, am, [A]m:n,: and [A]:,m:n denote the mth entry of a, the

(m,n)th entry of A, the mth column of A, the submatrix of A from the mth to the nth rows,

and the submatrix of A from the mth to the nth columns, respectively; ∥ · ∥ and ∥ · ∥F denote

the 2-norm and Frobenius norm, respectively; ⊗, ⊙, ∗ and ◦ denote the Kronecker, Khatri-Rao,

Hadamard and outer products, respectively; r(A) and kr(A) denote the rank and Kruskal-rank of

A, respectively; d(A) and D(a) denote the diagonal element vector of A and the diagonal matrix

formed by a, respectively; I(n) denotes the index set {1, 2, . . . , n}; In, 1m×n and 0m×n denote an

n×n identity matrix, a m×n all-ones matrix and a m×n all-zeros matrix, respectively. U(a, b)
and CN (µ, σ2) denote a uniform distribution within range (a, b) and a Gaussian distribution with

mean µ and variance σ2, respectively.

II. PRELIMINARIES

A. Concepts of Tensor Theory

We first review some basic concepts of tensor algebra. A tensor stores data in its entries as a

multi-dimensional array. Vectors and matrices are one-dimensional and two-dimensional tensors,

respectively. Fibers and slices are vectors and matrices derived by fixing all the tensor element

indices except those along one dimension and two dimensions, respectively.
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Fig. 1. Diagram of CP decomposition of a third-order tensor X ∈ CI1×I2×I3 .

Definition 1. X ∈ CI1×I2×...×IN is a N th-order tensor with the (i1, i2, . . . , iN)th entry Xi1,i2,...,iN .

Definition 2 (Tensor Unfolding). X(n) ∈ CIn×
∏

k ̸=n Ik is the mode-n unfolding of X with the

element [X(n)]in,j mapped from Xi1,i2,...,iN , which satisfies

j = 1 +
N∑
k=1
k ̸=n

(ik − 1)Jk,n, Jk,n ,


k−1∏
m=1
m̸=n

Im, I(k − 1) \ n ̸= ∅,

1, otherwise.

(1)

Definition 3 (CP Decomposition). The CP decomposition factorizes a tensor into a (weighted)

sum of a set of rank-one outer products, i.e.,

X =
R∑

r=1

λra
(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r , (2)

where R is the tensor rank; {λr}Rr=1 are the weighting coefficients; A(n) ,
[
a
(n)
1 , . . . , a

(n)
R

]
∈

CIn×R is the mode-n factor matrix. The mode-n unfolding X(n) is equally represented as

X(n) = A(n)Λ
(
A(N) ⊙ · · · ⊙A(n+1) ⊙A(n−1) ⊙ · · · ⊙A(1)

)T
, (3)

where Λ , D([λ1, . . . , λR]
T ). The CP decomposition of a third-order X ∈ CI1×I2×I3 is shown

in Fig. 1, where D ∈ CR×R×R is a diagonal tensor containing {λr}Rr=1 in {Dr,r,r}Rr=1.

Definition 4. For a tensor X ∈ CI1×...×IN with rank R, we introduce the following matricization

representation [24]

X[P ] ,


X1,...,1,1...,1 X1,...,1,1...,2 ··· X1,...,1,IP+1...,IN

X1,...,2,1...,1 X1,...,2,1...,2 ··· X1,...,2,IP+1...,IN

...
... . . . ...

XI1,...,IP ,1...,1 XI1,...,IP ,1...,2 ··· XI1,...,IP ,IP+1...,IN


=
(
A(1) ⊙ · · · ⊙A(P )

)
Λ
(
A(P+1) ⊙ · · · ⊙A(N)

)T
. (4)
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B. Spatial Smoothing

Spatial smoothing is a technique commonly applied in sensor array processing to overcome

the potential problems caused by rank-deficient matrices [25].

Definition 5 (Vandermonde matrix). The factor matrix A(n) is said to be Vandermonde if

a(n)
r =

[
1, zn,r, z

2
n,r, . . . , z

In−1
n,r

]T
, (5)

where {zn,r}Rr=1 are called the generators of An. A(Kn,n) , [A(n)]1:Kn,: denotes the submatrix

containing the first Kn rows of A(n).

We assume that {A(p)}Pp=1, P < N are Vandermonde matrices. By choosing Kp+Lp = Ip+1,

spatial smoothing maps A(p) to A(Kp,p)A(Lp,p)T ∈ CKp×Lp . Then, one can map X to a new tensor

Y ∈ C(K1×···×KP )×(IP+1×···×IQ)×(L1×···×LP )×(IQ+1×···×IN ) as

Yk1,...,kP ,iP+1,...,iQ,l1,...,lP ,iQ+1,...,iN = Xl1+k1−1,...,lP+kP−1,iP+1,...,iN

=
R∑

r=1

λr

P∏
p=1

zlp+kp−2
p,r

N∏
q=P+1

[a(q)
r ]iq

=
R∑

r=1

λr

P∏
s=1

zls−1
s,r

P∏
t=1

zkt−1
t,r

N∏
q=P+1

[a(q)
r ]iq , (6)

where P +1 ≤ Q ≤ N , kp ∈ I(Kp), lp ∈ I(Lp). With (4), the tensor (6) can be matricized to a

matrix Y[P ] ∈ C
∏P

p=1 Kp
∏Q

n=P+1 In×
∏P

p=1 Lp
∏N

n=Q+1 In as

Y[P ] =
(
A(K1,1) ⊙ · · · ⊙A(KP ,P ) ⊙A(P+1) ⊙ · · · ⊙A(Q)

)
×Λ

(
A(L1,1) ⊙ · · · ⊙A(LP ,P ) ⊙A(Q+1) ⊙ · · · ⊙A(N)

)T
. (7)

More specifically, for a third-order tensor X ∈ CI1×I2×I3 , we define two smoothing transforma-

tions for the cases of the P = 1, 2 Vandermonde matrices respectively as [28]

Definition 6. The smoothing transformation with P = 1 is defined as

S1(X) ,
[
J1X J2X · · · JL1X

]
, (8)

where Jl1 ,
[
0K1×(l1−1) IK1 0K1×(L1−l1)

]
⊗ II2 . The smoothing transformation with P = 2 is

defined as

S2(X) ,
[
J1,1X · · · J1,L2X J2,1X · · · J2,L2X · · · JL1,L2X

]
, (9)
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where Jl1,l2 ,
[
0K1×(l1−1) IK1 0K1×(L1−l1)

]
⊗
[
0K2×(l2−1) IK2 0K2×(L2−l2)

]
.

The matrix-oriented operators S1(·), S2(·) can achieve the same smoothing results as the

tensor-oriented operation (6) as follows [29]:

Lemma 1. Let X ∈ CI1×I2×I3 be a tensor with factor matrices A(n) ∈ CIn×R, n ∈ {1, 2, 3}. Let

A(1) and A(2) be Vandermonde matrices. Define X[2] =
(
A(1) ⊙A(2)

)
ΛA(3)T as a matricization

of X following (4), then

S1
(
X[2]

)
=
(
A(K1,1) ⊙A(2)

)
Λ
(
A(L1,1) ⊙A(3)

)T
,

S2
(
X[2]

)
=
(
A(K1,1) ⊙A(K2,2)

)
Λ
(
A(L1,1) ⊙A(L2,2) ⊙A(3)

)T
. (10)

III. CHANNEL AND SYSTEM MODEL

A. Channel Model with Dual-Wideband Effects

We consider a MIMO-OFDM system consisting of one BS with an Nbs-antenna uniform

linear array (ULA) and several MSs, each with an Nms-antenna ULA. The total number of

transmitting subcarriers is denoted by K0. In this paper, we focus on the downlink transmission

with a downlink carrier frequency fc and bandwidth fs (symbol duration Ts = 1/fs), where the

MSs individually perform their channel estimation procedure.1

Exploiting the sparsity nature of mmWave channels, we adopt the extended Saleh-Valenzuela

model, which consists of multiple individual scattering paths [30]. The physical AoD and AoA of

the lth path are denoted by φl and ϑl, respectively. For an antenna array with adjacent spacing

d, the corresponding spatial AoD and AoA are defined as ϕl , d
λc

sinφl and θl , d
λc

sinϑl,

respectively, where λc is the carrier wavelength. We denote the time delay of the lth path from

the nth BS antenna to the mth MS antenna by τl,m,n
2, and the time-varying complex gain of

the lth path at the tth time slot by ᾱt,l. For a MIMO system with ULA configurations, τl,m,n is

represented as

τl,m,n , τl + (m− 1)
θl
fc

+ (n− 1)
ϕl

fc
, (11)

1For the uplink scenario, our proposed scheme permits the MSs to simultaneously perform channel estimation through non-

overlapping subcarrier bands.

2For simplicity, we assume that the maximal time delay is within the duration τ0 of a single time slot.
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where τl is the free-space propagation delay of the lth path. Then, given a baseband signal xn(τ)

transmitted from the nth BS antenna, the received baseband signal at the mth MS antenna during

the tth slot can be expressed as

yt,m(τ) =
L∑
l=1

ᾱt,lxn(τ − τl,m,n)e
−j2πfcτl,m,n

=
L∑
l=1

ᾱt,le
−j2πfcτlxn(τ − τl,m,n)e

−j2πfc(m−1)
θl
fc e−j2πfc(n−1)

ϕl
fc

=
L∑
l=1

αt,lxn(τ − τl,m,n)e
−j2π(m−1)θle−j2π(n−1)ϕl , (12)

where L is the total number of signal paths; αt,l , ᾱt,le
−j2πfcτl is the equivalent path gain. Then,

the downlink spatial-time channel response at the mth MS antenna from the nth BS antenna

during the tth time slot is represented as

[Ht(τ)]m,n =
L∑
l=1

αt,l[ams(θl)]m[abs(ϕl)]nδ(τ − τl,m,n), (13)

where

ams(θ) ,
[
1, e−j2πθ, . . . , e−j2π(Nms−1)θ

]T
, (14a)

abs(ϕ) ,
[
1, e−j2πϕ, . . . , e−j2π(Nbs−1)ϕ

]T
, (14b)

are the well-known spatial steering vectors of the MS and BS antenna arrays, respectively.

Performing the continuous time Fourier transform of (13), we can derive the spatial-frequency

channel response at the kth subcarrier during the tth time slot as

[Ht,k]m,n =

∫ τ0

0

[Ht(τ)]m,ne
−j2πfkτdτ

=
L∑
l=1

αt,l[ams(θl)]m[abs(ϕl)]ne
−j2πfkτl,m,n

=
L∑
l=1

αt,le
−j2πfkτl [ams,k(θl)]m[abs,k(ϕl)]n, (15)

where fk , kfs
K0

is the frequency shift of the kth subcarrier; and

ams,k(θ) ,
[
1, e−j2π

(
1+

fk
fc

)
θ, . . . , e−j2π(Nms−1)

(
1+

fk
fc

)
θ

]T
, (16a)

abs,k(ϕ) ,
[
1, e−j2π

(
1+

fk
fc

)
ϕ, . . . , e−j2π(Nbs−1)

(
1+

fk
fc

)
ϕ

]T
, (16b)
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are the so-called spatial-frequency steering vectors at the kth subcarrier. Specifically, the array-

dependent terms {(m− 1)θ}m∈I(Nms) come from the spatial-wideband effect, and the additional

phase shift fkθ/fc results from the frequency-wideband effect. Finally, the channel matrix at the

kth subcarrier during the tth time slot is derived as

Ht,k =
L∑
l=1

αt,le
−j2πfkτlams,k(θl)a

T
bs,k(ϕl)

=
L∑
l=1

αt,le
−j2πfkτl

(
ams(θl)a

T
bs(ϕl)

)
∗Ψk(θl, ϕl). (17)

where [Ψk(θ, ϕ)]m,n , e−j2π
fk
fc

((m−1)θ+(n−1)ϕ),m ∈ I(Nms), n ∈ I(Nbs). Clearly, (17) provides

a more accurate channel model for massive MIMO by considering the dual-wideband effects,

which is referred to as the SFW channel.

In small-scale antennas or in large-scale antennas but with very narrow bandwidth, Ψk ap-

proximates a nearly all-ones matrix. For wideband massive MIMO systems, however, Ψk will

fundamentally influence the system performance. For example, for a typical 32×64-ULA system

with d = λc/2, fs = 1 GHz at fc = 60 GHz, the maximum phase shift of {Ψk(θ, ϕ)}k∈I(K0),

i.e., fs
fc

d
λc
(Nms +Nbs), is approximated to 0.25π. Concretely, the spatial-wideband effect yields

a maximum delay of 0.80Ts across the array aperture; the frequency-wideband effect yields a

maximum deviation of 10.39° from the physical angle 79.61°.3

B. Hybrid Transceiver Model

To facilitate efficient hardware implementation, a hybrid analog-digital architecture with Nd

data streams is considered. The system supports Mbs and Mms RF chains at the BS and MS

respectively, satisfying Nd ≤Mbs ≤ Nbs, Nd ≤Mms ≤ Nms (see Fig. 2).

At the kth subcarrier, the BS employs an analog RF precoder FA ∈ CNbs×Mbs and a digital

baseband precoder FD,k ∈ CMbs×Nd , while the MS employs an RF combiner WA ∈ CNms×Mms

and a baseband combiner WD,k ∈ CMms×Nd . Since the analog circuits are implemented by phase

shifters, a constant-magnitude hardware constraint on the elements of analog beamformers is

introduced, i.e., |[FA]i,j| = |[WA]i,j| = 1,∀i, j.

3When the physical angle exceeds 79.61°, a phase wrapping happens, which may increase the maximum deviation to −169.52°.
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Fig. 2. Hardware block diagram of mmWave MIMO-OFDM system with hybrid beamforming structure.

At the BS side, the baseband signal st,k ∈ CNd at the kth subcarrier within the tth time slot is

precoded by FD,k, and transformed to the time-domain via a K0-point inverse discrete Fourier

transform. After a cyclic prefix addition, FA is applied to all subcarriers. Then, the precoded

signal at the kth subcarrier during the tth time slot is represented as

xt,k = FAFD,kst,k = Fkst,k, (18)

where Fk , FAFD,k is the equivalent precoding matrix.

At the MS side, the received signal is combined by WA. Then the cyclic prefix is removed

and the signal is transformed back to the frequency-domain via a discrete Fourier transform.

The baseband symbols are processed by WD,k for each subcarrier. Finally, under the perfect

synchronization assumption, the received signal can be given by4

yt,k = WT
D,kW

T
A (Ht,kxt,k + nt,k)

= WT
kHt,kFkst,k +WT

k nt,k, (19)

where Wk , WAWD,k is the equivalent combining matrix; nt,k ∈ CNms is the additive noise

following independent and identically distributed (i.i.d.) CN (0, σ2
n).

4Imperfect hardware or synchronization yields carrier frequency offsets (CFO), which result in unknown phase errors in

the received signal that linearly increase with time. Since these errors can be regarded as unidentifiable phase shifts of the

time-varying path gains {αt,l}, we assume perfect synchronization without CFO in this paper.
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IV. CHANNEL ESTIMATION WITHOUT WIDEBAND EFFECTS

We first consider the special case with negligible wideband-effects and apply a successive

beam training strategy to perform the channel estimation procedure.5 When the phase shifts

inside {Φk(θl, ϕl)} in (17) approximate to ones, i.e., the array size or system bandwidth is not

large enough, the steering vectors in (16) approximate those in (14), and the channel matrix (17)

at the kth subcarrier within an arbitrary time slot simplifies to

Hk =
L∑
l=1

αle
−j2πfkτlams(θl)a

T
bs(ϕl). (20)

A. Beam Training Scheme

We employ K subcarriers for beam training.6 Without prior CSI information, we apply a

frequency-flat training beamforming scheme, which will subsequently help us formulate the third-

order signal tensor model. Considering that one time slot is divided into P subframes, the BS

transmits a precoded pilot signal fp = FAFD,psp ∈ CNbs with FA ∈ CNbs×Mbs , FD,p ∈ CMbs×Nd ,

sp ∈ CNd at the pth subframe.7 The MS employs a measurement vector wq = WAwD,q ∈ CNms

with WA ∈ CNms×Mms , wD,q ∈ CMms at the qth stream to combine the received signal, yielding

yk,q,p = wT
q Hkfp +wT

q nk,q,p, (21)

where nk,q,p ∈ CNms is the noise vector.

We assume that the MS activates Q ≤ Mms parallel streams to simultaneously combine the

received training signal, yielding

yk,p = WTHkfp + d(WTNk,p), (22)

where yk,p = [yk,1,p, . . . , yk,Q,p]
T ∈ CQ; W , [w1, . . . ,wQ] ∈ CNms×Q contains the measurement

combiners, and Nk,p = [nk,1,p, . . . ,nk,Q,p] ∈ CNms×Q.

5In this section, both the beam training and signal processing are performed within a single time slot. Hence, the subscript t

of the channel matrix or path gain is omitted for notation simplicity.

6In this work, we adopt a comb-type pilot arrangement, where successive subcarriers with indices k ∈ I(K) are selected for

beam training.

7If FD,p is frame-invariant and P ≥ Nd, one can utilize frequency-dependent orthogonal pilots Sk , [sk,1, . . . , sk,P ] ∈
CNd×P at the kth subcarrier to better control the peak-to-average power ratio, which can be removed at the MS end via

multiplying the received signal matrix by SH
k .
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We assume that the BS successively switches the precoded pilots fp at P subframes within a

single time slot, leading to the received training signals as

Yk = WTHkF+Nk, (23)

where Yk = [yk,1, . . . ,yk,P ] ∈ CQ×P denotes the training signal matrix at the kth subcarrier;

F , [f1, . . . , fP ] ∈ CNbs×P contains the precoded pilot signals, and Nk ∈ CQ×P is the equivalent

combined noise.

By substituting the channel coefficients of (20) into (23), we rewrite the received signal as

Yk =
L∑
l=1

αle
−j2πfkτlWTams(θl)a

T
bs(ϕl)F+Nk

=
L∑
l=1

αle
−j2π kfs

K0
τl ãms(θl)ã

T
bs(ϕl) +Nk, (24)

where ãms(θ) , WTams(θ) ∈ CQ and ãbs(ϕ) , FTabs(ϕ) ∈ CP are the equivalent steering

vectors after combining and precoding, respectively.

By concatenating the received data at K subcarriers, we can derive a third-order tensor Y ∈
CQ×P×K with its (q, p, k)th entry given by [Yk]q,p, whose three modes stand for the combining

data streams, the precoding subframes and the training subcarriers, respectively. According to

(24), we note that each slice Yk of tensor Y can be viewed as a weighted sum of a set of

rank-one outer products. Hence, the tensor Y admits the CP model, which can be expressed as

Y =
L∑
l=1

ãms(θl) ◦ ãbs(ϕl) ◦ (αlg(τl)) +N , (25)

where N ∈ CQ×P×K is the tensor form of noise; and

g(τ) ,
[
e
−j2π fs

K0
τ
, . . . , e

−j2πKfs
K0

τ
]T

, (26)

which can be seen as a frequency-domain steering vector pointing towards the time delay τ .

Due to the sparse scattering nature of mmWave channels, the number of paths L is commonly

small relative to the dimensions of tensor. Therefore, Y has an inherent low-rank characteristic,

which ensures that the CP decomposition is unique up to scaling and permutation ambiguities. An

estimation of channel parameters {θl, ϕl, αl, τl} can be obtained by analyzing the factor matrices
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of (25), which are defined as

B(1) , [ãms(θ1), . . . , ãms(θL)] ∈ CQ×L, (27a)

B(2) , [ãbs(ϕ1), . . . , ãbs(ϕL)] ∈ CP×L, (27b)

B(3) , [α1g(τ1), . . . , αLg(τL)] ∈ CK×L. (27c)

B. Uniqueness Condition

We now elaborate on the uniqueness condition of CP decomposition, which guarantees that the

derived factor matrices contain the accurate information of channel parameters. We first present

a well-known sufficient uniqueness condition as follows [31].

Lemma 2. Let X ∈ CI1×I2×I3 be a tensor with factor matrices A(n) ∈ CIn×R, n ∈ {1, 2, 3}.8 If

kr(A(1)) + kr(A(2)) + kr(A(3)) ≥ 2R + 2, (28)

then the rank of X is R, and the CP decomposition is unique. In the generic case,9 condition

(28) becomes

min(I1, R) + min(I2, R) + min(I3, R) ≥ 2R + 2. (29)

Lemma 2 indicates that each factor matrix must have a Kruskal-rank greater than one, which

means that there exist no linear dependent columns. By ingeniously designing the beamforming

matrices W and F, this uniqueness condition can be satisfied.

Leveraging the structural characteristic inside the tensor contributes to the relaxation of unique-

ness condition [24]. In our case, we find that the factor matrix B(3) has a Vandermonde nature

due to the shift-invariant vectors {g(τl)}Ll=1, where the generators are {zl , e−j2πfsτl/K0}Ll=1.

By utilizing the spatial smoothing, we can obtain a relaxed uniqueness condition of CP

decomposition as follows [14], [15], [24]

Theorem 1. Let X ∈ CI1×I2×I3 be a tensor with factor matrices A(n) ∈ CIn×R, n ∈ {1, 2, 3}.
Let A(1) be Vandermonde matrix with distinct generators {zr}Rr=1. If r

(
A(K1−1,1) ⊙A(2)

)
= R,

r
(
A(L1,1) ⊙A(3)

)
= R,

(30)

8Since the scaling weights Λ can be incorporated into the factor matrices, we assume that Λ = IR without loss of generality.

9A generic property means that it holds with probability one when the entries of factor matrices are drawn from absolutely

continuous probability density functions.
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with K1 + L1 = I1 + 1, then the rank of X is R and the CP decomposition is unique. In the

generic case, condition (30) becomes

min
K1+L1=I1+1

((K1 − 1)I2, L1I3) ≥ R. (31)

Note that Theorem 1 does not prevent kr(A(2)) = 1 and/or kr(A(3)) = 1, and even allows

I2 = 1 or I3 = 1. In our case, the uniqueness holds even for the circumstances that some

channel paths share the same AoD and/or AoA. Furthermore, Theorem 1 allows us to deal with

CP decomposition problem with minm̸=n ImIn < R. In contrast, minm̸=n ImIn ≥ R is necessary

for unique decomposition of common CP models without structural constraints.

C. Proposed Algorithm

If the tensor rank is unknown, we need a preliminary step to determine it for the realization

of CP decomposition. Assuming that the beamformed noise N in (25) follows an i.i.d. Gaussian

distribution and is independent of Y , we adopt a minimum description length (MDL) method

to estimate the number of signal path components L [32], [33].

We perform mode-1 unfolding on Y by (1), and compute the eigenvalue decomposition (EVD)

of the sample covariance matrix as

Σ̂Y(1)
, 1

PK
Y(1)Y

H
(1) = V1Λ1V

H
1 , (32)

where Λ1 , D([λ1,1, . . . , λ1,Q]
T ) contains the eigenvalues in descending order, and V1 ∈ CQ×Q

contains the corresponding eigenvectors. The matrix rank of Y(1) ∈ CQ×PK can be estimated

by the MDL criterion as

L̂1 = argmin
ℓ

ℓ

2
(2Q− ℓ) log(PK)− log

 ∏Q
i=ℓ+1 λ

1
Q−ℓ

1,i

1
Q−ℓ

∑Q
i=ℓ+1 λ1,i

PK(Q−ℓ)

. (33)

The ranks L̂2, L̂3 can be obtained by similarly applying (32), (33) to the mode-2, 3 unfolding

Y(2),Y(3) respectively. The tensor rank can be estimated as L̂ = min{L̂n}3n=1. Moreover, one can

incrementally utilize the eigenvalues {Λn}3n=1 to develop a sequential detection MDL procedure

[32].

We turn to the realization of CP decomposition (25), which can be accomplished by solving

min
B̂(1),B̂(2),B̂(3)

∥∥∥∥∥∥Y −
L̂∑
l=1

b̂
(1)
l ◦ b̂

(2)
l ◦ b̂

(3)
l

∥∥∥∥∥∥
2

F

, (34)
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where b̂
(n)
l is the column of the estimated factor matrices B̂(n). The most common algorithm of

CP decomposition, i.e., TALS [13], [22], sequentially updates one of the factor matrices to its

least squares (LS) solution, fixing the other two matrices until convergence as

B̂
(1)
[i+1] = argmin

B̂(1)

∥∥∥YT
(1) −

(
B̂

(3)
[i] ⊙ B̂

(2)
[i]

)
B̂(1)T

∥∥∥2
F
, (35a)

B̂
(2)
[i+1] = argmin

B̂(2)

∥∥∥YT
(2) −

(
B̂

(3)
[i] ⊙ B̂

(1)
[i+1]

)
B̂(2)T

∥∥∥2
F
, (35b)

B̂
(3)
[i+1] = argmin

B̂(3)

∥∥∥YT
(3) −

(
B̂

(2)
[i+1] ⊙ B̂

(1)
[i+1]

)
B̂(3)T

∥∥∥2
F
, (35c)

where B̂
(n)
[i] is the updated version of B̂(n) during the ith iteration. The main drawbacks of the

TALS and its modified versions [34], [35] are: (i) the convergence speed of this iterative method

is relatively slow, which incurs high burden of computational complexity; (ii) the alternating

result heavily depends on the initialization state, which may converge to a biased local optimal

solution. Moreover, the TALS method does not consider the intrinsic structure of factor matrices,

which are usually a priori known to the system [13]–[17]. By exploiting the Vandermonde nature

of B(3), we develop an improved channel parameter estimation scheme aided by the SCPD

algorithm according to Theorem 1.

We define an integer pair (K3, L3) subject to K3 + L3 = K + 1, and modify the selection

matrices in (8) as Jl3 , [ 0K3×(l3−1) IK3
0K3×(L3−l3) ] ⊗ IP , l3 ∈ I(L3). Then, we sequentially

perform mode-1 unfolding and spatial smoothing on Y by (1) and (8) respectively, yielding

YS , S1
(
YT

(1)

)
=
(
B(K3,3) ⊙B(2)

) (
B(L3,3) ⊙B(1)

)T
+NS , (36)

where NS ∈ CK3P×L3Q is the noise matrix. We then follow [14], [15], [24] and employ an

ESPRIT-like approach to recover the factor matrices. The relationship between the estimated

factor matrix B̂(n) and the real one is represented as (L̂ = L)

B̂(n) = B(n)ΛnΠL + En, n ∈ {1, 2, 3} (37)

where Λn ∈ CL×L is the unknown nonsingular diagonal scaling ambiguity matrix, which satisfy∏3
n=1Λn = IL; ΠL ∈ CL×L is an unknown permutation matrix that can be ignored since it is

common to all factor matrices; En ∈ CL×L is the estimation error matrix.

After completing the tensor decomposition, we turn to the estimation of multipath parameters.

First, the time delays {τ̂l} can be directly obtained from the estimated generators {ẑl} as

τ̂l =
jK0

2πfs
log ẑl = −

K0

2πfs
]ẑl, (38)
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where ] denotes the phase angle extraction operator.

Then, the estimated AoA/AoDs can be derived by a correlation-based strategy as follows:10

θ̂l = argmax
θ

|b̂(1)H
l ãms(θ)|2

∥b̂(1)
l ∥2∥ãms(θ)∥2

, (39a)

ϕ̂l = argmax
ϕ

|b̂(2)H
l ãbs(ϕ)|2

∥b̂(2)
l ∥2∥ãbs(ϕ)∥2

, (39b)

which can be solved by the one-dimensional searching method. Interestingly, considering the

ULA geometries, the solution can also be derived by a polynomial method [23]. Denoting the

steering vector ams(θ) as z(h) = [1, h, . . . , hNms−1]T with h , e−j2πθ, we rewrite (39a) as

ĥl =argmin
h

(
1− |b̂(1)H

l WTz(h)|2

∥b̂(1)
l ∥2∥WTz(h)∥2

)

=argmin
h

zH(h)W∗
(
∥b̂(1)

l ∥2I− b̂
(1)
l b̂

(1)H
l

)
WTz(h)

∥b̂(1)
l ∥2zH(h)W∗WTz(h)

 . (40)

Let Tl = W∗
(
∥b̂(1)

l ∥2I− b̂
(1)
l b̂

(1)H
l

)
WT , the numerator in (40) can be further expressed as a

polynomial with respect to h as

zH(h)Tlz(h) =
Nms−1∑

k=−Nms+1

( ∑
j−i=k

[Tl]i,j

)
hk. (41)

Since all the (Nms − 1) pairs of roots for (41) are solutions of the minimization problem (40),

we can estimate the AoAs {θ̂l} by searching over the normalized (Nms − 1) roots with unit

amplitudes denoted by {νn}n∈I(Nms−1). The solution of AoDs {ϕ̂l} can be similarly derived.

This approach introduces an extra polynomial root calculation to discretize the searching range.

Finally, we substitute the estimated θ̂l and ϕ̂l back to ãms(·) and ãbs(·), respectively. Combining

the definitions (27) and relationship (37), we can estimate the scaling ambiguities as well as the

complex gains {α̂l} with a LS criterion as

[Λ1]l,l = ã†
ms(θ̂l)b̂

(1)
l , [Λ2]l,l = ã†

bs(ϕ̂l)b̂
(2)
l ,Λ3 = Λ−1

1 Λ−1
2 ,

α̂l = [Λ3]
−1
l,l g(τl)

†b̂
(3)
l . (42)

10Assuming that the estimation error of factor matrices follows an i.i.d. symmetric Gaussian distribution, this scheme is proved

to be a maximum likelihood estimator [22].
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Algorithm 1 SCPD Algorithm
Require: observation signal tensor Y ∈ CQ×P×K .

1: Estimate the tensor rank L̂ by the MDL criterion (32), (33).

2: Define (K3, L3) subject to K3+L3 = K+1. Derive the spatial smoothing YS ∈ CK3P×L3Q

by (36).

3: Compute singular value decomposition (SVD) as YS = UΣVH .

4: Build submatrices of U as U1 = [U]1:(K3−1)P,:, U2 = [U]P+1:K3P,:.

5: Compute EVD as U†
1U2 = MZM−1.

6: Estimate the normalized generators as ẑl = [Z]l,l, ẑl ← ẑl/|ẑl|.
7: Reconstruct B̂(3) as b̂

(3)
l = [ẑl, ẑ

2
l , . . . , ẑ

K
l ]T .

8: Reconstruct B̂(2) as b̂
(2)
l =

(
b̂
(K3,3)H
l ⊗ IP

)
Uml.

9: Compute T = M−T , and reconstruct B̂(1) as b̂
(1)
l =

(
b̂
(L3,3)H
l ⊗ IQ

)
V∗Σtl.

10: Estimate the path time delays {τl}, AoAs {θ̂l} and AoDs {ϕ̂l} by (38), (39a) and (39b),

respectively.

11: Estimate the scaling ambiguities {Λn} and path complex gains {α̂l} by (42).

12: return estimated multipath parameters {θ̂l, ϕ̂l, α̂l, τ̂l} and channel matrices {Ĥk}.

We summarize the tensor decomposition-based channel estimation scheme, i.e., SCPD, as Algo-

rithm 1, which only harnesses standard linear algebra and avoids the iterative runs and unstable

random initialization. Moreover, the SCPD algorithm is guaranteed to return the correct solution

for the noiseless case.

One may choose the pair (K3, L3) as defined in Algorithm 1 such that the dimensions of the

matrices B(K3,3)⊙B(2) and B(L3,3)⊙B(1) are similar, with the inequalities K3−1 ≥ ⌈L/P ⌉ , L3 ≥
⌈L/Q⌉ satisfied. At the cost of computational complexity, one can process the Y with multiple

pairs of (K3, L3) and calculate the average values of recovered parameters to reduce the variance

of estimation error. When the number of training subcarriers K is of moderate size, one can

even try all possible pairs, i.e., let K3 vary from 2 to K, to process the received signal tensor,

which is still more efficient than an optimization-based method, such as TALS [26].
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V. CHANNEL ESTIMATION WITH DUAL-WIDEBAND EFFECTS

For the case with significant dual-wideband effects, the spatial-frequency steering vectors

ams,k(θ) and abs,k(ϕ) in (16) are frequency-dependent. Unfortunately, the multi-carrier beam

training data of (17) cannot be decoupled into three independent dimensions, and, hence, does

not admit the CP decomposition model. In this section, we design a channel estimation scheme

across multiple time slots to formulate the CP model.

A. Beam Training Scheme

Similar as the beam training (21)–(23), the BS switches P precoding vectors within a single

time slot, and the MS combines the received signal with Q measurement streams. This procedure

is duplicated across consecutive T time slots, yielding the received signal at the kth subcarrier

within the tth time slot as

Yt,k = WTHt,kF+Nt,k

=
L∑
l=1

αt,le
−j2πfkτl ãms,k(θl)ãbs,k(ϕl) +Nt,k, (43)

where ãms,k(θ) , WTams,k(θ) ∈ CQ and ãbs,k(ϕ) , FTabs,k(ϕ) ∈ CP are the combined and

precoded steering vectors at the kth subcarrier, respectively; Nt,k ∈ CQ×P is the combined noise.

Concatenating the received data {Yt,k}Tt=1, we derive a third-order tensor Yk ∈ CQ×P×T as

Yk =
L∑
l=1

ãms,k(θl) ◦ ãbs,k(ϕl) ◦ (e−j2πfkτlrl) +N k, (44)

where rl , [α1,l, . . . , αT,l]
T ∈ CT is a time slot-domain vector containing the time-varying gains

of the lth path. Then, the factor matrices for the three dimensions are denoted by

C
(1)
k , [ãms,k(θ1), . . . , ãms,k(θL)] ∈ CQ×L, (45a)

C
(2)
k , [ãbs,k(ϕ1), . . . , ãbs,k(ϕL)] ∈ CP×L, (45b)

C
(3)
k ,

[
e−j2πfkτ1r1, . . . , e

−j2πfkτLrL
]
∈ CT×L. (45c)

B. Training Beamforming Design

Typically, we adopt a random beamforming method M0 as follows

M0: [F]m,n =
1√
Nbs

ejηm,n , [W]m,n =
1√
Nms

ejξm,n , ηm,n, ξm,n ∼ U(0, 2π), (46)
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which can be implemented by analog phase shifter networks. The benefits of M0 are: (i)

the elements of C
(1)
k ,C

(2)
k follow i.i.d. CN (0, 1) with sufficiently large Nms, Nbs, generically

leading to kr(C
(1)
k ) = min(Q,L), kr(C(2)

k ) = min(P,L) in Lemma 2 [22]; (ii) the elements of

beamformed noise N k follow i.i.d. CN (0, σ2
n), contributing to the MDL operation (33). However,

C
(1)
k ,C

(2)
k lose the shift-invariance feature of ams,k(θ), abs,k(ϕ). Since C

(3)
k is generically not

Vandermonde, Algorithm 1 cannot be directly applied to Yk now.

We can exploit the shift-invariance property of ams,k(θ), abs,k(ϕ) by carefully designing the

training beamformers. At the MS end, for example, we can apply the following beamforming

method M1:

M1: W ,
[
W W

]
wq , [w1,q, . . . , wNms−1,q, 0]

T ,

wq , [0, w1,q, . . . , wNms−1,q]
T , q ∈ I(Q/2), (47)

which leverages the shift-invariance property of ams,k(θ) as

WTams,k(θ) = W
T
ams,k(θ)e

−j2π
(
1+

fk
fc

)
θ
. (48)

With this structure, we can derive a new uniqueness condition of CP decomposition (See Section

V. C). To realize M1 with hybrid beamformers WA ∈ CNms×Mms ,WD ∈ CMms×Q, we have
wT

A,{Nms}wD,q = 0, q ∈ I(Q/2)

wT
A,{1}wD,q+Q/2 = 0, q ∈ I(Q/2)

wT
A,{n}wD,q = wT

A,{n+1}wD,q+Q/2, n ∈ I(Nms − 1), q ∈ I(Q/2),

(49)

where wT
A,{n} denotes the nth row of WA. Given WA with unit-norm elements, (49) is equivalent

to a set of homogeneous linear equations with (Nms + 1)Q/2 equations and MmsQ unknowns.

Hence, we can derive a solution of (49) if and only if Mms > (Nms + 1)/2.

Since M1 cannot be combined with the spatial smoothing technique, we can employ another

beamforming method M2 as follows

M2: W ,
[
IQ 0Q×(Nms−Q)

]T
. (50)

Clearly,M2 extracts the first Q elements and discards the rest, i.e., WTams,k(θ) = [ams,k(θ)]1:Q.

It preserves a complete Vandermonde structure with generators
{
z1,k,l , e−j2π(1+fk/fc)θl

}
at the
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expense of losing a portion of training signal. The hybrid beamforming can be realized as [10]

WD =
1√
Mms

[
ū1 . . . ūQ

]
,

WA =
[
WD ūMms11×(Nms−Q)

]H
, (51)

where Q = Mms − 1; ūn is the nth column of a unitary DFT matrix U ∈ CMms×Mms . Similarly,

M2 can be applied at the BS end with P = Mbs − 1, yielding a Vandermonde C
(2)
k with

generators
{
z2,k,l , e−j2π(1+fk/fc)ϕl

}
.

C. Uniqueness Condition

If the MS employs the beamforming M1, we propose the following uniqueness condition.

Proposition 1. Let X ∈ CI1×I2×I3 be a tensor with factor matrices A(n) ∈ CIn×R, n ∈ {1, 2, 3}.
Let A(1) = WTB, where B ∈ CJ1×R is a Vandermonde matrix with distinct generators {zr}Rr=1

and W ∈ CJ1×I1 , J1 ≥ I1 is a weighting matrix with a form of (47). If r
(
A(I1/2,1) ⊙A(2)

)
= R,

r
(
A(3)

)
= R,

(52)

then the rank of X is R and the CP decomposition is unique. In the generic case, condition (52)

becomes

min (I1I2/2, I3) ≥ R. (53)

Proof: The proof of Proposition 1 similarly follows that of [24, Proposition III.2]. The

only difference is the submatrix definition of singular space of X[2], i.e., X[2] = UΣVH , U1 =

[U]1:I1I2/2,:,U2 = [U]I1I2/2+1:I1I2,:.

If both the MS and BS employ method M2, factorizing Yk is equivalent to solving a

two-dimensional harmonic retrieval problem with multiple snapshots [36], [37]. Therefore, by

leveraging the concept of forward-backward smoothing [28], [29], [36], we obtain the following

uniqueness condition.

Theorem 2. Let X ∈ CI1×I2×I3 be a tensor with factor matrices A(n) ∈ CIn×R, n ∈ {1, 2, 3}. Let

A(1) and A(2) be Vandermonde matrices with generators {z1,r , ejω1,r}Rr=1 and {z2,r , ejω2,r}Rr=1,

respectively. Define

B ,

 A(K1,1) ⊙A(K2,2) ⊙A(3)

A(L1,1) ⊙A(L2,2) ⊙A(3)∗D(ω)

 , (54)
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where [ω]r , e−j((I1−1)ω1,r+(I2−1)ω2,r), r ∈ I(R). If
z1,r1 ̸= z1,r2 ,∀r1 ̸= r2,

r
(
A(K1−1,1) ⊙A(K2,2)

)
= R,

r (B) = R,

(55)

with Kn+Ln = In+1, n ∈ {1, 2}, then the rank of X is R and the CP decomposition is unique.

In the generic case, condition (55) becomes

min
Kn+Ln=In+1

n∈{1,2}

((K1 − 1)K2, 2L1L2I3) ≥ R. (56)

Theorem 2 does not prevent kr(A(1)) = 1 or kr(A(2)) = 1 and/or kr(A(3)) = 1. In our case,

the uniqueness holds even for the circumstances that the path complex gains are time-invariant.

D. Proposed Algorithm

If the MS employs beamforming M1 or M2, one can similarly follow [1] or Algorithm 1

respectively to solve the channel estimation problem. Here we consider the case that both the MS

and BS employM2. We define (K1, L1), (K2, L2) subject to K1+L1 = Q+1, K2+L2 = P +1.

Then, we obtain the matricization Y
[2]
k from Y by (4), and define Ỹ

[2]
k as follows

Y
[2]
k ,

(
C

(1)
k ⊙C

(2)
k

)
C

(3)T
k +N

[2]
k ,

Ỹ
[2]
k , ΠY

[2]∗
k =

(
C

(1)
k ⊙C

(2)
k

)
D(zk)C

(3)H
k + Ñ

[2]
k , (57)

where [zk]l , (z∗1,k,l)
Q−1(z∗2,k,l)

P−1, l ∈ I(L); Π ∈ CQP×QP is a permutation matrix with ones

on its antidiagonal; N[2]
k , Ñ

[2]
k ∈ CQP×T are the corresponding noise matrices. We perform spatial

smoothing (9) on Y
[2]
k and Ỹ

[2]
k respectively, yielding

YS,k , S2
(
Y

[2]
k

)
=
(
C

(K1,1)
k ⊙C

(K2,2)
k

)(
C

(L1,1)
k ⊙C

(L2,2)
k ⊙C

(3)
k

)T
+NS,k,

ỸS,k , S2
(
Ỹ

[2]
k

)
=
(
C

(K1,1)
k ⊙C

(K2,2)
k

)(
C

(L1,1)
k ⊙C

(L2,2)
k ⊙ C̃

(3)
k

)T
+ ÑS,k, (58)

where C̃
(3)
k , C(3)∗D(zk); NS,k, ÑS,k ∈ CK1K2×L1L2T are the corresponding noise matrices. By

concatenating the forward and backward smoothing results in (58), we obtain

GS,k ,
[
YS,k ỸS,k

]
=
(
C

(K1,1)
k ⊙C

(K2,2)
k

)C(L1,1)
k ⊙C

(L2,2)
k ⊙C

(3)
k

C
(L1,1)
k ⊙C

(L2,2)
k ⊙ C̃

(3)
k

T

+
[
NS,k ÑS,k

]
.

(59)
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Then, we can follow [28], [29] and employ an improved multidimensional folding (IMDF)-like

approach to estimate {C(n)
k }n∈{1,2,3}. After the factorization of (44), we turn to the parameter

recovery. If the dedicated hybrid precoding and/or combining designs are applied, then the

estimation of AoAs {θ̂l} and/or AoDs {ϕ̂l} can be directly derived from the generators of C(1)
k

and C
(2)
k respectively as

θ̂l = −
fk

2π(fc + fk)
]ẑ1,k,l, (60a)

ϕ̂l = −
fk

2π(fc + fk)
]ẑ2,k,l. (60b)

Following a similar operation as (42), the scaling ambiguity of C(n)
k , i.e., Λn,k ∈ CL×L, as well

as the equivalent path gains r̂le
−j2πfk τ̂l can be respectively computed as

[Λ1,k]l,l = ã†
ms,k(θ̂l)ĉ

(1)
k,l , [Λ2,k]l,l = ã†

bs,k(ϕ̂l)ĉ
(2)
k,l ,Λ3,k = Λ−1

1,kΛ
−1
2,k,

e−j2πfk τ̂l r̂l = [Λ3,k]
−1
l,l ĉ

(3)
k,l . (61)

If the MS or BS employs the special hybrid beamforming scheme, then its corresponding scaling

ambiguity is exactly an identity matrix. Note that carrying out the beam training (44) is sufficient

for the estimation of channel matrix Hk. However, if the exact {τ̂l} and {α̂t,l} need to be

estimated respectively, it is necessary to perform a parallel beam training on at least two different

subcarriers.

With the estimated mode-3 factor matrix Ĉ
(3)
k and its scaling ambiguity Λ3,k at arbitrary

two different subcarriers, i.e., fk1 and fk2 , we can estimate the path time delays {τ̂l} and the

time-varying path gains {α̂t,l} of T time slots as

τ̂l =−
1

2π(fk2 − fk1)
]
[(
[Λ3,k1 ]

−1
l,l ĉ

(3)
k1,l

)†(
[Λ3,k2 ]

−1
l,l ĉ

(3)
k2,l

)]
, (62a)

α̂t,l =
[
ej2πfki τ̂l [Λ3,ki ]

−1
l,l ĉ

(3)
ki,l

]
t
, t ∈ I(T ), i ∈ {1, 2}. (62b)

We can further combine the tensor decomposition results along multiple subcarriers to derive

an averaged estimation of {τ̂l} and {α̂t,l}. In this estimation scheme, the indices of training

subcarriers can be flexibly selected, which are not constrained as I(K).

For the case that the MS employsM1, we call the channel estimation scheme DWE-SCPD-0;

for the case that only the MS employs M2, we call the corresponding scheme DWE-SCPD-1;

for the case that both the MS and BS employM2, we develop a variant algorithm version called
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Algorithm 2 DWE-SCPD-2 Algorithm
Require: observation signal tensors {Yk} ∈ CQ×P×T .

1: Define pairs (K1, L1) and (K2, L2) subject to K1 + L1 = Q+ 1 and K2 + L2 = P + 1.

2: for k = 1 to K do

3: Estimate the tensor rank L̂ by the MDL criterion (32), (33).

4: Derive the forward-backward spatial smoothing GS,k ∈ CK1K2×2L1L2T by (57)–(59).

5: Compute SVD as GS,k = UkΣkV
H
k .

6: Build submatrices of Uk as Uk,1 = [Uk]1:(K1−1)K2,:, Uk,2 = [Uk]K2+1:K1K2,:.

7: Perform EVD
[
UH

k,1

UH
k,2

]
[Uk,1 Uk,2 ] =

[
Vk,11 Vk,12

Vk,21 Vk,22

]
ΛU

[
Vk,11 Vk,12

Vk,21 Vk,22

]H
, where ΛU ∈ C2L̂×2L̂

contains the eigenvalues [38], [39].

8: Perform EVD −Vk,12V
−1
k,22 = MkZkM

−1
k with submatrices Vk,12,Vk,22 ∈ CL̂×L̂.

9: Estimate the normalized generators of C(1)
k as ẑ1,k,l = [Zk]l,l, ẑ1,k,l ← ẑ1,k,l/|ẑ1,k,l|.

10: Reconstruct C(1)
k as ĉ

(1)
k,l =

[
1, ẑ1,k,l, . . . , ẑ

Q−1
1,k,l

]T .

11: Reconstruct Ĉ(K2,2)
k as ĉ

(K2,2)
k,l =

(
ĉ
(K1,1)H
k,l ⊗ IK2

)
Ukmk,l,.

12: Estimate the normalized generators of C(2)
k as

ẑ2,k,l =
[
c
(L2,2)
k,l

]†
1:L2−1

[
c
(L2,2)
k,l

]
2:L2

, ẑ2,k,l ← ẑ2,k,l/|ẑ2,k,l|.
13: Reconstruct C(2)

k as ĉ
(2)
k,l =

[
1, ẑ2,k,l, . . . , ẑ

P−1
2,k,l

]T .

14: Compute Tk = M−T
k , and reconstruct Ĉ(3)

k as ĉ(3)k,l =
(
ĉ
(L1,1)H
k,l ⊗ ĉ

(L2,2)H
k,l ⊗ IT

)
V∗

kΣktk,l.

15: Estimate the AoAs {θ̂l} and AoDs {ϕ̂l} by (60a) and (60b), respectively.

16: Estimate the scaling ambiguities {Λn,k} by (61).

17: end for

18: Estimate the path time delays {τ̂l} and complex gains {α̂t,l} by (62).

19: return estimated multipath parameters {θ̂l, ϕ̂l, α̂t,l, τ̂l} and channel matrices {Ĥt,k}.

DWE-SCPD-2 following Theorem 2, which is summarized as Algorithm 2. The suffix “-0/-1/-2”

corresponds to the number of Vandermonde factor matrices of Yk in each scheme.

VI. NUMERICAL RESULTS

A. Computational Complexity

The tensor rank determination (32), (33) is common for all the channel estimation algorithms,

which has a computational complexity O(QPK2). The complexity of subsequent steps of
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TABLE I

COMPUTATIONAL COMPLEXITY OF ALGORITHM 1

Main Steps Computational Complexity

3: Compute SVD of YS O(K3L3QPL)

5: Compute EVD of U†
1U2 O(K3PL2)

7: Reconstruct B̂(3) O(KL)

8: Reconstruct B̂(2) O(K3PL2)

9: Reconstruct B̂(1) O(L3QL2)

10: Estimate {τ̂l, θ̂l, ϕ̂l} O((Q3 + P 3)L)

11: Estimate {αl} O((Q+ P +K)L)

Total O(K3L3QPL)

Algorithm 1 is listed in Table I, where step 3 has a dominating complexity O(K3L3QPL).11 The

total complexity of Algorithm 2 is dominated by O(K1K2L1L2TLK), which approximates to

O(QPTLK). As a comparison, the complexity of TALS algorithm [26] for the case with dual-

wideband effects is O(NiterQPTLK) with a commonly large number of iterations Niter. The com-

plexity of simultaneous weighted-OMP (SW-OMP) method [6] is of order O(QPTK(N1+N2))

with commonly large numbers of AoA/AoD grids N1/N2. Therefore, our proposed algebraic

algorithms can be employed at mobile terminals for fast channel estimation.

B. Simulation Results

In this section, we present simulation results to examine the estimation performance of the

proposed schemes. Typical values are set as follows: The antenna array sizes for data transmission

are set as Nt = 64, Nr = 32; the number of RF chains are set as Mms ≥ Q,Mbs ≥ P ; the total

number of subcarriers is set as K0 = 128; the number of channel paths is L = 4;12 the delay

spreads follow i.i.d. U(0, 10−7 sec).

11With different values of (K3, L3), the complexity varies from O(QPKL) to O(QPK2L/4).

12In order to better evaluate the channel parameter estimation performance, the tensor rank L is assumed to be known or

perfectly estimated a priori in this simulation.
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Fig. 3. MSE performance of multipath parameters vs. system SNR, Q = P = K = 6, fs = 0.32 GHz.

1) Performance Without Dual-Wideband Effects: We first consider the case with negligible

dual-wideband effects, where the carrier frequency is set as fc = 60 GHz.

We evaluate the estimation accuracy of the multipath parameters {ϑl, φl, αl, τl} measured by

the mean square error (MSE). To provide a benchmark, we derive the CRB of each parameter

as a lower bound of unbiased estimators [40]. Fig. 3 plots the MSE and CRB curves versus the

receiving signal-to-noise ratio (SNR) ∥Y−N ∥2F/∥N ∥2F , where the proposed SCPD is compared

with TALS [26] and COMFAC [27]. It indicates that the performance of SCPD is exponentially

improved against the increasing SNR. Specifically, the MSE of time delay is relatively close to its

CRB, while the gap between the MSE and CRB of path gain is relatively wider due to the error

accumulation effect. Moreover, the proposed SCPD consistently outperforms the counterparts,

especially in terms of the estimation accuracy of path gain.

Then, we focus on the overall estimation performance of channel matrices measured by

the normalized MSE (NMSE)
∑K

k=1 ∥Ĥk − Hk∥2F/
∑K

k=1 ∥Hk∥2F . Fig. 4 depicts the NMSE

curves versus the system SNR obtained by the SCPD, TALS and COMFAC methods with

Q = P = K = 6. Moreover, the SW-OMP [6] and the hierarchical codebook method [7] with



26 JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH 2019

256×256 grids are also simulated. The tensor-OMP [17] is a tensorial variant of SW-OMP, while

the tensor-minimum MSE [17] does not return accurate estimation results under our simulation

configuration. It indicates that the SCPD achieves improved performance against the increasing

SNR, which systematically outperforms the counterparts. Moreover, as fs increases from 0.32

GHz to 1.28 GHz, the tensor-based strategies advance their performance by nearly one order

of magnitude. This can be explained as follows: the increasing fs or decreasing K0 enlarges

the subcarrier interval as well as the statistical phase distances of generators {zl = e
−j2π fs

K0
τl}.

This phenomenon enhances the resolution across the time delay domain, which we call a phase

rarefaction effect. We also infer that as the distribution of {2πfsτl/K0} broadens to U(0, 2π),
the parameter-based schemes achieve optimized performance, which has been validated by

simulations not presented here due to the space constraints.

Fig. 5 plots the NMSE curves versus the number of training subcarriers K with Q = P = 6

and SNR = 20 dB. It illustrates that as K increases, the tensor-based methods achieve better

performance, while the CS-based and codebook-based methods improve little. With higher

sampling rate fs, the SCPD scheme returns lower NMSE, which corroborates the inference from

Fig. 4. It also shows that with large values of fs, increasing K leads to limited advancement to

the performance of TALS and COMFAC.
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Fig. 4. NMSE performance of channel matrices vs. system

SNR, Q = P = K = 6.
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Fig. 5. NMSE performance of channel matrices vs. number of

training subcarriers, Q = P = 6, SNR = 20 dB.

Fig. 6 and Fig. 7 plot the NMSE curves versus the number of precoding subframes and
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measurement RF chains, respectively, where K = 6 and SNR = 20 dB. It demonstrates that

increasing training measurements, i.e., Q and P , contribute to the improvement of estimation

performance, which corroborates to the analysis of the uniqueness condition.
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Fig. 6. NMSE performance of channel matrices vs. number of

transmitting subframes, Q = K = 6, SNR = 20 dB.
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Fig. 7. NMSE performance of channel matrices vs. number of

receiving measurements, P = K = 6, SNR = 20 dB.

2) Performance With Dual-Wideband Effects: We now turn to the case with significant dual-

wideband effects, where the NMSE metric of channel matrices for the DWE-SCPD scheme is

mink

∑T
t=1 ∥Ĥt,k −Ht,k∥2F/

∑T
t=1 ∥Ht,k∥2F .

Fig. 8 depicts the NMSE curves of DWE-SCPD schemes versus the system SNR with Q =

P = T = K = 6, fc = 4 GHz, which is compared with the TALS, COMFAC and SCPD. It

shows that as the SNR tends to larger levels, the performance of TALS, COMFAC and SCPD

hits a bottleneck, which comes from the interference of dual-wideband effects. With identi-

cal SNR level, DWE-SCPD-1 outperforms DWE-SCPD-2. This gap comes from the different

beamforming method employed by the BS, where M2 discards a portion of the useful signal

data and becomes more noise-sensitive thanM0. DWE-SCPD-0 suffers from noise interference,

especially in the low-SNR region. This can be attributed to the finely designed structure of

M1 in (47) that is extremely sensitive to disturbance, i.e., noise with even small power may

cause serious deviation of (48), which results in deteriorating estimation performance of the

multipath parameters, as well as, channel matrices. Furthermore, in the low-SNR region, the

SCPD schemes achieve better performance than DWE-SCPD; this is due to the fact that the
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factor matrix B(3) in (27c) contributes more structure information than C
(3)
k in (45c) to the CP

decomposition procedure.

Fig. 9 plots the NMSE curves of DWE-SCPD versus the number of training time slots T

with fc = 4 GHz and SNR = 20 dB. It illustrates that as T increases, the DWE-SCPD schemes

obtain greater performance, where DWE-SCPD-1 outperforms DWE-SCPD-2, corroborating the

noise-sensitive property of specially designed beamformers. Moreover, the NMSEs of DWE-

SCPD schemes versus the number of measurements {Q,P} similarly follow the tendency of

channel estimation performance curves in Fig. 6 and Fig. 7. These results are omitted due to

space limitation.
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Fig. 8. NMSE performance of channel matrices vs. system

SNR, Q = P = T = K = 6, fc = 4 GHz.
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Fig. 9. NMSE performance of channel matrices vs. number of

training time slots, Q = P = K = 6, fc = 4 GHz, SNR = 20

dB.

Fig. 10 depicts the NMSE curves versus the carrier frequency fc with Q = P = T = K = 6

and SNR = 30 dB. It shows that with the same carrier frequency fc, as the bandwidth fs increases,

SCPD, TALS and COMFAC yield improved performance, which aligns with the observation in

Fig. 4. Meanwhile, with the identical fs, as fc decreases, their NMSE performance gradually

deteriorates. This phenomenon follows from the fact that decreasing fc aggravates the dual-

wideband effects {e−j2πfkθl/fc , e−j2πfkϕl/fc} in (16). We also observe that with extremely low

levels of fc, the negative impact from dual-wideband effects on the performance of SCPD etc.

even suppresses the positive impact from the phase rarefaction effect. In contrast, the DWE-SCPD
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schemes work robustly across different carrier frequencies.

Fig. 11 plots the NMSE curves versus the transmission bandwidth fs with SNR = 30 dB. It

shows that as fs rises from small values to medium values, the SCPD, TALS and COMFAC

schemes achieve improved performance, owing to the phase rarefaction effect observed in Fig.

4. As fs increases to extremely large values, their performance gradually deteriorates due to

the aggravation of dual-wideband effects. More specifically, it shows that with lower carrier

frequency, the inflection points of the NMSE curve tend to smaller values of transmission

bandwidth. In contrast, the performance of DWE-SCPD schemes is not sensitive to the varying

bandwidth.
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Fig. 10. NMSE performance of channel matrices vs. carrier

frequency, Q = P = T = K = 6, SNR = 30 dB.
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Fig. 11. NMSE performance of channel matrices vs. transmis-

sion bandwidth, Q = P = T = K = 6, SNR = 30 dB.

VII. CONCLUSIONS

In this paper, we have researched the critical dual-wideband effects in mmWave massive

MIMO scenarios, and derive a new spatial-frequency channel model. We developed a tensor

decomposition-based scheme to estimate the channel parameters for the MIMO-OFDM systems.

We formulated the training signal as a third-order tensor fitting the CP model with factor matrices

containing channel parameters. We leveraged both the special Vandermonde constraint and spatial

smoothing method to develop a structured CP decomposition-based channel estimation scheme.

Two dedicated algorithm versions with particular tensor processing procedures were proposed
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for the cases with negligible and severe dual-wideband effects, respectively. The uniqueness of

structured CP decomposition is guaranteed with relaxed system parameter constraints. Numerical

results showed that the proposed channel estimation strategy outperforms the traditional scheme

in terms of estimation accuracy and computational complexity. The dual-wideband effects-

oriented scheme achieves robust performance against the carrier frequency and bandwidth. On

the other hand, our proposed scheme against dual-wideband effects has some drawbacks. For

instance, the specially designed beamformers are proved to worsen the performance. Meanwhile,

they do not benefit much from the phase rarefaction effect due to its frequency-independent

property. These issues are the directions that we are going to pursue in our future work.

REFERENCES

[1] Y. Lin, S. Jin, M. Matthaiou, and X. You, “Structured tensor decomposition-based channel estimation for wideband

millimeter wave MIMO,” in Proc. Asilomar Conf. Signals, Syst., Comput., Dec. 2019.

[2] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag., vol. 49, no. 6,

pp. 101–107, Jun. 2011.

[3] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-wave cellular wireless networks: Potentials and challenges,” P.

IEEE, vol. 102, no. 3, pp. 366–385, Mar. 2014.

[4] A. L. Swindlehurst, E. Ayanoglu, P. Heydari, and F. Capolino, “Millimeter-wave massive MIMO: The next wireless

revolution?,” IEEE Commun. Mag., vol. 52, no. 9. pp. 56–62, Sept. 2014.
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