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ABSTRACT
With the rise of short video platforms, a large amount of video data
is generated daily. These videos vary in quality and are not well-
tagged. How to fully utilize the multimodal information in videos,
bridge the differences betweenmodalities, and achieve precise video
retrieval is a major challenge currently faced in the field of video
retrieval. This paper presents a novel approach to multimodal video
retrieval, aiming to boost search precision by incorporating visual,
textual, and audio information through the CLIP model and T5.
Tackling the issue of retrieving pertinent content from extensive,
untagged video repositories, we propose a method that fuses multi-
modal data through innovative feature extraction and alignment
techniques. Our method showcases performance are close to the
current state-of-the-art, showcasing its effectiveness in improving
search accuracy on MSR-VTT benchmark.

CCS CONCEPTS
• Computing methodologies → Computer vision tasks; Com-
puter vision problems; Search methodologies.

KEYWORDS
Multi modal fusion, CLIP, Video retrieval, Modal alignment, Video
summarizes
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1 INTRODUCTION
Video retrieval is a process of finding videos of interest from a vast
amount of videos stored in a database. With the explosive growth
of digital video content, video retrieval has become a key technol-
ogy in multiple fields such as media [16], education [22], security
monitoring [5], and entertainment. A massive number of videos are
produced and uploaded online through multiple platforms, includ-
ing YouTube and Instagram. These platforms require a significant
number of tags during upload. However, there are plethora of online
platforms or online video libraries where videos are uploaded daily
lacking comprehensive metadata or tags. In this scenario, a text-
based search leads to inaccuracies and ineffective video retrieval.
Another issue with untagged videos is homogenization, meaning
same video clip exists with different names.

Multimodal video retrieval [8] is a technique that uses multiple
information modalities within a video for retrieval. This method
aims to enhance the accuracy and efficiency of video retrieval by
integrating various aspects of video content to the video represen-
tation. Multimodal video retrieval typically includes visual (images,
scenes, object recognition, and visual features such as color, shape,
and motion within the video), audio (speech recognition, music de-
tection, environmental sound recognition, and emotional analysis),
textual content (textual information that may be contained in the
video, such as subtitles, comments, tags, and descriptive metadata),
and social and contextual information (additional data about the
video, such as the uploader, view counts, likes, and user feedback).

CLIP (Contrastive Language–Image Pre-training) [19] primarily
contributes to multimodal data understanding by training a model
that understands the relationships between image content and cor-
responding textual descriptions through contrastive learning on
a massive scale of image-text pairs. This technique significantly
enhances the model’s generalization capabilities across various
datasets and tasks, particularly excelling in zero-shot learning sce-
narios. Currently, CLIP is widely used in various pioneering efforts,
including image classification, object detection, image generation,
and image search, especially showing strong capabilities and po-
tential in applications lacking annotated data.

Currently, many projects utilize CLIP for extracting multimodal
features from images and text to facilitate video retrieval. For in-
stance, the CLIP4Clip [13] transfers the knowledge of the CLIP
model to video-language retrieval in an end-to-end manner. This
approach leverages CLIP’s capabilities to understand and relate
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the content of videos and corresponding textual descriptions, en-
hancing the effectiveness and accuracy of video retrieval tasks. [27]
introduced the Open-VCLIP++ approach which makes minimal
modifications to the original CLIP to capture spatiotemporal rela-
tionships in videos. [7] introduced a model that utilizes Temporal
Difference Blocks (TDB) and Temporal Alignment Blocks (TAB)
to enhance the cross-modal correlation between video clips and
phrases. [29] employed CLIP-guided visual-textual attention for
video question answering tasks. [1] conducted a user study to ex-
plore methods for multimodal video retrieval using CLIP and in-
troduced ‘IMPA’, a system that supports video retrieval based on
images and textual descriptions. They have all introduced CLIP
into their framework, which has improved the performance of the
corresponding tasks to a certain extent, and all emphasize the visual
and textual alignment capabilities of CLIP.

Despite the superior performance of CLIP, we hold the belief
that incorporating additional modalities, such as audio alongside vi-
sual and textual elements, could prove beneficial, offering a holistic
representation of the video database. The primary concept involves
capturing correlations between frames and their textual descrip-
tions, as well as audio content and its corresponding text through
cutting-edge techniques like GPT-2(Generative Pre-trained Trans-
former 2) [20] , T5(Text-to-Text Transfer Transformer) [21], and
Automatic Speech Recognition (ASR) technology.Details about CLIP
and T5 will be covered in sections 2.3 and 2.4.

The primary contributions of this paper are:

• Proposing a CLIP-guided method for generating video auxil-
iary captions and a multimodal video retrieval framework.

• Designing and implementing a multimodal video retrieval
framework that aligns visual text and audio text.

2 RELATEDWORK
2.1 Video Retrieval
Video retrieval can be categorized into threemain categories, namely
1) Content-based video retrieval (CBVR), 2) Query-based video re-
trieval (QBVR), and 3) Interactive video retrieval. CBVR primarily
achieves search functionality by analyzing visual and audio fea-
tures of videos [25]. This includes finding visually similar videos by
using visual content such as color, texture, shape, and motion infor-
mation [6]; conducting audio searches using sound rhythm, pitch,
and spectral properties; and utilizing deep learning technologies
like convolutional neural networks (CNNs) to recognize specific
individuals or objects in the videos [3].

Query-based video retrieval refers to the process where users
provide a video clip or sample image, and the system identifies
videos containing similar content. Alternatively, users may describe
the video content they are searching for in natural language, and the
system interprets these queries to find relevant videos [17]. On the
other hand, Interactive video retrieval primarily involves collecting
user feedback on search results and dynamically adjust retrieval
strategies based on this feedback to improve search accuracy [12].

TVR (Text-to-Video Retrieval) involves two main aspects: 1)
Searching through video metadata such as titles, descriptions, and
tags, and 2) Converting spoken dialogues into text, and then employ-
ing standard TVRmethods. These were the earliest text-based video

retrieval methods. Recent advancements in TVR have been signifi-
cantly bolstered by end-to-end pre-training on extensive text-video
datasets [15] [28] [2]. Efficient training strategies are crucial for
end-to-end models such as ClipBERT [10]and Frozen [2], enhancing
their effectiveness and performance. The Multi-modal Transformer
(MMT) integrates multimodal information from videos, leverag-
ing pre-trained models known as ’experts’ for each modality to
independently generate embeddings [8]. The Multi-modal Fusion
Transformer (MFT) is designed to train the embeddings of vision,
audio, and text together in a cohesive manner, achieving a unified
embedding representation. This enables the Multi-modal Fusion
Transformer to handle inputs of any combination of modalities and
any length, focusing on relevant features across different modal-
ities [24]. It then applies these capabilities for video retrieval by
comparing similarities.

2.2 Current Challenges
Despite the use of multimodal information as search criteria in the
field of multimodal video retrieval improving the retrieval accuracy
and achieving higher Recall values, text-based retrieval methods
remain the mainstream approach in the video retrieval field. For
ordinary users, preparing different modalities of search samples or
clips requires specific expertise, such as video and audio editing.

In the vast video databases, performing cross-modal retrieval
from text to video on unlabeled videos faces several challenges and
issues:

• Complexity of Semantic Understanding: Text and video
are two entirely different data modalities with significant
differences in the way they convey information and details.
Text is usually abstract and direct, whereas video contains
visual, audio, and temporal sequence information. Accurately
matching the abstract descriptions of text with the specific
content of videos requires advanced semantic understanding
and reasoning capabilities [18].

• Diversity and Complexity of Video Content: Videos may
include a variety of scenes, objects, actions, and interactions,
with these elements constantly changing within the video.
Each frame of a video may contain information that is either
relevant or irrelevant to the text query, making it a signifi-
cant challenge to accurately match text queries with video
content [11].

• Lack of Annotated Data: Unlabeled videos mean there
are no prior annotations describing the video content. This
makes it more difficult to train models to understand video
content and perform accurate retrieval, as the models lack
necessary supervision signals.

• Cross-Modal Feature Fusion: Designing models that can
effectively integrate text features and video features is key
to achieving accurate cross-modal retrieval. This typically
involves deep learning and machine learning techniques
for feature extraction, feature transformation, and feature
fusion.

An overview of GPT-2
GPT-2 [20] is a natural language processing and generation model
developed by OpenAI. It is primarily based on the Transformer
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architecture, designed for understanding and generating text. It is
the version of GPT currently open-sourced by OpenAI, trained on
a massive 40GB dataset, serving as a model for natural language
processing and generation. The main features of GPT-2 include:

• Pre-training and Fine-tuning: GPT-2 is first pre-trained
on a large corpus of text data in an unsupervised manner,
and can then be fine-tuned for specific tasks.

• Autoregressive Properties: In generating text, GPT-2 pre-
dicts the next word sequentially based on all previously
generated words.

• Diverse Applications: Although initially designed for text
generation, GPT-2 is also used for a variety of other natu-
ral language processing tasks such as text summarization,
translation, and question answering.

• Large-scale Model and Data: GPT-2 has multiple versions,
ranging from 100 million to 1.5 billion parameters, and is
trained on a vast amount of data, including diverse texts
from the Internet.

2.3 An overview of CLIP
CLIP is a multimodal model developed by OpenAI [19], capable
of understanding images and their associated textual descriptions.
CLIP is trained using a large set of image-text pairs through con-
trastive learning. Specifically, the model is trained to recognize
whether pairs of images and textual descriptions match. During
training, the model receives paired image and text inputs, such as an
image and a sentence describing that image. The goal of the model
is to maximize the similarity between matching images and texts,
while minimizing the similarity with mismatched images or texts.
Through this approach, CLIP learns to connect visual content with
language descriptions, allowing it to understand and categorize
new images or descriptions without explicit labels. This training
strategy enables CLIP to perform exceptionally well across various
visual tasks, especially on tasks it has not been directly trained on.

2.4 Why T5
The T5 model [21], developed by the team at Google Research, is
based on the core idea that all natural language processing (NLP)
tasks can be treated as a "text-to-text" problem. This approach
means that tasks such as translation, summarization, classification,
or others are accomplished by inputting a piece of text into the
model and outputting another piece of text.

By using a unified processing framework, T5 simplifies multitask
learning and adaptation through extensive pre-training and fine-
tuning for specific tasks, enhancing the model’s versatility and
flexibility. This methodology allows T5 to excel in a variety of
NLP tasks such as text summarization, translation, and question-
answering [23]. Researchers have also employed T5 for code-related
tasks, demonstrating its exceptional performance and adaptability.
These tasks include (i) fixing errors in code, (ii) injecting code
mutants, (iii) generating assertion statements, and (iv) producing
code comments [14].

Although BERT [4], T5, and GPT-2 all possess the capability for
text summarization, GPT-2 is primarily a generative model and

requires specific training for text summarization tasks. There is evi-
dence suggesting that T5 outperforms GPT-2 in text summarization
tasks, demonstrating superior generalization abilities [9].

3 METHODOLOGY
3.1 Framework
Figure 1 illustrates our CLIP-based multimodal alignment video
retrieval framework, which integrates video’s visual, audio, and
textual data for comprehensive processing. Initially, the CLIP model
and automatic speech recognition (ASR) are employed to extract
features from images, audio, and text, which are then converted
into tokens. Subsequently, self-attention and cross-attention mech-
anisms are utilized to enhance the correlation of features within
and across modalities. Ultimately, these features are pooled and
clustered to form a unified feature representation used for similarity
calculations, supporting video retrieval tasks. We aggregate these
features directly using embedding concatenation.

We achieved feature alignment in two ways: firstly, by using
pretrained CLIP to align text and visual features, and secondly,
by processing features over time series to achieve alignment of
features in the temporal sequence.

3.2 Preprocessing
Before training, we extract the embeddings for eachmodality offline
during the data preprocessing stage and store them in .h5 files. The
data preprocessing stage primarily includes the following aspects.

• Frame Extraction: During the frame extraction stage, we
utilize video processing tools such as FFmpeg or OpenCV
to extract independent image frames from video files at set
intervals (e.g., one frame per second). This step converts
continuous video streams into static images that can be in-
dividually analyzed, laying the groundwork for subsequent
image processing and analysis tasks.

• Feature Embedding Extraction with CLIP: Using the pre-
trained CLIP model, each frame image is processed to extract
visual feature embeddings. The CLIP model, by understand-
ing the relationship between image content and associated
textual descriptions, generates feature vectors that capture
the core visual information of the images, which is crucial
for subsequent image understanding tasks.

• Subtitle Acquisition: Using the algorithm from the pub-
lication ZeroCap [26], text descriptions are automatically
generated for each frame image. This algorithm can gener-
ate descriptive text directly from images without the need
for fine-tuning for specific tasks. Such descriptions not only
enhance the understanding of individual frames of video con-
tent but also provide a basis for creating a comprehensive
textual overview of the video content.

• Text Summarization Overview with T5: The T5 model
is used to summarize the descriptive texts of all frames to
generate an overview of the entire video’s content. By in-
tegrating key information from each frame, the T5 model
conducts in-depth analysis and synthesis to output a concise
summary that encapsulates the main information, helping
users quickly grasp the core content and themes of the video.
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Figure 1: Framework of Multi Modal Fusion Video Retrieval Based on CLIP

3.3 Training objective
Similar to the work with MMT [8], we also adopt a bidirectional
margin-maximizing contrastive loss function, which maximizes the
similarity between the embeddings processed by the Transformer
and the matching text, and minimizes the similarity with non-
matching text.

L =
1
𝐵

𝐵∑︁
𝑖=1

∑︁
𝑗≠𝑖

[
max(0, 𝑠𝑖 𝑗 − 𝑠𝑖𝑖 +𝑚) +max(0, 𝑠 𝑗𝑖 − 𝑠𝑖𝑖 +𝑚)

]
(1)

The loss function described in the formula represents a typical
structure for learning to distinguish between different classes or
categories in a batch of video data, based on descriptions associated
with each video. Here’s a breakdown of its components and their
interpretations:

• Batch Size (𝐵): The total number of videos in the batch.
Each video has an associated description, and 𝐵 represents
the number of these pairs of videos and descriptions in the
computation.

• Subscript 𝑖 (Video Description Index): Refers to the index
of a specific video description within the batch. The descrip-
tion at index 𝑖 is associated with the video at the same index.

• Subscript 𝑗 (Video Index): Refers to the index of any other
video in the batch, different from 𝑖 . The formula includes a
summation where 𝑗 ranges over all videos except the one at
index 𝑖 .

• Margin (𝑚): A hyperparameter that defines the minimum
difference needed between certain pairwise scores to con-
tribute positively to the loss. The margin helps in driving
the separation between the scores of matching and non-
matching video-description pairs.

Description of the Loss Function: The loss function computes
a sum over all pairs of video descriptions and videos in a batch,
except where the indices are the same. For each pair (𝑖, 𝑗) where
𝑖 ≠ 𝑗 , it considers two terms:

(1) max(0, 𝑠𝑖 𝑗 − 𝑠𝑖𝑖 +𝑚): This term measures how well the de-
scription at index 𝑖 matches the video at index 𝑗 compared
to how well it matches the video at index 𝑖 itself, adjusted
by the margin𝑚. Ideally, the description 𝑖 should match its
corresponding video 𝑖 better than any other video 𝑗 , making
this term zero or negative (which becomes zero due to the
max function).

(2) max(0, 𝑠 𝑗𝑖−𝑠𝑖𝑖+𝑚): Similarly, this term assesses howwell the
video at index 𝑖 matches the description at index 𝑗 compared
to its own description at index 𝑖 , again adjusted by𝑚.

The overall loss L is computed as the average of these maximum
values over all video-description pairs in the batch. The goal of
this loss function is to ensure that each video is closer to its own
description than to any other video’s description, effectively helping
to learn accurate matching and differentiation across the dataset.

4 EXPERIMENT
4.1 Dateset
The MSR-VTT dataset [28], standing for "A Large Video Descrip-
tion Dataset for Bridging Video and Language," was developed by
compiling 257 popular queries from a commercial video search
engine, with each query consisting of 118 videos. The latest version
of MSR-VTT includes 10,000 web video clips, which cumulatively
span 41.2 hours and feature 200,000 clip-sentence pairs. This dataset
covers a broad range of categories and showcases a wide variety of
visual content, making it the most extensive collection in terms of

48



Multi Modal Fusion for Video Retrieval based on CLIP Guide Feature Alignment MVRMLM ’24, June 10–14, 2024, Phuket, Thailand

Table 1: Evaluation results on MSRVTT: Text to Video

Method Train
Data

R@1 R@5 R@10 MdR MnR

Everything
at once

HT100M 9.6 26.1 36.1 23.0 -

MMT MSR-
VTT

25.1 54.4 68.5 4.5 27.3

MMF-
CLIP(ours)

MSR-
VTT

31.3 64.0 76.0 3.0 16.8

Cap4Video MDVM 31.3 74.3 83.8 2.0 12.0

sentences and vocabulary. Each video segment in the dataset has
been meticulously annotated by 1,327 Amazon Mechanical Turk
(AMT) workers, who provided around 20 natural sentences per
video.

4.2 Evaluation Matrix
In this study, we utilized the MSR-VTT video annotation dataset for
model training, aiming to assess the model’s performance in video
understanding and description. To thoroughly evaluate the model’s
performance, we employed three metrics: Recall@K, Median Rank
(MdR), and Mean Rank (MnR). Recall@K is reported as the model’s
ability to find the correct video within the top K retrieval results.
Median Rank and Mean Rank are used to assess the accuracy of the
model in the retrieval results, with lower values indicating better
performance, meaning the correct video is ranked higher in the
retrieval results. These metrics collectively help us understand the
model’s effectiveness and accuracy in processing and understanding
video content.

4.3 Align with SOTA
We compared the retrieval performance of our method with other
algorithms in terms of text-to-video and video-to-text, with the
evaluation metrics primarily being Recall, Median Rank, and Mean
Rank.The results of the other methods come directly from the cor-
responding papers. Tables 1 and 2 showcase the text-to-video and
video-to-text retrieval results on the MSRVTT dataset. Our method
shows significant performance improvements over MMT and Ev-
erything at once. We implement our strategy based on the MMT,
setting the number of epochs to 50, the same with MMT. The re-
sults indicate that using the pretrained CLIP as a feature extraction
component can effectively enhance the accuracy of retrieval tasks
from text to video and from video to text.

However, there remains a gap between our method and the
state-of-the-art model, Cap4Video, which can be attributed to two
main reasons. First, our experimental results are preliminary, corre-
sponding only to the addition of CLIP for feature extraction, with
experiments involving T5 for summarization still underway. Sec-
ond, Cap4Video was trained on a larger-scale dataset (MDAM is
short for MSR-VTT, DiDeMo, VATEX and MSVD datasets), which
has positively impacted its generalization capabilities.

Table 2: Evaluation results on MSRVTT: Video to Text

Method Train
Data

R@1 R@5 R@10 MdR MnR

Everything
at once

HT100M - - - - -

MMT MSR-
VTT

25.9 57.3 69.4 4 25.3

MMF-
CLIP(ours)

MSR-
VTT

32.9 63.9 76.9 3 14.0

Cap4Video MDVM 47.1 73.7 84.3 2.0 8.7

5 CONCLUSION
How to extract multimodal semantic information from unlabeled
videos, integrate and align multimodal features, and improve video
retrieval accuracy are the main research issues in the field of video
retrieval today. In this study, we utilize CLIP to align textual se-
mantics and propose the use of T5 to summarize descriptions of
extracted video frames, generating video subtitles that enhance
video retrieval accuracy. We have designed and implemented a
multimodal feature fusion alignment framework. Preliminary ex-
perimental results indicate that this framework effectively leverages
CLIP’s visual-textual alignment capabilities, achieving improved
retrieval accuracy on the MSRVTT dataset. Using only pretrained
CLIP for feature extraction and text alignment can enhance the
capabilities of existing models.
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