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As long as there has been money, there
have been people trying to copy it.

Problem: whatever a bank can do to
print money, a forger can do to copy it.
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Classically, we need a trusted third
party to prevent double-spending...



The No-Cloning Theorem

v) - [v)lw)

There is no procedure which duplicates
a general quantum state.

Can we use “uncloneable” quantum
states as unforgeable currency?



A simple solution inspired by Wiesner [1969]:

If | randomly give you one
of the two pure states...
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...you can’t guess which | gave you
with probability more than (3/4)...

...and you can’t faithfully copy it.



Wiesner’s Quantum Money

If | concatenate k of these states to produce
$)=

| can recognize \$> by measuring each bit in an
appropriate basis...

...but you can’t copy ‘$> except with
exponentially small success probability.



Problems with Wiesner’s Scheme

Only the bank that minted it can recognize money.

In fact, the money becomes insecure as soon as we
give the users a verification oracle.
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Modern goal: secure quantum
money that anyone can verify



Prior Art

Aaronson, CCC’ 2009: Showed there is no generic counterfeiting
strategy using the verification procedure as a black box.

Aaronson, CCC’ 2009: Proposed an explicit quantum money
scheme, which was broken in Lutomirski et al. 2010.

Farhi et al., ITCS’ 2012: Proposed a new money scheme based
on knot diagrams. A significant advance, but its security is

poorly understood. (Even when the knot diagrams are replaced
by black-box idealizations.)



Our Results

1 New, simple scheme: verification consists of
A measuring in just two complementary bases.

Security based on a purely classical
assumption about the hardness of an
@ algebraic problem.

A “black-box” version of our scheme, in which the bank
provides perfectly obfuscated subspace membership
oracles, is unconditionally secure.

The same construction gives the first “private-key” money
scheme which remains secure given interaction with the bank.
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Completeness: Ver accepts valid notes w.h.p.
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Soundness: If a counterfeiter starts with n notes

and outputs n+1, Ver rejects one w.h.p.
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Quantum Money “Mini-scheme”

Simplified scheme in which mint produces
only one banknote.
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Full Quantum Money Scheme

th , R One((s.|¢,)) rejects.
Iy W

VerOne(S, $>) C(S, $1>) = ‘¢1,¢2>




%

Run KeyGen for a public
key signature scheme

kpublic MintOne (Ok) = (s,
(9(),]$))
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VerOne (s, $>)
Must either break signature

V@I’k (U(S)) scheme, or break mini-scheme.
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The Hidden Subspace Scheme

AC, FEf dim(A)= k
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w s is some data (TBD) which lets the

user test membershipin A and A .

|

Apply membership test for A
Hadamard transform

Ver(‘$>,s) © Apply membership testfor A =|A)(A4]
Hadamard transform Probability(Accept) = <$‘A>2
Accept if both tests accept



Proof of “Black-Box” Security

Warm-up: Consider a counterfeiter C who
doesn’t make use of s at all.

Let A and B be maximally overlapping subspaces.

C But C preserves inner products. C
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Proof of “Black-Box” Security

Now consider a counterfeiting algorithm C

which uses s as a “black box”:

C has access to a different black box on different inputs.
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If C applies the black boxto vE B\ A,
it drives the inner product to O!
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Inner-Product Adversary Method

ldea: Pick a uniformly random pair of (maximally overlapping)
subspaces. Bound the expected inner product.

|A) E[<A|B>]=% B)

Any approximately successful counterfeiter must make Q(2"/4) queries.
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So each query has an exponentially
small impact on inner products.

\A/>A> E[(A,A|B,B)] - % }»@



Hiding Subspaces

Need to provide classical data which allows a user to test
membership in A and A *without revealing them.

One solution: Represent A as a uniformly random system:

D (X5 X%5,..0,X,)
pz(xlaxza'--axk) pi(xl,xz,...,xk)=0
: V(x,x,,...,x,)EA

X,) We can add any constant
amount of noise.

with
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To generate: sample polynomials which vanish
when x, =x, =---=Xx,,,, then apply a change of basis.



Proof of Security

Conjecture: Given our obfuscations of A and A” no

efficient quantum algorithm recovers a basis for A with
—k/2
probability 9(2 )

Suppose there were an efficient forging algorithm F. Then
we can violate the conjecture:
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(with probability 27*)



Status of Hardness Assumption

If d =1, recovering A given noisy polynomials that vanish
on is eqdivalent to learning a noisy parity...
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...but we can use a membership oracle for A~ to
remove the noise.

If d =2, recovering A from a single polynomial is related
to the Polynomial Isomorphism problem.

Ford = 2 this is easy.

Ford = 3, the problem can be solved with a single hint
from A, which can be obtained with probability Dk

For d = 4, known techniques don’t seem to work.



Quantum + Hardness Assumptions

Most quantum cryptography tries to eliminate
cryptographic assumptions.
But quantum money requires both:

— If an adversary keeps randomly generating forgeries,
eventually they’ll get lucky.

Combining hardness assumptions with the uncertainty
principle may make new primitives possible.

— Money

— Copy-protection

— Obfuscation?
— .7



Software Copy-Protection

Classical software can be freely copied.

MATLAB ] MATI A.B'
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To prevent copying, a vendor must interact
with the user on every execution.

Can we design quantum “copy-
protected” software?
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Completeness: Eval(|y),x)=C(x) w.h.p.

| Eval(‘w>,x) =C(x)

Soundness: A pirate can’t output two states either
of which can be used to evaluate C(x).
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Caveats: Might be able to guess C(x), might be

able to learn an approximation to C...

Pirate(‘zp» =|@.,) Eval (‘%),x) =, C(x)




Black-Box Copy-Protection Scheme

‘Al> ‘w> ‘A> 2k/4 E‘V>
ﬁ rC(x)@H(x) VEA

\ ‘A> O(v,x)=+ H(x) vE A"
) 0 otherwise

0(‘Al>’x) 0(‘A>,x) For a random function H ( x)

H(¥)(C(x) @ H (x))=C (v



Sketch of Security Proof

Goal: construct a simulator, which uses Pirate to learn C

OR find an element of A and an element of A~
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If we halt both, we recover elements of A and AT which is
ruled out by the inner product adversary method.

Y
' q (We can simulate Pirate “

So one of them runs successfully without using the oracle.
Therefore Cis learnable, and we can’t hope to stop Pirate!

Eval (|g,).x) Eval {|,), x)

O
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SOrrnnust use bot an element of A and an element of’

record V. record V.



Program Obfuscation?

* Challenge: Given C, produce Obfuscation(C),
which allows the user to evaluate C but learn
nothing else.

 Known to be impossible classically...

e ..but the possibility of quantum obfuscation
remains open (even of quantum circuits!)
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Completeness: Eval(|y),x)=C(x) w.h.p.
RS (S
Eval(‘z/)>,x) =C(x)

Soundness: any measurement can be simulated
using only black-box access to C.

Makes an arbitrary
measurement of |1/)>

Makes an arbltraTy > Simulated by simulator with
measurement of |{ black-box access to C



Program Obfuscation?

AJ_
The state ‘A> acts like a non-interactive 1-of-2
oblivious transfer.
A
~—
Q: Can we implement Yao's A* B
garbled circuits, with hidden ) »

subspaces as secrets instead of
encryption keys?

A: Yes, but hard to determine
security.



Open Questions

Break our candidate money scheme based on
multivariate polynomials (?)

Come up with new implementations of hidden
subspaces

Copy-protection without an oracle
Program obfuscation

Given oracle access to a subspace, prove you
can’t find a basis with probability Q(27),



Questions?



