
1

Computer Vision and Image Understanding
journal homepage: www.elsevier.com

Supplementary Material - On the Benefit of Adversarial Training for Monocular Depth
Estimation

Rick Groenendijka, Sezer Karaoglub, Theo Geversa,b, Thomas Mensinka,c

aUniversity of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands
b3DUniversum, Science Park 400, 1098 XH Amsterdam, the Netherlands
cGoogle Research, Claude Debussylaan 34, 1082 MD Amsterdam, the Netherlands

ABSTRACT

In this supplementary report we provide additional experimental results and information on the im-
plementation details belonging to our main paper. These results will be made available in an (online)
appendix upon acceptance of the paper.

c© 2019 Elsevier Ltd. All rights reserved.

1. Extended Experimental Results

1.1. Loss Components

In the main work, Eqs. 2,3,5,6 the definitions of Lap, Llr,
Ldisp were given. In follow-up work Yang et al. (2018) ex-
tends the loss function with two components: Loccl and a semi-
supervised loss function which takes into account sparse dis-
parity maps for a subset of images in the training set. The semi-
supervised component is ignored in this work. The new loss
definition is:

Ls = γL1 LL1 + γS LS + γlr Llr + γdisp
1
2sLdisp + γoccl Loccl,

(1)
where Loccl is the occlusion loss. The occlusion loss penalizes
the total sum of disparities, to favor background depths. Also
combining the occlusion loss with the disparity gradient loss
enforces transitions at occlusions. These occlusions happen
due to the stereo set-up of the cameras.

Ll
occl =

1
N

∑
i, j

|dl
i j| (2)

In the supplementary material of Yang et al. (2018) it is sug-
gested that disparity smoothness loss Ldisp in itself does not
improve model performance. However a combination of Ldisp

and Loccl does seem to increase model performance. The pa-
rameters that are used in the papers are as follows:

• Godard et al. (2017): γl1 = 0.15, γl1 = 0.85, γlr = 1.0,
γdisp = 0.1

• Yang et al. (2018): γl1 = 0.15, γl1 = 0.85, γlr = 1.0,
γdisp = 0.1, γoccl = 0.01

An ablation study of loss components is conducted. 2 shows
the results. Unlike Yang et al. (2018) no significant quan-
titative benefit is found of using the occlusion loss compo-
nent. Moreover, it seems state-of-the-art performance can be
acquired through only using SSIM loss as the only loss compo-
nent.

We also detail the main experiment for even more settings
than shown in the paper. We evaluate more settings of loss com-
binations with and without adversarial training. The results are
shown in Tab. 1. From the table, the main results of the pa-
per are concluded. Furthermore it becomes clear that adding
the LR loss yields a large performance boost (experiment #2
vs #3), and similar adding the SSIM loss (exp #6/7 vs #3/4/5)
significantly improves performance. The best performance is
obtained by using all reconstruction loss components, without
adversarial training (see 7, albeit adding a Vanilla GAN or LS-
GAN performs similar, or at least within the initialisation vari-
ance).

Using a full component loss and an optimal generator back-
bone, we compare once more against other methods on the
KITTI dataset (Tab. 3).

1.2. Cityscapes

Qualitative results are shown in Fig. 1 when trained on the
cityscape dataset.
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Table 1. Performance of models using different GAN variants. Cropping from Garg et al. (2016) was used for evaluation. For all results post-processing of
disparity maps was performed.

Loss Components BN GAN ARD SRD RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

L1 LR Disp Occl SSIM lower is better higher is better
1 X V 0.810 12.442 18.245 1.999 0.002 0.008 0.020
1 X LS 0.893 13.826 18.816 2.468 0.000 0.000 0.000
1 W 0.813 12.310 18.119 1.932 0.001 0.003 0.011

2 X 0.215 3.685 7.302 0.307 0.746 0.894 0.949
2 X X 0.200 3.149 6.795 0.289 0.760 0.904 0.956
2 X X V 0.205 3.781 7.045 0.288 0.771 0.911 0.958
2 X X LS 0.190 2.826 6.612 0.281 0.766 0.909 0.959
2 X W 0.177 2.398 6.504 0.275 0.770 0.905 0.957

3 X X 0.191 2.661 6.710 0.285 0.760 0.904 0.956
3 X X X 0.162 1.755 5.954 0.253 0.789 0.922 0.966
3 X X X V 0.168 2.090 6.104 0.261 0.784 0.919 0.964
3 X X X LS 0.160 1.761 5.966 0.253 0.792 0.923 0.966
3 X X W 0.170 1.521 6.121 0.258 0.769 0.909 0.960

4 X X X 0.200 3.155 7.039 0.295 0.758 0.900 0.953
4 X X X X 0.163 1.842 5.978 0.253 0.791 0.922 0.966
4 X X X X V 0.165 1.907 6.094 0.258 0.787 0.920 0.964
4 X X X X LS 0.158 1.632 5.784 0.248 0.799 0.925 0.966
4 X X X W 0.160 1.427 6.179 0.259 0.772 0.908 0.959

5 X X X X 0.204 3.399 6.983 0.295 0.760 0.901 0.953
5 X X X X X 0.165 1.955 6.028 0.256 0.790 0.922 0.966
5 X X X X X V 0.196 3.182 6.582 0.282 0.778 0.911 0.957
5 X X X X X LS 0.174 2.236 6.137 0.263 0.785 0.917 0.962
5 X X X X W 0.161 1.557 6.191 0.260 0.776 0.910 0.960

6 X X X X 0.142 1.200 5.694 0.239 0.809 0.927 0.967
6 X X X X X - 0.132 1.049 5.376 0.224 0.822 0.937 0.974
6 X X X X X V 0.135 1.052 5.428 0.229 0.818 0.935 0.972
6 X X X X X LS 0.135 1.051 5.417 0.227 0.819 0.936 0.972
6 X X X X W 0.152 1.357 6.003 0.249 0.788 0.917 0.963

7 X X X X X 0.142 1.205 5.726 0.240 0.806 0.927 0.967
7 X X X X X X 0.132 1.035 5.370 0.225 0.822 0.937 0.973
7 X X X X X X V 0.133 1.055 5.390 0.225 0.822 0.938 0.973
7 X X X X X X LS 0.134 1.090 5.447 0.226 0.820 0.937 0.973
7 X X X X X W 0.157 1.368 6.065 0.253 0.779 0.915 0.963

8 Training set mean 0.361 4.826 8.102 0.377 0.638 0.804 0.894
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Table 2. Ablation study of loss components. All parameters γ weigh loss components from equation 1. αSSIM is the ratio between L1 and SSIM.
Loss Weights γ ARD SRD RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

γl1 γs γlr γdisp γoccl lower is better higher is better
1.0 0.0 0.0 0.0 0.0 0.212 3.628 7.271 0.308 0.747 0.893 0.949
0.5 0.5 0.0 0.0 0.0 0.143 1.199 5.709 0.239 0.808 0.927 0.968

0.15 0.85 0.0 0.0 0.0 0.142 1.186 5.689 0.238 0.808 0.927 0.968
0.0 1.0 0.0 0.0 0.0 0.142 1.197 5.637 0.237 0.811 0.928 0.968

0.0 0.0 1.0 0.0 0.0 1.000 16.087 19.776 9.500 0.0 0.0 0.0
1.0 0.0 1.0 0.0 0.0 0.200 3.187 6.898 0.292 0.759 0.902 0.954

0.15 0.85 1.0 0.0 0.0 0.144 1.215 5.688 0.240 0.807 0.926 0.967

0.15 0.85 1.0 0.1 0.0 0.142 1.200 5.694 0.239 0.809 0.927 0.967
0.15 0.85 1.0 0.0 0.01 0.143 1.209 5.730 0.241 0.805 0.927 0.967
0.15 0.85 1.0 0.1 0.01 0.142 1.202 5.706 0.240 0.807 0.927 0.967
0.15 0.85 1.0 0.25 0.25 0.190 4.000 6.905 0.278 0.798 0.918 0.960
0.15 0.85 1.0 1.0 1.0 0.625 32.436 14.880 0.517 0.733 0.847 0.892

Table 3. Comparison of RN50 architecture with method of Godard et al. (2017), when pre-trained on CityScape (SC) dataset.

Method Trained on ARD SRD RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better
Supervised using Left-Right Correspondence

Pilzer et al. (2018) K 0.152 1.388 6.016 0.247 0.789 0.918 0.965
Godard et al. (2017) VGG K 0.148 1.344 5.927 0.247 0.803 0.922 0.964
Our work baseline K 0.142 1.200 5.694 0.239 0.809 0.927 0.967
Our work BN + S2 K 0.128 1.026 5.313 0.222 0.830 0.939 0.973
Godard et al. (2017) RN50 CS + K 0.114 0.898 4.935 0.206 0.861 0.949 0.976
Our work RN50+BN+S2 CS + K 0.112 0.820 4.738 0.202 0.866 0.952 0.978
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Fig. 1. Qualitative results on the CityScapes test set.
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