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Summary

Integrated Energy and Battery Life Management for Hybrid Vehicles

Over the years, Hybrid Electric Vehicles (HEVs) have emerged as a leading technol-

ogy to satisfy the future market’s fuel consumption and emission demands. In HEVs,

an Internal Combustion Engine (ICE) cooperates with a high-voltage battery to bring

opportunities in reducing its fuel consumption and the associated CO2 emission. The

cooperative operation of the ICE and the battery is handled by a sophisticated Energy

Management Strategy (EMS) to minimize the HEVs’ fuel consumption.

This thesis presents a Hybrid Electric Truck with a clutch system consisting of an ICE

clutch and a Motor Generator (MG) clutch. The clutch system enables the capability

for decoupling the ICE and MG from the Drivetrain. As a result, it offers opportunities

for improving the fuel reduction by eliminating the parasitic drag losses in the ICE and

MG.

The objective of the EMS is to determine the power/torque split between the ICE and

the MG by influencing the battery charge/discharge power and clutches selection. How-

ever, battery usage shortens battery life and incurs extra costs for battery replacement.

By restricting the usage of the battery, the battery life can be prolonged with a penalty

on the total fuel consumption of the hybrid truck. Henceforth, operation of the EMS

and the battery life management are not separated.

This thesis has developed an Integrated Energy Management (IEM) strategy to guaran-

tee the requested battery life and to minimize the vehicle fuel consumption by optimizing

the battery charge/discharge power and the operation of the clutch system. The solu-

tion of the IEM strategy is analytical and yields both mathematical and physical insight

regarding the balance between fuel reduction and battery life preservation. The derived

solution of the IEM is computational very efficient.

The analytical solution of this IEM strategy requires prior knowledge, especially the

driving cycle, to find their optimal control variables. As a result, they are non-causal

strategies. This thesis has developed a real-time implementable IEM strategy satisfy-

ing the battery life requirement while minimizing the fuel consumption. The control
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variables of the real-time implementable IEM strategy are estimated online using a

combination of feedforward and feedback control. The feedforward controller utilizes

Driving Pattern Recognition (DPR) techniques to provide the current driving pattern.

The optimal control variables are found off-line using the analytical solutions of the IEM

strategy for predefined standard driving cycles, being stored in look-up tables. Due to

the inaccuracy of the DPR, and the differences between the models and the actual pro-

cess, feedback loops from system states are constructed to keep the system states around

their predefined reference trajectories.

In summary, the main contributions of this thesis are:

• An analytical solution for integrated energy management of a hybrid truck with

the option of an additional clutch to decouple and turn off the MG from the

drivetrain when it is not used. The optimal battery charge/discharge power and

the operation of the clutch system are found to minimize the fuel consumption

whilst satisfying the battery life requirement with the assumption that the exact

information of the future driving cycle is known.

• A real-time implementable solution of the integrated energy management for a

hybrid truck to guarantee the battery life requirement while minimizing the vehi-

cle fuel consumption. The real-time implementable solution optimizes the battery

charge/discharge power and the clutches’ operation without requiring exact infor-

mation of the future driving cycle.
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Chapter 1

Introduction

1.1 Research motivation

This section presents the motivation for using hybrid electric powertrain technology in

a heavy-duty truck, and the necessity for integrating battery lifetime management into

the energy management system of a hybrid truck.

1.1.1 Advances in hybrid trucks

Over decades, the global warming and the shortage of fossil fuels have been two of the

critical issues for mankind. As reported by the US Energy Information Administration

(EIA), in 2013, fossil fuels amounted up to 82% percent share of the total primary

energy consumption in the world1. Fossil fuels are typically burned to generate the

energy. This burning process emits Green House Gases (GHG), primarily CO2, which

cannot be absorbed entirely by natural processes. It results in a net-increase of GHG in

the atmosphere. The total CO2 emission in the world is doubled in the period from 1971

to 2010 [1]. It is stated in [2] that this net-increase of GHG in the atmosphere is one of

the main global warming sources. To protect our environment and achieve a sustainable

energy society, it is essential to prevent GHG from emitting to the environment and to

restrict the fossil fuels consumption [2], [3].

According to the International Energy Agency (IEA), transportation is an important

cause of the global CO2 emissions, accounted for 22% of the world CO2 emission in 2010.

Within the transportation itself, long haul applications contribute about 80% of the

total CO2 emissions of commercial vehicles. More generally, in developing commercial

vehicles, one of the most crucial objectives is reducing the vehicle fuel consumption and

1The data is available at the US EIA, www.eia.gov/totalenergy/
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1.1. Research motivation

so CO2 emission. Fuel consumption is an important variable cost in the transportation

and logistic industry [4]. It is both desired and necessary to reduce the fuel consumption

and the associated CO2 emission of the vehicle in long haul applications.

Approaches, reducing the fuel consumption of long haul vehicles, can be classified into

three main categories (see [5] and the references there in),

• efficiency-improving technologies non-electric on conventional powertrains and ve-

hicles

• substitution of natural gas, electricity or hydrogen for diesel fuel

• hybrid drive technologies

These approaches have their own potential for lowering the fuel consumption and the

associated CO2 emission. This thesis focuses on the third item: hybrid drive technolo-

gies.

Hybrid drive technology is a viable solution to reduce the vehicle fuel consumption and

comply with increasingly stringent emission legislation. In hybrid vehicles, an Internal

Combustion Engine (ICE) cooperates with an additional power source to bring oppor-

tunities in minimizing fuel consumption and associated CO2 emission. Over the last

decade, many Hybrid Electric Vehicles (HEVs) have been produced in series in the

passenger car market (light-duty) [6], e.g., Citroen C3, Honda Civic IMA, Toyota Prius.

In the class of medium-duty trucks and buses, HEVs are also in production for several

years, e.g., DAF LF, Volvo hybrid bus. However, despite its significant fuel consumption

reduction (between 20 and 30% [7]), the production numbers are low due to the high

additional cost of a hybrid system.

Utilization of hybrid drive technology in heavy-duty trucks, on the other hand, is still

in the development stage. Although these vehicles normally drive on the highway with

minimum braking and acceleration events, one of the benefits from hybridization comes

from its huge vehicle’s mass (up to 40 tons). Specifically, when the truck reduces its

speed or goes downhill, there emerges considerable braking energy to be absorbed in

a dedicated battery for later utilization. Besides, the potential for using hybrid drive

technology in long haul trucks comes from its high mileage, e.g., 150, 000 km/year. The

potential fuel benefit depends also on many design aspects of the hybrid power train.

A study from Bosch [8] reveals that battery storage capacity and power ratings of the

electric machine influence on the actual fuel savings, see Fig. 1.1. Suppose a hybrid

truck saves 5% fuel consumption compared to a conventional truck (driven by the ICE

only). A conventional truck consumes on average 33 liters/100km, resulting in about

50, 000 liters of diesel per year [7]. With a diesel price of 1.1[e/liter], the total fuel cost

reduction per year per truck is translated into 2750[e] which is considerable for both

2



Chapter 1. Introduction

Figure 1.1: Fuel saving investigation on Stuttgart-Hamburg-Stuttgart driving cycle:
HEVs with generator power of 120kW improve the fuel reduction performance ca. 5%

in long haul application, source: [8].

the vehicle manufacturer and owner. This motivates the application of hybrid electric

drive technology in heavy-duty trucks [9] for reducing the vehicle fuel consumption.

1.1.2 Motivation for integrated energy and battery wear management

The sales volume for HEVs has grown significantly since 2010 [10]. It is predicted that

in the United States, the sales volume of HEVs will increase more than three times in

2020 compared to 2013, e.g., about 220, 000 compared to 60, 000 for the plug-in HEVs.

However, the HEVs’ market share is still small compared to conventional vehicles driven

by the ICE only. That is because the customer likes the idea of HEVs but may not be

convinced of the HEV functionality, durability and price.

Primary investment is one of the key barriers to the profitable commercialization of

HEVs [11]. At the time of purchase, the customer may be initially convinced that the

extra cost of the vehicle will be outscored by the saving of fuel costs over the next

3 − 5 years. However, there might be an added hidden future investment needed for

replacement of the high-voltage battery. Suppose that the lumped battery cost in future

will drop down to 600− 1200e/kWh [12]. Then, a battery capacity of 4kWh results in

a cost of 2400 − 4800e for a new battery. If the battery lifetime is limited, the vehicle

owner will suffer from the extra costs for battery replacement which eliminates the total

fuel cost reduction of 2750e/year/truck. The business case will definitely be destroyed.

In an HEV, the objective of the energy management is to determine the power/torque

split between the ICE and the Motor Generator (MG) by influencing the battery (dis-)

charge power. Ideally, the battery usage should be unconstrained to maximize the fuel

reduction. However, no limitation on battery usage leads to a shorter battery life. By

restricting the usage of the battery, the battery life can be prolonged with a penalty on

the total fuel consumption of the HEV. As a result, operation of the energy management

and the battery wear management are correlated.

The issue of battery wear is known to be particularly valid with plug-in HEVs [13]. In

3



1.2. Powertrain configuration of hybrid electric truck

hybrid electric trucks, to compromise the total operational cost for vehicle owner, the

balance between fuel consumption reduction, battery cost and battery life should be

carefully considered [14]. It is necessary to integrate the battery wear management into

the energy management system of hybrid trucks.

1.2 Powertrain configuration of hybrid electric truck

A prototype for a hybrid electric heavy-duty truck (see Fig. 1.2) has been developed

by DAF trucks N.V. in corporation with the Technische Universiteit Eindhoven (TU/e),

SKF and Heliox within a multidisciplinary research project entitled: “Hybrid Innova-

tions for Trucks (HIT)”. The HIT project aims at lowering the fuel consumption and

CO2 emissions by hybridizing the powertrain of a conventional long haul heavy-duty

truck.

The powertrain of the hybrid prototype truck is sketched in Fig. 1.3. A 340 kW

Figure 1.2: DAF XF prototype truck with parallel hybrid electric powertrain.

ICE cooperates with a 100 kW Motor Generator (MG) to power the hybrid truck either

separately or in combination. A clutch system consists of a main clutch between the

ICE and the drivetrain (denoted as ICE clutch) and an electromagnetic clutch between

the MG and the drivetrain (denoted as MG clutch). The clutch system enables the

capability in decoupling not only the ICE but also the MG from the drivetrain. It is

shown in [15], regarding the fuel reduction performance of the HEVs, one of the most

effective measures is electric drive where the ICE is decoupled from the drive train and

turned off, and the vehicle is propelled by the MG only. The ICE drag loss can be

eliminated by opening the ICE clutch and switching the ICE off when beneficial. In the

4



Chapter 1. Introduction

Figure 1.3: Overview of hybrid powertrain propulsion system for heavy-duty truck.

considered hybrid truck, additional fuel reduction improvement is offered by eliminating

the parasitic friction loss in the MG via disengaging the MG clutch and turning off the

MG when profitable.

The MG is mounted in-line with the drivetrain and the ICE. A li-ion high-voltage battery

pack with peak power of 120 kW is equipped to make the hybrid powertrain complete.

It can be used as an energy buffer to store for instance the braking energy when the

vehicle brakes and use the stored energy later when profitable. Besides, a Power In-

verter is used to manipulate the electric power flows between the MG, battery and a

Refrigeration Cargo trailer (denoted as Reefer Trailer in Fig. 1.3).

The ICE and MG clutches take two positions: open or closed. Depending on the com-

bination of these two clutches’ operations, the operating modes of the hybrid truck can

be categorized into four groups:

1. Both clutches are opened, the hybrid truck is in Stationary mode

2. ICE clutch is closed and MG clutch is opened, the truck operates in the Power

Supply mode (PSM)

3. ICE clutch is opened and MG clutch is closed, the truck operates in the Motor

Only (MO) mode

4. Both clutches are closed, the truck operates in one of the four modes namely, ICE

Only, Motor Assist (MA), Charging (C) or Regenerative braking (R), depending

on the power demand from the drivetrain and the energy management strategy.

5



1.2. Powertrain configuration of hybrid electric truck

Table 1.1: Power demand and supply sources for the hybrid truck operating modes.
The empty set symbol “∅” means no power demand.

Power supply for:

Drive line Reefer trailer Battery when charging

PSM ICE Battery ∅
MO Battery Battery ∅
ICE Only ICE ICE ∅
MA ICE, Battery ICE, Battery ∅
C ICE ICE ICE
R ∅ BR BR

Stationary mode is utilized when the truck stands still and the reefer trailer requests

power from the battery. However, since we consider a route without long stops in this

research, the Stationary mode is not taken into account. The hybrid truck operating

modes, except the Stationary mode, are described as follows:

• PSM: The ICE propels the truck by supplying the drivetrain power demand. The

battery supplies the requested reefer trailer power. The MG is turned off

• MO: The battery supplies the drivetrain power demand and the reefer trailer. The

ICE is turned off

• ICE Only: The ICE supplies the drivetrain and the reefer trailer power demand.

The battery is not charged/discharged

• MA: The battery supplies a part of the drivetrain and reefer trailer power demands.

• C: The ICE supplies the drivetrain and the reefer trailer power demands and

charges the battery

• R: Braking energy is recovered to supply the reefer trailer power demand and/or

charge the battery.

According to the above description of the hybrid truck operating modes, there exist

three power sinks: (i) the drive train; (ii) the reefer trailer; (iii) the battery when the

power is requested to charge the battery. On the other hand, the power supply sources

are specified as the ICE, battery and the regenerative braking energy (BR). The corre-

spondences of the power sinks and power supply sources for each hybrid truck operating

mode are summarized in Table 1.1. While driving, the most fuel economic operating

mode (PSM, MO, ICE Only, MA, C or R mode) as well as the battery charge/discharge

power are determined by the Energy Management Strategy (EMS). Operation of the

ICE and MG clutches follows the chosen operating mode.

6



Chapter 1. Introduction

1.3 Research objectives

The first objective of this thesis is to develop an EMS to minimize the fuel consumption

of a hybrid truck by optimizing the battery charge/discharge power and the operation

of the clutch system. An analytical solution is needed to provide a fundamental under-

standing of the EMS and the clutch system in improving the fuel reduction performance

when the driving cycle is predefined.

The second objective is to develop an Integrated Energy Management (IEM) to guaran-

tee the requested battery life and minimize the vehicle fuel consumption by optimizing

the battery charge/discharge power and the operation of the clutch system. An ana-

lytical solution is also needed for understanding the balance between fuel cost, electric

power cost and battery wear cost with the assumption that the driving cycle is known

in advance.

In real-life applications, the assumption for exact information of the future driving cycle

is not feasible. The third objective is to develop a real-time implementable IEM strategy

to optimize the battery charge/dicharge power and the clutch system operation without

knowing the driving cycle in advance. The real-time implementable IEM minimizes the

vehicle fuel consumption while satisfying the battery life requirement.

1.4 Problem definition

The energy management problem can be formulated into an optimal control framework.

The objective is to minimize the cumulative fuel consumption of the hybrid truck

J =

tf∫
t0

ṁf (τ) dτ (1.1)

with ṁf [g/s] the ICE fuel mass flow. t0 and tf are the time instants at the beginning and

end of the driving cycle. Without loss of generality regarding the power split between

the ICE and MG, the control inputs are chosen as the battery charge/discharge power

Pb [W] at the battery terminals and the operation of the clutch system. Besides physical

constraints, e.g., battery power limitations, the EMS takes into account also limitation

on stored battery energy state Es [J] (denoting the energy level in the battery) and

battery capacity loss Ql [%] (representing the battery wear), described as follows:

1. Battery charge sustaining constraint: the stored battery energy Es(tf ) at the end

of the driving cycle should be larger or equal to the energy at the beginning of the

driving cycle Es(t0). This constraint allows a fair comparison between the hybrid

7



1.4. Problem definition

and conventional truck in terms of fuel consumption.

Charge sustaining : Es (tf ) ≥ Es (t0) (1.2)

2. Battery energy state constraint: at every time instant during driving, the battery

energy Es(t) should not violate the min and max energy level. This constraint

is required for proper operations of the battery and hybrid truck and prevents

battery depletion and overcharging while driving.

Energy state : Es ≤ Es(t) ≤ Es (1.3)

for t ∈ (t0, tf ). Es [J] and Es [J] correspond to the lower and upper bound of the

stored battery energy.

3. Battery capacity loss constraint: the battery capacity loss Ql(t) should be smaller

or equal to a predefined upper bound to guarantee sufficient battery life. When

the battery capacity loss reaches a predefined value, the battery is considered to

be at its End of Life (EoL) and needs to be replaced. The battery capacity loss

should satisfy

Ql(t) ≤ Ql (1.4)

for t ∈ [0, tf ]. Since the battery capacity is irreversibly worn out during its opera-

tion, the constraint (1.4) can be denoted as

Capacity loss : Ql (tf ) ≤ Ql (1.5)

where Ql [%] is a predefined upper bound (for the battery capacity loss) at the

final time tf of the driving cycle.

There are 8 possible combinations of the three constraints (1.2)-(1.5). We assume that

constraint (1.2) is always active to prevent the battery from depleting at the end of

the driving cycle. Therefore, this thesis considers the four remaining fuel minimization

optimal control problems (OCPs), formulated and summarized in Table 1.2. SICE =

{0, 1} and SMG = {0, 1} represent the {open,close} operation of the ICE and MG clutch,

respectively.

These fuel minimization OCPs are solved in this thesis taking into account the following

assumptions:

• Assumption 1: Thermal effects of the ICE have been excluded from the ICE model.

All driving cycles start with a hot soak ICE. That is because an ICE warm-up

8
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Table 1.2: Overview fuel minimization optimal control problems. CEM and IEM
stand for Conventional Energy Management and Integrated Energy Management, re-

spectively.

OCP Control inputs Objective Constraint

CEM1 Pb, SICE , SMG (1.1) (1.2)

CEM2 Pb, SICE , SMG (1.1) (1.2), (1.3)

IEM1 Pb, SICE , SMG (1.1) (1.2), (1.5)

IEM2 Pb, SICE , SMG (1.1) (1.2), (1.3), (1.5)

period is very short compared to the total travelling time of the vehicle in long

haul applications. In [16], the thermal effects of the ICE during its warm up period

have been analyzed.

• Assumption 2: The shift strategy of the gear box is given. The mechanical power

demand at the input shaft of the transmission (Pd [W]) can be estimated on-line.

Alos, the power request from the reefer trailer (Pl [W]) can be measured on-line.

When the driving cycle is known in advance, it means that Pl, Pd and the rotational

speed (ωd [rad/s]) at the input shaft of the transmission are given over the entire

driving cycle.

• Assumption 3: A quasi-static modelling approach can be used to model the vehicle

components. Fig. 1.4 denotes that the time scales of the battery states (Es, Tb and

Ql) are much larger than the time scales of the electric and mechanical powers.

It is reasonable for the problem formulation of this thesis to consider the electric

and mechanical powers at steady state while only the dynamic behaviours of the

battery states are taken into account.

Figure 1.4: Different time scales behaviour emerging in the hybrid truck, see [17] for
a similar observation

The battery temperature has a large impact on the battery power capability, referred

as the maximum power which can put into or retrieved from the battery. Fig. 1.5

gives an example of the temperature influence on the battery power capability for a

9
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Li-on battery pack. One can observe that the battery power capability is limited for

very low and high temperatures. At very low battery temperatures, high powers are not

Figure 1.5: Discharge power capability of a li-ion battery pack based on battery
temperature and state of charge, source: [18]

allowed to protect the battery against lithium plating. High battery temperatures lead to

potentially irreversible damage as a result of thermal runaway [19]. Hence, the battery

pack in the hybrid truck is equipped with an active Battery Thermal Management

System (BTMS). More details of the BTMS are given in [20]. The BTMS aims at

keeping the battery temperature in a preferred temperature range under all circumstance

to provide a close to maximum power capability with acceptable thermal wear rate, e.g.,

between 20oC and 40oC.

The battery temperature also influences the capacity loss and the battery efficiency.

Using a rule of thumb the capacity loss for li-ion battery doubles when the battery

temperature increases with 10oC [21]. This means that the battery life at a battery

temperature of 20oC is four times larger than that at a battery temperature of 40oC.

On the other hand, a lower battery temperature leads to a lower battery efficiency which

could harm the fuel reduction performance of the hybrid powertrain. Consequently, there

exists a battery temperature range compromising the battery wear and fuel reduction

performance.

Fig. 1.4 indicates that the time scale of the battery temperature overlaps with the time-

scales of the battery energy and capacity loss state. Chapter 3 demonstrates that the

battery temperature dynamics and the BTMS’s operation can be included in the IEM

framework. However, deriving an analytical solution is complex, see chapter 3 for more

details.

• Assumption 4: In this thesis, to derive the analytical solutions for the fuel min-

imization OCPs (see Table 1.2), we assume that the BTMS keeps the battery

temperature at predefined level. The trade-off between battery life preservation
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and fuel reduction performance will be analyzed for different battery temperature

levels.

The necessity of these assumptions becomes clear in the next chapters.

1.5 Literature survey

The first objective of this research is developing an EMS to minimize the fuel consump-

tion of the hybrid truck. This section firstly discusses existing research regarding energy

management in HEVs. Secondly, a literature overview will be given on the research for

IEM in HEVs. Based on this literature study, the challenges and contributions of this

thesis are described.

1.5.1 Energy management in hybrid electric vehicles

In HEVs, the EMS typically aims at optimizing the power split between the ICE and the

MG to minimize the vehicle fuel consumption. To date, significant amount of research

has been done to address this objective with various approaches. Some excellent surveys

on EMS for HEVs are shown in [22–24] and the references therein. Generally, these ap-

proaches are classified into two main groups namely, heuristic based and optimal control

based approaches.

Regarding the heuristics based approaches, a fuzzy logic controller is exploited in [25]

to operate the load-leveling strategy for a parallel HEV. In [26] and [27], the authors

present a set of rules for the power split in the HEV. However, they require tuning of

many threshold values and parameters. The authors in [28] develop a rule-based strat-

egy using only one decision variable which is the maximum power of the MG/Battery.

The developed strategy does not require tuning. The main advantage of the heuristics

based approaches is that they can be easily implemented in a real vehicle. Although the

heuristics based approaches offer significant fuel reduction improvement, these methods

are very sensitive to the tuning of rules for specific driving conditions. As a result, they

do not guarantee neither optimal nor appropriate results in all situations. To overcome

this problem, optimal control based approaches have been introduced.

In the optimal control based approaches, the energy management is formulated as an

optimal control problem where the total fuel consumption is typically the objective func-

tion and the constraints subject to physical constraints of the HEV’s components. The

decision variables could be chosen as (but not limited to) the ICE, MG torque request,

battery charged/discharged power and/or operation of the clutch system. The optimal

control based approaches are further categorized into off-line and online solutions. In
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the off-line solutions, the driving cycle is known and predefined. The optimal solution

is found by utilizing various techniques as linear programming [29], quadratic program-

ming [30] and Dynamic Programming [31–33]. The obtained optimal solutions can be

exploited as a bench-mark to evaluate other EMSs. Moreover, they also assist in deter-

mining the rules for developing the rule-based strategies [34].

Regarding the on-line strategies, besides various non-linear control strategies [35], [36],

the Equivalent fuel Consumption Management Strategy (ECMS) has shown to be one

of the best performing strategies with respect to fuel reduction performance [35]. A

large amount of research has been reported in utilizing the ECMS technique for EMS,

part of them are listed as [15, 23, 35, 37–43]. Experiments on real vehicles [44], [45]

for these EMSs demonstrate a very promising performance and robustness in reducing

fuel consumption and the associated CO2 emission. In [46], a model of the GM Voltec

powertrain is implemented as a simulator to evaluate various heuristics and ECMS based

EMSs. The simulation results show that the ECMS based EMSs generally outperform

the heuristics based EMSs in terms of fuel economy, see Fig. 1.6.

The ECMS technique is based on Pontryagin Minimum Principle [47] to locally opti-

Figure 1.6: Fuel consumption comparison among various energy management strate-
gies (S1 to S7 on x-axis). The driving cycle is a trip recorded between Arco and Merano,
Italy (in the Alps), spanning 157.7 km and including severe altitude variations. More

details on the evaluated strategies and their comparison are given in [46].

mize a fuel cost function. A Hamiltonian function is formulated in the ECMS to handle

the balance between fuel cost and other related costs in the system. Most of the on-line

approaches discussed so far aim at balancing the fuel cost and the electric power cost

when (dis-)charging the battery. An equivalent cost λ is defined to indicate when to pro-

duce, store and consume the electric power [42]. The trajectory of λ is estimated using

a classical PI controller or preview information. In [43], the authors present an explicit

solution of the EMS in HEVs. The obtained solution provides an analytical expression

to define explicitly the HEV operating mode region depending on the equivalent cost λ
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(or s as denoted in [43]) and the power demand from the drivetrain.

Contribution of this thesis to energy management in HEVs

Most of the aforementioned approaches study an HEV with only one clutch between the

ICE and the drivetrain. The benefit from decoupling the MG from the drivetrain has

not been explored. This research extends existing solutions by providing an analytical

solution to the EMS where the benefit from also using the MG clutch is demonstrated.

1.5.2 Integrated Energy Management in hybrid electric vehicles

Besides the ICE and battery, there exist other energy buffers and energy sources from

other components [48]. As suggested in [49], taking into account additional systems can

further improve the system efficiency. In [50], [16], the ICE temperature is incorporated

in addition to the battery energy state to optimally control the HEV to minimize the fuel

consumption during the ICE warmup. The authors in [16] show that the optimization

can also be solved explicitly as an extension of the optimal control solution in [43]. In

[51], the concept of Integrated Powertrain Control (IPC) is proposed to incorporate the

system states from the powertrain components and the aftertreatment system. Specifi-

cally, the conventional ECMS [42] is extended to take into account the battery energy

state, Selective Catalytic Reduction (SCR) catalyst temperature state and the tail-pipe

NOx emissions to minimize the operational cost and satisfy the pollutant constraint.

The IPC concept is also presented in [52] for an application of an Euro-VI diesel engine

with a Waste Heat Recovery system. The Diesel Oxidation Catalyst (DOC) catalyst

temperature, SCR temperature and the NOx tail-pipe emission are incorporated in the

control strategy. The control inputs are then determined to minimize the fuel consump-

tion within the constraints set by the emission legislation. In [53], the authors show via

simulation the trade-off between the cost of the BTMS action versus the benefit from

the hybrid powertrain. This trade-off is also discussed in [54], [20] where an Integrated

Energy and battery Thermal Management (IETM) is introduced to balance the costs

among fuel consumption, electric power from (dis-)charging the battery and fuel con-

sumed by the BTMS.

In an HEV, the total tail-pipe emission has to comply with the emission legislation.

On the other hand, the battery life needs to be sufficient to make the HEV commercial

profitable. The issue of battery wear in commercial vehicles is recognized for plug-in

HEVs in [13]. In hybrid electric trucks, the balance among fuel consumption reduction,

battery cost and battery life should also be taken into account [14].

Integrating battery wear in EMSs

In recent years, integration of battery wear into the EMS framework of the HEVs has
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become a viable research topic. In [55], the authors demonstrate the necessity to incor-

porate battery wear into the optimal powertrain sizing and control via an example of a

series hybrid electric bus. In [56], an LPV approach is presented to minimize the vehicle

fuel consumption by forcing the battery state of charge tracking a predefined proper ref-

erence trajectory. It is observed from simulation results in [56] that when degradation

of battery capacity occurs, the battery energy should be used less to prolong the battery

life. In [57], a soft constraint is set on the battery cell temperature to prevent indirectly

the battery from its fast-aging region. However, in both [56] and [57], the battery wear is

not explicitly taken into account in the problem formulation. The compromise between

battery life preservation and fuel consumption reduction is not shown in both [56] and

[57]. This trade-off is discussed in [58–63] where the authors exploit their developed

battery wear models to quantify the battery wear in the framework of the EMS.

The developed strategies in [58–63] make use of the ECMS technique [37], [23] to op-

timize the power/torque split between the ICE and the MG. In [58] battery wear is

incorporated directly in the objective function with a tuned weighting factor, and the

Hamiltonian function takes into account the fuel, electric power and battery wear cost.

Similarly, the authors in [60] and [62] weight the battery wear in the objective function,

but the Hamiltonian function is extended to take into account the cost from the energy

request to heat up/cool down the battery temperature. Minimization of the Hamilto-

nian function in [58, 60, 62] is not shown explicitly. Moreover, the weighting factors in

[58, 60, 62] are arbitrary values and have to be manually adjusted to satisfy the battery

life requirement with the assumption that the driving cycle is known in advance. Hence,

the developed strategies in [58, 60, 62] are not strictly causal. In [61], [63], to preserve

the battery life, an adaptive factor is introduced to artificially increase the battery power

loss in the Hamiltonian function to restrict the battery usage when necessary. The au-

thors in [59], on the other hand, extend the Hamiltonian function to balance three costs:

fuel consumption, electric power and battery wear. However, an analytical solution for

minimization of the Hamiltonian function is not derived. The developed strategy in

[59] is causal. It utilizes two feedback loops to estimate the control parameters on-line.

These feedback loops keep the battery state of charge and state of health around their

predefined reference trajectories. The benefit of utilizing feedforward control to estimate

the control parameters was not explored in [59]. And, an appropriate selection of refer-

ence trajectory for the battery state of health had not been discussed in [59].

Contributions of this thesis to integrated energy and battery life management

This thesis contributes to finding an analytical solution to the Integrated Energy and

Battery Life Management. An analytical solution provides fundamental understanding

for both mathematical and physical insight of the optimal control problem [64]. The

obtained analytical solution reveals that in the EMS framework, the battery life is pre-

served by not (dis-)charging the battery at peak powers to avoid fast deterioration of
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Table 1.3: Comparison of developed Integrated Energy and Battery Life Management
strategies in this thesis with existing literature. Objective function OF1 refers to the
fuel minimization. Objective function OF2 refers to minimizing the summation of fuel

consumption and battery wear with a weighting factor.

References IEM A-IEM
[58] [59] [60] [57] [56] [62] [61] [63] (Thesis) (Thesis)

Year 2011 2012 2013 2013 2013 2014 2014 2014 2015 2015
Objective OF1 - + - + + - + + + +
function OF2 + - + - - + - - - -
Constraints Es + + + + + + + + + +
on system Ql + + + - - + + + + +
states Tb - - + + - + + - - -

Solution
Numerical + + + + + + + + - -
Analytical - - - - - - - - + +

Causal Feedback - + - - - - - + - +
solution Feedback +

- - - - - - - + - +
Feedforward
Appropriate

- - - +reference
trajectory

the battery wear.

Having the analytical solutions for energy management in the hybrid truck as the off-

line solutions, this thesis also develops a adaptive real-time implementable IEM (A-IEM)

strategy to minimize the hybrid truck fuel consumption while meeting the battery life

requirement. We explore the combination of feedforward and feedback control to obtain

appropriate control parameters. Combination of feedforward and feedback control re-

sults in a reliable solution for satisfying the constraints while achieving almost minimal

fuel consumption. In the thesis, the reference trajectory for the battery capacity loss

state is constructed based on the physical characteristic of the battery wear over the

vehicle life. Table 1.3 summarizes the aforementioned discussions and highlights the

main contributions of this thesis to the integrated energy and battery life management.

1.6 Thesis outline

The chapters in this thesis are organized as follows. Chapter 2 presents the control

models for all the hybrid truck components, shown in Fig. 1.3. Note that the driveline

and reefer trailer request a predefined power profile depending on the driving cycle. The

control models are utilized to solve the fuel minimization OCPs defined in Table 1.2. A

quasi-static battery cycle life model is also described in this chapter.

Chapter 3 derives the analytical solutions to the fuel minimization OCPs defined in

Table 1.2. Analyzing these analytical solutions, this chapter provides a fundamental

understanding of the fuel reduction improvement of the EMS, the benefit of using the

additional MG clutch, and the capability of the IEM strategy in guaranteeing the bat-

tery life requirement while minimizing the fuel consumption.

A real-time implementable integrated energy and battery wear management is developed

in Chapter 4. The developed strategy preserves battery life by artificially increasing the
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battery power loss when necessary. This solution is supported by analyzing the ana-

lytical solutions in Chapter 3. The developed strategy exploits the analytical solution

of the EMS in chapter 3. Although the EMS’s solution is computationally-efficient, it

requires a priori information of the entire driving cycle to calculate the optimal solution.

This requirement is not feasible in real-life applications. In chapter 4, a Driving Pattern

Recognition (DPR) algorithm, using Principle Component Analysis (PCA) technique

[65], is developed to recognize the current driving pattern on-line. Utilizing the devel-

oped DPR algorithm, a feedforward controller is constructed together with feedback

controllers for on-line updating the control parameters. The relations among the chap-

ters 2, 3 and 4 are denoted in Fig. 1.7.

The developed strategies in Chapter 3 and 4 are verified by simulation encompass-

Figure 1.7: Chapter correlation.

ing typical driving scenarios of the hybrid truck. The simulation results, presented in

Chapter 5, demonstrate the fuel reduction offered by the additional MG clutch. Besides,

simulation results also verify the capability to guarantee the battery energy constraints

and battery life requirement while minimizing the fuel consumption of the hybrid truck.

Chapter 6 summarizes the main conclusions from this thesis. Recommendations for

future research from this thesis are also presented.

16



Chapter 2

System modeling

This chapter presents the vehicle model and the component models needed for solving

the fuel minimization OCPs defined in Table 1.2.

2.1 Vehicle model

Fig. 2.1 denotes the topology of the hybrid powertrain under study. For the sake

of simplification without any influence on the development of the EMSs, the Motor

Generator and Power Inverter are represented by a block “Motor Generator”. We assume

that the ICE and MG clutches transfer the mechanical power with 100% efficiency and

can switch infinitely fast. Including clutches slippage in the energy management of the

hybrid truck is considered as a content for future research. Modelling of the ICE and

MG clutches are integrated in the ICE and MG model, respectively. Definition of the

Figure 2.1: Schematic overview and related signals for developing the EMS in the
hybrid truck.
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Table 2.1: Definition of the symbols denoted in Fig. 2.1. It is noted that Pem and Pe
are positive when the MG operates in generator mode. On the other hand, Pem and

Pe become negative valued during motor mode.

Symbol Unit Definition

ṁf [g/s] ICE fuel mass flow
PICE [W] ICE mechanical power
Pd [W] Power demand from drivetrain
Pem [W] MG mechanical power
Pe [W] MG electric power
Pl [W] Reefer trailer power
Pb [W] Charge/discharge battery power at its terminal
Ps [W] Net internal battery power
Pb loss [W] Battery power loss
Tambi [oC] Ambient temperature
Tb [oC] Average battery temperature
Es [J] Battery energy state
Ql [%] Cumulative battery capacity loss

symbols in Fig. 2.1 is given in Table 2.1.

The ICE converts the chemical power of diesel (ṁf ), supplied by the fuel tank, to the

mechanical power at the ICE crank shaft. When the ICE clutch is closed, the mechanical

power at the ICE crankshaft is transferred to the ICE clutch output without any power

losses. The mechanical power at the ICE clutch output (PICE) is utilized to satisfy

the mechanical power request from the drivetrain (Pd) and the MG (Pem). This power

relation is depicted as

PICE = Pd + Pem (2.1)

The MG is turned off when the MG clutch is opened. It is also assumed that when the

MG clutch is closed, the mechanical power Pem is transferred through the MG clutch

without any power losses. The electric power at the MG output (Pe) is used to supply

the reefer trailer and charge the battery if necessary. This power relation is denoted as

Pe = Pb + Pl (2.2)

The hybrid truck operation discussed so far is the ICE Only operating mode of the

hybrid truck. Depending on Pd, operation of the ICE and MG clutches and the bat-

tery charge/discharge power Pb, the hybrid truck operates in various modes which are

explained in section 1.2 and summarized in Table. 2.2 without changing the power re-

lations (2.1) and (2.2).

Next sections present in more details the quasi-static ICE, MG and Battery pack mod-

els. The quasi-static modelling approach is reasonable owing to the different time-scales

of the electric, mechanical power compared to the battery energy, capacity loss states,
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Table 2.2: Hybrid truck operating mode. ‘+’ and ‘-’ correspond to the positive and
negative value. The positive values of Pd imply the driving periods whereas the negative
values of Pd refer to the braking periods. The positive values of Pb mean the battery is
charged while the negative values of Pb denote the operation of discharging the battery.

Operating mode Pd SICE SMG Pb
PSM + 1 0 -
MO + 0 1 -
ICE Only + 1 1 0
MA + 1 1 -
C + 1 1 +
R - 1 1 +

see also Fig. 1.4. Modeling of the reefer trailer and the drivetrain are neglected due

to the assumption that the reefer trailer power request Pl and the mechanical power

demand Pd at the transmission side of the drivetrain can be estimated on-line.

2.2 Internal combustion engine model

The ICE is a six cylinders Diesel Engine with a maximum power of 340 [kW]. The ICE

model expresses the measured fuel consumption for each operating point of the ICE

typically defined by two parameters: ICE angular speed ω [rad/s] and the ICE torque

τm [Nm]. The control objective of the EMS in this research is determining the power

split between the ICE and the MG by influencing the battery power and the operation of

the clutch system. Henceforth, for the sake of explaining the EMS control objective, the

ICE fuel consumption is formulated as a function of the ICE power PICE and angular

speed ω, demonstrated in Fig. 2.2. One can observe that, for a specific ICE speed, the

Figure 2.2: ICE fuel consumption at different ICE speeds
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2.2. Internal combustion engine model

ICE fuel consumption depends on the ICE power almost linearly. As a result, the fuel

massflow ṁf ≥ 0 of the ICE can be approximated with a piecewise affine function

ṁf = max (0, α1(ω)PICE + α2(ω)SICE) (2.3)

The positive parameters α1(ω) [g/J] and α2(ω) [g/s] are the speed dependent power-to-

fuel conversion and ICE drag loss, respectively. The ICE is turned off when the ICE

clutch is opened (SICE = 0). The power limitation of the ICE is depicted as

PICE(ω)SICE ≤ PICE ≤ PICE (ω)SICE (2.4)

where PICE = −α2(ω)
α1(ω) < 0 and PICE > 0 are the speed dependent ICE drag and

maximum ICE power, respectively. As shown in Fig. 2.3, for a large operating range,

the absolute value of the fuel mass flow error |eICE | [g/s] (between the model and the

measured data) is smaller than 0.5 [g/s], which is below 2.5% compared to the fuel mass

flow of the ICE at its maximum power (350kW) and a specified rotational speed. In

long haulage applications, the hybrid truck normally drives on the highway with the

power from 80kW to 120kW at the rotational speed from 1000rpm to 1200rpm. In this

power and speed range, the fuel mass error |eICE | is about 0.24 [g/s] which is smaller

than 3.7% compared to the measured fuel mass flow.

Figure 2.3: Fuel mass flow error eICE [g/s] between the ICE model (2.3) and measured
data. eICE = |ṁf − ṁmeas

f | where ṁmeas
f [g/s] is the measured fuel mass flow. Pmax

ICE

and P dragICE are the speed dependent maximum and drag power, respectively.
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2.3 Motor generator model

A brushless permanent magnet MG with a maximum power of 100 [kW] is used in

the hybrid truck. A static look-up table is used to describe the relation between the

mechanical and electric power of the MG. Pem and Pe are positive when the MG operates

in generator mode. On the other hand, Pem and Pe become negative valued during motor

mode. Fig. 2.4 denotes the relation between Pem and Pe for different MG speeds. As

Figure 2.4: Relation between MG electric power and mechanical power.

shown in Fig. 2.4, the relation between Pem and Pe is almost linear. It is noteworthy

that at zero power (Pe = 0), there exists friction loss g0 [W] depending on the MG speed,

denoted in Fig. 2.5. For the sake of the EMS development, the MG is modelled with a

Figure 2.5: MG friction loss at zero power as a function of MG speed.

piecewise affine function:

Pem = max

(
η−e Pe,

Pe

η+
e

)
+ g0 (ω)SMG (2.5)
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2.3. Motor generator model

where η−e and η+
e are the power conversion efficiencies (including also the Power Inverter

efficiency) in Motor and Generator mode, respectively. The power limitation of the MG

is denoted as

Pem (ω)SMG ≤ Pem ≤ Pem (ω)SMG (2.6)

where Pem < 0 and Pem > 0 correspond to the speed dependent minimum and maximum

power of the MG. As shown in Fig. 2.6, the MG mechanical power error eMG [kW] is

smaller than 3kW for a large operating range, which is below 3% for a MG with maximum

power of 100kW.

Figure 2.6: MG mechanical power error eMG [kW] between the MG model (2.5)

and the measured data. eMG =
|Pem−Pmeas

em |
1000 where Pmeasem [W] is the measured MG

mechanical power. τmax
MG and τmin

MG are the speed dependent maximum and minimum
MG torque, respectively.

Figure 2.7: Solid line: MG model (2.5). Dash line: MG model (2.7).

Remark 1. The MG model (2.5) uses the “max” operator to differentiate between

the generator and motor mode of the MG. It results in a piecewise affine function

which is non-differentiable at Pe = 0. To avoid this effect, the MG model (2.5) can
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be approximated by a quadratic function with respect to Pe,

Pem = η1P
2
e + η2Pe + g0(ω)SMG (2.7)

where η1 and η2 are estimated by fitting (2.7) to the three points
(
Pem

η−e
, Pem

)
, (0, g0) and(

Pemη
+
e , Pem

)
, see Fig. 2.7. The advantage and disadvantage of using the MG model

(2.7) will be discussed in chapter 3.

2.4 Battery model

The hybrid truck is equipped with a li-ion battery pack with a peak power of 120

[kW]. The battery model consists of the battery efficiency, battery thermal system and

battery cycle-life model, see Fig. 2.1. This thesis does not aim at integrating the

battery temperature and operation of the BTMS in the energy management. Henceforth,

modeling of the battery thermal system is not presented here. In [20], more details of

the battery thermal system are given.

2.4.1 Battery efficiency model

Fig. 2.8 denotes the physical model of the battery as an equivalent circuit, represented

by an ideal voltage source Uoc [V] and an internal resistance Ri [Ω] [66]. Relation between

Figure 2.8: Equivalent circuit of battery model. The arrow for Ib defines the positive
current flow in the charging mode of the battery.

the voltage at the battery terminal Ub [V] and the current Ib [A] is obtained by using

Kirchhoff’s voltage law, specifically

Ib =
Ub − Uoc

Ri
(2.8)

Substitute Ub = Pb
Ib

, we obtain Ib =
Pb
Ib
−Uoc
Ri

. Since Pb > 0 for charging the battery, Ib is

computed as a function of the battery power Pb,

Ib =
−Uoc +

√
U2
oc + 4PbRi

2Ri
(2.9)
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We assume that all electric losses Pb loss emerge as thermal power in the battery. Pb loss

is obtained as

Pb loss = I2
bRi (2.10)

Charging : Pb loss = Pb −
Uoc
2Ri

√
U2
oc + 4PbRi +

U2
oc

2Ri
(2.11)

for Pb > 0. When discharging, Pb < 0, the battery power loss Pb loss is computed as

Discharging : Pb loss = −Pb −
Uoc
2Ri

√
U2
oc − 4PbRi +

U2
oc

2Ri
(2.12)

Once can observe that there exist square roots in (2.11) and (2.12) making it complex

to derive an analytical solution for the EMS. For the sake of deriving the analytical

solutions for the EMS, the battery power loss in (2.11) and (2.12) are approximated by

a quadratic function with respect to Pb (see Fig. 2.9),

Pb loss = β(Tb)P
2
b (2.13)

where β(Tb) is the battery loss coefficient depending on the battery temperature Tb (see

for example [67] for a similar approach). That is because the internal resistance Ri

depends on the battery temperature. The net internal battery power Ps is the actual

Figure 2.9: Dependence of Pb loss on Pb for a certain battery temperature.

power stored/retrieved in/from the “lossless” battery energy storage (see Fig. 2.1 for

illustration) and is derived from

Ps = Pb − Pb loss (2.14)

= Pb − β(Tb)P
2
b (2.15)

The battery energy Es [J] is governed by

Ės = Ps (2.16)
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Chapter 2. System modeling

The power limitation of the battery is depicted as

Pb ≤ Pb ≤ Pb (2.17)

with

Pb = min
(
Pbd, SOFcha(Es, Tb)

)
Pb = max

(
Pbd,−SOFdis(Es, Tb)

)
SOFdis > 0 [W] and SOFcha > 0 [W] represent the power capability for (dis-) charging

the battery as function of Es and Tb [18]. Pbd > 0 [W] and Pbd < 0 [W] are the battery

power limitations incorporating the power limitations of the ICE, MG and the capability

to supply the power demand Pd as well as the reefer trailer power request Pl, specifically

Pbd = max
[(

min
(
PICE − Pd, Pem

)
− g0

)
η+
e − Pl, 0

]
Pbd = min

[
max

(
PICE − Pd, Pem

)
− g0

η−e
− Pl, 0

]

It is noted that the battery power loss coefficient β satisfies 0 < β < 1
Pb

to guarantee

PbPs ≥ 0 for Pb ∈ [Pb, Pb]. Fig. 2.10 shows the internal battery power error ePs [kW]

between the model 2.15 and a high fidelity battery model of the battery manufacturer.

For a large operating range of the battery power Pb and temperature Tb, the model error

is smaller than 2.5kW, which is below 2% for a battery with peak power of 120kW.

Figure 2.10: Battery model error ePs
= |Ps−Pmanus | where Pmanus is the net internal

battery power obtained from a high fidelity battery model from the battery manufac-
turer.
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2.4. Battery model

2.4.2 Quasi-static battery cycle-life model

This thesis develops a model-based IEM strategy to guarantee the requested battery life

whilst minimizing the vehicle’s fuel consumption. As a result, a battery life model is

necessary. This model should fit the EMS framework. It estimates the battery capacity

loss every time instant when the battery is charged/discharged.

Battery aging, in general, is effected by its calendar-life and cycle-life [68], [69]. While

the calendar-life reflects the degradation of the battery capacity during its storage, the

cycle-life represents the battery capacity reduction when (dis-)charging the battery. The

influences of calendar-life and cycle-life on the total battery capacity loss are normally

assumed to be cumulative [70]. It is, therefore, reasonable to consider their effects on

the battery life separately. The IEM strategy aims at handling the trade-off between

the cost and benefit when (dis-)charging the battery. This paper focuses on the battery

cycle-life.

The Li-ion battery has been widely used in the applications of hybrid and electric ve-

hicles owing to its high energy density and power density [38]. The considered hybrid

truck is also equipped with a Li-ion high-voltage battery pack. In [69], the authors

give an overview on the battery aging mechanism for Li-on battery cells. In [71], the

authors present preliminary results on the effect of battery ageing propagated between

interconnected cells in a battery pack. Battery capacity wears out during its operation

with a rate depending on several factors, e.g., charge/discharge rate, temperature, SOC

level [21].

In [72], the authors investigate a Li-ion battery whose cell technology is similar the one

being used in the considered hybrid truck. A battery cycle-life model for Li-ion battery

cells is empirically constructed from a large amount of experimental data. The cells

were tested at various conditions as combinations of different temperatures, levels of

Depth-of-Discharge (DOD) and constant discharge rates. The model, denoted in (2.18),

describes the dependence of the cumulative battery capacity loss Ql [%] on three factors

namely, battery Ah throughput, C-rate and temperature.

Ql = B(Crate)e
−Ea(Crate)
R(Tb+273) (IAh)z (2.18)

Table 2.3 gives an overview of the model parameters whose values are given in [72]. The

battery cycle-life model (2.18) estimates the battery capacity loss at cell-level. However,

the considered hybrid truck is equipped with a high voltage battery pack comprising

many cells. Therefore, the model (2.18) is adapted such that the battery cell cycle-life

can be evaluated based on the battery pack power and temperature.

Assume that the battery power is uniformly distributed in the battery pack. The battery
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Chapter 2. System modeling

Table 2.3: Cycle-life Model Parameters for Li-ion battery cells. “(*)” means that the
parameter value depends on the specified operating condition.

Parameter Unit Description Value

B(Crate) - Pre-exponential factor See Fig. 2.11
Crate - Battery cell discharge C-rate (*)

Ea(Crate)
J
mol Activation energy −31700 + 370.3Crate

Tb
oC Battery cell temperature (*)

R J
mol.K Ideal gas constant 8.314

IAh Ah Battery cell Ah throughput (*)
z - Power law factor 0.552

Figure 2.11: Dependence of pre-exponential factor B on the discharge rate Crate

cell Ah throughput IAh and C-rate Crate are derived as

IAh =
E

nVoc3600
(2.19)

Crate =
|Ps|
nVocI0

(2.20)

where I0 [A] and Voc [V] are the battery cell current corresponding to 1C and open

circuit voltage, respectively. n [-] is the number of cells in the battery pack. The battery

energy throughput E [J] is computed as

E(t) = E(t0) +

t∫
t0

|Ps (τ)| dτ (2.21)

As a result, the battery cycle-life model (2.18) becomes

Ql = B (Crate) e
−Ea(Crate)
R(Tb+273)

(
E

nVoc3600

)z
(2.22)

It is noted that (2.22) assumes that Ps and Tb are constant. However, Ps and Tb vary

over time in real life applications. The cumulative battery capacity loss Ql is computed
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2.4. Battery model

by adding up the incremental capacity loss Q̇l in the static battery cycle-life model

Ql (t) = Ql (t0) +

t∫
t0

Q̇l (Ps, Tb, τ) dτ (2.23)

To obtain the incremental capacity loss Q̇l at a certain battery wear status Ql, a quasi-

static approach is utilized since this approach is well suited for the development of the

EMS [38]. The rate of change of Crate and Tb are neglected. Hence, Q̇l can be derived

from (2.22) as follows,

dQl
dt

=
∂Ql
∂E

dE

dt

= B(Crate)e
−Ea(Crate)
R(Tb+273)

z

nVoc3600

(
E

nVoc3600

)z−1

|Ps|

= h (Ps, Tb)Q
z−1
z

l (2.24)

where

h (Ps, Tb) =

[
B (Crate) e

−Ea(Crate)
R(Tb+273)

] 1
z z

3600nVOC
|Ps| (2.25)

Fig. 2.12 demonstrates that at a certain level of Ql, Q̇l increases with higher battery

temperature Tb and net internal battery power Ps.

The model (2.23) is verified with data from battery cell manufacturer, shown in Fig.

Figure 2.12: Dependence of the incremental battery capacity loss Q̇l on battery
temperature and battery net stored/retrieved power at certain level of the battery

capacity loss Ql

2.13. The verification is typically done for a fixed battery cell temperature level and

standard test cycle, i.e., USABC 25 Wh (this test cycle is used to specify the battery

cell cycle-life, more details are given in [73]).
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Chapter 2. System modeling

Figure 2.13: Verification of the quasi-static battery cycle-life model (2.23) for Li-ion
battery cell by repeating the USABC 25Wh cycle [73] consecutively.

Remark 2. It is noted that to develop the static battery cycle-life model (2.18), the

battery cells were tested in [72] at various conditions as combinations of different tem-

peratures, levels of Depth-of-Discharge (DOD) and discharge rates. Regarding the levels

of DOD, the results in [72] illustrate that the cumulative battery cycle-life is higher for

smaller level of DOD. Although the DOD does not appear explicitly in the battery cycle-

life model (2.18), the impact of battery DOD on its wear is taken into account since the

battery Ah throughput IAh is computed in [72] as IAh = (cycle number) × (DOD) ×
(full cell capacity).

The IEM strategy makes use of the quasi-static battery cycle-life model (2.23) being

developed from the static model (2.18). The model (2.18) represents the physical aging

mechanism and trend of a li-ion battery cell which are generally accepted and used in

literature [21, 69, 70]. Although the model parameters can be different for real-life driv-

ing data, the developed IEM strategy in this paper is still valid for incorporating the

battery wear in the EMSs. That is because the developed IEM strategy relies only on

the physical aging mechanism and trend of the li-ion battery but not on the exact model

parameters. A validation of the model (2.23) with real-life driving data is considered

outside the scope of this paper. The developed battery cycle-life model (2.23) is suitable

for the EMS’s framework since it is able to estimate the incremental battery capacity

loss.
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2.5 Conclusions

This chapter presents the quasi-static vehicle model and the component models being

necessary for developing the EMSs and IEMs in chapter 3 and 4. A quasi-static battery

cycle-life model is developed from an empirically model and verified with the battery

manufacturer data. The quasi-static battery cycle-life model is able to estimate the

battery capacity loss every time instant when the battery is charged/discharged. It,

henceforth, provides a basis for integrating the battery wear management in the energy

management of the hybrid truck.

In Chapter 5, simulations will be done to evaluate the developed EMS and IEM strategies

performance. In the simulation environment, the approximated models for the ICE (2.3),

for the MG (2.5) and for the battery efficiency (2.15) are not used. The ICE model is

implemented using a static look-up table expressing the measured fuel consumption for

each operating point of the ICE, defined by the ICE angular speed ω and the ICE power

PICE . Similarly, a static look-up table is utilized to describe the speed dependence

relation between the measured mechanical and electric power of the MG. The battery

efficiency model is obtained from the battery manufacturer.
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Chapter 3

Analytical solutions for energy

management

To provide fundamental understanding for both mathematical and physical insight of

the energy management in the considered hybrid truck, this chapter presents the ana-

lytical solutions to the predefined fuel minimization Optimal Control Problems (OCPs)

in Table 1.2. The solutions are based on the Equivalent fuel Consumption Minimiza-

tion Strategy (ECMS) technique to determine the optimal hybrid truck operating mode

(Power Supply Mode (PSM), Motor Only (MO), ICE Only, Motor Assist (MA), Charg-

ing (C) and Regenerative Braking (R)) regarding the fuel reduction performance and/or

battery life preservation. A Hamiltonian function is formulated in the ECMS to handle

the balance between the fuel cost and other related costs in the system. The optimal

battery charge/discharge power at its terminal and the operation of the clutch system

are found to minimize the Hamiltonian function.

Regarding the Conventional Energy Management (CEM) CEM1 and CEM2 problem

where the battery life requirement is not taken into account, the Hamiltonian function

is constructed to balance only the fuel and the electric power cost. Minimization of

the Hamiltonian function is shown explicitly to provide the fundamental of the Energy

Management Strategy (EMS) in fuel saving in the hybrid truck. Moreover, the fuel re-

duction improvement from using the Motor Generator (MG) clutch in the clutch system

is also explained by analyzing the derived analytical solution of CEM1.

When the battery life requirement is considered in the Integrated Energy Management

(IEM) IEM1 and IEM2, compared to the conventional ECMS approach [37], the Hamil-

tonian function is extended to incorporate the battery capacity loss state. The aug-

mented Hamiltonian function balances the costs among the fuel consumption, electric

power from (dis-) charging the battery and the battery capacity loss (representing the

battery wear). The analytical solutions to IEM1 and IEM2 are also derived to reveal
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3.1. Analytical solution for energy management without battery life requirement

the physical insight into the battery life preservation within the EMS framework.

We assume in this chapter that the battery temperature is kept constant by means of

the active Battery Thermal Management System (BTMS) and the future information of

the driving cycle are known. These assumptions are needed to find the optimal control

parameters of the derived solutions of CEM1, CEM2, IEM1 and IEM2.

Analytical solutions for CEM1 and CEM2 are presented in 3.1 and 3.2, respectively.

Analytical solutions for IEM1 and IEM2 are given correspondingly in 3.3 and 3.4. Sec-

tion 3.5 demonstrates the integration of battery temperature dynamics and the BTMS’s

operation in the IEM framework.

3.1 Analytical solution for energy management without

battery life requirement

The objective of CEM1 is to minimize the fuel consumption while taking into account

the battery charge sustaining condition. Using Pontryagin’s Minimum Principle [47],

the Hamiltonian function is formulated from the objective function J =
tf∫
t0

ṁf (τ) dτ and

the battery energy state dynamic Ės as

H = ṁf + pĖs (3.1)

where p is a multiplier, also known as co-state. Physically, the Hamiltonian function

(3.1) balances the costs between the fuel consumption and electric power from (dis-)

charging the battery. Since p is normally negatively valued, we denote λ1 = −p for the

sake of deriving an explicit solution to CEM1. The Hamiltonian function becomes

H = ṁf − λ1Ės (3.2)

= ṁf − λ1

(
Pb − βP 2

b

)
(3.3)

where the ICE fuel mass flow ṁf can be written as a function of the control inputs and

measured signals Pd and Pl,

ṁf = α1

(
Pd + max

(
η−e (Pb + Pl),

Pb + Pl

η+
e

)
+ g0SMG

)
+ α2SICE (3.4)

Due to the discrete values of SICE and SMG as well as of the MG model, (3.4) implies

that the Hamiltonian function H is non differentiable with respect to the control inputs

SICE , SMG and Pb. Nevertheless, H is differentiable with respect to Es. The Maximum

Principle as in Theorem 9.3.1 in [74] is applied to derive the necessary conditions for the

optimal solution of CEM1
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Chapter 3. Analytical solutions for energy management

• The Hamiltonian function H has a global minimum regarding the optimal control

inputs P ob , SoICE and SoMG

(P ob , S
o
ICE , S

o
MG) = arg min

Pb∈ΩPb
SICE∈{0,1}
SMG∈{0,1}

H (Pb, SICE , SMG, λ
o
1, Pd, ω, Pl) (3.5)

for t ∈ [t0, tf ], ΩPb =
[
Pb, Pb

]
and λo1 is the optimal trajectory of the costate λ1.

• The costate λ1 satisfies a differential equation

λ̇1 =
∂H

∂Es

=
∂(Pb − βP 2

b )

∂Es
(3.6)

We assume that the battery power loss coefficient β does not depend on the battery

energy Es [39]. From (3.6), we have λ̇1 = 0, so

λo1(t) = λ1(t0),∀t ∈ [t0, tf ] (3.7)

Equation (3.5) shows that given λo1 and other measured exogenous signals, the optimal

control inputs P ob , SoICE and SoMG can be calculated. Subsection 3.1.1 presents an explicit

solution of the CEM1 problem for the driving (Pd > 0) and braking (Pd < 0) periods

subsequently.

3.1.1 Explicit solution for energy management during driving periods

Although there are 8 possible combinations of SICE , SMG and the 2 MG operating

modes, the hybrid truck operates only in one of the 5 modes: ICE Only, PSM, MO, MA

and C during driving periods (Pd > 0) as explained in section 1.2. For each mode, the

corresponding Hamiltonian function has been defined Table 3.1.

Table 3.1 shows that HICEonly, HPSM and HMO do not depend on Pb. On the other

hand, HMA and HC are second order polynomials of the battery power Pb. Hence, the

minimum value of the Hamiltonian function H (regarding Pb) is equivalent to

min{HICEonly, HPSM , HMO, H
o
MA, H

o
C} (3.8)

where

Ho
MA = min

Pb∈[Pb,0)
HMA (3.9)

Ho
C = min

Pb∈(0,Pb]
HC (3.10)
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3.1. Analytical solution for energy management without battery life requirement

Table 3.1: Hamiltonian function H and optimal battery power Pb for different hybrid
truck operating modes. (∗) indicates that the computed battery power may not sat-
isfy the battery power limitation condition (2.17) and the corresponding hybrid truck

operating mode may not be feasible.

Mode Hamiltonian function and corresponding optimal Pb[W ]

ICE Only HICEonly = α1

(
Pd + Pl

η+e
+ g0

)
+ α2

P ICEonlyb = 0

PSM HPSM = α1Pd + α2 − λo1
(
−Pl − βP 2

l

)
PPSMb = −Pl (∗)

MO HMO = −λo1
[
−
(
Pd+g0
η−e

+ Pl

)
− β

(
Pd+g0
η−e

+ Pl

)2
]

PMO
b = −Pd+g0

η−e
− Pl (∗)

MA HMA = α1 [Pd + η−e (Pb + Pl) + g0] + α2 − λo1
(
Pb − βP 2

b

)
PMA
b = min

(
max

(
Pb,

λo1−α1η
−
e

2λo1β

)
, 0
)

C HC = α1

[
Pd + Pb+Pl

η+e
+ go

]
+ α2 − λo1

(
Pb − βP 2

b

)
PCb = max

(
min

(
Pb,

λo1−
α1

η+e
2λo1β

)
, 0

)
R HR = α2 − λo1

(
Pb − βP 2

b

)
PRb = max

(
min

(
PRb ,

1
2β

)
, 0
)

The minimization problem (3.8) implies that the optimal hybrid truck operating mode

has the smallest Hamiltonian function’s value among HICEonly, HPSM , HMO, Ho
MA and

Ho
C . For a specified operating mode, the corresponding optimal battery power P ob is

given accordingly as shown in Table 3.1 while SoICE and SoMG are given in Table 2.2.

As observed from Table 3.1, PMA
b ∈ ΩPb , P

C
b ∈ ΩPb (their detailed derivation are given

in Appendix A.1) and P ICEonlyb ∈ ΩPb . However, for MO and PSM mode, since the

battery power follows the power demand from the drive train and the reefer trailer,

it may not satisfy Pb ∈ ΩPb . It is noted that the battery discharge power limitation

depends on the battery power capability SOFdis [W] for discharging the battery. For a

specified battery temperature Tb, SOFdis is a function of the battery energy Es and can

be smaller than Pl if the battery energy is almost depleted.

Regarding the condition Pb ∈ ΩPb , MA, C and ICE Only mode with their corresponding

battery power PMA
b , PCb and P ICEonlyb are always feasible. On the other hand, MO and

PSM mode may not be feasible with their computed battery power PMO
b and PPSMb ,

respectively. Consequently, during driving periods, the optimal hybrid truck operating

mode is a feasible mode which has the smallest Hamiltonian function’s value among

HICEonly, HPSM , HMO, Ho
MA and Ho

C , see (3.8).

The optimal feasible operating mode is found by using the pseudo Algorithm 1 with the

notice that α1, α2 and g0 depends on ω and λo1 is given.
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Chapter 3. Analytical solutions for energy management

Algorithm 1.

1: Obtain ω, Pd, Pl, Tb

2: Compute PPSMb and PMO
b (Table 3.1) and check their feasibilities using condi-

tion Pb ≤ Pb ≤ Pb
3: Compute the optimal Hamiltonian function HICEonly, HPSM , HMO, Ho

MA and

Ho
C

4: Sort the hybrid truck operating modes (ICE Only, PSM, MO, MA and C) in an

ascending order of their optimal Hamiltonian functions’ value

5: The first feasible mode in the sorted modes is the optimal feasible hybrid truck

operating mode

Although steps 3 and 4 of Algorithm 1 can be done numerically, the minimum value of

the Hamiltonian function H can be also obtained explicitly depending on the values of

λo1, g0 and Pd, see Table 3.2 where

gMA
0 = arg

g0
(Ho

MA = HPSM ) (3.11)

gICEonly0 = arg
g0

(HICEonly = HPSM ) (3.12)

gC0 = arg
g0

(HC
o = HPSM ) (3.13)

PMA
d lim = arg

Pd

(Ho
MA = HMO) (3.14)

P ICEonlyd lim = arg
Pd

(HICEonly = HMO) (3.15)

PCd lim = arg
Pd

(Ho
C = HMO) (3.16)

PPSMd lim = arg
Pd

(HPSM = HMO) (3.17)

The Hamiltonian function H is visualized in Fig. 3.1 for all intervals of λo1 denoted

in the first column of Table 3.2, namely (0, α1η
−
e ), [α1η

−
e ,

α1

η+e
],
(
α1

η+e
,+∞

)
. Fig. 3.1

gives the insight into the dependence of H on Pb for all intervals of λo1. For instance,

Fig. 3.1(a) illustrates that Ho
MA < HICEonly < Ho

C ∀λo1 ∈ (0, α1η
−
e ). As a result,

minH = min{HMO, HPSM , H
o
MA}. Physically, if the electric power cost is smaller than

the fuel cost (λo1 < α1η
−
e ), the optimal operating mode of the hybrid truck is one of the

three modes namely, MO, PSM and MA mode. It implies that the electric power should

be used by discharging the battery. The minimum of HMO, HPSM and Ho
MA is then

explicitly specified as shown in the forth column of Table 3.2.

According to the dependence of the minimum value of the Hamiltonian function on λo1,
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3.1. Analytical solution for energy management without battery life requirement

Table 3.2: Minimum value of the Hamiltonian function H corresponds to the values
of λo1, g0 and Pd. (Solution derivation is given in details in Appendix A.2)

λo1 [g/J] g0 [W] Pd [W] minH

0 < λo1 < α1η
−
e

g0 ≥ gMA
0

0 < Pd ≤ PPSMdlim HMO

PPSMdlim < Pd HPSM

g0 < gMA
0

0 < Pd ≤ PMA
dlim HMO

PMA
dlim < Pd Ho

MA

α1η
−
e ≤ λo1 ≤ α1

η+e

g0 ≥ gICEonly0

0 < Pd ≤ PPSMdlim HMO

PPSMdlim < Pd HPSM

g0 < gICEonly0

0 < Pd ≤ P ICEonlydlim HMO

P ICEonlydlim < Pd HICEonly

α1

η+e
< λo1

g0 ≥ gC0
0 < Pd ≤ PPSMdlim HMO

PPSMdlim < Pd HPSM

g0 < gC0
0 < Pd ≤ PCdlim HMO

PCdlim < Pd Ho
C

Figure 3.1: Overview of Hamiltonian function for (a): 0 < λo1 < α1η
−
e ; (b): α1η

−
e ≤

λo1 ≤ α1

η+e
; (c): α1

η+e
< λo1 during driving periods.

g0 and Pd, see also Table 3.2, the lower plot of Fig. 3.2 demonstrates the explicit oper-

ating regions of the hybrid truck operating mode without considering their feasibilities.

The upper plot of Fig. 3.2 shows the intersections between g0 and the power thresholds

gMA
0 , gICEonly0 and gC0 which are essential to determine the optimal hybrid truck oper-

ating mode (see the second column of Table 3.2). When considering the feasibilities of

the hybrid truck operating modes, the lower plot of Fig. 3.2 is modified as shown in Fig.

3.3. Some interesting features are observed from Fig. 3.2 and Fig. 3.3 as follows:

• During driving periods, for α1η
−
e ≤ λo1 ≤ α1

η+e
, the hybrid truck does not operate

in the ICE Only mode in which both ICE and MG clutches are closed. The

PSM mode is used to bring fuel benefit from eliminating the MG friction loss

by opening the MG clutch and turning off the MG. That can be explained from

the comparison between g0 and gICEonly0 . The inequality g0 > gICEonly0 yields

α1

(
Pl
η+e

+ g0

)
> λo1(Pl + βP 2

l ). It expresses that cost from supplying the reefer

trailer using the ICE is larger than the cost from supplying the reefer trailer using

the battery. Therefore, for a specified Pl, if g0 is large enough, there exists a
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Figure 3.2: Explicit operating regions of the hybrid truck operating mode (without
considering the power limits from components) for an ICE speed of 1200 rpm amd

Pl = 11.6kW. The dashed line in the upper plot is the MG friction loss g0.

fuel benefit from opening the MG clutch to eliminate the MG friction loss g0 and

supplying the reefer trailer with the battery.

• The operating region of the PSM mode (where the MG is turned off), specified

by two red solid vertical lines and the power demand threshold curve PPSMdlim , is

enlarged for larger g0. It demonstrates that regarding the fuel reduction benefit,

large value of the MG friction loss g0 is attractive to decoupling the MG from the

drive train and turning the MG off.

• For all λo1 > 0, the MO mode (where the ICE is turned off) is chosen if it is feasible

and Pd is smaller than the power demand thresholds PMA
dlim, PPSMdlim and PCdlim. By

switching off the ICE during the MO mode, the ICE drag loss is eliminated to

reduce the fuel consumption.
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3.1. Analytical solution for energy management without battery life requirement

Figure 3.3: Explicit operating regions of the hybrid truck operating mode when
considering the power limits from components. The ICE speed is 1200 rpm and Pl =

11.6kW. The dashed line in the upper plot is the MG friction loss g0.

3.1.2 Optimal battery power during braking periods

During braking periods, the maximum power which can be stored in the battery is

PRb = min
(
(−Pd − g0)η+

e − Pl, SOFcha
)

(3.18)

The optimal battery regenerative braking power is, therefore, obtained from

PRb = arg min
Pb∈

(
0,PRb

]HR (3.19)

As a result,

PRb = min

(
1

2β
, PRb

)
(3.20)

Equation (3.20) shows that PRb is independent from λo1. The braking energy is always

profitable to be absorbed into the battery regarding the fuel economy.

Remark 3. The solution of the CEM1 is derived using the MG model with two discrete

mode, generator and motor mode, realized by a “max” operator. The combination of

the two discrete mode with the open/close operation of the ICE and MG clutch leads

to 8 possible formulations of the Hamiltonian function, of which only 5 formulations are

interested during driving periods, correspondingly to 5 modes, ICE Only, PSM, MO, MA

and C mode. These number of the discrete mode can be reduced from 5 to 3 using the

quadratic approximation of the MG model (Pem = η1P
2
e + η2Pe + g0(ω)SMG), denoted

as MG quadratic model. Using numerical method, the CEM1 problem can be solved.

However, finding the explicit expression similar to the one shown in Table 3.2 is very

complex. That can be explained as follows.
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Using the MG quadratic model, the Hamiltonian functions for the MA, ICE Only and

C mode are now generalized as

HMIC = α1

(
Pd + η1(Pb + Pl)

2 + η2 (Pb + Pl) + g0(ω)SMG

)
+ α2SICE

−λo1
(
Pb − βP 2

b

)
(3.21)

The minimum value of the Hamiltonian function H is now equivalent to

H = min{Ho
MIC , HPSM , HMO} (3.22)

where

Ho
MIC = min

Pb∈[Pb,Pb]
HMIC (3.23)

Moreover, it is noteworthy that using the MG quadratic model, the battery power during

the MO mode is obtained as

PMO
b = arg

Pb

(
η1(Pb + Pl)

2 + η2 (Pb + Pl) + g0 = −Pd
)

(3.24)

as a result,

PMO
b =

−η2 ±
√
η2

2 − 4 (Pd + g0) η1

2η1
− Pl (3.25)

The existence of the square root in PMO
b leads to an existence of the square root in

HMO. Consequently, the analytical expressions of the power thresholds

PPSMdlim = arg
Pd

(HPSM = HMO) (3.26)

PMIC
dlim = arg

Pd

(Ho
MIC = HMO) (3.27)

are very complex to be derived.

3.2 Solution for energy management with battery energy

state constraint and without battery life requirement

The obtained solution for CEM1 does not take into account the battery energy state

constraint (Es ≤ Es(t) ≤ Es). Consequently, the battery energy Es may exceed Es or

goes below Es. This section extends the solution of CEM1 to take into account also the

battery energy state constraint.
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When considering the battery energy state constraint, besides the necessary conditions

(3.5) and (3.6), additional conditions are needed. Specifically, for any (unknown) time

instants tl and tu when Es correspondingly hits Es and Es, the costate λ1 trajectory

may have a discontinuity given by the following jump conditions [75]:

λ1

(
t+l
)

= λ1

(
t−l
)
− ηl (tl)

∂
(
Es − Es (tl)

)
∂Es (tl)

= λ1

(
t−l
)

+ ηl (tl) (3.28)

λ1

(
t+u
)

= λ1

(
t−u
)
− ηu (tu)

∂
(
Es − Es

)
∂Es (tu)

= λ1

(
t−u
)
− ηu (tu) (3.29)

The superscripts − and + represent correspondingly the left-hand and right-hand side

limits values at the contact times. ηl ≥ 0 and ηu ≥ 0 are the magnitude of the jump

of the costate λ1 when the battery energy Es hits its boundaries. From (3.6), (3.28)

and (3.29), the optimal trajectory of the costate λ1 is piecewise constant, where a jump

occurs if the battery energy state boundaries Es and Es are reached (see also [23] for

similar observation). To find λo1, the Recursive root finding Algorithm in [23] is adopted

without modifying the explicit solution denoted in Algorithm 1 and Table 3.2.

3.3 Analytical solution for integrated energy management

The IEM1 strategy aims at guaranteeing the battery lifetime constraint (Ql(tf ) ≤ Ql)

while allowing appropriate hybrid powertrain operations for fuel minimization. The

strategy uses three control variables namely, battery power Pb, ICE clutch SICE and

MG clutch SMG. This section presents firstly the convexification of the developed battery

cycle-life model. The convexified battery cycyle-life model is utilized to formulate and

solve the IEM1 strategy explicitly to minimize the fuel consumption while satisfying the

battery capacity loss and charge sustaining constraints.

3.3.1 Convexification of battery cycle-life model

As shown in the quasi-static battery cycle-life model, the incremental battery capacity

loss Q̇l = h (Ps, Tb)Q
z−1
z

l is a nonlinear function of Ps, Tb and Ql. Moreover, h(Ps, Tb)

has an exponential term making it complex to derive an analytical solution for the IEM1

strategy. Thus, for the sake of deriving an analytical solution for the IEM1 strategy, the

function h(Ps, Tb) is approximated as

h̃ (Pb, Tb) = αb (Tb)P
2
b (3.30)
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with αb a temperature dependent coefficient and Pb [W] is the battery charge/discharge

power at the terminals. It is noted that Pb will be used as a control variable in the IEM1

strategy. For each battery temperature Tb, the coefficient αb is estimated by fitting the

function h̃ (Pb, Tb) for h (Ps, Tb). Moreover, the fit error
∣∣∣h̃− h∣∣∣ is weighted with a

weighting vector corresponding to the battery power histogram from a typical long-

haulage route. It is done to reduce the battery life prediction error between the original

and approximated model. As shown in the lower plot of Fig. 3.4, using the approximated

battery cycle-life model leads to about 5% (three months for this case) battery life

prediction error, which is acceptable for the development of the IEM1 strategy. From

(2.24) and (3.30), the incremental battery capacity loss is approximated as

Q̇l ≈ αb(Tb)P 2
b Q

z−1
z

l (3.31)

It is noteworthy that the coefficient αb can be adjusted to reduce the battery life predic-

Figure 3.4: Quadratic fit with weighted battery power and its influence on battery
life estimation. In the upper plot, the solid lines are for the original function h(Ps, Tb)
(2.25) where the dash lines are for the fitted function h̃(Pb, Tb) (3.30). Lower plot shows
a comparison between battery life estimation when using the developed battery cycle-
life model (2.24) and the approximated one (3.31). The battery cycle-life model (2.24)
is used in the simulation environment whereas the approximated one (3.31) is utilized

in the IEM1 strategy.

tion error shown in the lower plot of Fig. 3.4. However, the adjusted αb will still depend

on the applied battery power and temperature profile. Besides, the approximated model

(3.31) is incorporated only in the IEM1 strategy whereas the simulation environment
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uses (2.23) and (2.24) to estimate Ql. As a result, the approximated model (3.31) is

suitable for the development of the IEM1 strategy.

3.3.2 Extended equivalent fuel consumption management strategy ap-

proach

To solve the predefined problem IEM1, an ECMS technique [37], [23] is extended. Com-

pared to the conventional ECMS approach, the Hamiltonian function is extended to take

into account not only the battery energy Es but also the battery capacity loss Ql. The

augmented Hamiltonian function is formulated as

H = ṁf + pĖs + λ2Q̇l (3.32)

where p [g/J] and λ2 [g/%] are the multipliers, also known as costates. The variable p is

normally negatively valued. Hence, for the sake of simplifying the solution derivation, we

introduce λ1 = −p [g/J]. From Q̇l = h (Ps, Tb)Q
z−1
z

l and Ės = Pb−βP 2
b , the Hamiltonian

function H becomes

H = ṁf − λ1

(
Pb − βP 2

b

)
+ λ2h (Ps, Tb)Q

z−1
z

l (3.33)

Physically, the Hamiltonian function (3.33) balances the incremental fuel consumption,

battery charge/discharge power (via λ1) and the incremental battery capacity loss (via

λ2) at every time instant when the battery is charged/discharged. The necessary con-

ditions for the optimal costates λ1 and λ2 are derived as [74]

λ̇1 =
∂H

∂Es
= −λ1

∂(Pb − βP 2
b )

∂Es
(3.34)

λ̇2 = − ∂H
∂Ql

(3.35)

Often it is assumed that the battery power loss coefficient β does not depend on the

battery energy Es [15], [39]. Hence, from equation (3.34), we have λ̇1 = 0. As a result,

λ1(t) = λ1(t0),∀t ∈ [t0, tf ] (3.36)

Moreover, from (3.33) and (3.35), the optimal trajectory of the costate λ2 can be ob-

tained as

λ̇2 = −λ2h(Ps, Tb)
z − 1

z
Q
− 1
z

l (3.37)

↔ dλ2

λ2
= −h(Ps, Tb)

z − 1

z
Q
− 1
z

l dt (3.38)
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Substitute dt = dQl

h(Ps,Tb)Q
z−1
z

l

from (2.24) into (3.38), we obtain

dλ2

λ2
= −z − 1

z

dQl
Ql

(3.39)

The explicit expression of the optimal trajectory of the co-state λ2 is derived as

λ2 (t) = λ2 (t0)Q
− z−1

z
l (t) (3.40)

Equation (3.40) shows that to obtain the optimal trajectory of the co-state λ2, it is

required to search for an optimal initial value λ2(t0) only.

For the sake of simplification, λ1(t0) and λ2(t0) are denoted as λo1 and λo2, respectively.

Substitute λ1(t) and λ2(t) from (3.36) and (3.40) in the Hamiltonian function (3.33), we

have

General formulation :H = ṁf − λo1
(
Pb − βP 2

b

)
+ λo2h(Ps, Tb) (3.41)

The general formulation of the Hamiltonian function H (3.41) elucidates the necessity

of using the additional co-state λ2 for obtaining the optimal battery power in the IEM1

strategy for a general formulation of the battery cycle-life model (2.24).

In this thesis we use the function (3.31) Q̇l ≈ αb(Tb)P 2
b Q

z−1
z

l to approximate the battery

wear and to derive an analytical solution to achieve mathematical and physical insight

regarding the battery life preservation in the EMS framework. The Hamiltonian function

(3.41) is now denoted as

Specific formulation with approximated battery cycle − life model (3 .31 ) :

H = ṁf − λo1
(
Pb − βP 2

b

)
+ λo2αbP

2
b (3.42)

Given λo1 and λo2, the optimal battery power P ob , ICE clutch SoICE and MG clutch SoMG

can be obtained by solving the following minimization problem

min
Pb∈ΩPb

SICE∈{0,1}
SMG∈{0,1}

H (Pb, SICE , SMG, λ
o
1, λ

o
2, Pd, ω, Pl) (3.43)

where ΩPb =
[
Pb, Pb

]
. The following subsection presents the explicit solution of the

minimization problem (3.43) for the driving (Pd > 0) and braking (Pd ≤ 0) periods

subsequently.

Remark 4. With the particular approximation Q̇l ≈ αb(Tb)P 2
b Q

z−1
z

l of the battery cycle-

life model, it shows an equivalence between using λ2 and adapting the battery power
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loss coefficient β to satisfy the battery capacity loss constraint Ql(tf ) ≤ Ql. The Hamil-

tonian function (3.42) can be denoted as H = ṁf−λo1
(
Pb − β

′
P 2
b

)
where β

′
= β+

λo2αb
λo1

.

Generally, to satisfy the constraints on battery energy and capacity loss states, using λ1

and β
′

is a subclass of using λ1 and λ2.

Using λ1 and β
′

to guarantee the battery energy and capacity loss constraints, the

explicit solution of the CEM1 strategy can be used without any modification except

replacing β by β
′
. The battery power loss coefficient β in the CEM1 strategy is a phys-

ical parameter of the battery efficiency model whereas the adapted battery power loss

coefficient β
′

is used as a control variable to assure the battery capacity loss constraint.

Using only one co-state λ1 is sufficient to obtain the optimal solution of the CEM1 strat-

egy since the battery capacity loss constraint is not considered in the CEM1 strategy.

When the battery capacity loss constraint is taken into account, we need two indepen-

dent co-states λ1, λ2 or two control variables (a co-state λ1 and a control variable β
′
)

to satisfy the constraints on the battery energy and capacity loss state.

3.3.3 Explicit solution for integrated energy management during driv-

ing periods

Owing to the MG model (Pem = max
(
η−e Pe,

Pe
η+e

)
+ g0 (ω)SMG) and the discrete control

variables SICE and SMG, the Hamiltonian function H in (3.43) is not smooth. Specif-

ically, the Hamiltonian function H switches accordingly to different combinations of

SICE , SMG and the MG operating modes (generator or motor mode). Although there

are 8 possible combinations of SICE , SMG and the 2 MG operating modes, the hybrid

truck operates only in one of the 5 modes: ICE Only, PSM, MO, MA and C during driv-

ing periods, as explained in section 1.2. For each mode, the corresponding Hamiltonian

function has been defined Table 3.3. Table 3.3 shows that HICEonly, HPSM and HMO

do not depend on Pb. On the other hand, HMA and HC are second order polynomials

of the battery power Pb. Hence, the minimum value of the Hamiltonian function H

(regarding Pb) is equivalent to

min{HICEonly, HPSM , HMO, H
o
MA, H

o
C} (3.44)

where

Ho
MA = min

Pb∈[Pb,0)
HMA (3.45)

Ho
C = min

Pb∈(0,Pb]
HC (3.46)
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Table 3.3: Hamiltonian function H and optimal battery power Pb for different hybrid
truck operating modes. (∗) indicates that the computed battery power may not sat-
isfy the battery power limitation condition (2.17) and the corresponding hybrid truck

operating modes may not be feasible.

Mode Hamiltonian function and corresponding optimal Pb [W]

ICE Only HICEonly = α1

(
Pd + Pl

η+e
+ g0

)
+ α2

P ICEonlyb = 0

PSM HPSM = α1Pd + α2 − λo1
(
−Pl − βP 2

l

)
+ λo2αbP

2
l

PPSMb = −Pl (∗)

MO HMO = −λo1
[
−
(
Pd+g0
η−e

+ Pl

)
− β

(
Pd+g0
η−e

+ Pl

)2
]

+ λo2αb

(
Pd+g0
η−e

+ Pl

)2

PMO
b = −Pd+g0

η−e
− Pl (∗)

MA HMA = α1 [Pd + η−e (Pb + Pl) + g0] + α2 − λo1
(
Pb − βP 2

b

)
+ λo2αbP

2
b

PMA
b = min

(
max

(
Pb,

λo1−α1η
−
e

2(λo1β+λo2αb)

)
, 0

)
C HC = α1

[
Pd + Pb+Pl

η+e
+ go

]
+ α2 − λo1

(
Pb − βP 2

b

)
+ λo2αbP

2
b

PCb = max

(
min

(
Pb,

λo1−
α1

η+e

2(λo1β+λo2αb)

)
, 0

)
R HR = α2 − λo1

(
Pb − βP 2

b

)
+ λo2αbP

2
b

PRb = max

(
min

(
PRb ,

λo1
2(λo1β+λo2αb)

)
, 0

)

The minimization problem (3.44) implies that the optimal hybrid truck operating mode

has the smallest Hamiltonian function’s value among HICEonly, HPSM , HMO, Ho
MA and

Ho
C . For a specified hybrid truck operating mode, the corresponding optimal battery

power P ob is given accordingly as shown in the second column of Table 3.3 while SoICE

and SoMG are given in Table 2.2.

As observed from Table 3.3, PMA
b and PCb satisfy the battery power limitation condition

(Pb ≤ Pb ≤ Pb) (their detailed derivation are given in Appendix B.1). However, for MO

and PSM mode, since the battery power Pb follows the power demand from the drive

train and the reefer trailer, it may not satisfy (Pb ≤ Pb ≤ Pb).
Hence, it is stated that: regarding the battery power limitation (Pb ≤ Pb ≤ Pb), MA,

C and ICE Only mode with their corresponding battery power PMA
b , PCb and P ICEonlyb

are always feasible. On the other hand, MO and PSM mode may not be feasible with

their computed battery power PMO
b and PPSMb , respectively. Ultimately, during driving

periods, the optimal hybrid truck operating mode is a feasible mode which has the

smallest Hamiltonian function’s value among HICEonly, HPSM , HMO, Ho
MA and Ho

C ,

see (3.44).

Given λo1 and λo2, the optimal feasible hybrid truck operating mode is found using the

following pseudo algorithm,
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Algorithm 2.

1: Obtain ω, Pd, Pl, Tb

2: Compute PPSMb and PMO
b (Table 3.3) and check their feasibilities using condi-

tion (Pb ≤ Pb ≤ Pb)
3: Compute the optimal Hamiltonian function HICEonly, HPSM , HMO, Ho

MA and

Ho
C

4: Sort the operating modes (ICE Only, PSM, MO, MA and C) in an ascending

order of their optimal Hamiltonian functions’ value

5: The first feasible element in the sorted modes is the optimal feasible operating

mode

Although steps 3 and 4 from Algorithm 2 can be done numerically, the minimum value

of the Hamiltonian function H can also be obtained explicitly depending on the values

of λo1, g0 and Pd, see Table 3.4. The solution, given in Table 3.4, holds ∀λo2 ≥ 0 and

gMA
0 = arg

g0
(Ho

MA = HPSM ) (3.47)

gICEonly0 = arg
g0

(HICEonly = HPSM ) (3.48)

gC0 = arg
g0

(HC
o = HPSM ) (3.49)

PMA
d lim = arg

Pd

(Ho
MA = HMO) (3.50)

P ICEonlyd lim = arg
Pd

(HICEonly = HMO) (3.51)

PCd lim = arg
Pd

(Ho
C = HMO) (3.52)

PPSMd lim = arg
Pd

(HPSM = HMO) (3.53)

The explicit expressions of the power thresholds PMA
dlim, P ICEonlydlim , PCdlim, PPSMdlim , gMA

0 ,

gICEonly0 and gC0 are given in Table B.1 in Appendix B.2.

For all λo2 ≥ 0, The Hamiltonian function H can also be visualized in Fig. 3.1 for all

intervals of λo1 denoted in the first column of Table 3.4, namely (0, α1η
−
e ), [α1η

−
e ,

α1

η+e
],(

α1

η+e
,+∞

)
.
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Table 3.4: Minimum value of the Hamiltonian function H corresponds to the values
of λo1, g0 and Pd. (Solution derivation is given in detail in Appendix B.2)

λo1 [g/J] g0 [W] Pd [W] minH

0 < λo1 < α1η
−
e

g0 ≥ gMA
0

0 < Pd ≤ PPSMdlim HMO

PPSMdlim < Pd HPSM

g0 < gMA
0

0 < Pd ≤ PMA
dlim HMO

PMA
dlim < Pd Ho

MA

α1η
−
e ≤ λo1 ≤ α1

η+e

g0 ≥ gICEonly0

0 < Pd ≤ PPSMdlim HMO

PPSMdlim < Pd HPSM

g0 < gICEonly0

0 < Pd ≤ P ICEonlydlim HMO

P ICEonlydlim < Pd HICEonly

α1

η+e
< λo1

g0 ≥ gC0
0 < Pd ≤ PPSMdlim HMO

PPSMdlim < Pd HPSM

g0 < gC0
0 < Pd ≤ PCdlim HMO

PCdlim < Pd Ho
C

3.3.4 Optimal battery power during braking periods

During braking periods, the maximum power which can be stored in the battery is

PRb = min
(
(−Pd − g0)η+

e − Pl, SOFcha
)

(3.54)

The optimal battery regenerative braking power is, therefore, obtained from

PRb = arg min
Pb∈

(
0,PRb

]HR (3.55)

As a result,

P ob = max

(
min

(
PRb ,

λo1
2(λo1β + λo2αb)

)
, 0

)
(3.56)

3.3.5 Effect of integrated energy management strategy on preserving

battery life

This section explains the effectiveness of the IEM1 strategy on preserving the battery

life via the costate λo2. In general, the battery capacity loss can be reduced by:

• Reducing the magnitude of battery power in MA, C and R mode, see subsection

3.3.5.1

• Avoiding discharging the battery at peak power in MO mode to prevent the battery

from its fast deterioration region, see subsection 3.3.5.2.
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• Reducing the number of occurrences of PSM mode and favoring the usage of ICE

Only mode, see subsection 3.3.5.3

3.3.5.1 Influence of IEM1 strategy on battery usage in MA, C and R mode

As defined in the third column of Table 3.1, the costate λo2 appears only in the denomi-

nator of the equations of the battery power PMA
b , PCb and PRb . Since λo1, α1, αb, β and

λo2 are positive, the sign of battery power during MA, C and R mode is not influenced by

λo2. Hence, the costate λo2 only affects the magnitude of PMA
b , PCb and PRb . Specifically,

an increase of λo2 reduces the magnitude of PMA
b , PCb and PRb .

It is interesting to note that in the equations of PMA
b and PCb , the numerators show the

comparison between the cost of electric power and fuel, represented by λo1 and α1. As

described in Table 2.2, the battery power is negative in MA mode. As a result, MA

mode is only selected for λo1 < α1η
−
e . Physically, it means that the MA mode can only

be selected when the electric power from the battery is cheaper than electric power from

fuel. In contrast, the C mode is only selected when the fuel cost is cheaper than the

electric power cost, λo1 >
αo1
η+e

.

The denominators in the equations of PMA
b , PCb and PRb on the other hand, are the total

cost of the battery power loss and the capacity loss during its operation. It suggests

that the costate λo2 tries to add an additional penalty to the cost of the battery power

loss to restrict the battery usage. This observation aligns with an approach proposed

in [63] and chapter 4 where an adaptive factor is introduced to artificially increase the

battery power loss when reducing the battery wear is necessary.

3.3.5.2 Influence of IEM1 strategy on battery usage in MO mode

As shown in Table 3.2, the minimum value of the Hamiltonian function H is HMO if

the driver power demand Pd is smaller than certain power thresholds PMA
dlim, P ICEonlydlim ,

PCdlim and PPSMdlim , generalized as Pmodedlim to simplify the notation. The symbol “mode”

represents MA, ICE Only, C and PSM. The MO mode is only selected if Pd ≤ Pmodedlim

and the MO mode is feasible according to the power limitation Pb ≤ Pb ≤ Pb. The

battery power in MO follows the power demand from the drive train Pd and the reefer

trailer Pl. As a result, to restrict the battery power in MO mode, the power demand

limitation curve Pmodedlim should be reduced.

For λo2 > 0, the first derivative of Pmodedlim regarding λo2 satisfies
∂Pmoded lim
∂λo2

< 0 for all mode ∈ {
MA, ICE Only, C, PSM }. It means that an increase of λo2 leads to a decrease of the

power demand limitation curve Pmodedlim .

To illustrate the above statement, the explicit solution of IEM1 strategy (see Table 3.2)
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is visualized for different λo2 namely, 0, 250e3 and 500e3 [g/%], respectively shown in Fig.

3.5, 3.6 and Fig. 3.7. The upper plot of these figures show the intersections between g0

and the power thresholds gMA
0 , gBL0 and gC0 which are essential to determine the optimal

operating mode of the hybrid truck (see the second column of 3.2). The Pmodedlim curve is

denoted in the lower plots of Fig. 3.5, 3.6 and Fig. 3.7. As a example, one can observe

at λo1 = 4.7e−5 [g/J], the power level Pmodedlim is about 100, 22 and 13 [kW] for λo2 equal

to 0, 250e3 and 500e3 [g/%], respectively. It denotes that Pmodedlim decreases with the

increase of the costate λo2. Henceforth, by increasing λo2, the battery is prevented from

discharging at peak power where the highest deterioration of the battery capacity occurs

(see Fig. 3.4).

3.3.5.3 Influence of IEM1 strategy on battery usage in PSM and ICE Only

mode

The battery power Pb = 0 in ICE Only mode. Hence, during this mode, the battery

capacity is not worn out in terms of cycle-life effect. On the other hand, Pb = −Pl
in PSM mode, irrespective of the power demand Pd. It suggests that in PSM mode,

the battery power’s magnitude can not be reduced. To reduce the battery capacity

loss appearing in PSM mode, the number of occurrences of the PSM mode should be

decreased.

Table 3.2 suggests that if the MG friction loss at zero power g0 is larger than the power

thresholds gMA
0 , gICEonly0 and gC0 , the PSM mode is utilized for Pd > PPSMdlim . Recall

from Table 3.2 that the ICE Only mode can be selected only when λo1 ∈
[
α1η

−
e ,

α1

η+e

]
(the

minimum value of the Hamiltonian function H can be HICEonly if λo1 ∈
[
α1η

−
e ,

α1

η+e

]
). As

shown in the upper plot of Fig. 3.5 where λo2 = 0, g0 > gICEonly0 for λo1 ∈
[
α1η

−
e ,

α1

η+e

]
:

the ICE Only mode will not be selected if the cost of battery capacity loss λo2 is set to

zero, see the lower plot of Fig. 3.5. Consequently, when the battery capacity loss is not

taken into account, the battery usage will not be restricted.

As shown in the lower plots of Fig. 3.5, 3.6 and 3.7, for λo1 ≥ α1η
−
e , the area of using

the ICE Only mode is enlarged when increasing the value of λo2 (equivalent to setting

higher cost for the battery capacity loss). In contrast, the area of using the PSM mode

is reduced. For a large enough value of λo2, the PSM mode is not used for λo1 ≥ α1η
−
e ,

see the lower plot of Fig. 3.7. The battery capacity loss is, henceforth, restricted by

favoring the usage of ICE Only mode where the battery is not used.
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Figure 3.5: Upper plot: MG friction loss g0 (dashed line) and related power thresholds
(solid lines) gMA

0 , gBL0 , gC0 . Lower plot: Power demand limitation curves and corre-
sponding feasible HEV operating modes. λo2 = 0, ICE speed is 1200rpm, Pl = 11.6kW
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Figure 3.6: Upper plot: MG friction loss g0 (dashed line) and related power thresh-
olds (solid lines) gMA

0 , gBL0 , gC0 . Lower plot: Power demand limitation curves and
corresponding feasible HEV operating modes. λo2 = 250e3, ICE speed is 1200rpm,

Pl = 11.6kW
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Figure 3.7: Upper plot: MG friction loss g0 (dashed line) and related power thresholds

(solid lines) gMA
0 , gICEonly0 , gC0 . Lower plot: Power demand limitation curves and

corresponding feasible HEV operating modes. λo2 = 500e3, ICE speed is 1200rpm,
Pl = 11.6kW
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3.4 Solution for integrated energy management with bat-

tery energy state constraint

In IEM2, the battery energy state constraint (Es ≤ Es(t) ≤ Es) is taken into account,

besides (3.34) additional necessary conditions for the optimal costate λ1(t) for t ∈ (t0, tf )

are derived according to [75], [76]

λ1

(
t+l
)

= λ1

(
t−l
)
− ηl (tl)

∂
(
Es − Es (tl)

)
∂Es (tl)

= λ1

(
t−l
)

+ ηl (tl) (3.57)

λ1

(
t+u
)

= λ1

(
t−u
)
− ηu (tu)

∂
(
Es − Es

)
∂Es (tu)

= λ1

(
t−u
)
− ηu (tu) (3.58)

where tl and tu are unknown and denote the contact times when the battery energy

Es hits its lower and upper bound, respectively. The superscript − and + represent

correspondingly the left-hand and right-hand side limits values at the contact times.

ηl ≥ 0 and ηu ≥ 0 are the magnitude of the jump of the costate λ1 when the battery

energy Es hits its boundary.

Equations (3.57) and (3.58) suggest that when taking into account the battery energy

state constraint, the optimal trajectory of the costate λ1 is constant and makes a jump

when Es hits its boundaries Es or Es. Nonetheless, since the battery energy state

constraint is not influenced by Ql, the jump of the costate λ1 does not cause a jump in

the costate λ2, see also lemma 2 in [16]. The Recursive root finding Algorithm from [23]

(chapter 5) is utilized to find the optimal trajectory of the costate λ1 without changing

the solution of the developed IEM1 strategy.

3.5 Integrated energy and thermal management including

battery wear

In the developed strategies (IEM1 and IEM2), the influences of the battery temperature

dynamics and the BTMS’s operation on the fuel reduction and battery life preservation

performance are not considered. The current control scheme in the hybrid truck regard-

ing the operation of the IEM and BTMS is depicted in Fig. 3.8. One can observe that

the operation of the IEM and the BTMS is separated. The IEM determines the battery

charge/discharge power and the operation of the ICE and MG clutch to minimize the

fuel consumption while satisfying constraints on the battery energy Es and capacity loss

state Ql. The BTMS tries to keep the battery temperature at a predefined value (Tb ref
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3.5. Integrated energy and thermal management including battery wear

Figure 3.8: Control scheme in hybrid truck where the operation of the BTMS and
battery temperature dynamic is seperated from the IEM strategy.

[oC]) under all circumstance by operating the Battery Thermal System (BTS) in one

of the four operating modes namely, Heating, Flushing, Cooling and Chilling (denoted

by umode [-]). More details about operation of the BTS are given in [20]. Additional

power demand is added to the hybrid powertrain to operate the BTS, represented by the

power Pbts [W]. The IEM provides the requested power Pbts without checking whether

its action is fuel beneficial. The battery temperature has a large impact on the battery

wear rate. Ultimately, there is a trade-off between the cost of the BTS action (from

the requested power Pbts) versus the benefit for the hybrid powertrain efficiency and

the battery life preservation. So, it is desirable to include the dynamics of the battery

temperature and the operation of the BTS in the IEM framework, as demonstrated in

Fig. 3.9. The new problem formulation of the IETM strategy is then constructed as

follows.

When taking into account the fuel consumption of the BTS, the power relation (2.1) is

modified as

PICE = Pd + Pem + Pbts(umode) (3.59)

The power Pbts is specified for each BTS’s operating mode umode (Heating, Flushing,

Cooling, Chilling).

Given the battery energy state model (2.16), battery wear model (2.24), vehicle model

in section 2.1 with the modified power relation (3.59) and the battery temperature

dynamics

Ṫb =
1

Cb

(
Pb loss −

Tb − Tambi
Rb

− Phc(umode)
)

(3.60)
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Figure 3.9: Integrated energy and battery thermal management including battery
wear.

where Phc [W] is the heating/cooling power provided by the BTS and is specified for

each operating mode umode of the BTS. Phc < 0 if the BTS operates in the Heating

mode while Phc > 0 if the BTS operates in Flushing, Cooling or Chilling mode. Cb

[J/K] and Rb [K/W] are the lumped battery heat capacity and the thermal resistance

of the battery to the ambient, respectively.

Find the optimal control inputs

Pb ∈ [Pb, Pb], SICE ∈ {0, 1}, SMG ∈ {0, 1} (3.61)

and umode ∈ {Flusing,Heating, Cooling, Chilling} to minimize the vehicle fuel con-

sumption J =
tf∫
t0

ṁf (τ) dτ subjects to the constraints Es(tf ) ≥ Es(t0), Es ≤ Es(t) ≤ Es

and Ql(tf ) ≤ Ql.
This IETM problem is solved using the ECMS approach. The Hamiltonian function

(3.33) is augmented to take into account the dynamics of the battery temperature

H = ṁf − λ1

(
Pb − β(Tb)P

2
b

)
+ λ2αb(Tb)P

2
b Q

z−1
z

l

+λ3
1

Cb

(
Pb loss −

Tb − Tambi
Rb

− Phc(umode)
)

= α1

(
Pd + max

(
η−e (Pb + Pl),

Pb + Pl

η+
e

)
+ g0SMG + Pbts(umode)

)
+ α2SICE

−λ1

(
Pb − β(Tb)P

2
b

)
+ λ2αb(Tb)P

2
b Q

z−1
z

l

+λ3
1

Cb

(
β(Tb)P

2
b −

Tb − Tambi
Rb

− Phc(umode)
)

(3.62)
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3.6. Conclusions

Since there are six operating modes of the hybrid truck (ICE Only, PSM, MO, MA, C

and R) and four operating modes of the BTS (Heating, Flushing, Cooling and Chilling),

the Hamiltonian function (3.62) has 24 different formulations making it quite complex

to derive an analytical solution to the IETM strategy. Nevertheless, given the optimal

costates λo1, λo2, λo3 and other measured exogenous signals, minimization of the Hamil-

tonian function H(Pb, SICE , SMG, umode, λ
o
1, λ

o
2, λ

o
3, t) (3.62) can still be computed by

numerically evaluating these 24 Hamiltonian functions on a dense grid. The optimal

hybrid truck operating mode is specified as the feasible mode which has the smallest

Hamiltonian function value among their 24 different formulations. Operations of the

BTS and the clutch system are specified accordingly. Verification of the IETM strategy

will be addressed in future research.

3.6 Conclusions

The fuel minimization OCPs (CEM1, CEM2, IEM1 and IEM2), defined in Table 1.2,

are addressed in this chapter. Without considering the battery life requirement, an ana-

lytical solution to CEM1 strategy, utilizing ECMS technique, is derived to minimize the

fuel consumption of the hybrid truck by controlling the battery charge/discharge power

and the clutch system’s operation. The analytical solution of the CEM1 strategy yields

the explicit operating regions of the hybrid truck operating mode. Moreover, analyzing

the analytical solution of the CEM1 reveals that decoupling the MG from the drivetrain

brings additional fuel benefit. The analytical solution of the CEM1 requires solving a

finite number of simple algebraic equations. It, therefore, results in a computationally-

efficient algorithm being applicable for real-life application. Without modifying the

explicit expressions in Table 3.2, the CEM2 strategy uses the solution of the CEM1 to

take into account also the battery energy state constraint (Es ≤ Es(t) ≤ Es).
When considering the battery life requirement, the developed battery cycle-life model is

approximated by a convex function to be incorporated in the EMS framework. By ex-

ploiting the approximated model, the IEM1 strategy is formulated and solved explicitly

to minimize the vehicle fuel consumption while satisfying the battery capacity loss and

charge sustaining constraints. The IEM1 strategy makes use of the ECMS technique

and takes into account not only the battery energy but also the battery capacity loss

state in the Hamiltonian function. Henceforth, the IEM1 strategy is able to balance

three costs: the fuel consumption, the battery charge/discharge powers and the bat-

tery capacity loss. During driving periods, the optimal hybrid truck operating mode

and battery power are determined by searching the smallest (regarding the Hamiltonian

function’s value) feasible (regarding the battery power limitation (Pb ≤ Pb ≤ Pb)) mode

among five possible operating modes: ICE Only, PSM, MO, MA and C. The searching
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Chapter 3. Analytical solutions for energy management

algorithm is done by solving a finite number of simple algebraic equations. It, therefore,

results in a computationally-efficient algorithm. Without modifying the explicit expres-

sions in Table 3.4, the IEM2 strategy uses the solution of the IEM1 to take into account

also the battery energy state constraint (Es ≤ Es(t) ≤ Es).
The developed strategies (CEM1, CEM2, IEM1 and IEM2) requires the future informa-

tion of the driving cycle and battery temperature (kept at constant value) to find the

optimal control parameters. Although, this requirement leads to non-causal strategies,

the derived solutions provides a basis for developing a real-time implementable strategy,

presented in chapter 4.
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Chapter 4

Real-time implementation of

adaptive integrated energy

management

An Adaptive Integrated Energy Management (A-IEM) system and its real-time imple-

mentation are developed in this chapter to establish the battery life requirement while

allowing appropriate hybrid powertrain operations for fuel minimization. The A-IEM

strategy does not require future information of the driving cycle. The A-IEM strategy

exploits the analytical solution of CEM1 (see chapter 3) which requires exact information

of the whole driving cycle to find the optimal control parameters. This requirement is not

feasible in real-life applications. In this chapter, a Driving Pattern Recognition (DPR)

algorithm is developed to recognize the current driving pattern on-line using Principal

Component Analysis (PCA) technique. Utilizing the developed DPR algorithm, a feed-

forward controller is constructed together with feedback controllers for on-line updating

the control parameters (the costate λ1 and an adaptive factor introduced later in 4.1)

of the A-IEM strategy.

4.1 Motivation for adaptive integrated energy management

The conceptual scheme to manage the battery lifetime is sketched in Fig. 4.1. By mon-

itoring the battery capacity loss over its lifetime, the deviation of the actual battery

capacity loss (the solid line) from a nominal trajectory (the dashed line) is used to con-

straint the battery operation if necessary. Specifically, when the actual battery capacity

loss is at point B, the battery can be used to benefit from the hybrid truck operation

without any constraint. In case of point A, the battery usage has to be restricted or
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4.1. Motivation for adaptive integrated energy management

Figure 4.1: Conceptual scheme of battery lifetime management. The real battery
capacity loss is obtained from the battery pack management system provided by the

battery manufacturer.

the battery has to operate at low temperature to steer the battery capacity loss back to

its nominal trajectory. High battery power and temperature result in high incremental

battery capacity loss, see also Fig. 2.12.

Integrating the battery temperature dynamics and the associated BTMS operation in the

IEM may bring additional benefits and practically valuable. However, it adds complex-

ity to the fuel minimization Optimal Control Problem (OCP), resulting in an augmented

OCP with three states (battery energy, battery capacity loss and battery temperature).

This extension is a relevant topic for future research. This thesis focuses on restricting

the battery usage to constraint the battery capacity loss when necessary.

The battery usage can be constrained by reducing the maximum battery power ratings

or artificially increasing the battery power loss to put more penalty on (dis-)charging the

battery. The A-IEM strategy exploits the solution of the CEM1 strategy in chapter 3.

CEM1 uses the Hamiltonian function (3.2), H = ṁf − λ1

(
Pb − βP 2

b

)
, to balance the

cost from using the battery and the cost from the fuel consumption of the ICE. In the

Hamiltonian function H, the battery power loss (βP 2
b ) is incorporated directly. Hence,

for the sake of utilizing the CEM1’s solution, the battery usage will be restricted by

adjusting the battery power loss. This idea is motivated from analyzing the effect of

IEM1 strategy on preserving the battery life in chapter 3 and the influence of the battery

power loss coefficient β on the CEM1’s explicit solution in Appendix A.3. Generally,

increasing β reduces the battery usage.

We introduce in this chapter an adaptive factor γ to artificially increase the battery

power loss coefficient, specifically

β
′

=
β

γ
(4.1)

with 0 < γ ≤ 1. The A-IEM strategy exploits the explicit solution developed for the

CEM1 problem in chapter 3 without any modification except replacing β by β
′

= β
γ .
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4.2 Real-time implementation concept

When utilizing the solution of CEM1, the driving cycle must be known in advance to

search for the optimal costate λo1 for a certain value of γ. It results in a non-causal

strategy.

This chapter develops a causal scheme to estimate the values of λ1 and γ. Specifically,

the driving cycles are classified into predefined standard driving cycles using the velocity

and elevation profile [77]. For each standard driving cycle, by utilizing the CEM1’s

solution, the values of λ1 and γ are found off-line to minimize the fuel consumption and

satisfy the constraints on charging sustaining (Es(tf ) ≥ Es(t0)) and battery capacity

loss (Ql(tf ) ≤ Ql). The obtained values of λ1 and γ are stored in a look-up table. When

the vehicle drives on the road, the current driving pattern is recognized by means of

DPR techniques [78]. The values of λ1 and γ are switched accordingly to the recognized

driving pattern using the stored data from the look-up table. Output signals from the

look-up table are denoted as λFF1 and γFF . Although, this approach allows a real-time

implementation, the battery energy Es and capacity loss Ql may not satisfy the charge

sustaining and capacity loss constraints, respectively. That is due to the inaccuracy of

the DPR, and the differences between the models and parameter values and the actual

process. Two feedback loops for both Es and Ql are added to calculate the corrections for

λFF1 and γFF , respectively. The estimated values of λ1 and γ are sent to an optimization

block, using the solution of CEM1, to compute the optimal control inputs P ob , SoICE and

SoMG. The A-IEM strategy is shown in Fig. 4.2.

The necessity for using the combination of the FF and FB blocks in the A-IEM strategy

Figure 4.2: Overview scheme for Adaptive Integrated Energy Management strategy.

is further analyzed in Appendix B.3. Generally, the feedback block FB1 is needed to

adapt λ1 to prevent the battery energy from crossing its bounds while driving. The

FF block is needed to not only adapt γ to satisfy the battery capacity loss constraint,

but also bring λ1 quickly to an appropriate (fuel beneficial) trajectory. Combination of
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4.2. Real-time implementation concept

the FF and FB blocks results in a reliable solution for satisfying the constraints while

achieving minimal fuel consumption.

The A-IEM strategy consists of a Feedforward (FF, denoted by dash line) control block,

two Feedback (FB1 and FB2, denoted by dotted line) control blocks and an Cost-effective

Optimization (CeO, denoted by dash-dot-dot line) block. The main functions of these

blocks are briefly explained as follows:

• The FF control block is constructed from a DPR and Look-up table layer. The

DPR layer classifies the current driving pattern using the information of the vehicle

velocity v and the road elevation h. The Look-up table layer stores the off-line

calculated values of λ1 and γ for different driving scenarios with respect to the

driving pattern (denoted by dp) and the measured vehicle mass mveh, battery

temperature Tb, see Fig. 4.3. It is noteworthy that mveh impacts on the driver

Figure 4.3: Optimal values of λ1 and γ for a certain mveh and various values of Tb
for City flat and City hilly driving cycles.

power demand and Tb influences the battery power loss coefficient. mveh and

Tb ultimately influence λ1 and γ. With the detected dp and the look-up table,

appropriate values of λFF1 and γFF become available. The DPR layer is presented

in details in subsection 4.3.

• FB control blocks: The FB control blocks utilize each a PI controller to correct

the feedforward signals λFF1 and γFF to regulate the actual battery energy Es

and actual capacity loss Ql around their specified reference signals Es ref and

Ql ref , respectively (see Fig. 4.2). Subsection 4.4 discusses the tuning of both PI

controllers.

• CeO block: In the CeO block, the Optimization layer outputs the optimal control

inputs P ob , SoICE and SoMG using the explicit solution of CEM1 with the estimated

λ1 and γ from the FB1, FB2 and FF control blocks. The Battery Cost-effective
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Power Range layer computes the battery power range where the benefit from fuel

reduction is always larger than the cost from the battery capacity loss when dis-

charging the battery during driving periods and charging the battery during brak-

ing periods, see subsection 4.5 for more details.

It is noted that Pd, ω and Tb are measured signals from the vehicle. Measurements of

these signals will not be discussed in this thesis.

4.3 Driving pattern recognition

DPR techniques can be clustered into two main groups [78], [79],

• Global Positioning System (GPS) and Intelligent Transportation System (ITS)

based prediction.

• Statistic and Cluster Analysis based recognition.

The GPS and ITS based technique provides the prediction of future driving conditions,

e.g., road elevation, with high accuracy [80]. However, the accuracy in predicting the

future vehicle velocity suffers from the inevitable road disturbances, e.g., traffic [81].

Besides, the GPS and ITS based technique requires a sophisticated tool to combine the

GPS and ITS data to predict the future route information. This paper uses the Statistic

and Cluster Analysis based technique to take full advantage of the available data without

requiring additional tool. The driving conditions are recognized by utilizing the GPS

to compute the driving cycle characteristic parameters namely, the average, standard,

maximum velocity and the standard deviation of the road elevation over a time interval

[t− τpc, t]. t [s] is the current time instant and τpc [s] is a predefined value. We assume

that the driving conditions in the future do not change frequently for a certain time

window.

The driving conditions are classified into one of six predefined standard driving cycles

representing most of the typical driving patterns for the considered hybrid truck’s appli-

cations. The feature parameters of these six representative driving cycles are shown in

Table. 4.1. Utilization of PCA in developing the DPR algorithm is presented in details

in 4.3.1. Verification of the DPR algorithm is given in 4.3.2.

4.3.1 Principal component analysis

PCA is an effective way to suppress redundant information and reveal a hidden structure

(pattern) of a data set [82]. The data redundancy can be quantitatively represented by
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4.3. Driving pattern recognition

Table 4.1: Featured parameters of 6 representative driving cycles. vavg, vstd and
vmax correspond to the average, standard deviation and maximum velocity. hstd is the

standard deviation of relative route elevation.

vavg [m/s] vstd [m/s] vmax [m/s] hstd [m]

City flat 8 3 14 1
Urban flat 17 4 20 3
Highway flat 23 2 24 12
City hilly 9 4 16 30
Urban hilly 16 5 22 32
Highway hilly 22 3 25 40

the covariance matrix (CX) of the data set. In the off-diagonal elements of CX , large

(small) values correspond to high (low) data redundancy [83]. PCA aims at finding a

linear transformation to transform the original data set to a new one whose covariance

matrix (CY ) is diagonal. The diagonal covariance matrix CY expresses the least data

redundancy since all the off-diagonal elements are zero. The linear transformation matrix

is typically selected to be a matrix where the column vectors are eigenvectors of CX ,

named as Principal Components. More details of PCA are given in [82], [83].

This thesis applies PCA technique to construct the DPR algorithm. Denoting X as the

reference sampled data whose dimension is 6×4 and the rows’ values are the sampled data

of 4 featured parameters for 6 standard driving cycles. Since the featured parameters

are measured in different units, the elements of X are normalized to zero mean and unit

variance as

Xnor
ij =

Xij − X̄j√
var (Xj)

(4.2)

where i = 1, 2, . . . , 6, j = 1, 2, 3, 4, X̄j =

6∑
i=1

Xij

6 and var (Xj) =

6∑
i=1

(Xij−X̄j)
2

5 .

By performing the MATLAB command princomp(Xnor) 1 , four principal component

vectors (Z(1)−Z(4)) are obtained with transformed data of Xnor in the principal compo-

nents coordinate and four accompanying eigenvalues. The eigenvalues demonstrate the

contribution of the corresponding principal component vectors to the data information

coverage. The cumulative contribution ratio of the principal components is shown in

Fig. 4.4. As observed from Fig. 4.4, using three principal components covers 99% of

the data’s content. For the DPR, three vectors Z(1), Z(2) and Z(3) (whose dimensions

1The function princomp(Xnor) utilizes the Singular Value Decomposition (SVD) technique to de-
compose the matrix Xnor into Xnor = UΞV T where UTU = I, V TV = I; the columns of U6×6

are orthonormal eigenvectors of Xnor(Xnor)T , the columns of V4×4 are orthonormal eigenvectors of

(Xnor)TXnor. Ξ6×4 =

[
Σ4×4

zeros (2, 4)

]
where Σ4×4 is a diagonal matrix containing the square roots of

eigenvalues of (Xnor)TXnor from V in descending order. The principal component vectors (Z(1) −Z(4))
are the column vectors of the matrix V . The covariance matrix of the transformed data Y nor = XnorV T

can be obtained as ΞTΞ which is a diagonal matrix.
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Figure 4.4: Cumulative contribution ratio regarding the number of the principal
components.

are 4 × 1) and their corresponding transformed data SC(1), SC(2) and SC(3) (whose

dimensions are 6×1) will be used to recognize the current driving pattern of the vehicle

as follows.

During driving, the vehicle velocity v [m/s] and the route elevation h [m] are collected

and stored in a buffer with a time window of τpc. The four featured parameters are

computed at each time instant t as

vavg =

t∫
t−τpc

v (τ) dτ

τpc
(4.3)

vstd =

√√√√√ 1

τpc

t∫
t−τpc

(v (τ)− vavg)2dτ (4.4)

vmax = max
τ∈[t−τpc,t]

v (t) (4.5)

hstd =

√√√√√ 1

τpc

t∫
t−τpc

(h (τ)− havg)2dτ (4.6)

where havg =

t∫
t−τpc

h(τ)dτ

τpc
. Denote Xdri =

[
vavg vstd vmax hstd

]T
as the sampled

data vector while driving. The transformation of Xdri to the principal components

(Z(1), Z(2) and Z(3)) coordinate are obtained as[
SCdri1 SCdri2 SCdri3

]T
=
[
Z(1) Z(2) Z(3)

]T
×Xdri nor (4.7)
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where Xdri nor(j) =
Xdri(j)−X̄j

var(Xj)
is the normalization of Xdri to the mean X̄j and variance

var (Xj) of the reference sampled data X and j = 1, 2, 3, 4. SCdri1 , SCdri2 and SCdri3

are scalar values. The current driving pattern dp is identified by solving the following

minimization problem

dp = arg
dp∈Ωdp

min

[(
SCdri1 − SC(1)

dp

)2
+
(
SCdri2 − SC(2)

dp

)2
+
(
SCdri3 − SC(3)

dp

)2
]

(4.8)

with Ωdp = {1, 2, 3, 4, 5, 6} corresponds to a city flat, urban flat, highway flat, city hilly,

urban hilly and highway hilly driving cycle.

4.3.2 Verification of driving pattern recognition algorithm

To verify the developed DPR algorithm, a test driving cycle is constructed by combining

6 representative driving cycles as shown in the upper plot of Fig. 4.5. As shown in Fig.

Figure 4.5: Verification of DPR algorithm using 3 principal components with a testing
driving cycle as a combination of 6 representative driving cycles for τpc = 800s

4.5, the recognized driving pattern of different types of the driving cycles are relatively

accurate and stable. The recognition accuracy is defined as the relative time length of

the accurate recognized driving pattern to the test route.

The recognition accuracy for different DPR time windows τpc when using different num-

ber of the principal components are shown in Fig. 4.6. One can see that the accuracy

of DPR depends not only on the number of the principal components used in the DPR

but also the time window τpc. As shown in Fig. 4.6, using 3 principal components in

the DPR, the highest accuracy is specified at τpc around 800. That can be explained as

follows. The DPR is implemented following the receding horizon procedure. As a result,

there exists a mixture of different driving patterns in this interval. In the application of
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Figure 4.6: Recognition accuracy of DPR algorithm for different values of τpc when
using different number of principal components.

the considered hybrid truck, the city/urban driving is normally shorter than the high-

way driving. The DPR with a short τpc detects the city/urban driving patterns more

accurate compared to a long τpc. On the other hand, the DPR with a long τpc recognizes

the highway driving more accurate compared to a short τpc. τpc = 800 [s] compromises

on the time window τpc and the driving pattern length.

The inaccuracy of the DPR leads to an estimation error of λFF1 and γFF during driving.

As shown in the lower plot of Fig. 4.5, there exists a recognition error for flat and

hilly driving conditions, resulting in a non-negligible estimation error of λFF1 and γFF .

Henceforth, the FB control blocks FB1 and FB2 are essential to guarantee the system

robustness.

Remark 5. At the transients in the FF block, the PI controllers can not correct the

undesirable behaviors of Es and Ql due to the estimation errors of λFF1 and γFF . That

is due to the nature characteristic of feedback control where the variation of the system

states Es and Ql is only recognized afterward. Using the information from GPS and

ITS may be helpful to overcome this problem. The trajectories of Es and Ql can be

predicted by using the future driving conditions, e.g., road elevation and vehicle velocity,

obtained from the GPS and the ITS. As a result, the control parameters can be updated

at the transients in the FF block. Utilizing GPS and ITS data is a relevant extension

for future research.
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4.4 Feedback control concept for adaptive energy manage-

ment

To compensate for the inaccuracy in estimating λ1 and γ from the FF control block, the

FF signals λFF1 and γFF are corrected by two feedback signals

FB1 : λFB1 (t) = Kλ

e1(t) +
1

τλ

t∫
t0

e1(τ)dτ

 (4.9)

FB2 : γFB(t) = Kγ

e2(t) +
1

τγ

t∫
t0

e2(τ)dτ

 (4.10)

with e1(t) = Es ref − Es(t) and e2(t) = Ql ref (t) − Ql(t). Es ref and Ql ref are the

reference signals of Es and Ql, respectively. Es ref is typically chosen to be equal to

Es(t0) [42]. The selection of Ql ref relates to the acceptable battery degradation rate and

will be further discussed in chapter 5. The standard proportional-integral (PI)-control

schemes (4.9) and (4.10) are simple for real-life implementation and sufficient to regulate

Es and Ql within reasonable bounds of Es ref and Ql ref , respectively. Although there

exist other nonlinear feedback controllers to adapt λ1 [35], [43], they often require more

tuning effort [45].

Regarding the feedback loop FB1 of the battery energy state Es, it is shown in [44] that

Kλ and τλ should be tuned to achieve an appropriate closed-loop bandwidth. A suitable

bandwidth compromises fuel reduction performance (requires for a small bandwidth) and

guaranteeing the battery charge sustaining constraint (requires for a large bandwidth).

For the A-IEM strategy, this trade-off is influenced by the power spectra of Pd and the

FF signals λFF1 , γFF as well as the closed-loop bandwidth of FB1 and FB2. Owing to

a very slow dynamics of Ql compared to Es (days compared to minutes timescale), the

parameter Kγ and τγ are tuned such that the closed-loop bandwidth of Ql is very small

compared to the Es loop, see [59] for a similar observation. Any possible drift of Es

from Es ref , yielded by γFB, is counteracted by the PI controller in FB1 loop. Tuning

of the PI controller in FB2 loop is presented in chapter 5.

The interaction among the power spectra of Pd, λ
FF
1 , γFF and the closed-loop bandwidth

of FB1 is discussed in more detail in subsection 4.4.1. An adaptive tuning scheme for

the PI controller in FB1 is described in subsection 4.4.2.

4.4.1 Bandwidth of energy management strategy

The power spectra of λFF1 and γFF are influenced by the power spectra of the vehicle

velocity, road inclination and the time window τpc of the DPR algorithm. Since the
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Chapter 4. Real-time implementation of adaptive integrated energy management

DPR is implemented as a receding horizon procedure, the DPR block implementation

acts as a moving average filter. The cut-off frequency ωFF of this moving average filter

is obtained from solving (4.11) [84],

1

τpc

∣∣∣∣∣sin
( τpcωFF

2

)
sin
(
ωFF

2

) ∣∣∣∣∣ =
1

2
(4.11)

For each specified τpc, ωFF is numerically computed from

ωFF = arg min
ωFF∈[0,π]

∣∣∣∣∣ 1

τpc

∣∣∣∣∣sin
( τpcωFF

2

)
sin
(
ωFF

2

) ∣∣∣∣∣− 1

2

∣∣∣∣∣ (4.12)

Assume that the closed-loop bandwidth of FB1 is designed at ω∗. Fig. 4.7 denotes the

interaction between the closed-loop bandwidth of Es, the power spectrum of Pd and the

power spectra of the FF signals λFF1 , γFF (represented by ωFF ).

All frequency components of Pd, λ
FF
1 and ωFF smaller than ω∗ are suppressed by the PI

Figure 4.7: Power spectrum of Pd from the route shown in the upper plot of Fig. 4.5,
the closed-loop bandwidth ω∗ of Es and the cut-off frequency ωFF of FF signals λFF1 ,

ωFF .

controller in FB1 to force the battery energy Es to its reference trajectory Es ref . Since

Es ref is constant, there is no freedom to temporarily store/retrieve energy into/from

the battery. Consequently, fuel reduction is not obtained for the frequencies smaller

than ω∗. To allow the fuel reduction from the FF signals, ω∗ should be smaller than

ωFF .

Fig. 4.7 demonstrates that ω∗ and ωFF divide the spectrum of Pd into three areas

namely, 0 < ωPd < ω∗, ω∗ ≤ ωPd ≤ ωFF and ωPd > ωFF where ωPd [rad/s] is a

frequency of the spectrum of Pd. The following observations are made and summarized

in Fig. 4.8:

• 0 < ωPd < ω∗; Fuel reduction benefits are sacrificed to satisfy the battery charge

sustaining constraint. Although the driving pattern and λ1 are adapted by the FF
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4.4. Feedback control concept for adaptive energy management

block, the PI controller in the FB1 block suppresses the influence of the FF block

to satisfy a charge sustaining strategy.

• ω∗ ≤ ωPd ≤ ωFF : The PI controller in FB1 is not active. The driving pattern

is adapted to update λ1 accordingly to the recognized driving pattern. Es is

adapted with an appropriate trajectory of λ1 for the recognized driving pattern.

If the driving pattern is recognized accurately, the fuel reduction is maximized for

ω∗ ≤ ωPd ≤ ωFF .

• ωFF < ωPd ≤ ωmax: The PI controller is not active and the driving pattern is

fixed. Consequently, λ1 is not updated and remains constant in this frequency

range. If the actual driving pattern does not change, Es will be adapted with an

appropriate trajectory of λ1. However, the actual driving pattern can be changed

and cannot be detected by the DPR. The fixed value of λ1 in this frequency range

may not be appropriate for the actual driving pattern. Nevertheless, the fuel

reduction is obtained from absorbing the braking energy into the battery during

braking periods (R mode) to electrically drive the hybrid truck (MO mode where

the ICE is turned off) in driving periods. That is because the R and MO modes

can be selected by the A-IEM strategy for all λ1 > 0 regardless of the power

spectrum of Pd. Recall from (3.20), the battery is charged during braking periods

with the power PRb = min

(
1

2β
γ

, PRb

)
being independent from λ1. It is noted that

the coefficient β in (3.20) is replaced by β
γ when using the A-IEM strategy, see

(4.1). Besides, Fig. 3.2 demonstrates that MO mode can be chosen for all λ1 > 0

if Pd is smaller than a specified power demand threshold.

Figure 4.8: Impacts of ω∗ and ωFF on the system performance. ωmax is the maximum
frequency of the spectrum of Pd, e.g., Φd (ωPd

) =
∫∞
−∞ Pd (t) e−jωPd

tdt = 0 for ωPd
larger

than ωmax [44]

.

Fig. 4.8 shows that if ωFF is chosen at ωmax, the driving pattern is adapted for the whole

frequency range of Pd. It suggests that the fuel economic profits are enlarged since the

frequency range [ωFF , ωmax] disappears. However, what Fig. 4.8 does not show is the

influence of ωFF on the accuracy and the transient period of the DPR. For each standard
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Chapter 4. Real-time implementation of adaptive integrated energy management

driving cycle, increasing ωFF leads to less accuracy in recognizing the driving pattern,

see also Remark 6. The estimated trajectory of λ1, therefore, could deviate from the

optimal trajectory. Increasing ωFF may restrict the fuel reduction performance. On the

other hand, reducing ωFF increases the accuracy in recognizing the driving pattern but

leads to larger transient period of the FF block. Ultimately, the constraints on Es could

be violated.

Remark 6. The DPR algorithm uses the reference data computed from the feature

parameters (vavg, vstd, vmax and hstd) over each standard driving cycle. It follows that,

for each standard driving cycle, the recognition accuracy increases with higher value of

τpc. Moreover, an increase of τpc leads to a decrease of the cut-off frequency ωFF , see

Fig. 4.9. A small cut-off frequency ωFF results in a larger transient period of the FF

Figure 4.9: Dependence of ωFF on the time window τpc.

block. Recall from Remark 5, a large transient period in the FF block may lead to

violation of Es and Ql against their constraints (Es ≤ Es(t) ≤ Es and Ql (tf ) ≤ Ql)

which can not be corrected by the PI controllers. For a single driving cycle, a suitable

ωFF compromises on the recognition accuracy and the length of the transient period of

the FF block.

4.4.2 Adaptive tuning scheme for PI controller

It is observed that for a specific driving cycle and τλ, increasing Kλ leads to a smaller

absolute value of the difference between the minimum battery energy Es and its reference

signal Es ref over the entire driving cycle,

∆l
Es = | min

t∈[t0,tf ]
(Es (t))− Es ref | (4.13)

(4.13) is visualized in Fig. 4.10. For a specified value of τλ, verification of this observa-
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4.4. Feedback control concept for adaptive energy management

Figure 4.10: Visualization of ∆l
Es

tion is shown in Fig. 4.11 for each standard driving cycle. In addition, for a predefined

Figure 4.11: Relation between Kλ and ∆l
Es

for each standard driving cycle.

value of Kλ, ∆l
Es

is larger for the hilly driving cycles compared to the flat driving cycles.

That is because the power spectrum of Pd of the hilly driving cycles has higher ampli-

tudes compared to the flat driving cycles. What Fig. 4.11 does not show is the influence

of Kλ on the compromise between the fuel consumption of the hybrid truck and ∆l
Es

for

each standard driving cycle. An example highway hilly driving cycle, shown in Fig. 4.12,

elucidates that larger values of Kλ lead to smaller ∆l
Es

but higher fuel consumption.

Owing to the mutual relationship between Kλ and ∆l
Es

, an adaptive scheme is devel-

oped to tune Kλ. τλ is assumed to be chosen in advance. For each standard driving

cycle, the relation between Kλ and ∆l
Es

, shown in Fig. 4.11, is found off-line. This

relation is stored in a look-up table for each standard driving cycle. During driving, the

current driving pattern dp is recognized by the DPR layer of the FF block. Moreover,

the difference between the current battery energy Es to its lower bound Es, is measured.

The value of Kλ is retrieved from the stored data in the look-up table as shown in Fig.

4.13.
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Chapter 4. Real-time implementation of adaptive integrated energy management

Figure 4.12: Influence of Kλ on the compromise between fuel consumption and ∆l
Es

on the highway hilly driving cycle.

It is noteworthy that during braking periods, the battery is charged with the power

Figure 4.13: Closed-loop diagram of the battery energy state Es with related external
signals. Ψ (·) represents the CeO block and the battery efficiency model (Ps = Pb −

βP 2
b ). The external signals include Pd, γ

FF and γFB .

PRb = min

(
1

2β
γ

, PRb

)
being independent from λ1. Tuning of the PI controller in

FB1 does not influence the battery charging during braking periods. The deviation

| max
t∈[t0,tf ]

(Es (t)) − Es ref | depends on the total braking energy of the driving cycle and

is independent from tuning the PI controller in FB1.

4.5 Computation of cost-effective battery power range

In the A-IEM strategy, the control parameters (λ1 and γ) are estimated on-line using

the recognized driving conditions and the corrections from the FB blocks. It may not

guarantee that the benefit from fuel reduction is higher than the cost from battery wear

when (dis-) charging the battery. A cost-effective battery power range is computed to
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4.5. Computation of cost-effective battery power range

specify at each time instant a power range in which (dis-)charging the battery always

yields a benefit (from fuel reduction) being larger than a cost (from battery capacity

loss).

During driving periods (Pd > 0) in MA and MO mode, the vehicle fuel consumption is

reduced compared to the ICE Only mode by discharging the battery to support the ICE

in propelling the truck and supplying the reefer trailer. The amount of fuel reduction is

the benefit earned from discharging the battery. However, there exists an accompanying

cost from the incremental battery capacity loss. A high battery discharge power leads

to high costs due to the fast deterioration rate of the battery at peak power, see Fig.

2.12. The cost-effective battery power range, during driving periods, indicates when the

benefit is larger than the cost from discharging the battery. It is noted that the PSM

mode is not considered for the cost-effective battery power range since the battery power

is always equal to the reefer trailer power demand Pl.

Similarly, the cost-effective battery power range can also be defined for braking periods.

Then, the cost from the battery capacity loss has to be counted two times:

1. For absorbing the braking energy in the battery.

2. For using the absorbed energy to support the ICE to reduce the fuel consumption.

The fuel reduction is only realized when the absorbed braking energy is used.

Recall from Fig. 3.2, the MO mode can be chosen for all λ1 > 0. Moreover, using

MO mode results in higher fuel reduction compared to using MA mode with the same

battery discharge power. For computing the cost-effective battery power range during

braking periods, we assume that the net retrieved battery energy from the R mode will

be used in the MO mode with the same power pattern. Using this assumption instead

of MA mode, the largest cost-effective battery power range is obtained during braking

periods which is beneficial to the fuel reduction performance. Without this assumption,

an alternative way is to utilize the costate λ1 [g/J] to predict the benefit (from fuel

reduction) when absorbing the braking energy, see also Appendix B.4 for more details.

Using a predefined diesel price and the new battery pack costs, the benefit (fuel reduc-

tion) and costs (battery capacity loss) can be compared, e.g., in [e/s], to have a fair

comparison, see Appendix B.4 for more details. For specific values of ω, Tb and Pl,

Fig. 4.14 visualizes the dependencies of the benefit, cost and their difference on the

battery power when the hybrid truck operates in MA, MO and R mode. The cost-

effective battery power range for MA and MO mode is defined for Pb ∈ [P lcb, 0] where

P lcb = min{P l,MA
cb , P l,MO

cb }, while Pb ∈ [0, P ucb] is specified as the cost-effective battery

power range for R mode, see also Fig. 4.14 for illustration of P l,MA
cb , P l,MO

cb and P ucb.

Computations of P l,MA
cb , P l,MO

cb and P ucb are given in detail in Appendix B.4. Incorpo-

rating the physical battery power limitation Pb ∈ [Pb, Pb], the outputs of the Battery
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Chapter 4. Real-time implementation of adaptive integrated energy management

Figure 4.14: Dependence of the benefit and cost from the battery usage in MA, MO
and R mode on the battery power. ω = 1200rpm, Tb = 35oC and Pl = 11kW

Cost-effective Power Range layer in the CeO block are denoted as

Pb = max
(
Pb, P

l
cb

)
(4.14)

Pb = min
(
Pb, P

u
cb

)
(4.15)

4.6 Conclusions

The developed A-IEM strategy utilizes the CEM1’s solution together with the adaptive

factor γ to guarantee the requested battery life while allowing appropriate hybrid pow-

ertrain operations for fuel minimization. The values of λ1 and γ are estimated on-line

via the FF, FB1 and FB2 block without requiring future knowledge of the driving cycle.

Henceforth, the developed IEM strategy is real-time implementable.

In the A-IEM strategy, the FF block utilizes the DPR algorithm, using the PCA tech-

nique, to recognize the current driving pattern while driving. Based on the recognized

driving pattern, the values of λ1 and γ are retrieved from a look-up table storing the

off-line computation of the optimal λ1 and γ for different driving conditions. The FB1

and FB2 block are used to guarantee the system’s robustness by keeping the battery

energy and capacity loss state in the neighbourhood of their predefined reference tra-

jectories. The PI controller in the FB1 block is tuned following an adaptive scheme to

compromise the fuel reduction performance, battery charge sustaining and the battery

energy state constraints. The PI controller in the FB2 block is tuned to obtained a very

small closed-loop bandwidth of FB2 compared to that of FB1.

When considering the battery wear, maximum regenerative braking is not always benefi-

cial. Moreover, the battery should not be charged/discharged at peak power to preserve

75



4.6. Conclusions

the battery life by avoiding high deterioration of its capacity. A cost-effective battery

power range is computed to specify at each time instant a power range in which (dis-)

charging the battery always yields a benefit (from fuel reduction) being larger than a

cost (from battery capacity loss).
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Chapter 5

Simulation results

In this chapter, simulations are used to elucidate the benefits of the proposed energy

management strategies from chapter 3 and 4. Chapter 3 presented the solutions for

managing the power split between the ICE and MG to minimize the fuel consumption

without and with considering the battery life requirement. The derived solutions are

analytical. They provide the insight into:

• the benefit of using an additional MG clutch in the considered hybrid truck,

• the trade-off between the fuel reduction performance and battery life preservation

This chapter demonstrates the aforementioned insight by simulating the hybrid truck

for the six representative driving cycles, shown in Table. 4.1.

• Section 5.1 verifies the fuel reduction improvement from the MG clutch by com-

paring the CEM1 strategy with and without the MG clutch.

• Section 5.2 illustrates the performance of the IEM1 in balancing the fuel reduction

performance and battery life preservation.

• Section 5.3 demonstrate the capability of the CEM2 in guaranteeing the battery

energy state constraint (Es ≤ Es(t) ≤ Es).

• Section 5.4 shows that without knowing the future information of the driving cycle,

the A-IEM is able to guarantee the battery life requirement robustly while achieves

the fuel reduction performance close to the IEM2 strategy where the driving cycle

is assumed to be known in advance.

In all simulations, the vehicle mass is constant and the battery temperature is assumed

to be kept at a constant level by means of the active BTMS. If not mentioned specifically,

the battery temperature for all simulation is 30oC.
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5.1. Fuel reduction improvement from Motor Generator clutch

Table 5.1: Relative fuel reduction compared to a conventional truck using CEM1
and CEM1 without MG clutch for six standard driving cycles. The CEM2 and IEM1

strategies are with MG clutch active.

Driving cycle
Relative fuel reduction [%]

CEM1 CEM1 without MG clutch CEM2 IEM1

City flat 21.7 21.1 20.8 21.1
Urban flat 7.3 6.4 7.3 7.3
Highway flat 1.8 1.2 1.8 1.8
City hilly 14.9 14.4 14.6 13.9
Urban hilly 9.8 9.6 9.5 9.8
Highway hilly 7.4 7.0 7.1 6.8

5.1 Fuel reduction improvement from Motor Generator

clutch

This section elucidates the benefit of using the MG clutch in the considered hybrid truck

regarding the fuel reduction performance. Table 5.1 shows the relative fuel reduction

compared to a conventional truck when using CEM1 and CEM1 without the MG clutch

for the six standard driving cycles (defined in section 4.3). One can recognize that using

the MG clutch helps to improve the fuel reduction performance for all simulated driving

cycles, see the second and third columns of Table 5.1. The benefit from utilizing the

MG clutch is achieved by eliminating the MG friction loss g0 (about 1.2kW) when the

MG is not being used.

Table 5.1 also indicates the largest fuel reduction improvement occurs for the Urban flat

driving cycle, 0.9%. However, as shown in Fig. 5.1, among the city, urban and highway

driving cycles, the relative contribution of using the MG clutch to the fuel reduction is

highest for the highway driving cycles, up to 32.4% on highway flat and 5.4% in highway

hilly. That is because the MG clutch is opened most often on highway driving cycles,

Figure 5.1: Relative contribution of using the MG clutch to the total fuel reduction
for six standard driving cycles

e.g., 87.4% of the total driving time on highway flat driving cycle compared to 73.5%
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and 21.5% on urban and city flat driving cycle.

To demonstrate when it is beneficial to open the MG clutch, Fig. 5.2 compares the

system responses between CEM1 with and without MG clutch for the first 800s when

the hybrid truck drives on the highway hilly driving cycle. As illustrated in the first and

Figure 5.2: System responses comparison between CEM1 with and without MG clutch
for the first 800 [s] on the highway hilly driving cycle

second plots of Fig. 5.2, the MG clutch is often opened when the hybrid truck is driving

with cruising speed (around 85 [km/h]) where the ICE rotates at constant speed (around

1200 rpm). If the hybrid truck is not equipped with the MG clutch, the MG cannot be

decoupled from the ICE crankshaft. The MG friction loss is considerable compared to

the ICE power, e.g., 1%. In the considered hybrid truck , it is more beneficial to open

the MG clutch to eliminate the MG friction loss.

The third and forth plots of Fig. 5.2 indicate that during the first 380s, using CEM1

with MG clutch, the battery energy is discharged much more to supply the reefer trailer

power demand compared to CEM1 without MG clutch. The bottom plot of Fig. 5.2

shows the relative fuel consumption of the CEM1 without MG clutch to the CEM1 with

the MG clutch. One can observe that, in the first 380s, the CEM1 with MG clutch
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consumes less fuel compared to the CEM1 without MG clutch (around 0.5%) while in

the period from 380s to 800s, CEM1 with MG clutch consumes more fuel, around 0.3%.

As a result, in the first 800s on the highway hilly driving cycle, the CEM1 with MG

clutch consumes less fuel, i.e., 0.2%, compared to without MG clutch.

5.2 Integrated energy management strategy performance

This section demonstrates how the IEM1 strategy manages the battery capacity loss ef-

fectively. The simulations encompass the six representative driving cycles. The driving

Figure 5.3: Normalized histogram of the hybrid truck operating modes for typical
driving cycles with different settings of λo2. λo2 = 0, 250e3 and 500e3 are denoted

correspondingly in blue, green and red columns.

cycles’ characteristics are shown in Table 4.1. Fig. 5.3 shows the normalized number of
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occurrences of the HEV operating modes for each simulated driving cycle for 3 values

of λo2 namely, 0, 250e3 and 500e3. It should be noted that, for each driving cycle and a

specified λo2, the costate λo1 is found to guarantee the battery charge sustaining condi-

tion (Es(tf ) ≥ Es(t0)) using bi-section search. Now a fair comparison among different

settings of λo2 is possible.

As shown in Fig. 5.3, for all the simulated routes, increasing λo2 leads to decreasing the

number of MO mode occurrences, as explained in section 3.3.5.2. The physical mean-

ing of this reduction is explained as follows. During MO mode, when not considering

the cost of battery capacity loss, the battery can be discharged with very high power

(about 100kW ). For MO mode, the battery discharge power follows the aggregate power

demand from the MG and the reefer trailer. The aggregate power demand can be as

high as 100kW . This high discharge power results in a fast deterioration of the battery

capacity. Hence, to effectively reduce the battery capacity loss, the developed algorithm

avoids these high discharge events by selecting the MO mode only for a mild power

demand Pd as illustrated in Fig. 5.4.

Fig. 5.5 shows the cumulative battery capacity loss versus the battery discharge/charge

Figure 5.4: Example highway hilly driving cycle: When λo2 is higher, MO mode is
selected for smaller power demand Pd.

.

power for the highway hilly route as an example. Apparently, when not considering the
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Figure 5.5: Cumulative battery capacity loss versus battery power for highway hilly
driving cycle

.

battery life (for λo2 = 0), discharging the battery with high power (normally in MO

mode, e.g., Pb < −50kW ) leads to about 30% of the total cumulative battery capacity

loss. When considering the battery life (for λo2 > 0), the algorithm avoids using the

battery with high discharge powers. Nevertheless, the MO mode is still exploited at

smaller discharge power, e.g., −50kW for this simulated case. Moreover, the MA or

PSM mode are also used more frequently to compensate for reduced usage of the MO

mode.

Fig. 5.3 also reveals that the number of occurrences of the R mode for each route is

similar for different values of λo2. When there are braking events, the (free) braking

power is always absorbed in the battery for later utilization. What Fig. 5.3 does not

reveal is the amplitude of the power. Analyzing Fig. 5.5, the IEM1 strategy does not

try to absorb the braking energy with high charging power since high charging power

introduces high battery capacity loss. In this simulated case, absorbing the braking

power with high power, e.g., 80 kW (when λo2 = 0) accounts for approximately 30% of

the total cumulative battery capacity loss. It is noteworthy that the indication of the R

mode in Fig. 5.5 illustrates the power level where the R mode mostly occured for the

simulated cases.

The above discussions ultimately suggest that to reduce the battery capacity loss effec-

tively, the battery should not be charged/discharged at high powers. Instead, a mild

charge/discharge battery power profile should be used. The upper plot of Fig. 5.6 illus-

trates that the battery is charged/discharged with smaller powers for higher values of

λo2. As a result, the battery capacity loss is smaller for higher values of λo2, see the lower

plot of Fig. 5.6.
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Figure 5.6: Battery power profiles and battery capacity loss trajectories for different
settings of λo2 on highway hilly driving cycle

Some interesting features, irrespective of λo2, are also observed from Fig. 5.3. Firstly,

the C mode is not used on the hilly route. On hilly driving cycles, there is enough

braking energy to guarantee the battery charge sustaining condition (1.2). Moreover, on

highway driving routes, the PSM mode is the most frequent HEV operating mode. On

the highway, the ICE runs most of the time at constant speed (1200 rpm). Since the fuel

mass flow of the ICE depends on the ICE power almost linearly, the most fuel beneficial

hybrid truck operating mode could be ICE Only to avoid the power conversion losses

if the hybrid truck is not equipped with the MG clutch. However, in the considered

hybrid truck, since the MG clutch enables the ability in decoupling the MG from the

drive train to reduce the MG friction loss (about 1.2kW ), it is more fuel beneficial to

open the MG clutch to decouple the MG from the drive train.

In the above discussion, the effectiveness of the IEM1 strategy in limiting the battery ca-

pacity loss is demonstrated by increasing the costate λo2, representing the cost for battery

capacity loss. However, in real life application, the vehicle manufacturer normally asks

for a specific battery life, e.g., Ql EoL = 20% after 8 years. This battery life demand over

the entire battery life can be projected to a single route using Ql = Ql EoL(
tEoL−t0
tf−t0

)z where

tEoL is the time instant at end of the vehicle life, see Appendix B.5 for more details. The

upper bound Ql for the battery capacity loss Ql for the six investigated routes is shown

in Table 5.2 where droute and dann are the length and the average travelling distance

every year of the route. The optimal values of λo1 and λo2 for each route are found using

bi-section search.

Fig. 5.7 shows the comparison between the IEM1 and CEM1 which does not consider

the battery life requirement. It demonstrates the estimated battery life and the relative
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Table 5.2: Upper Bound of Battery Capacity Loss for Simulated Routes

Route droute Ql EoL Life dann Ql
[km] [%] [Years] [km] [%]

City flat 11.7 20 8 60,000 0.057
Urban flat 23.8 20 8 40,000 0.105
Highway flat 118.0 20 8 150,000 0.123
City hilly 15.5 20 8 60,000 0.066
Urban hilly 30.3 20 8 40,000 0.120
Highway hilly 82.2 20 8 150,000 0.101

fuel reduction compared to the conventional truck. As observed from Fig. 5.7, on the

Urban and the Highway flat as well as the Urban hilly route, the battery lasts for more

than 8 years at the end of its life for both strategies. However, for the routes City flat,

Urban and Highway hilly, the battery life is less than 8 years for the CEM1. Using

the IEM1 with battery life preservation, the battery life is prolonged to 8 years with

the accompanied fuel penalty shown in the lower plot of Fig. 5.7. One can see that,

Figure 5.7: Comparison between IEM1 and CEM1 strategy. Upper plot: estimated
battery life for typical driving cycles of the considered hybrid truck. Lower plot: Rel-
ative fuel reduction of the hybrid truck compared to the conventional truck. For the
Urban and the Highway flat as well as the Urban hilly route, the battery life from both
CEM1 and IEM1 strategies is longer than 10 years. The y-axis of the upper plot is

limited at 10 years to emphasize on the requested battery life of 8 years.

for the highway hilly route, the battery life is prolonged approximately about 3.5 years

with a fuel penalty of about 0.7%. In case of the city hilly route, with a fuel penalty of

about 1%, the battery life is extended more than 2.5 years. It implies that the trade-off

between battery life and fuel reduction depends on the driving cycles. The simulation

results confirm the capability of the IEM1 strategy in guaranteeing the battery life for

different driving cycles while still minimizing the fuel consumption.
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5.3 Energy management strategy performance for keeping

battery energy in predefined window

The CEM1 strategy does not take into account the battery energy state constraint

(Es ≤ Es(t) ≤ Es). As a result, Es may cross its boundaries Es and Es. This section

demonstrates the capability of the CEM2 strategy in guaranteeing the battery energy

in the envelope [Es, Es]. The CEM2 strategy utilizes the CEM1’ solution and follows

the Recursive root finding Algorithm, presented in chapter 3 in [45], to incorporate the

battery energy state constraint Es ≤ Es(t) ≤ Es. As shown in Fig. 5.8 and 5.9, using

the CEM2 strategy, the battery energy state Es does not exceed its boundaries, denoted

by the dotted line. The optimal trajectories of λo1 is constant and makes a jump when

there is a violation of the battery energy state regarding its constraint Es ≤ Es(t) ≤ Es.
Using the CEM2 strategy, the optimal trajectories of λo1 is piecewise constant [76]. The

corresponding fuel reductions of the CEM2 for the simulated driving cycles are shown in

Table 5.1. The fuel reduction performance decreases when taking into account battery

energy state constraint. The constraints on the amount of stored energy in the battery

is now enforced.

Figure 5.8: Comparison of Es [J] and λo1 [g/J] trajectories between CEM1 and CEM2
for flat driving cycles. LHV = 42300 [J/g] is the Lower Heat Value of the diesel.

5.4 Performance of the adaptive integrated energy man-

agement strategy

The battery temperature has a large impact on battery wear. In the developed A-IEM

strategy, the battery temperature is considered as an external and measured disturbance.
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Figure 5.9: Comparison of Es [J] and λo1 [g/J] trajectories between CEM1 and CEM2
for hilly driving cycles. LHV = 42300 [J/g] is the Lower Heat Value of the diesel.

Depending on the actual battery load as well as ambient conditions (temperature, hu-

midity, wind speed, etc.) and the operation of the BTMS, the battery temperature

varies during the battery life. This section shows the robustness of the A-IEM strategy

in guaranteeing the battery life requirement for different battery temperatures. The

trade-off between the fuel reduction performance and battery life preservation is also

demonstrated.

The A-IEM strategy’s performance is demonstrated via a driving cycle combining six

representative driving cycles, shown in Fig. 4.5 and named as IEM-DPR (the DPR algo-

rithm is also evaluated via this driving cycle). Subsection 5.4.1 describes the constraints

satisfaction of the A-IEM strategy by tuning the PI controllers on the IEM-DPR driving

cycle. In 5.4.2, influence of the battery capacity loss reference trajectory Ql ref on the

A-IEM strategy performance will be analyzed.

Fig. 5.10 compares the predicted battery life and the relative fuel reduction (compared

to the conventional truck) between CEM2, IEM2 and A-IEM strategies. It is noted that

on the driving cycle IEM-DPR, the battery can be depleted when using the CEM1 or

IEM1 strategy. The CEM2, IEM2 and A-IEM strategies, on the other hand, assure that

the battery energy is not depleted and kept in its predefined envelope [Es, Es] over the

whole driving cycle IEM-DPR.

As shown in Fig. 5.10, both IEM2 and A-IEM strategies are able to guarantee the

requested battery lifetime, e.g., 8 years, robustly for different battery temperatures.

Compared to the CEM2 strategy in which the battery life requirement is not taken into

account, the A-IEM strategy can prolong the battery life more than 50%, e.g., for a

battery temperature of 40oC. However, using the A-IEM strategy, the relative fuel re-

duction is smaller than using the CEM2 strategy, see the middle plot of Fig. 5.10. The

battery usage is restricted in the A-IEM strategy to constrain the battery capacity loss.
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Figure 5.10: Comparison of CEM2, IEM2 and A-IEM strategy regarding the pre-
dicted battery lifetime and the relative fuel reduction on the IEM-DPR route. The
battery life is predicted with the assumption that the hybrid truck drives on the IEM-
DPR route over its lifetime and the annual travelling distance of the hybrid truck is
150, 000 km. The bottom plot is the relative fuel reduction performance of the A-IEM2

compared to that of the IEM2

The fuel reduction performance of the IEM2 strategy is also denoted in the middle plot

of Fig. 5.10. In the IEM2 strategy, the future information of the driving cycle is assumed

to be given. The fuel reduction performance of the IEM2 strategy is higher than that

of the A-IEM strategy. Nevertheless, the bottom plot of Fig. 5.10 illustrates that for

all tested battery temperatures, the A-IEM strategy achieves an average of 92% of the

total fuel reduction of the IEM2 strategy.

It is noteworthy that for battery temperatures lower than 30oC, the CEM2 strategy sat-

isfies the battery life requirement. However, the BTMS will request more energy to keep

the battery temperature lower than 30oC, e.g., in case of the ambient temperature is

30oC. It ultimately increases the total fuel consumption of the hybrid truck [20]. Hence-

forth, integrating the operation of the BTMS in the IEM framework will have additional

benefits regarding the total vehicle fuel consumption and battery life preservation. This

should be included in future research.

5.4.1 Constraint handling

This section gives an example for tuning the PI controllers of the A-IEM strategy to

satisfy the battery energy state constraints and battery lifetime requirement.

Recall from Fig. 4.6, the DPR time window τpc is set to 800 [s] for the highest recognition

accuracy of the DPR on the IEM-DPR driving cycle. The cut-off frequency ωFF = 0.005
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[rad/s] is computed from (4.11). For the sake of simplification, the nonlinear function

Ψ(·) is considered as a time-varying gain. As a result, the closed-loop system of Es,

shown in Fig. 4.13, is a second-order system. A critical damped system has a closed-

loop bandwidth of 2
τλ

[rad/s]. The value of τλ is chosen such that 2
τλ
≤ ωFF to allow

the fuel reduction benefits from the FF signals, see the bandwidth analysis of energy

management strategy in chapter 4. Without effecting the tuning of Kλ of the PI con-

troller, we set τλ = 500 to compromise the fuel reduction performance (requires for a

small bandwidth) and guaranteeing the battery charge sustaining constraint (requires

for a large bandwidth). Using the tuning scheme, shown in Fig. 4.13, the value of Kλ

is adapted according to the recognized driving pattern dp and the current difference

between the battery energy state Es and its lower bound Es.

As shown in the upper plot of Fig. 5.11, the A-IEM strategy satisfies the charge sus-

Figure 5.11: Upper plot: Trajectories of battery energy state (Es) of A-IEM and
IEM2 strategies. Lower plot: Battery capacity loss trajectory of A-IEM strategy.

taining (Es(tf ) ≥ Es(t0)) and energy state (Es ≤ Es(t) ≤ Es) constraints. Compared

to the IEM2 strategy where the driving cycle is known in advance, the A-IEM strategy

allows smaller deviations for Es. That is because the PI controller in FB1 block keeps

Es close to its reference value Es ref . However, the main control actions from the IEM2

strategy are still visible in the A-IEM strategy.

The lower plot of Fig. 5.11 denotes that at the end of the driving cycle, the battery

capacity loss Ql is slightly larger than its upper bound Ql = Ql ref (tf ). By tuning Kγ

and τγ to obtain a larger closed-loop bandwidth of Ql, it is possible to guarantee the
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battery capacity loss constraint (Ql(tf ) ≤ Ql) within a single driving cycle. It is, how-

ever, practically not necessary. That is because the actual requirement of the vehicle

manufacturer is preserving the battery life for 8 years over the whole vehicle life. As a

result, we only need to keep Ql not too far from its reference signal to satisfy the battery

requirement over the entire vehicle life.

Define e2 as the maximum allowed error between Ql and Ql ref at the end of the vehicle

life. To maximize the fuel economy benefit, Kγ and τγ are tuned such that the error be-

tween Ql and Ql ref equals e2 at the end of the vehicle life. By iterative tuning, Kγ = 1

and τγ = 105 has been obtained. Fig. 5.12 shows the difference between Ql and Ql ref

for 1 years running of the truck on the IEM-DPR route (equivalent to 150, 000km).

One can observe that Ql is regulated around Ql ref after 35, 000km (approximated to a

Figure 5.12: The difference between Ql ref and Ql for 1 year driving (equivalent to a
travelling distance of 150, 000 km) of the truck on the IEM-DPR route. The dash line

is a low pass filter of Ql ref −Ql for the illustration purpose.

quarter of a year). It demonstrates that Ql will be kept close to Ql ref over the vehicle

life, resulting in a battery life of 8 years.

It should be noticed that the actions from the PI controller does not impact on Es during

braking periods. To guarantee Es(t) ≤ Es, the battery power PRb is set to zero during

braking periods if Es > Es.

5.4.2 Influence of battery capacity loss reference trajectory

The battery capacity loss Ql strictly increases during vehicle life. Recall from (2.24),

Q̇l = h (Ps, Tb)Q
z−1
z

l , for certain levels of battery power and temperature, the incremen-

tal battery capacity loss Q̇l is smaller when the vehicle travels over its lifetime. The
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reference trajectory Ql ref is constructed such that its incremental is also reduced while

the truck is travelling, specifically

Ql ref = adb (5.1)

for a > 0, b ∈ (0, 1] and d [m] is the travelling distance driven to date. For b = 1,

the constructed Ql ref depends linearly on travelling distance d which is similar to the

suggestions in [59], [63].

Different values of b leads to different trajectories of Ql ref . It results in different re-

sponses of the A-IEM strategy since γFB is affected by Ql and Ql ref . Three different

trajectories of Ql ref , shown in Fig. 5.13, are investigated to demonstrate the effect of

Ql ref on the A-IEM strategy’s performance over the vehicle life. Fig. 5.14 illustrates the

Figure 5.13: Investigated battery capacity loss reference trajectories

responses of Ql for three investigated trajectories of Ql ref at different initial conditions

of Ql. It is noted that different initial conditions of Ql are used to represent different

lifetime statuses of the battery over the vehicle life.

As observed from Fig. 5.13, regarding the travelling distance, for b = 0.3, Ql ref in-

creases very fast at the beginning and slow near the end of the vehicle life. Consequently,

at the beginning of the vehicle life, the battery usage is not restricted due to Ql ref . The

plot (a1) of Fig. 5.14 shows that Ql ref is much higher than the actual battery capacity

loss Ql at the beginning of the vehicle life. However, when it is close to the end of the

vehicle life, Ql ref will put more penalty on the usage of the battery, see the plot (a3)

of Fig. 5.14 where Ql is much larger than Ql ref . These observations indicate that the

A-IEM performance varies over the vehicle life. The fuel reduction improvement is also

different over the vehicle life which is not desirable for the vehicle owner.

Similar observations can be established for b = 1. The vehicle owner will experience a

low fuel reduction performance at the beginning of the vehicle life where the battery

usage is restricted due to Ql ref being much smaller than the actual Ql, see the plot

(c1) of Fig. 5.14. In contrast, near the end of the vehicle life, higher fuel reduction

performance is achieved since the battery usage is not restricted due to Ql ref being
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Figure 5.14: Responses of the battery capacity loss according to different settings
of Ql ref for different initial battery capacity losses. The y axes denote the battery
capacity loss Ql [%] while the x axes denote the travelling distance [km]. (a1), (a2) and
(a3) corresponds to Ql ref with b = 0.3; (b1), (b2) and (b3) corresponds to Ql ref with

b = 0.552; (c1), (c2) and (c3) corresponds to Ql ref with b = 1

much larger than Ql, see the plot (c3) of Fig. 5.14.

As illustrated in the plots (b1), (b2) and (b3) of Fig. 5.14, the responses of Ql are

quite consistent for b = 0.552. The performance of the A-IEM strategy keeps consistent

over the vehicle life for b = 0.552. Interestingly, the power law factor z of the battery

cycle-life model is equal to 0.552. It means that a suitable Ql ref depends ultimately on

the developed battery cycle-life model. Since the developed battery cycle-life model has

been verified only with available battery cell manufacturer data [63], validation of the

model with measured data from real-world driving needs to be included in future work.

5.5 Conclusions

The benefit of using the MG clutch is demonstrated via simulations encompassing six

typical driving cycles of the hybrid truck. It is shown that the relative contribution of

the MG clutch in reducing the fuel consumption is largest for highway driving cycles,
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about 32.4%, where the MG clutch is opened most often.

Simulation results verify the analytical analysis that the IEM1 strategy preserves the

battery life effectively by avoid charging/discharging the battery at too high powers.

Nevertheless, the fuel consumption is still reduced by utilizing the battery at a mild

battery power profile. Although the trade-off between fuel reduction and battery life

depends on the driving cycle, simulation results show that the IEM1 strategy guarantees

the battery life requirement for different driving scenarios.

Simulation results also demonstrate that the A-IEM strategy is able to guarantee ro-

bustly the battery life requirement for different driving scenarios without knowing the

future information of the driving cycle. On average, the fuel reduction performance of

the A-IEM strategy attains around 92% that of the IEM2 strategy requiring the full

knowledge of the driving cycle.
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Chapter 6

Conclusions and

recommendations

This chapter summarizes the main conclusions of this thesis in section 6.1. Recommen-

dations for future research arising from this research are given in section 6.2.

6.1 Conclusions

This thesis studied a parallel hybrid electric heavy-duty truck. The considered hybrid

truck is equipped with a clutch system to support decoupling of both the ICE and MG

from the drive train to drive electrically and/or eliminate their drag losses. Regarding

the research objectives presented in chapter 1, the following conclusions are made:

• Energy Management Strategies (EMSs) CEM1 and CEM2, which focus on fuel

consumption and not on battery lifetime, are developed to minimize the hybrid

truck fuel consumption while keeping the stored battery energy (Es) in a predefined

operating range. With the assumption that future information of the driving cycle

is known, analytical solutions to the CEM1 and CEM2 strategies are derived to

optimize the battery charge/dicharge power and the operation of the clutch system.

• When taking into account the battery life requirement, the developed EMSs are ex-

tended to the Integrated Energy Management Strategies (IEM), IEM1 and IEM2.

The IEM1 and IEM2 strategies minimize the hybrid truck fuel consumption within

the battery life requirement. Solutions for the IEM1 and IEM2 strategies are

also derived analytically to optimize the clutch system operation and battery

charge/discharge power. Knowledge of the future driving cycle information is
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needed to achieve the optimal analytical solutions of the IEM1 and IEM2 strate-

gies.

• In chapter 4, without requesting knowledge of the future driving cycle, a real-

time implementation of the Adaptive Integrated Energy Management (A-IEM)

strategy is developed to satisfy the battery life requirement and to achieve a fuel

reduction performance close to that of the IEM2 strategy. For all the simulated

driving scenarios, the A-IEM strategy achieves an average of 92% of the total fuel

reduction of the IEM2 strategy.

In [44], the author shows that the EMS utilizes three characteristics for reducing the

vehicle fuel consumption namely, the slope of the ICE fuel map, the ICE drag loss

and the regeneration of free kinetic energy during braking periods. Besides

these characteristics, this thesis, analyzing the analytical solutions and simulation re-

sults, identifies additional characteristics for fuel reduction and battery life preservation:

• The Motor Generator (MG) friction loss as function of MG speed can be

eliminated by opening the MG clutch and turning off the MG. When the MG is

connected to the drive train but electrically inactive, it produces no mechanical/-

electric power but it still requests power to counteract its friction loss. When the

MG clutch is open, this friction loss can be eliminated by turning off the MG. The

hybrid truck is now propelled by the ICE and the reefer trailer is supplied by the

battery. This thesis shows that the power conversion loss and the friction loss in

the MG, compared to the battery power loss, determine when it is profitable to

open the MG clutch and turn off the MG.

• To preserve the battery life, the battery should not be charged/discharged

at too high power to avoid high deterioration of its capacity. However, restrict-

ing the battery usage results in a penalty on the total fuel consumption of the

hybrid truck. This thesis shows that there exists a compromise between battery

life preservation and fuel reduction performance of the hybrid truck. For exam-

ple, when not considering the battery wear, regenerative braking energy is always

profitable to be absorbed in the battery. When the battery wear is taken into

account, maximum regenerative braking is not always beneficial. High

charging powers during the braking periods should be avoided to prevent too fast

deterioration of the battery capacity. This thesis proposed such an upper bound

for braking power.

The battery life is preserved in the A-IEM strategy by
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• Artificially increasing the battery power loss in the Hamiltonian func-

tion using an adaptive factor γ when necessary. It restricts the battery usage to

reduce its wear.

The fuel reduction performance of the A-IEM strategy is achieved by

• Appropriate estimation of the A-IEM control parameters (costate λ1 and

the adaptive factor γ) for each specific driving pattern in the driving cycle. A

Driving Pattern Recognition algorithm, utilizing the Principal Component Analy-

sis technique, is used to recognize the current driving pattern. The optimal values

of λ1 and γ are computed off-line and stored in a look-up table for a number of

standard driving patterns.

• A correct tuning of the PI controllers in the battery energy Es and battery ca-

pacity loss Ql loops leads to appropriate closed-loop bandwidths for both

Es and Ql: It prevents Es and Ql to drift away from their reference trajectories

due to the inaccuracy in recognizing the driving pattern. Besides, it still allows

enough freedom for storing/retrieving energy into/from the battery to obtain fuel

reduction benefits.

6.2 Recommendations

This thesis has developed both the off-line and on-line energy management strategies to

minimize the fuel consumption of the hybrid truck with (equipped with the ICE and MG

clutches) taking the battery life requirement explicitly into account. Some extensions

from this research are suggested:

• The battery cycle-life has a large impact on the system performance. The bat-

tery cycle-life is currently verified with only the battery manufacturer data with

standard charge/dicharge cycle and temperature. A validation of the developed

battery cycle-life model with real-life driving data is foreseen as future research.

• The developed A-IEM strategy utilizes only the past information from the driving

cycle to estimate the control parameters. Owing to the availability of the preview

information from a GPS or ITS system, the A-IEM can be extended to capture

additional benefits from the preview information, e.g., a (feedforward-oriented)

correction of DPR block.

• Integrating the battery temperature dynamics and the Battery Thermal Man-

agement System operation into the IEM framework is shown to be feasible with a
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numerical solution. Verification of the numerical solution via simulation and deriv-

ing an analytical solution to the new Integrated Energy and Thermal Management

(IETM) strategy are relevant future research topics. They will bring more insight

into the cost balancing among the fuel consumption, battery heating/cooling op-

eration and the battery wear.

• Combination of battery and supercapacitor: When taking the battery wear into

account, the battery is not charged/discharged at peak powers to prevent the

battery from its high capacity loss region, see Fig. 2.12. Consequently, when

considering the battery wear in the EMS, the fuel reduction (compared to a con-

ventional truck) will be less than that when not considering battery wear in the

EMS. To avoid this loss, the battery can be used in combination with a superca-

pacitor. The supercapacitor features a much higher power density, a longer life

cycle with high efficiency and fast charging/discharging responses [85]. Hence, it

is well suited for charging/discharging with peak powers. Although a small energy

density is the main disadvantage of the supercapacitor, combining the battery and

supercapacitor may preserve the battery life without losing any potential fuel ben-

efit from the hybrid powertrain. Extending the developed strategies to handle also

the supercapacitor operation will influence the presented results and yields some

challenges in control algorithms.

• In the considered hybrid truck, by opening the ICE and/or MG clutches, the ICE

and/or MG are decoupled from the drive train. As a result, the ICE and/or

MG can be turned off to eliminate their drag losses to improve the fuel reduction

performance of the hybrid truck. So far, the ICE and MG starts/stops are not

penalized by the CEM1, CEM2, IEM1, IEM2 and A-IEM strategies. They will be

important issues when the driveability is respect. Moreover, frequent starts/stops

of the ICE and MG request frequent opening/closing the ICE and MG clutches

which are not desirable for the ICE and MG clutches’ durability. To incorporate

the penalties on ICE and MG start/stop, a valid approach is to include extra en-

ergy losses for starting the ICE and MG in their models. This method is proposed

to make a trade-off between the cost (from driveability, clutches’ durability) and

profits (from the fuel reduction) when utilizing the ICE and MG start/stop func-

tionality. A start has been made in [86] where an ICE start loss model is utilized

to investigate the effects of ICE start losses on EMSs and fuel consumption for a

parallel hybrid electric vehicle.
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Appendix A

Mathematical derivation of

energy management without

battery life preservation

A.1 Optimal battery power in MA and C mode for CEM1

Regarding min
Pb∈[Pb,0)

HMA, the battery power Pb which minimize HMA is obtained by

solving the equation

∂HMA

∂Pb
= 0 (A.1)

α1η
−
e − λo1 (1− 2βPb) = 0 (A.2)

for Pb ∈
[
Pb, 0

)
. As a result, the optimal battery power in the MA mode is achieved as

P ob = PMA
b = min

(
max

(
Pb,

λo1 − α1η
−
e

2λo1β

)
, 0

)
(A.3)

In terms of min
Pb∈(0,Pb]

HC , the battery power Pb minimizing HC is computed from solving

the equation

∂HC

∂Pb
= 0 (A.4)

α1

η+
e
− λo1 (1− 2βPb) = 0 (A.5)
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for Pb ∈
(
0, Pb

]
. Subsequently, the optimal battery power in the C mode is derived as

P ob = PCb = max

(
min

(
Pb,

λo1 − α1

η+e

2λo1β

)
, 0

)
(A.6)

A.2 Hamiltonian function minimization for CEM1

It is obvious that the solution of (A.2) Pb =
λo1−α1η

−
e

2λo1β
is smaller than 0 ∀0 < λo1 < α1η

−
e

and the solution of (A.5) Pb =
λo1−

α1

η+e
2λo1β

is larger than 0 ∀λo1 > α1

η+e
. Owing to these

observations, the Hamiltonian function H is analyzed for three intervals of λo1 namely,

(0, α1η
−
e ), [α1η

−
e ,

α1

η+e
],
(
α1

η+e
,+∞

)
.

1. For 0 < λo1 < α1η
−
e : In this interval, the first derivative of HC with respect to Pb

satisfies ∂HC
∂Pb

> 0, ∀Pb > 0. Therefore HC > lim
Pb→0+

HC = HICEonly. Moreover,

since PMA
b < 0, we have Ho

MA < lim
Pb→0−

HMA = HICEonly. It follows that

Ho
MA < HICEonly < HC for 0 < λo1 < α1η

−
e andPd > 0 (A.7)

2. For α1η
−
e ≤ λo1 ≤ α1

η+e
: In this interval, we have ∂HMA

∂Pb
< 0, ∀Pb < 0 and ∂HC

∂Pb
>

0, ∀Pb > 0. Hence,

HC > lim
Pb→0+

HC = HICEonly (A.8)

HMA > lim
Pb→0−

HMA = HICEonly (A.9)

for all λ1 ∈
[
α1η

−
e ,

α1

η+e

]
and Pd > 0.

3. For λo1 >
α1

η+e
: In this interval, the first derivative of HMA with respect to Pb satisfies

∂HMA
∂Pb

< 0, ∀Pb < 0. Therefore, HMA > lim
Pb→0−

HMA = HICEonly. Moreover, since

PCb > 0 for λ1 >
α1

η+e
, we have Ho

C < lim
Pb→0−

HC = HICEonly. It follows that

Ho
C < HICEonly < HMA for λ1 >

α1

η+
e
andPd > 0 (A.10)

Moreover, by solving (3.11)-(3.17), it is straight forward to obtain the following

properties: {
Ho
MA ≥ HMO for 0 < Pd ≤ PMA

dlim

Ho
MA ≥ HPSM forg0 ≥ gMA

0

(A.11)
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Table A.1: Explicit expression of the power thresholds [W] used in determining the
optimal feasible HEV operating mode for CEM1.

Parameter Expression

PMA
dlim

η−e [(λo1−α1η
−
e )−2
√
α2λo1β]

−2λo1β
− Plη−e − g0

P ICEonlydlim

η−e

[
(λo1−α1η

−
e )−

√
(λo1−α1η

−
e )

2
+4

(
α2+α1Pl

(
1

η+e
−η−e

))
λo1β

]
−2λo1β

− Plη−e − g0

PCdlim

η−e

(λo1−α1η
−
e )−

√
(λo1−α1η

−
e )

2−
(
λo1−

α1

η+e

)2

+4

(
α2+α1Pl

(
1

η+e
−η−e

))
λo1β


−2λo1β

−Plη−e − g0

PPSMdlim

η−e

[
(λo1−α1η

−
e )−

√
(λo1−α1η

−
e )

2
+4(λo1βP 2

l +(λo1−α1η
−
e )Pl+α2−α1g0)λo1β

]
−2λo1β

−Plη−e − g0

gMA
0

λo1(Pl+βP 2
l )

α1
+

(λo1−α1η
−
e )

2

4λo1βα1
− Plη−e

gICEonly0

λo1(Pl+βP 2
l )

α1
− Pl

η+e

gC0
λo1(Pl+βP 2

l )
α1

+

(
λo1−

α1

η+e

)2

4λo1βα1
− Pl

η+e

{
HICEonly ≥ HMO for 0 < Pd ≤ P ICEonlydlim

HICEonly ≥ HPSM forg0 ≥ gICEonly0

(A.12)

{
Ho
C ≥ HMO for 0 < Pd ≤ PCdlim

Ho
C ≥ HPSM forg0 ≥ gC0

(A.13)

HPSM ≥ HMO for 0 < Pd ≤ PPSMdlim (A.14)

From (A.7), (A.8), (A.9), and (A.10)-(A.14), the solution shown in Table 3.2 is achieved.

It is noteworthy that for the equality of (A.11)-(A.14), e.g., Pd = P
(.)
dlim and g0 = g

(.)
0 ,

the Hamiltonian function has two identical minima. Without loss of optimality, the MO

mode is chosen for Pd = P
(.)
dlim (see [43] for a similar observation) while the PSM mode

is chosen for g0 = g
(.)
0 and Pd > P

(.)
dlim. The explicit expressions of the power thresholds

PMA
dlim, P ICEonlydlim , PCdlim, PPSMdlim , gMA

0 , gICEonly0 and gC0 are given in Table A.1.

A.3 Influence of battery power loss coefficient on CEM1

As shown in Table 3.1, PMA
b and PCb depend explicitly on λo1, β, α1 and η−e . Moreover, it

can be seen that changing the value of β only effects the size of PMA
b and PCb . Increasing

β leads to a decrease of PMA
b and PCb . In addition, PRb will be also reduced with higher
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value of β.

The minimum value of the Hamiltonian function H is HMO when the driver power

demand Pd is smaller than certain power levels PMA
dlim, P ICEonlydlim , PCdlim and PPSMdlim , gen-

eralized as Pmodedlim to simplify the notation. The symbol “mode” represents MA, ICE

Only, C and PSM. It implies that MO mode is only selected for Pd ≤ Pmodedlim . The

battery power in MO follows the power demand from the drive train Pd and the reefer

trailer Pl: P
MO
b = −Pd+g0

η−e
−Pl. As a result, smaller Pd means smaller battery discharge

power in MO mode.

For β > 0, the first derivative of Pmodedlim regarding β satisfies

∂Pmodedlim

∂β
< 0 (A.15)

for all mode ∈ { MA, ICE Only, C, PSM }. It means that an increase of β leads to

a decrease of the power demand limitation curve Pmodedlim . Fig. A.1 shows the decrease

of Pmodedlim when β is set at difference values βnom < β1 < β2 where βnom is the nominal

value of β at a certain battery temperature. It suggests that increasing β leads to a

restriction in using the MO mode at the battery peak power.

For PSM mode, since PPSMb = −Pl is not influenced by Pd, reducing Pmodedlim will not

Figure A.1: Power limitation curve as function of the costate λ1 with different settings
of β: βnom < β1 < β2, where βnom is the nominal value of the battery power loss

coefficient.

restrict the usage of PSM mode. Nevertheless, Fig. A.2 shows that for λo1 ≥ α1η
−
e ,

higher values of β reduce the area of using the PSM mode while enlarge the area of

using the ICE Only mode. Consequently, the battery usage is restricted by favoring

the ICE Only mode where Pb = 0. The aforementioned observations indicate that an

increase of β restricts the battery usage.

100



Appendix A. Mathematical derivation of energy management without battery life
preservation 101

Figure A.2: Explicit operating regions with different settings of β. Upper plot:
β = βnom, Middle plot: β = β1, Bottom plot: β = β2
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Appendix B

Mathematical derivation of

integrated energy management

with battery life preservation

B.1 Optimal battery power in MA and C mode for IEM1

Regarding min
Pb∈[Pb,0)

HMA, the battery power Pb which minimizes HMA is obtained by

solving the equation ∂HMA
∂Pb

= 0. We have,

α1η
−
e − λo1 (1− 2βPb) + 2λo2αbPb = 0 (B.1)

for Pb ∈
[
Pb, 0

)
. As a result, the optimal battery power in the MA mode is achieved as

P ob = PMA
b = min

(
max

(
Pb,

λo1 − α1η
−
e

2 (λo1β + λo2αb)

)
, 0

)
(B.2)

In terms of min
Pb∈(0,Pb]

HC , the battery power Pb minimizing HC is computed from solving

the equation ∂HC
∂Pb

= 0 . We have,

α1

η+
e
− λo1 (1− 2βPb) + 2λo2αbPb = 0 (B.3)

for Pb ∈
(
0, Pb

]
. Subsequently, the optimal battery power in the C mode is derived as

P ob = PCb = max

(
min

(
Pb,

λo1 − α1

η+e

2 (λo1β + λo2αb)

)
, 0

)
(B.4)

103



B.2. Hamiltonian function minimization for IEM1 104

B.2 Hamiltonian function minimization for IEM1

It is obvious that the solution of (B.1)

Pb =
λo1 − α1η

−
e

2 (λo1β + λo2αb)
< 0 (B.5)

for all 0 < λo1 < α1η
−
e and λo2 ≥ 0. The solution of (B.3)

Pb =
λo1 − α1

η+e

2 (λo1β + λo2αb)
> 0 (B.6)

for all λo1 >
α1

η+e
and λo2 ≥ 0. Owing to these observations, for all λo2 ≥ 0, the Hamiltonian

function H is analyzed for three intervals of λo1 namely, (0, α1η
−
e ), [α1η

−
e ,

α1

η+e
],
(
α1

η+e
,+∞

)
.

• For 0 < λo1 < α1η
−
e :

In this interval, the first derivative of HC with respect to Pb satisfies

∂HC

∂Pb
> 0, ∀Pb > 0 (B.7)

Therefore

HC > lim
Pb→0+

HC = HICEonly (B.8)

Moreover, since PMA
b < 0, we have

Ho
MA < lim

Pb→0−
HMA = HICEonly (B.9)

From (B.8) and (B.9), the following property is derived

Ho
MA < HICEonly < HC for 0 < λo1 < α1η

−
e andPd > 0 (B.10)

• For α1η
−
e ≤ λo1 ≤ α1

η+e

In this interval, we have

∂HMA

∂Pb
< 0, ∀Pb < 0 (B.11)

∂HC

∂Pb
> 0, ∀Pb > 0 (B.12)
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Hence,

HC > lim
Pb→0+

HC = HICEonly (B.13)

HMA > lim
Pb→0−

HMA = HICEonly (B.14)

for all λ1 ∈
[
α1η

−
e ,

α1

η+e

]
and Pd > 0.

• For λo1 >
α1

η+e
:

The following property holds for λo1 >
α1

η+e
,

∂HMA

∂Pb
< 0, ∀Pb < 0 (B.15)

Therefore,

HMA > lim
Pb→0−

HMA = HICEonly (B.16)

Moreover, since PCb > 0 for λ1 >
α1

η+e
, we have

Ho
C < lim

Pb→0−
HC = HICEonly (B.17)

Equations (B.16) and (B.17) imply

Ho
C < HICEonly < HMA for λ1 >

α1

η+
e
andPd > 0 (B.18)

Moreover, by solving (3.47)-(3.53), it is straight forward to obtain the following proper-

ties: {
Ho
MA ≥ HMO for 0 < Pd ≤ PMA

dlim

Ho
MA ≥ HPSM forg0 ≥ gMA

0

(B.19)

{
HICEonly ≥ HMO for 0 < Pd ≤ P ICEonlydlim

HICEonly ≥ HPSM forg0 ≥ gICEonly0

(B.20)

{
Ho
C ≥ HMO for 0 < Pd ≤ PCdlim

Ho
C ≥ HPSM forg0 ≥ gC0

(B.21)

HPSM ≥ HMO for 0 < Pd ≤ PPSMdlim (B.22)
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Table B.1: Explicit expression of the power thresholds [W] used in determining the
optimal feasible HEV operating mode for IEM1

Parameter Expression

PMA
dlim

η−e
[
(λo1−α1η

−
e )−2

√
α2(λo1β+λo2αb)

]
−2(λo1β+λo2αb)

− Plη−e − g0

P ICEonlydlim

η−e

[
(λo1−α1η

−
e )−

√
(λo1−α1η

−
e )

2
+4

(
α2+α1Pl

(
1

η+e
−η−e

))
(λo1β+λo2αb)

]
−2(λo1β+λo2αb)

− Plη−e − g0

PCdlim

η−e

(λo1−α1η
−
e )−

√
(λo1−α1η

−
e )

2−
(
λo1−

α1

η+e

)2

+4

(
α2+α1Pl

(
1

η+e
−η−e

))
(λo1β+λo2αb)


−2(λo1β+λo2αb)

−Plη−e − g0

PPSMdlim

η−e

[
(λo1−α1η

−
e )−

√
(λo1−α1η

−
e )

2
+4((λo1β+λo2αb)P 2

l +(λo1−α1η
−
e )Pl+α2−α1g0)(λo1β+λo2αb)

]
−2(λo1β+λo2αb)

−Plη−e − g0

gMA
0

λo1(Pl+βP 2
l )+λo2αbP

2
l

α1
+

(λo1−α1η
−
e )

2

4(λo1β+λo2αb)α1
− Plη−e

gICEonly0

λo1(Pl+βP 2
l )+λo2αbP

2
l

α1
− Pl

η+e

gC0
λo1(Pl+βP 2

l )+λo2αbP
2
l

α1
+

(
λo1−

α1

η+e

)2

4(λo1β+λo2αb)α1
− Pl

η+e

From (B.10), (B.13), (B.14), and (B.18)-(B.22), the solution shown in Table 3.4 is

achieved. It is noteworthy that for the equality of (B.19)-(B.22), e.g., Pd = P
(.)
dlim and

g0 = g
(.)
0 , the Hamiltonian function has two identical minima. Without loss of optimal-

ity, the MO mode is chosen for Pd = P
(.)
dlim while the PSM mode is chosen for g0 = g

(.)
0

and Pd > P
(.)
dlim, see [43] for a similar observation. The explicit expressions of the power

thresholds PMA
dlim, P ICEonlydlim , PCdlim, PPSMdlim , gMA

0 , gICEonly0 and gC0 for the IEM1 are given

in Table B.1.

B.3 Influence of FF and FB control on A-IEM strategy

performance

The values of λ1 and γ in the A-IEM strategy are computed using a combination of the

FF and FB blocks. As shown in Fig. 4.2, it is also possible to calculate the values of λ1

and γ from only the FF or the FB blocks. The necessity for using the combination of

the FF and FB blocks in computing the values of λ1 and γ are analyzed through three

alternative A-IEM strategies as follows:
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Table B.2: Performance comparison among A-IEM FF, A-IEM FB and A-IEM
FF+FB strategies. “+” and “−” denote the constraint satisfaction and violation, re-

spectively.

A-IEM FF+FB A-IEM FF A-IEM FB

Relative fuel reduction [%] 7.5 7.5 7.2
Charge sustaining: Es (tf ) ≥ Es (t0) + + +

Energy state: Es ≤ Es(t) ≤ Es + - +
Battery life requirement + + +

• A-IEM FB: λ1 and γ are computed by only the FB blocks (FB1 and FB2).

λ1 = λFB1 + λt01 (B.23)

γ = γFB + γt0 (B.24)

where λt01 and γt0 are the initial values of λ1 and γ, respectively. In the A-

IEM FB strategy, λt01 needs to be chosen carefully to achieve the minimal fuel

consumption [45], whereas γt0 is tuned to guarantee the battery capacity loss

constraint. Appropriate values of λt01 and γt0 are obtained by iterative tuning in

this thesis with the assumption that the future information of the driving cycle is

known.

• A-IEM FF: λ1 and γ are computed by only the FF block

λ1 = λFF1 (B.25)

γ = γFF (B.26)

• A-IEM FF+FB: λ1 and γ are computed by the FF and FB blocks

λ1 = λFF1 + λFB1 (B.27)

γ = γFF + γFB (B.28)

It is noteworthy that for both the A-IEM FF and A-IEM FF+FB strategies, the initial

values λt01 and γt0 are not needed and the driving cycle is not known in advance. Fig.

B.1 compares the system response among the three alternative A-IEM strategies. The

fuel reduction performance and the constraints satisfaction of the three strategies are

summarized in Table. B.2. The following conclusions are derived:

• The FB1 block is needed to adapt λ1 to satisfy the battery energy state constraint

(Es ≤ Es(t) ≤ Es). Among three alternative A-IEM strategies, the A-IEM FF

strategy violates the constraint on the battery energy state. The top plot of Fig.

B.1 shows that the trajectory of Es from the A-IEM FF strategy exceeds its
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Figure B.1: Comparison of the system responses among A-IEM FF, A-IEM FB and
A-IEM FF+FB.

boundaries Es and Es denoted by the black dotted lines. The values of λFF1 and

γFF are computed without taking the battery energy state constraint (Es ≤ Es ≤
Es) into account.

• The FF block is needed to adapt γ to satisfy the battery life requirement without

knowing the driving cycle in advance. The battery life requirement is satisfied by

all of the A-IEM FF+FB, A-IEM FF and A-IEM FB strategies. However, the

A-IEM FB strategy requires the future information of the driving cycle to obtain

a proper value of γt0 . In the A-IEM FB strategy, for a single driving cycle, the

adaptation of γ from γFB is negligible due to a very slow dynamic of the closed-

loop of Ql. The second plot of Fig. B.1 shows that the value of γ in the A-IEM

FB strategy is approximated to γt0 . It is, therefore, essential to choose the initial

value γt0 properly to assure the battery life requirement.
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Figure B.2: Comparison of the system responses among A-IEM FF, A-IEM FB and
A-IEM FF+FB on the city and urban hilly driving pattern.

• The FF block is needed for fuel reduction performance. Table B.2 denotes that the

fuel reduction performance of the A-IEM FB is worst than that from the A-IEM

FF+FB strategy. The A-IEM FB strategy cannot recognize the current driving

pattern to calculate an appropriate trajectory of λ1 accordingly. Fig. B.2 zooms

in the time interval when the hybrid truck drives on the city hilly driving pattern.

As shown in the third plot of Fig. B.2, the A-IEM FF+FB strategy recognizes

the current driving pattern. Depending on the recognized driving pattern, λ1

is brought quickly to an appropriate (fuel beneficial) trajectory by using the FF

block, see the second plot of Fig. B.2. The value of λ1 in the A-IEM FB strategy

is only adapted to keep Es close to its reference trajectory Es ref .

According to the aforementioned conclusions, it is needed to use the combination of FF

and FB blocks to compute λ1 and γ in the A-IEM strategy to guarantee the constraints

on the battery states while achieving the best fuel reduction performance.
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B.4 Benefit and cost for battery usage in MA, MO and R

mode

To transform the cost and benefit when using the battery to [e/s], it is essential to

define the diesel price πf [e/g] and a lifetime dependence battery capacity loss price

πb [e/%]. πf = πdiesel
ρ is obtained from the worldwide diesel price πdiesel [e/liter] and

the diesel density ρ [g/liter]. Regarding the battery capacity loss price πb, Eq. (2.24),

Q̇l = h (Ps, Tb)Q
z−1
z

l , shows that for a fixed value of Ps and Tb, the incremental battery

capacity loss Q̇l is smaller for higher Ql since z = 0.552 < 1. It suggests that πb should

also depend on Ql to equally justify the cost from Q̇l over its lifetime. As a result, πb is

computed from the following equation

πb(t)h (Ps(t), Tb(t))Q
z−1
z

l (t) = Πbh (Ps(t), Tb(t))Q
z−1
z

EoL (B.29)

where Πb [e/%] equals to a new battery pack price excluding the costs for the battery

thermal management system. The right hand side of (B.29) expresses that at the end of

the battery lifetime, each usage of the battery has to pay a price of Πb since the battery

needs to be replaced afterward. From (B.29), we have

πb(t) = Πb(
Ql(t)

QEoL
)
1−z
z (B.30)

To compute the benefit and cost from using the battery in MA, MO and R mode, the

analysis makes use of the developed vehicle model in combination with the predefined

prices πf and πb.

The fuel consumption of the ICE in the ICE Only mode to propel the truck and supply

the reefer trailer is

ṁICEonly
f = α1

(
Pd +

Pl

η+
e

+ g0

)
+ α2 (B.31)

The fuel consumed by the ICE in MA mode with the battery discharge power Pb < 0 is

obtained as

ṁMA
f = α1

(
Pd + η−e (Pb + Pl) + g0

)
+ α2 (B.32)

Hence, the benefit achieved from using the MA mode is derived as

bMA = πf (ṁICEonly
f − ṁMA

f ) = πfα1

(
−Pbη−e + Pl

(
1

η+
e
− η−e

))
(B.33)
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Similarly, the benefit from using the MO mode, with the battery discharge power Pb < 0,

is obtained as

bMO = πfα1

(
−Pbη−e + Pl

(
1

η+
e
− η−e

))
+ α2 (B.34)

The cost from the battery capacity loss for both MA and MO mode is computed as

cMA = cMO = πbh
(
Pb − βP 2

b , Tb
)
Q

z−1
z

l (B.35)

Regarding the R mode, the cost from absorbing the braking energy with the battery

charge power Pb > 0 is

cR = 2πbh
(
Pb − βP 2

b , Tb
)
Q

z−1
z

l (B.36)

The benefit from using the absorbed energy in MO mode is

bR = πfα1

(
−P ′bη−e + Pl

(
1

η+
e
− η−e

))
+ α2 (B.37)

with P
′
b = arg

P
′
b<0

(
P
′
b − β

(
P
′
b

)2
= −(Pb − βP 2

b )

)
is the battery discharge power at its

terminals corresponding to the net retrieved battery power Pb − βP 2
b .

From (B.33)-(B.37), the powers P l,MA
cb , P l,MO

cb and P ucb are computed as

P l,MA
cb = arg min

Pb∈[−120e3,0]
{Pb| bMA − cMA ≥ 0} (B.38)

P l,MO
cb = arg min

Pb∈[−120e3,0]
{Pb| bMO − cMO ≥ 0} (B.39)

P ucb = arg max
Pb∈[0,120e3]

{Pb| bR − cR ≥ 0} (B.40)

Remark 7. Without assuming that the net retrieved battery energy from the R mode

will be used in the MO mode with the same power pattern, the benefit from fuel reduction

when absorbing the braking energy can be computed as follows.

If the battery energy is discharged with an amount of Es1, the battery has to be charged

by means of the ICE and/or braking energy to re-fill the battery with an amount of at

least Es1 to guarantee the charge sustaining constraint. When discharging the battery,

λ1 represents an equivalent fuel cost to recharge the battery energy using the ICE. If

there is free braking energy, this fuel cost is reduced by absorbing the braking energy

to recharge the battery. Owing to this observation, the benefit (from fuel reduction)

when absorbing the braking energy can be estimated as follows. At every time instant

t, an averaged value λ1 avg of λ1 over a past period [t − τλ1 , t] is computed and used

as the future cost of the electric power. τλ1 > 0 is a predefined value. Since the fuel

mass flow ṁf of the ICE depends linearly on the ICE power, the benefit from fuel
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reduction according to charging the battery from braking energy with a power of Pb can

be estimated as

bR = πfλ1 avgP
′
b (B.41)

with P
′
b = arg

P
′
b<0

(
P
′
b − β

(
P
′
b

)2
= −(Pb − βP 2

b )

)
is the battery discharge power at its

terminals corresponding to the net retrieved battery power Pb − βP 2
b .

B.5 Computation of battery capacity loss upper bound

The static battery cycle-life model (2.22), Ql = B (Crate) e
−Ea(Crate)
R(Tb+273)

(
E

nVoc3600

)z
, suggests

that for specific Ql, E and a constant battery Crate, there exists a constant battery

temperature Tb such that the equation (2.22) is satisfied. As a result, given the time-

varying Ps and Tb satisfying (Ql(tf ) ≤ Ql), there exists a constant Tb and Ps such

that

Ql(tf ) = B
(
Crate

)
e
−Ea(Crate)

RTb

(
E (tf )

nVoc3600

)z
(B.42)

where Ql(tf ) = Ql (t0) +
tf∫
t0

Q̇l (Ps, Tb, τ) dτ , and Crate corresponds to an average battery

charged/discharged power Ps = 1
tf−t0

tf∫
t0

|Ps (τ)| dτ .

Owing to the assumption that the truck runs on a same route for the entire battery life,

the following equation is obtained

Ql (tEoL) = B
(
Crate

)
e
−Ea(Crate)

RTb

(
E (tf ) tEoL−t0tf−t0
nVoc3600

)z
(B.43)

Let Ql(tf ) = Ql and Ql(tEoL) = Ql EoL. From (B.42) and (B.43), the value of Ql is

derived as

Ql =
Ql EoL(
tEoL−t0
tf−t0

)z (B.44)
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