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Abstract

Bicycle sharing systems can significantly reduce traffic, pollution, and the need for parking

spaces in city centers. One of the keys to success for a bicycle sharing system is the efficiency of

rebalancing operations, where the number of bicycles in each station has to be restored to its target

value by a truck through pickup and delivery operations. The Static Bicycle Rebalancing Problem

aims to determine a minimum cost sequence of stations to be visited by a single vehicle as well as

the amount of bicycles to be collected or delivered at each station. Multiple visits to a station are

allowed, as well as using stations as temporary storage. This paper presents an exact algorithm for

the problem and results of computational tests on benchmark instances from the literature. The

computational experiments show that instances with up to 60 stations can be solved to optimality

within 2 hours of computing time.

Keywords: Bicycle sharing systems, pickup and delivery, multiple visits, branch-and-cut.

1. Introduction

Urban transportation is a critical issue in large cities due to the dramatic increase and agglom-

eration of citizens and services in city centers. Congestion is a frequent and major issue and the

associated decision problems are highly complex. Since the Buchanan report (Buchanan 1963),

civil engineers proposed many effective techniques to mitigate the effects of urbanization on traffic.

Shared mobility systems offer one of the most promising solutions and have the potential to reduce

congestion in urban areas. In particular, bicycle sharing systems proved to be an effective solution

to solve the “last mile” problem (Liu et al. 2012).

De Maio (2009) surveys the development of bicycle sharing systems starting from the 60’s, when

Witte Fiesten (white bicycles) were first introduced in Amsterdam. Although this first generation

of shared bicycles did not prove to be successful, the second generation of bicycles introduced in

Denmark in the early 90’s was more effective, due to stronger and dedicated bicycles and coin-

based payment systems. The third generation was first introduced in 1996 at the University of
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Portsmouth in the UK, where students could rent a bicycle using a smart card. This generation of

bicycles proved to be a success, drastically reducing the number of thefts and damaged bicycles.

It quickly became clear that IT tools capable of tracking bicycles, storing information about their

usage and data about the users were necessary to improve the quality of service and decrease the

rate of stolen/damaged bicycles. De Maio (2009) reports about 120 bicycle sharing systems running

as of 2009, some of which consist of tens of thousands of bicycles. Impressive results in terms of

increased bicycle usage, reduced CO2 gas emissions, and consequent public health improvements

are also reported. The efficiency of bicycle sharing systems largely depends on the effectiveness of

operational strategies implemented by the network operators.

One of the key requirements identified by De Maio (2009) for the fourth generation of bicycle

sharing systems is a good redistribution system. Despite initiatives aimed at promoting users to

redistribute bicycles, the most common technique implemented to relocate bicycles from areas of

high supply/low demand to areas of low supply/high demand is using trucks. The use of large

trucks can be expensive and have a heavy CO2 footprint, therefore many cities migrate to electric

vehicles or start using vehicle routing optimization software to decrease the transportation costs

and fuel consumption.

In this paper, we study the Static Bicycle Rebalancing Problem (SBRP), introduced by Benchi-

mol et al. (2011). The SBRP aims to find a minimum cost route for a vehicle that starts and ends

its service at a depot, and restores the inventory level at every bicycle station to its target value

by picking up and delivering bicycles as necessary. The vehicle may visit any station more than

once, and may use stations as temporary storage for bicycles (i.e., preemption). The term static

refers to the assumption that the number of bicycles at each station is known in advance and

does not change during the pickup and delivery operations, as opposed to dynamic problems in

which the number of bicycles may change during the operations due to users renting and returning

bicycles. The SBRP is of interest for many bicycle sharing systems that rebalance the stations

during the night. Although the SBRP has been studied by Chemla et al. (2013b), the authors

succeeded in providing a strong lower bound and an effective heuristic solution method, but not an

exact algorithm. In this study, we propose an exact algorithm for the SBRP and present extensive

computational results on benchmark instances from the literature.

The remainder of this paper is organized as follows. In Section 2, we provide a survey of

the literature on bicycle rebalancing problems arising in bicycle sharing systems. In Section 3,

we present the mathematical problem definition of the SBRP. In Section 4, elements of the exact

algorithm for the SBRP are stated. In Section 5, we present a simple heuristic for generating upper

bounds. In Section 6, we provide the results of our computational experiments. Finally, we give

our concluding remarks in Section 7.

2. Literature Survey

There is an increasing interest in optimization problems arising in bicycle sharing systems.

Among the problems studied are the integration of bicycle sharing systems with other transporta-

tion systems (Chow and Sayarshad 2014), the problem of reserving parking spaces in one-way

vehicle sharing systems (Kaspi et al. 2014), the dynamics of bicycles usage during the day (Agatz

et al. 2011), and the effects of fuel price variations on the bicycles usage (Smith and Kauermann
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2011). Recently, bicycle rebalancing problems have received a significant amount of interest from

the research community. Given the high degree of complexity, metaheuristics have been proposed

to tackle larger instances and problems with multiple vehicles. We refer the interested reader to

the heuristic papers by Rainer-Harbach et al. (2014), Papazek et al. (2013), Gaspero et al. (2013),

and Schuijbroek et al. (2013). In what follows, we will focus on the studies about exact methods

for bicycle rebalancing problems.

Nair and Miller-Hooks (2011) study the dynamic problem of rebalancing a shared mobility

system by using stochastic programming, where the demand at each station is modeled using a

set of scenarios. Their modeling approach uses chance constraints, which guarantee that a given

percentage of scenarios will be satisfied by the redistribution plans. The objective is to minimize

the redistribution costs. However, this model does not return any operational routing decisions.

Contardo et al. (2012) solve the dynamic rebalancing problem that aims to minimize the overall

unmet demand, using a flow formulation defined on a space-time network. The formulation is

solved by means of a Benders decomposition embedded in a column generation framework. We

refer the interested reader to Chemla et al. (2013a) for further reading on dynamic problems.

Raviv et al. (2013) study the multi vehicles static rebalancing problem, in which the objective is

to simultaneously minimize the routing cost and the customer dissatisfaction. The latter is modeled

using a piecewise linear convex function of the number of bicycles at stations. The customer

dissatisfaction function for a station attains its maximum when the station is full (the customers

would not be able to return their bicycles) or empty (the customers would not be able to rent a

bicycle). It is assumed that stations are visited at most once, service times are taken into account

and the overall trip duration of each vehicle is bounded. The authors present two mathematical

formulations, dominance rules, and valid inequalities. Their formulations are tested on artificial

instances with up to 60 stations and one or two vehicles. The authors also introduce instances

inspired by the Capital Bikeshare in Washington DC with up to 104 stations. Both formulations

struggle to solve instances with two vehicles with respect to a single vehicle. Moreover, the authors

point out that the constraint of a single visit is restrictive and may considerably limit the quality

of the solutions achieved.

Chemla et al. (2013b) propose a mathematical formulation for the SBRP defined over a time-

expanded graph, in which each station is replicated as many times as an upper bound on the

number of visits possible to the station. The formulation uses four index variables and becomes

intractable for medium-sized instances of SBRP. Therefore, the authors introduce two relaxations,

the first of which uses two sets of two-index variables corresponding to the number of times each

arc is traversed and the number of bicycles being carried on each arc, respectively. The second

relaxation uses only variables representing the number of times an arc is traversed. The two

relaxations are proven equivalent, but the linear relaxation of the second provides higher quality

lower bounds, due to stronger capacity constraints. A Tabu Search algorithm is also developed

and a set of benchmark instances is generated, with up to 100 stations to be visited. The authors

report that the current number of stations visited in Paris by a vehicle with capacity Q = 20

bicycles is typically 50, with each station having capacity 30 bicycles. The gaps between the best

upper bound solutions and lower bounds is roughly 2% for realistic-sized instances and up to 5%

for instances with up to 100 stations.
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Erdoǧan et al. (2014) extend the single vehicle static rebalancing problem by assuming that

the number of bicycles at a station after the repositioning should lie within a given interval rather

than a specific target number, and a station can be visited at most once. The authors solve the

problem exactly using two methods, a Benders decomposition based branch-and-cut algorithm

and a traditional branch-and-cut algorithm. Drawing upon the similarity of the problem with the

One Commodity Pickup and Delivery Traveling Salesman Problem (1-PDTSP), they adapt valid

inequalities studied in depth by Hernández-Pérez and Salazar-González (2004, 2007). Instances

with up to 50 stations have been solved to optimality, and the Benders decomposition based

branch-and-cut is observed to outperform the traditional branch-and-cut algorithm.

Dell’Amico et al. (2014) solve the multi vehicle static problem where the overall transporta-

tion cost is minimized and each station has to be visited exactly once. Four alternative mixed

integer linear mathematical formulations are compared and inequalities are used to strengthen the

formulations.

3. Problem definition

We now provide a mathematical definition of the SBRP. We are given a complete directed

graph G = (V,A). The vertex set V = {0, 1, . . . , n} consists of the depot (vertex 0, arrival and

departure node for the vehicle) and the bicycle stations V \ {0}. The number of bicycles at a

station i ∈ {1, . . . , n} is initially pi, the target number of bicycles is qi, and the capacity of station

i is Ci. Note that the capacity is necessary because preemption is allowed. Therefore, stations that

are initially balanced (i.e., pi = qi) could also be visited with the purpose of temporarily parking

or collecting bicycles. Each arc (i, j) has an associated travel cost cij , which may represent the

fuel consumption, the travel time, or the CO2 emission. The vehicle can carry at most Q bicycles

at a time. The objective is to minimize the overall solution cost, ensuring that the vehicle departs

and arrives at the depot and the target number of bicycles is allocated to each station at the end

of the tour.

The SBRP has been proven to be NP-hard by Benchimol et al. (2011), as well as its special

cases for complete graphs and bipartite graphs with unit costs. The authors also propose a 9.5-

approximation algorithm for the general case, a 2-approximation algorithm for the special case

with a complete graph and unit costs, as well as lower bounding techniques. Chemla et al. (2013b)

demonstrate that the problem of verifying if a sequence of vertices starting and ending at the depot

for an instance of SBRP represents a feasible solution is a search problem (i.e., a polynomial time

algorithm is capable of finding a feasible assignment of bicycles on the vehicle for each arc traveled,

if any feasible assignment exists). On the other hand, if the only information available to represent

a solution is the number of times each arc in the network is traversed, the problem of determining

if this information corresponds to a feasible solution is NP-complete.

We now present a simplified version of the second relaxation of SBRP by Chemla et al. (2013b),

which will serve as a stepping stone to a complete formulation. The authors define the imbalance

of station i ∈ V as di = pi − qi, the net imbalance of a subset of stations S ⊆ V \ {0} as

d(S) =
∑
i∈S di, and introduce a function µ(S) that is equal to 1 if there is at least one station

i ∈ S such that |di| > 0, and 0 otherwise. Based on these definitions, they use two separate sets

of constraints for connectivity and capacity. These two sets of constraints can be expressed as a
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single set by defining and using a single function to compute the minimal vehicle requirement of

station set S ⊆ V \ {0} as

r(S) = max{d|d(S)|/Qe, µ(S)}. (1)

Furthermore, we share the definitions of δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S} and δ−(S) = {(i, j) ∈
A : i /∈ S, j ∈ S}. Let xij be equal to the number of times arc (i, j) ∈ A is traversed. We write

x(S) to denote
∑

(i,j)∈S xij . Chemla et al. (2013b) prove that an arc between two stations with

both positive or both negative imbalance values need not be traversed more than once. When

the travel costs respect the triangle inequality, we observe that for arcs (i, j) ∈ A : di > 0, dj <

0 or di < 0, dj > 0, the maximum number of traversals is equal to the minimum of the absolute

values of the imbalances (i.e., at least one bicycle is transported at each pass). Hence, we denote

the maximum number of times an arc can be traversed as

uij =

min{|di|, |dj |} di > 0, dj < 0 or di < 0, dj > 0,

1 otherwise.
(2)

The resulting relaxation is:

(SBRP-R)

minimize
∑

(i,j)∈A

cijxij (3)

subject to x(δ−(i)) = x(δ+(i)) (i ∈ V ), (4)

x(δ+(0)) ≥ max{d|d0|/Qe, 1}, (5)

x(δ+(S)) ≥ r(S) (S ⊆ V \ {0}), (6)

xij ∈ {0, ..., uij} ((i, j) ∈ A). (7)

The objective function (3) minimizes the total travel cost. Constraint set (4) are the well-

known flow conservation constraints. Constraint set (5) sets the minimum number of trips out of

the depot. Constraint set (6) imposes the lower bounds for the number of times the vehicle must

leave set S. Finally, constraint set (7) states the integrality constraints as well as the upper bounds

on the variables.

There are two shortcomings of (SBRP-R) that prevent it from being a complete formulation.

Firstly, as stated in the previous section, proving that an integral solution for (SBRP-R) is feasible

for the SBRP is an NP-complete decision problem. Secondly, There is no straightforward method

to separate an integer solution that is found to be infeasible for the SBRP. To observe this, assume

that we have such a solution x∗. To separate this solution, the following constraint should be

added to the constraint set.

∑
(i,j)∈A

|xij − x∗ij | ≥ 1. (8)
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Note that (8) is nonlinear, and there is no efficient method to linearize it for general integer

variables. For binary variables, it is possible to linearize it by using |xij−x∗ij | = xij for x∗ij = 0, and

|xij − x∗ij | = 1− xij for x∗ij = 1. To utilize this linearization, we use the following transformation

that converts general integer variables with finite upper bounds into a set of binary variables:

xij =

blog2(uij)c∑
k=0

2kyijk, (9)

where yijk ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ {0, ..., blog2(uij)c}. Note that for uij : log2(uij) =

blog2(uij)c, the transformation allows for
∑blog2(uij)c
k=0 2kyijk > uij , but the upper bounds uij

are provided to speed up the algorithm rather than feasibility.

Given an integer solution y∗, let us define I0(y∗) = {(i, j, k) : y∗ijk = 0}, i.e. the set of indices

for the variables equal to 0. Similarly, we define I1(y∗) = {(i, j, k) : y∗ijk = 1}, i.e. the set of

indices for the variables equal to 1. Finally, we define the infeasibility indicator function If (y∗)

that returns 1 if y∗ is an integer solution that is infeasible for the SBRP, and 0 otherwise. Based

on these definitions, it is possible to separate an integer solution that is infeasible for the SBRP

with a combinatorial Benders’ cut (Codato and Fischetti 2006):

∑
(i,j,k)∈I0(y∗)

yijk +
∑

(i,j,k)∈I1(y∗)

(1− yijk) ≥ 1, (y∗ : If (y∗) = 1). (10)

A similar approach has been independently developed and used by Chen et al. (2014), to

linearize chance constraints for a model that optimizes road network daily maintenance operations

with stochastic service and travel times. We are now ready to state the complete formulation for

the SBRP.

(SBRP1)

minimize
∑

(i,j)∈A

cij

blog2(uij)c∑
k=0

2kyijk (11)

subject to
∑

j:(j,i)∈δ−(i)

blog2(uji)c∑
k=0

2kyjik =
∑

j:(i,j)∈δ+(i)

blog2(uij)c∑
k=0

2kyijk (i ∈ V ), (12)

∑
j:(0,j)∈δ+({0})

blog2(u0j)c∑
k=0

2ky0jk ≥ max{d|d0|/Qe, 1}, (13)

∑
j:(i,j)∈δ+(S)

blog2(uij)c∑
k=0

2kyijk ≥ r(S) (S ⊆ V \ {0}), (14)

∑
(i,j,k)∈I0(y∗)

yijk +
∑

(i,j,k)∈I1(y∗)

(1− yijk) ≥ 1 (y∗ : If (y∗) = 1), (15)

yijk ∈ {0, 1} ((i, j) ∈ A, k ∈ {0, ..., blog2(uij)c}). (16)
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As in SBRP-R, the objective function (11) minimizes the total travel cost, constraint set (12)

are the flow conservation constraints, constraint set (13) states the minimum number of trips out

of the depot, and constraint set (14) imposes the lower bounds for the number of times the vehicle

must leave S. Constraint set (15) separates integer feasible solutions that are not feasible for the

SBRP. Finally, (16) state that all variables yijk are binary. To separate constraint set (14), we

have used the separation algorithms described in Hernández-Pérez and Salazar-González (2007)

for the 1-PDTSP. The separation algorithm for (15) is described in detail in the next section.

4. Separation algorithms

In this section, we provide the algorithm for separating the combinatorial Benders’ cuts, and

propose a modification of the separation algorithm that allows for the solution of the SBRP in

which preemption is not allowed.

4.1. Separation algorithm for combinatorial Benders’ cuts

The optimal solution of SBRP1 for the test instance n20q10C from the benchmark instance

set of Chemla et al. (2013b) is depicted in Figure 1, where the number of arcs from i ∈ V to

j ∈ V is computed as xij =
∑blog2(uij)c
k=0 2kyijk. Next to each vertex are the initial and target

inventory levels corresponding to the vertex. Vertices 2, 10, 12, and 16 have an indegree of 2,

whereas the rest of the vertices are visited only once. As stated in the previous section, checking if

this solution corresponds to a feasible solution for the SBRP is an NP-complete decision problem.

We now provide an algorithm for checking the feasibility of an integer feasible solution of SBRP1

for SBRP.

Figure 1: Optimal solution of the formulation SBRP1 for the instance n20q10C

The algorithm is based on two observations. Firstly, any solution for the SBRP that traverses

the arcs of a solution of formulation SBRP1 corresponds to an Eulerian circuit starting and ending

at the depot, on the graph defined by xij . Secondly, an Eulerian circuit starting and ending at the
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depot can be represented as a time-extended network, where the time dimension of the vertices

are defined by the order they are visited in. The feasibility of the SBRP solution can be checked

by solving a flow problem on this network. Based on these observations, we can conclude that an

exact separation algorithm for constraint set (15) should enumerate (implicitly or explicitly) all

Eulerian circuits for an SBRP1 solution and check the feasibility of each Eulerian circuit by solving

a flow problem on the corresponding time-extended network. A solution is declared feasible if at

least one Eulerian circuit it contains has a feasible solution for the corresponding flow problem.

Otherwise, the solution can be separated by adding an inequality from the constraint set (15).

We first present the method of constructing the time-extended network for the flow problem

for a given Eulerian circuit C̄ = {0, v1, v2, ..., 0}. The reader can refer to the examples depicted in

Figure 2 corresponding to the SBRP1 solution in Figure 1. In Figure 2, there is one graph for every

Eulerian circuit corresponding to the SBRP1 solution in Figure 1. In each graph, the vertices are

aligned to their indices presented on the left. A separate flow problem will be solved for each one of

these graphs, and the feasibility of only one will suffice to prove feasibility of the solution. Denote

the time-extended network of each graph in Figure 2 as Ĝ = (V̂ , Â1 ∪ Â2). For the kth vertex in

C̄, place a vertex j in V̂ , denote its parent vertex as π(j), and its sequence number as σ(j) = k. If

a vertex i ∈ V occurs only once in C̄, set the supply/demand value of the corresponding vertex in

j ∈ V̂ to bj = pi − qi. If vertex i ∈ V occurs twice or more in the circuit, set the supply/demand

value of the first occurrence to bj = pi, the last occurrence to bk = −qi, and the remaining

occurrences to bl = 0. Add an arc (i, j) of capacity Q to Â1, ∀i, j ∈ V̂ : σ(j) = σ(i)+1. Finally, add

an arc (i, j) of capacity Cπ(i) to Â2, ∀i, j ∈ V̂ : π(i) = π(j), σ(j) = mink∈V̂ :π(k)=π(i),σ(k)>σ(i) σ(k).

Defining zij as the amount of flow on arc (i, j) ∈ Â1∪ Â2, the resulting flow problem can be stated

as:

(TEFP)

minimize 0 (17)

subject to z(δ+(i))− z(δ−(i)) = bi (i ∈ V̂ ), (18)

zij ≤ Q ((i, j) ∈ Â1), (19)

zij ≤ Cπ(i) ((i, j) ∈ Â2), (20)

zij ≥ 0 ((i, j) ∈ Â1 ∪ Â2). (21)

The objective function (17) is empty since TEFP is a feasibility problem. Constraint set

(18) enforces the flow conservation for the bicycles at each station. Constraint sets (19) and (20)

are the capacity constraints for the vehicle and stations, respectively. Finally, constraint set (21)

consists of the nonnegativity constraints. Note that the size of the network Ĝ is determined by

the supply/demand values as well as the number of vertices, which may be of exponential size,

inhibiting a polynomial time complexity.

The flow conservation constraints of SBRP1 ensure that an Eulerian circuit exists for every

integral solution. However, there may exist an exponential number of Eulerian circuits in a given

digraph (Tutte 2001). We now provide the pseudocode of a search algorithm that solves the

separation problem, by enumerating Eulerian circuits and testing their feasibility using TEFP.
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Figure 2: Time-extended flow problems for the instance n20q10C
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Separation(vertex i, counter l, list C̄, solution x∗)

If feasible = true

Return

End If

If l = 0

i = 0, C̄ = {(0, 0)}
x∗ij =

∑blog2(uij)c
k=0 2ky∗ijk ∀(i, j) ∈ A

End If

If
∑

(i,j)∈A x
∗
ij = 0

Solve the TEFP instance corresponding to the Eulerian circuit C̄.

If the TEFP instance has a feasible solution

feasible = true

Return

Else

Check the reachability of every vertex from i on the graph induced by x∗.

If ∃j ∈ V :
∑
k:(k,j)∈A x

∗
kj > 0 that is unreachable from i

Return

End If

For j : (i, j) ∈ A // branching

If x∗ij > 0

x∗ij = x∗ij − 1

C̄ = C̄ ∪ (j, l + 1)

Separation(j, l + 1, C̄, x∗)

x∗ij = x∗ij + 1

C̄ = C̄ \ (j, l + 1)

End If

End For

Return

The global variable feasible should be initialized as false before the separation algorithm, and

the algorithm should be invoked as Separation(0, 0, ∅,x∗). The first step of the algorithm is to

set the beginning of the Eulerian circuit as the depot, and compute the number of times each arc

is traversed. Starting at the depot, the algorithm proceeds as a depth-first search, branching on

the arcs leaving the current vertex. If a vertex with a positive indegree becomes unreachable from

the current vertex i, the node of the search tree is fathomed due to infeasibility. Every time the

algorithm traverses all the arcs (i.e. finds a Eulerian circuit), an instance of TEFP is solved and

the search algorithm terminates upon finding a feasible solution. If no feasible TEFP solutions are

found, the solution is declared infeasible and is separated with a combinatorial Benders’ cut. Else,

the solution of the TEFP is recorded as the certificate of feasibility.

We would like to emphasize that the branching order is important for the efficiency of the

separation algorithm. In our computational experiments, we have found it useful to solve a network

flow problem on G = (V,A), where arc capacities given by Qx∗ and vertex demands are given by
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d(i), ∀i ∈ V , to identify the feasible flow patterns. Based on the solution of the flow problem, we

explore the branches in decreasing order of flow from supply vertices (di > 0), and in decreasing

order of the destination vertices’ supply values from transshipment and demand vertices (di ≤ 0).

4.2. Separation algorithm for the nonpreemptive SBRP

The benefits of preemptive pickup and delivery operations with respect to nonpreemptive oper-

ations are of particular interest to practitioners and academics alike. Although it is straightforward

to see the advantage of using temporary storage, the trade-off between the monetary benefit and

the added complexity of operations is hard to judge. In what follows, we describe a separation

algorithm that identifies integral solutions that are not feasible with respect to nonpreemptive

operations.

Given an Eulerian circuit C̄ = {0, v1, v2, ..., 0}, construct the time-extended network Ĝ =

(V̂ , Â1 ∪ Â2) as described above, along with the supply/demand values, and the capacities of

all arcs. The nonpreemptive constraint requires the vertices with an imbalance of 0 not to be

visited, the vertices with negative imbalance to have monotonically increasing amounts of inventory,

and the vertices with positive imbalance to have monotonically decreasing amounts of inventory.

Consequently, the following constraints should be added to SBRP1:

∑
j∈V \{i}

xij = 0 ((i, j) ∈ Â2, di = 0). (22)

Let us denote the formulation obtained by adding constraints (22) to SBRP1 as SBRP2. In

addition, the following constraints should be added to TEFP:

zij ≥ pi ((i, j) ∈ Â2, dπ(i) < 0), (23)

zjk ≥ zij ((i, j), (j, k) ∈ Â2, dπ(i) < 0), (24)

zij ≤ pi ((i, j) ∈ Â2, dπ(i) > 0), (25)

zjk ≤ zij ((i, j), (j, k) ∈ Â2, dπ(i) > 0). (26)

Let us denote the formulation obtained by adding constraints (23)-(26) to TEFP as TEFP2.

We now prove that although the constraints (24) and (26) impair the integrality property of TEFP2,

this formulation can still be solved in polynomial time, since the existence of a fractional feasible

solution implies the existence of an integer feasible solution.

Proposition 1: Every fractional feasible solution to TEFP2 corresponds to an integral feasible

solution.

Proof: Consider the graph Ĝ = (V̂ , Â1 ∪ Â2) defined in the previous subsection. To ensure that

the nonpreemptive constraint is respected, we modify the graph by adding a copy of the vertices

j ∈ V̂ that correspond to the visits other than the first or the last. The modification is depicted

in Figure 3, where we assume that more than two visits are taking place at station π(j) ∈ V . We

name the copies as j1 and j2, and connect the associated arcs in Â1 to j1 and the associated arcs in
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Â2 to j2. For dπ(j) > 0, we place an arc from j2 to j1 that only allows flow out of the vertex π(j).

Similarly, for dπ(j) < 0, we place an arc from j1 to j2 that only allows flow into the vertex π(j).

We define the set of such arcs as Â3. The corresponding time-extended network flow problem has

a larger number of vertices and arcs, respects the nonpreemptive constraint, but benefits from the

integrality property. Consider the flow variable for an arc (j1, j2) ∈ Â3 : dπ(j1) < 0. This variable

is present only in two flow conservation constraints and a nonnegativity constraint:

z(δ+(j1) \ {(j1, j2)}) + zj1,j2 − z(δ−(j1)) = 0, (27)

z(δ+(j2))− z(δ−(j2) \ {(j1, j2)})− zj1,j2 = 0, (28)

zj1,j2 ≥ 0. (29)

Applying Fourier-Motzkin elimination (Dantzig and Eaves 1973) on the variable zj1,j2 yields:

z(δ+(j2)) + z(δ+(j1) \ {(j1, j2)}) = z(δ−(j1)) + z(δ−(j2) \ {(j1, j2)}), (30)

z(δ+(j1) \ {(j1, j2)}) ≤ z(δ−(j1)), (31)

z(δ+(j2)) ≥ z(δ−(j2) \ {(j1, j2)}.) (32)

It can be easily observed that (30) and (31) imply (32), which renders (32) redundant. Analysis

of (30) and (31) shows that the Fourier-Motzkin elimination merges j1 and j2 back into j, since (30)

corresponds to the original flow conservation constraint for vertex j. In addition, (31) corresponds

to (24). The analysis for (j2, j1) ∈ Â3 : dπ(j1) > 0 yields a similar result, showing that (26)

is implied by the flow conservation and nonnegativity constraints. Due to the equivalence of

the formulations, any fractional feasible solution for TEFP2 corresponds to an integral feasible

solution. Hence, if the separation algorithm is executed on the integer solutions of SBRP2 by

solving TEFP2 as a continuous problem, it successfully identifies integer solutions that do not

satisfy the nonpreemptive constraint. �

We would like to note that TEFP2 should be solved with integrality constraints for the final

result of the branch-and-cut algorithm, to determine the amounts of pickup and delivery at each

station.

5. Constructive heuristic

The separation algorithms presented in the previous section perform well for near-optimal

solutions, but may perform poorly for low quality solutions. In particular, for “star-shaped”

solutions, in which the degree of a vertex is much higher than the others, the branching order

may not offer sufficient guidance to find a feasible solution: many infeasible solutions should be

enumerated before the algorithm can conclude feasibility. To avoid this stalling behavior, we now

present a greedy constructive heuristic that is slightly different from the greedy heuristic of Chemla

et al. (2013b), which prioritizes exhausting the supply/demand of vertices.

12



Figure 3: The transformation of the time-extended graph for nonpreemptive SBRP

Starting from an empty solution, the constructive heuristic picks up/delivers the maximal

possible amount at each vertex. If the vehicle is full, the next vertex is chosen as the closest vertex

with negative imbalance. Else if the vehicle is empty, the closest vertex with supply becomes the

next vertex to be visited. Else, the closest vertex with a nonnegative imbalance is visited. The

heuristic successfully overcomes the stalling problem at the cost of less than 0.01 seconds of CPU

time, and its result is feasible for both SBRP and nonpreemptive SBRP.

Constructive Heuristic

x∗ij = 0 ∀(i, j) ∈ A
d̂j = dj ∀j ∈ V // temporary supply/demand values

r = 0 // quantity on board

i = 0 // current vertex

While
∑
j∈V |d̂j | > 0

// pickup/delivery at current vertex

If d̂i < 0

If r + d̂i ≥ 0

r = r + d̂i

d̂i = 0

Else

d̂i = d̂i + r

r = 0

If d̂i > 0

If r + d̂i ≤ Q
r = r + d̂i
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d̂i = 0

Else

d̂i = d̂i − (Q− r)
r = Q

// determine the next vertex

If
∑
j∈V |d̂j | = 0

If i = 0

Return

Else

k = 0

Else If r = Q

k = argmin j:j∈V,d̂j<0cij

Else If r = 0

k = argmin j:j∈V,d̂j>0cij

Else

k = argmin j:j∈V,|d̂j |>0cij

x∗ik = x∗ik + 1

i = k

Return

6. Computational Results

The algorithm described in the previous section has been implemented using C++ and CPLEX

12.5, on IRIDIS 4 computing cluster consisting of 2.6 GHz cores with 4 GB of memory per core.

The result of the constructive heuristic was fed into CPLEX as a starting solution. The branch-

and-cut algorithm of CPLEX was restricted to run on a single core, to enable a better analysis of

the algorithm by excluding the parallel speedup.

The instances used are identical to those of Chemla et al. (2013b). We replicate the details of

the instance generation scheme for the sake of simplicity. Chemla et al. (2013b) adapt the instances

of Hernández-Pérez and Salazar-González (2004) for the 1-PDTSP. The original instances consist

of Euclidean coordinates for the vertices, and an integer demand value d̃i ∈ {−10, ..., 10} for every

vertex i ∈ V . The resulting instances have pi = α×10, qi = α×(10+ d̃i), and Ci = α×20. Chemla

et al. (2013b) have experimented with α = 1 and α = 3, corresponding to small and large amounts

to be relocated. The original instance set consists of 10 instances for each number of vertices |V |
and vehicle capacity Q.

The computational experiments have been carried out on sets of instances with

|V | ∈ {20, 30, 40, 50, 60}. Due to space considerations, aggregate results are presented for α = 1

and α = 3 in Tables 1 and 2, respectively, where every row corresponds to the average results for

10 instances. Detailed results can be obtained from the authors. The column heading “Average

Heuristic Gap” refers to the mean percentage deviation of the result of the constructive heuristic

from the best known lower bound. Similarly, the column heading “Average Optimality Gap” refers

to the mean percentage deviation of the best result of the branch-and-cut algorithm from the best
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known lower bound. It can be observed from Table 2 that the instances are harder for α = 3, in

particular for |V | ≥ 50. This is due to the fact that more bicycles to carry result in more arcs

traversed, and more Eulerian circuits. For α = 1, we were able to solve all but 1 instance with

40 vertices, 7 instances with 50 vertices, and 18 instances with 60 vertices. For α = 3, we were

able to solve all instances up to 40 vertices, 69 out of 90 instances with 50 vertices, and 60 out

of 90 instances with 60 vertices. The constructive heuristic consistently provided initial solutions

that are 40% to 50% away from the best known lower bound, for both. We conclude that the

computational reach of the algorithm is about 60 vertices.

We have also solved the same set of instances for the nonpreemptive SBRP. The aggregate

results are presented in Tables 3 and 4, respectively. The complexity increases significantly for

|V | ≥ 40. In addition, the separation algorithm could not conclude feasibility or infeasibility for

3 instances with α = 1, and 20 instances with α = 3. We deduce that the computational reach

for the nonpreemptive SBRP is approximately 40 vertices. The performance of the constructive

heuristic is very similar for both SBRP and nonpreemptive SBRP. We have also compared the

results of the SBRP and nonpreemptive SBRP, for |V | ∈ {20, 30, 40}. The results demonstrate

that the added value of preemption is around 0.6%.

We have also tested our algorithm on a subset of the real world instances used in the study of

Dell’Amico et al. (2014), specifically the first 50 instances which involve up to 59 stations. This set

of experiments have been performed on another computer with an Intel i7 CPU running at 3.60

Ghz and 8 GB of RAM. The software parameters are identical to the previous set of experiments.

The demand values for this set of instances were not balanced (i.e. did not sum up to 0), so we have

balanced the demand values by setting the demand of the depot to d0 = −
∑
i∈V \{0} di. Finally,

we have determined the initial level of inventory at the stations as maxi∈V |di|. The details of our

results are provided in Tables 5 - 8. The performances of our algorithms are slightly better for this

data set, and our observations for the previous data set are confirmed.

As a final note, we observe that the longer runs for both variants are for the instances for which

CPLEX fails to find a high quality solution in the early stages of the branch-and-cut algorithm.

Hence, tight upper bounds supplied by a sophisticated metaheuristic algorithm may improve the

performance of the exact algorithm.

7. Conclusion

In this study, we have studied the SBRP and provided an exact solution algorithm. The al-

gorithm is based on an integer programming formulation, which is obtained through a variable

transformation that enables to convert all general integer variables to binary variables. We have

utilized combinatorial Benders’ cuts to separate infeasible solutions from the feasible region. Sep-

aration of the combinatorial Benders’ cuts was achieved through an enumerative search algorithm.

The algorithm was computationally tested on two instance sets from the literature, and was found

to be capable of solving instances with up to 60 stations. We have also provided an extension of the

algorithm that can solve the nonpreemptive SBRP. The computational experiments demonstrated

that the added value of preemption is about 0.6%, and the nonpreemptive SBRP is significantly

harder to solve.
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Table 1: Aggregate results for α = 1

Average Average Average Number of
Optimality Heuristic CPU Instances

|V| Q Gap Gap time Solved

20 10 0.00% 37.67% 0.35 10
20 15 0.00% 40.78% 0.30 10
20 20 0.00% 48.24% 0.13 10
20 25 0.00% 46.85% 0.15 10
20 30 0.00% 45.31% 1.96 10
20 35 0.00% 46.86% 1.12 10
20 40 0.00% 46.87% 1.22 10
20 45 0.00% 46.87% 1.13 10
20 1000 0.00% 46.87% 0.83 10

30 10 0.00% 42.83% 6.22 10
30 15 0.00% 39.25% 3.87 10
30 20 0.00% 34.58% 163.59 10
30 25 0.00% 36.53% 5.61 10
30 30 0.00% 33.99% 82.20 10
30 35 0.00% 29.79% 293.27 10
30 40 0.00% 31.05% 584.62 10
30 45 0.00% 30.89% 221.69 10
30 1000 0.00% 30.99% 190.20 10

40 10 0.00% 52.66% 124.80 10
40 15 0.00% 47.77% 25.55 10
40 20 0.00% 41.21% 14.72 10
40 25 0.03% 40.88% 723.88 9
40 30 0.00% 37.36% 36.56 10
40 35 0.00% 38.90% 38.66 10
40 40 0.00% 39.31% 70.65 10
40 45 0.00% 39.35% 74.28 10
40 1000 0.00% 39.31% 70.17 10

50 10 0.79% 56.80% 1198.48 9
50 15 0.43% 55.61% 1970.12 8
50 20 0.00% 49.44% 295.45 10
50 25 0.00% 52.51% 272.82 10
50 30 0.00% 46.62% 177.40 10
50 35 0.24% 39.01% 1461.09 8
50 40 0.01% 36.17% 1408.94 9
50 45 0.00% 38.98% 1221.33 10
50 1000 0.11% 37.51% 1909.76 9

60 10 1.24% 45.58% 3924.62 6
60 15 0.51% 49.70% 1957.50 8
60 20 0.00% 45.97% 1285.03 10
60 25 0.07% 51.68% 943.42 9
60 30 0.13% 41.00% 1252.65 9
60 35 0.13% 41.39% 1096.98 9
60 40 0.22% 40.48% 2607.91 8
60 45 0.15% 41.19% 2795.20 8
60 1000 0.18% 41.60% 2816.42 8
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Table 2: Aggregate results for α = 3

Average Average Average Number of
Optimality Heuristic CPU Instances

|V| Q Gap Gap time Solved

20 10 0.00% 30.74% 0.48 10
20 15 0.00% 34.81% 0.32 10
20 20 0.00% 37.24% 0.37 10
20 25 0.00% 38.96% 0.39 10
20 30 0.00% 37.67% 0.35 10
20 35 0.00% 42.75% 0.33 10
20 40 0.00% 43.32% 0.28 10
20 45 0.00% 40.78% 0.31 10
20 1000 0.00% 46.87% 0.93 10

30 10 0.00% 32.31% 153.85 10
30 15 0.00% 34.09% 65.36 10
30 20 0.00% 40.82% 8.16 10
30 25 0.00% 35.87% 10.27 10
30 30 0.00% 41.83% 9.91 10
30 35 0.00% 41.92% 9.37 10
30 40 0.00% 42.82% 5.92 10
30 45 0.00% 38.89% 2.96 10
30 1000 0.00% 30.15% 221.30 10

40 10 0.00% 35.46% 235.42 10
40 15 0.00% 38.13% 28.83 10
40 20 0.00% 41.00% 62.22 10
40 25 0.00% 45.61% 177.39 10
40 30 0.00% 49.15% 108.31 10
40 35 0.00% 43.51% 304.70 10
40 40 0.00% 48.26% 21.68 10
40 45 0.00% 44.57% 25.74 10
40 1000 0.00% 39.13% 80.91 10

50 10 0.99% 37.37% 2693.41 7
50 15 0.00% 39.19% 1702.17 10
50 20 0.89% 49.35% 3085.39 7
50 25 0.59% 52.73% 2024.55 8
50 30 0.46% 51.40% 1345.21 9
50 35 1.27% 50.53% 4212.45 5
50 40 0.45% 49.30% 3545.41 6
50 45 0.23% 48.80% 2057.76 8
50 1000 0.10% 36.07% 1938.98 9

60 10 2.83% 37.56% 3718.02 6
60 15 2.73% 40.91% 2932.58 7
60 20 0.39% 46.72% 3772.60 7
60 25 2.63% 47.89% 3636.12 6
60 30 2.88% 45.63% 4702.35 6
60 35 2.42% 50.27% 4795.69 6
60 40 0.46% 53.08% 3829.99 7
60 45 0.26% 49.61% 2223.52 8
60 1000 0.18% 41.58% 2940.39 7
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Table 3: Aggregate results for nonpreemptive SBRP, α = 1

Average Average Average Average Number of
Optimality Preemption Heuristic CPU Instances

|V| Q Gap Gap Gap time Solved

20 10 0.00% 0.29% 37.24% 3.62 10
20 15 0.00% 1.05% 39.28% 9.50 10
20 20 0.00% 0.34% 47.74% 0.36 10
20 25 0.00% 0.70% 45.86% 0.62 10
20 30 0.00% 0.44% 44.46% 2.16 10
20 35 0.00% 1.14% 45.33% 89.56 10
20 40 0.00% 1.14% 45.34% 102.11 10
20 45 0.00% 1.14% 45.34% 94.56 10
20 1000 0.00% 1.14% 45.34% 93.04 10

30 10 0.00% 0.11% 41.67% 44.63 10
30 15 0.00% 0.04% 38.84% 4.45 10
30 20 0.00% 0.02% 33.96% 138.97 10
30 25 0.00% 0.05% 35.97% 4.01 10
30 30 0.00% 0.33% 33.01% 64.16 10
30 35 0.00% 0.46% 28.45% 640.71 10
30 40 0.00% 0.33% 29.19% 182.66 10
30 45 0.00% 0.33% 29.45% 145.70 10
30 1000 0.00% 0.33% 29.56% 125.40 10

40 10 0.39% 0.55% 48.91% 1538.48 8
40 15 0.00% 0.30% 44.13% 444.62 10
40 20 0.14% 0.61% 39.12% 1241.54 9
40 25 0.15% 0.86% 39.41% 1132.37 9
40 30 0.15% 0.85% 36.32% 831.15 9
40 35 0.15% 0.77% 37.87% 798.08 9
40 40 0.16% 0.86% 38.23% 855.00 9
40 45 0.16% 0.86% 38.23% 859.48 9
40 1000 0.16% 0.86% 38.23% 892.54 9

50 10 0.12% N/A 52.46% 2211.35 8
50 15 5.26% N/A 48.59% 3693.62 6
50 20 0.13% N/A 43.44% 1288.81 9
50 25 0.21% N/A 47.60% 1326.72 9
50 30 0.37% N/A 44.03% 2719.31 8
50 35 0.60% N/A 36.84% 3265.79 7
50 40 0.32% N/A 34.18% 2115.63 8
50 45 0.35% N/A 36.70% 2399.27 8
50 1000 0.84% N/A 35.60% 4236.27 6

60 10 8.45% N/A 45.97% 4272.51 5
60 15 7.53% N/A 50.17% 3725.42 6
60 20 0.17% N/A 45.82% 2577.37 8
60 25 0.19% N/A 51.38% 2307.77 7
60 30 0.75% N/A 40.81% 3196.17 6
60 35 1.05% N/A 41.06% 4126.38 5
60 40 1.13% N/A 39.98% 4861.34 4
60 45 1.51% N/A 40.93% 5127.30 3
60 1000 1.21% N/A 39.23% 5757.87 2
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Table 4: Aggregate results for nonpreemptive SBRP, α = 3

Average Average Average Average Number of
Optimality Preemption Heuristic CPU Instances

|V| Q Gap Gap Gap time Solved

20 10 0.00% 0.00% 30.74% 0.62 10
20 15 0.00% 0.06% 34.73% 0.68 10
20 20 0.00% 0.08% 37.12% 0.67 10
20 25 0.00% 0.00% 38.96% 0.32 10
20 30 0.00% 0.29% 37.24% 3.33 10
20 35 0.00% 0.42% 42.18% 10.20 10
20 40 0.00% 0.52% 42.58% 8.29 10
20 45 0.00% 1.05% 39.28% 8.66 10
20 1000 0.00% 1.14% 45.34% 91.92 10

30 10 0.00% 0.01% 32.30% 185.85 10
30 15 0.00% 0.00% 34.09% 60.06 10
30 20 0.00% 0.00% 40.82% 4.94 10
30 25 0.00% 0.06% 35.80% 67.76 10
30 30 0.00% 0.11% 41.67% 44.64 10
30 35 0.00% 0.00% 41.92% 8.65 10
30 40 0.06% 0.28% 42.52% 723.65 9
30 45 0.00% 0.04% 38.84% 4.47 10
30 1000 0.00% 0.33% 29.56% 118.56 10

40 10 0.00% 0.01% 33.08% 1007.05 9
40 15 0.00% 0.00% 38.13% 97.74 10
40 20 0.11% 0.20% 40.14% 2186.83 7
40 25 0.02% 0.08% 44.17% 1618.70 8
40 30 0.39% 0.55% 48.91% 1538.21 8
40 35 0.42% 0.63% 43.21% 2333.29 7
40 40 0.22% 0.55% 47.77% 1178.96 9
40 45 0.00% 0.30% 44.13% 450.04 10
40 1000 0.16% 0.86% 38.23% 893.64 9

50 10 0.08% N/A 38.20% 3461.00 6
50 15 0.00% N/A 40.20% 2702.22 7
50 20 2.51% N/A 50.59% 3151.67 6
50 25 1.77% N/A 52.56% 2329.07 8
50 30 4.68% N/A 51.79% 2300.22 8
50 35 1.55% N/A 50.13% 4067.33 5
50 40 1.58% N/A 48.95% 3529.59 7
50 45 5.26% N/A 48.59% 3769.49 6
50 1000 0.85% N/A 35.62% 4347.92 6

60 10 2.74% N/A 36.39% 3851.62 6
60 15 0.48% N/A 42.38% 3562.74 6
60 20 2.99% N/A 48.30% 4638.22 5
60 25 13.54% N/A 49.22% 3933.81 5
60 30 8.50% N/A 45.99% 4347.23 5
60 35 4.63% N/A 50.08% 4523.94 6
60 40 1.97% N/A 52.96% 3534.82 6
60 45 0.39% N/A 48.36% 3730.08 6
60 1000 1.19% N/A 39.21% 5759.18 2
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Table 5: Results for the real world data, preemptive SBRP, α = 1
Best known Heuristic Best known

solution solution lower Optimality Heuristic CPU
City |V| Q value value bound Gap Gap time
Bari 13 30 14600 19000 14600 0.00% 30.14% 0.05
Bari 13 20 15700 19000 15700 0.00% 21.02% 0.03
Bari 13 10 20600 27900 20600 0.00% 35.44% 0.03

ReggioEmilia 14 30 16900 27600 16900 0.00% 63.31% 0.02
ReggioEmilia 14 20 23200 33700 23200 0.00% 45.26% 0.02
ReggioEmilia 14 10 32500 43500 32500 0.00% 33.85% 0.04

Bergamo 15 30 12600 18600 12600 0.00% 47.62% 0.04
Bergamo 15 20 12700 18600 12700 0.00% 46.46% 0.04
Bergamo 15 12 13500 18000 13500 0.00% 33.33% 0.07

Parma 15 30 29000 36300 29000 0.00% 25.17% 0.03
Parma 15 20 29000 36300 29000 0.00% 25.17% 0.03
Parma 15 10 32500 40500 32500 0.00% 24.62% 0.05
Treviso 18 30 29259 42001 29259 0.00% 43.55% 0.05
Treviso 18 20 29259 42001 29259 0.00% 43.55% 0.05
Treviso 18 10 31443 42001 31443 0.00% 33.58% 0.05

LaSpezia 20 30 20746 36096 20746 0.00% 73.99% 0.03
LaSpezia 20 20 20746 36096 20746 0.00% 73.99% 0.03
LaSpezia 20 10 22811 41250 22811 0.00% 80.83% 0.08

BuenosAires 21 30 71965 107385 71965 0.00% 49.22% 4.08
BuenosAires 21 20 85120 108596 85120 0.00% 27.58% 0.45

Ottawa 21 30 16202 23609 16202 0.00% 45.72% 0.04
Ottawa 21 20 16202 23609 16202 0.00% 45.72% 0.03
Ottawa 21 10 17370 23609 17370 0.00% 35.92% 0.06

SanAntonio 23 30 22982 36644 22982 0.00% 59.45% 0.07
SanAntonio 23 20 23887 36692 23887 0.00% 53.61% 0.08
SanAntonio 23 10 39553 53231 39553 0.00% 34.58% 0.30

Brescia 27 30 30300 44200 30300 0.00% 45.87% 0.24
Brescia 27 20 31100 47800 31100 0.00% 53.70% 0.39
Brescia 27 11 34900 56900 34900 0.00% 63.04% 0.47
Roma 28 30 61800 99600 61800 0.00% 61.17% 0.56
Roma 28 20 65600 71500 65600 0.00% 8.99% 1.65
Roma 28 18 68000 108600 68000 0.00% 59.71% 0.90

Madison 28 30 29246 46816 29246 0.00% 60.08% 0.05
Madison 28 20 29839 40463 29839 0.00% 35.60% 0.10
Madison 28 10 33627 49165 33627 0.00% 46.21% 0.64

Guadalajara 41 30 57476 79842 57476 0.00% 38.91% 0.54
Guadalajara 41 20 59493 79842 59493 0.00% 34.20% 0.57
Guadalajara 41 11 64981 87933 64981 0.00% 35.32% 1.25

Dublin 45 30 33548 50455 33548 0.00% 50.40% 1.77
Dublin 45 20 39393 58316 39393 0.00% 48.04% 44.73
Dublin 45 11 53742 71754 53742 0.00% 33.52% 119.70
Denver 51 30 51583 79747 51583 0.00% 54.60% 1.55
Denver 51 20 53282 83129 53282 0.00% 56.02% 19.50
Denver 51 10 67025 104823 67025 0.00% 56.39% 122.36

RioDeJaneiro 55 30 122499 168689 122499 0.00% 37.71% 130.51
RioDeJaneiro 55 20 154663 202036 154663 0.00% 30.63% 107.77
RioDeJaneiro 55 10 252758 309620 252758 0.00% 22.50% 131.54

Boston 59 30 65522 98238 65522 0.00% 49.93% 462.03
Boston 59 20 71487 120568 71487 0.00% 68.66% 182.16
Boston 59 16 74242 127186 74242 0.00% 71.31% 545.76
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Table 6: Results for the real world data, preemptive SBRP, α = 3
Best known Heuristic Best known

solution solution lower Optimality Heuristic CPU
City |V| Q value value bound Gap Gap time
Bari 13 30 20600 27900 20600 0.00% 35.44% 0.03
Bari 13 20 26300 37700 26300 0.00% 43.35% 0.06
Bari 13 10 44900 53900 44900 0.00% 20.04% 0.05

ReggioEmilia 14 30 32500 43500 32500 0.00% 33.85% 0.05
ReggioEmilia 14 20 47800 65400 47800 0.00% 36.82% 0.08
ReggioEmilia 14 10 83000 100800 83000 0.00% 21.45% 0.06

Bergamo 15 30 14500 21300 14500 0.00% 46.90% 0.06
Bergamo 15 20 16600 21100 16600 0.00% 27.11% 0.03
Bergamo 15 12 23100 28800 23100 0.00% 24.68% 0.08

Parma 15 30 32500 40500 32500 0.00% 24.62% 0.05
Parma 15 20 37100 49200 37100 0.00% 32.61% 0.03
Parma 15 10 51100 72800 51100 0.00% 42.47% 0.06
Treviso 18 30 31443 42001 31443 0.00% 33.58% 0.06
Treviso 18 20 33718 42781 33718 0.00% 26.88% 0.14
Treviso 18 10 46523 67610 46523 0.00% 45.33% 0.20

LaSpezia 20 30 22811 41250 22811 0.00% 80.83% 0.05
LaSpezia 20 20 27320 42830 27320 0.00% 56.77% 0.09
LaSpezia 20 10 40370 56266 40370 0.00% 39.38% 0.14

BuenosAires 21 30 158227 191669 158227 0.00% 21.14% 0.70
BuenosAires 21 20 237143 285524 237143 0.00% 20.40% 1.20

Ottawa 21 30 17370 23609 17370 0.00% 35.92% 0.06
Ottawa 21 20 20846 28856 20846 0.00% 38.42% 0.17
Ottawa 21 10 29279 41613 29279 0.00% 42.13% 0.23

SanAntonio 23 30 39553 53231 39553 0.00% 34.58% 0.17
SanAntonio 23 20 55256 71466 55256 0.00% 29.34% 0.64
SanAntonio 23 10 103199 122604 103199 0.00% 18.80% 0.41

Brescia 27 30 37000 57800 37000 0.00% 56.22% 0.89
Brescia 27 20 45000 62700 45000 0.00% 39.33% 0.78
Brescia 27 11 68600 90600 68600 0.00% 32.07% 0.23
Roma 28 30 91700 119100 91700 0.00% 29.88% 1.73
Roma 28 20 144100 192200 144100 0.00% 33.38% 1.33
Roma 28 18 148300 192100 148300 0.00% 29.53% 0.44

Madison 28 30 33627 49165 33627 0.00% 46.21% 0.47
Madison 28 20 38773 56031 38773 0.00% 44.51% 0.80
Madison 28 10 57151 77021 57151 0.00% 34.77% 0.48

Guadalajara 41 30 68778 86744 68778 0.00% 26.12% 1.83
Guadalajara 41 20 79635 103363 79635 0.00% 29.80% 26.24
Guadalajara 41 11 113864 134941 113864 0.00% 18.51% 116.20

Dublin 45 30 58076 77518 58076 0.00% 33.48% 62.34
Dublin 45 20 79200 102692 79200 0.00% 29.66% 1910.03
Dublin 45 11 130631 155798 130631 0.00% 19.27% 1083.98
Denver 51 30 67025 104823 67025 0.00% 56.39% 101.72
Denver 51 20 78593 113906 78593 0.00% 44.93% 129.84
Denver 51 10 124793 161226 124793 0.00% 29.19% 98.05

RioDeJaneiro 55 30 252758 309620 252758 0.00% 22.50% 100.60
RioDeJaneiro 55 20 366036 430518 356429.5 2.70% 20.79% 7200.01
RioDeJaneiro 55 10 665907 748684 665907 0.00% 12.43% 230.35

Boston 59 30 90848 141639 90848 0.00% 55.91% 525.94
Boston 59 20 128795 196784 128795 0.00% 52.79% 115.75
Boston 59 16 148346 205913 148346 0.00% 38.81% 6779.85
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Table 7: Results for the real world data, nonpreemptive SBRP, α = 1
Best known Heuristic Best known

solution solution lower Optimality Heuristic CPU
City |V| Q value value bound Gap Gap time
Bari 13 30 14600 19000 14600 0.00% 30.14% 0.02
Bari 13 20 15700 19000 15700 0.00% 21.02% 0.02
Bari 13 10 20600 27900 20600 0.00% 35.44% 0.03

ReggioEmilia 14 30 17700 27600 17700 0.00% 55.93% 0.27
ReggioEmilia 14 20 23300 33700 23300 0.00% 44.64% 0.09
ReggioEmilia 14 10 32500 43500 32500 0.00% 33.85% 0.03

Bergamo 15 30 12700 18600 12700 0.00% 46.46% 0.05
Bergamo 15 20 12700 18600 12700 0.00% 46.46% 0.03
Bergamo 15 12 13500 18000 13500 0.00% 33.33% 0.11

Parma 15 30 29000 36300 29000 0.00% 25.17% 0.01
Parma 15 20 29000 36300 29000 0.00% 25.17% 0.01
Parma 15 10 32500 40500 32500 0.00% 24.62% 0.06
Treviso 18 30 29261 42001 29261 0.00% 43.54% 0.08
Treviso 18 20 29261 42001 29261 0.00% 43.54% 0.08
Treviso 18 10 31443 42001 31443 0.00% 33.58% 0.06

LaSpezia 20 30 20746 36096 20746 0.00% 73.99% 0.03
LaSpezia 20 20 20746 36096 20746 0.00% 73.99% 0.03
LaSpezia 20 10 22811 41250 22811 0.00% 80.83% 0.06

BuenosAires 21 30 73558 107385 73558 0.00% 45.99% 1700.73
BuenosAires 21 20 87173 108596 85800.95 1.60% 26.57% 7200.00

Ottawa 21 30 16204 23609 16204 0.00% 45.70% 0.19
Ottawa 21 20 16204 23609 16204 0.00% 45.70% 0.14
Ottawa 21 10 17372 23609 17372 0.00% 35.90% 0.20

SanAntonio 23 30 22982 36644 22982 0.00% 59.45% 0.03
SanAntonio 23 20 23887 36692 23887 0.00% 53.61% 0.08
SanAntonio 23 10 39553 53231 39553 0.00% 34.58% 0.19

Brescia 27 30 30300 44200 30300 0.00% 45.87% 0.19
Brescia 27 20 31100 47800 31100 0.00% 53.70% 0.16
Brescia 27 11 34900 56900 34900 0.00% 63.04% 0.53
Roma 28 30 61900 99600 61900 0.00% 60.90% 2.28
Roma 28 20 65600 71500 65600 0.00% 8.99% 3.85
Roma 28 18 68000 108600 68000 0.00% 59.71% 0.97

Madison 28 30 29246 46816 29246 0.00% 60.08% 0.05
Madison 28 20 29839 40463 29839 0.00% 35.60% 0.11
Madison 28 10 33627 49165 33627 0.00% 46.21% 0.47

Guadalajara 41 30 57476 79842 57476 0.00% 38.91% 0.58
Guadalajara 41 20 59493 79842 59493 0.00% 34.20% 0.83
Guadalajara 41 11 64981 87933 64981 0.00% 35.32% 2.13

Dublin 45 30 33548 50455 33548 0.00% 50.40% 3.98
Dublin 45 20 39393 58316 39393 0.00% 48.04% 39.50
Dublin 45 11 53742 71754 53742 0.00% 33.52% 269.07
Denver 51 30 51583 79747 51583 0.00% 54.60% 1.68
Denver 51 20 53369 83129 53369 0.00% 55.76% 197.40
Denver 51 10 67025 104823 67025 0.00% 56.39% 98.60

RioDeJaneiro 55 30 122499 168689 122499 0.00% 37.71% 162.81
RioDeJaneiro 55 20 154663 202036 154663 0.00% 30.63% 115.28
RioDeJaneiro 55 10 252758 309620 252758 0.00% 22.50% 114.19

Boston 59 30 76376 98238 65433.33 16.72% 50.13% 7200.00
Boston 59 20 71648 120568 71648 0.00% 68.28% 525.52
Boston 59 16 74242 127186 74242 0.00% 71.31% 509.42
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Table 8: Results for the real world data, nonpreemptive SBRP, α = 3
Best known Heuristic Best known

solution solution lower Optimality Heuristic CPU
City |V| Q value value bound Gap Gap time
Bari 13 30 20600 27900 20600 0.00% 35.44% 0.03
Bari 13 20 26300 37700 26300 0.00% 43.35% 0.06
Bari 13 10 44900 53900 44900 0.00% 20.04% 0.04

ReggioEmilia 14 30 32500 43500 32500 0.00% 33.85% 0.03
ReggioEmilia 14 20 47800 65400 47800 0.00% 36.82% 0.12
ReggioEmilia 14 10 83000 100800 83000 0.00% 21.45% 0.12

Bergamo 15 30 14500 21300 14500 0.00% 46.90% 0.06
Bergamo 15 20 16600 21100 16600 0.00% 27.11% 0.04
Bergamo 15 12 23100 28800 23100 0.00% 24.68% 0.08

Parma 15 30 32500 40500 32500 0.00% 24.62% 0.06
Parma 15 20 37100 49200 37100 0.00% 32.61% 0.03
Parma 15 10 51100 72800 51100 0.00% 42.47% 0.05
Treviso 18 30 31443 42001 31443 0.00% 33.58% 0.06
Treviso 18 20 33718 42781 33718 0.00% 26.88% 0.16
Treviso 18 10 46523 67610 46523 0.00% 45.33% 0.20

LaSpezia 20 30 22811 41250 22811 0.00% 80.83% 0.06
LaSpezia 20 20 27320 42830 27320 0.00% 56.77% 0.10
LaSpezia 20 10 40370 56266 40370 0.00% 39.38% 0.14

BuenosAires 21 30 158228 191669 158228 0.00% 21.13% 7.71
BuenosAires 21 20 237143 285524 237143 0.00% 20.40% 328.51

Ottawa 21 30 17372 23609 17372 0.00% 35.90% 0.22
Ottawa 21 20 20847 28856 20847 0.00% 38.42% 0.44
Ottawa 21 10 29280 41613 29280 0.00% 42.12% 1.22

SanAntonio 23 30 39553 53231 39553 0.00% 34.58% 0.19
SanAntonio 23 20 55256 71466 55256 0.00% 29.34% 0.67
SanAntonio 23 10 103199 122604 103199 0.00% 18.80% 0.43

Brescia 27 30 37000 57800 37000 0.00% 56.22% 1.44
Brescia 27 20 45000 62700 45000 0.00% 39.33% 0.79
Brescia 27 11 68600 90600 68600 0.00% 32.07% 0.24
Roma 28 30 91700 119100 91700 0.00% 29.88% 13.67
Roma 28 20 144100 192200 144100 0.00% 33.38% 1.28
Roma 28 18 148300 192100 148300 0.00% 29.53% 0.44

Madison 28 30 33627 49165 33627 0.00% 46.21% 0.47
Madison 28 20 38773 56031 38773 0.00% 44.51% 0.80
Madison 28 10 57151 77021 57151 0.00% 34.77% 0.50

Guadalajara 41 30 68778 86744 68778 0.00% 26.12% 1.79
Guadalajara 41 20 79635 103363 79635 0.00% 29.80% 28.24
Guadalajara 41 11 113864 134941 113864 0.00% 18.51% 75.50

Dublin 45 30 58076 77518 58076 0.00% 33.48% 89.90
Dublin 45 20 79200 102692 79200 0.00% 29.66% 2373.68
Dublin 45 11 132254 155798 130631 1.24% 19.27% 7200.00
Denver 51 30 67025 104823 67025 0.00% 56.39% 97.34
Denver 51 20 78593 113906 78593 0.00% 44.93% 144.76
Denver 51 10 124793 161226 124793 0.00% 29.19% 35.59

RioDeJaneiro 55 30 252758 309620 252758 0.00% 22.50% 116.79
RioDeJaneiro 55 20 430518 430518 352364.8 22.18% 22.18% 7200.00
RioDeJaneiro 55 10 680920 748684 665906.2 2.25% 12.43% 7200.00

Boston 59 30 90849 141639 90849 0.00% 55.91% 1478.29
Boston 59 20 128795 196784 128795 0.00% 52.79% 197.57
Boston 59 16 150136 205913 148167.8 1.33% 38.97% 7200.00
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