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Abstract—In daily software development, inconsistencies
between architecture and code inevitably occur with the con-
tinuous contribution, even under model-driven development
which can trace between design and code. Many methods
have been proposed for consistency checking, but most require
huge human efforts on establishing the mappings between
architectural and code elements. Besides, the multi-layered
architecture and code increases the difficulties in inconsistency
detection, while existing algorithms do not handle this well.
Thus, we propose an improved mapping method for automated
consistency check between software architecture and Java
implementation, with the premises that initial tracing between
architecture and code are established. To be specific, during
software evolution, our method can automatically re-establish
the mappings between architecture and code using initial
tracing information. Then, with detailed inconsistency check
rules, we detect the inconsistencies heuristically. Experiments
with two projects show our method’s high effectiveness with
more than 98% of recall and 96% of precision.

Index Terms—consistency checking, software architecture,
Java implementation

I. Introduction

As the scale of software is becoming larger, and the
architecture is becoming more complex, many projects are
often faced with the problem of inconsistencies between
the architecture design and code [30], which is called the
architectural drift [23]. This is true for both model-driven
development and other traditional software development
processes. In a typical model-driven software development
process, the project’s architecture design is described
using Domain-Specific Language (DSL) which will be
automatically transformed into code skeletons [7]-[10].
Developers need to manually add some code into the code
skeletons [33]. Usually new classes, packages or even new
relationships not defined in the architecture design will be
added, which introduce inconsistencies [30]. Furthermore,
even after the project is completed, both the architecture
design and source code would evolve [34], and once the
other was not synchronized with the evolved one in time,
inconsistencies appear. As a result, the maintenance tasks
become complicated and costly [31]. Other traditional
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software development processes will be more likely to
introduce inconsistencies since there are no models guiding
the development.

So, the inconsistency detection is critical. Currently,
the related research strands mainly follow the similar
consistency check steps, as shown in Fig.1: first, extract
the elements and relationships from architecture design
and code and record them in a structure (called “the
analysis graph”). Second, establish the mapping between
the elements in these two extracted structures manually
or semi-automatically. Third, check the consistency based
on the mapping. The mapping method determines the
approach’s feasibility and performance mostly, where the
MDA-focused approaches excel by taking advantage of
the model transformation for tracing from code elements
to architectural compositions [3]. Furthermore, the Java
implementation are convenient for establishing the initial
mapping since the structure and elements in the architec-
ture design and the code are relatively similar to each
other comparing with other languages. However, there
are still some limitations to be improved: (1) Since the
structure of architecture design and code are usually multi-
layered, the hierarchy change of architectural or code
elements should be taken into account to cover more
inconsistencies. Currently there are several algorithms
to address the hierarchical mapping establishment, e.g.,
MQAttract [4], CountAttract [12], etc. These algorithms
can effectively deal with some of the mapping situations,
while there still exist some scenarios that need to be
covered, such as the mapping problems caused by the
complex dependency between elements’ children. (2) The
relationship inconsistencies that are checked by most of
the current approaches need to be refined into more
detailed relationship inconsistencies, in order to improve
the specificity of inconsistency identification.

Therefore, the main goal of this paper is to improve
the current approaches’ performance and capability by
improving the mapping establishment. In this study, we
propose an improved mapping method for automatically
identifying the inconsistencies between architecture model
and Java implementation on the basis that initial mapping
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Fig. 1: Process of the Reflexion Model Technique

between the architecture and code are established. For
the initial mapping establishment, we use a predefined
Architecture Model Description Language (AMDL) that
extends the UML to describe the elements and relation-
ships in an architecture design, and then we generate Java
code as long as the comments keeping the simple tracing
information from the architecture design elements to code
elements (including packages, classes and interfaces). After
software evolvement, we establish an analysis graph with
the high-level graph extracted from the AMDL model,
the low-level graph extracted from Java implementation,
and the mappings established automatically from the
model-driven generated code comments. Then for the
remaining unmapped elements, we propose the Improved
CountAttract Mapping algorithm which heuristically es-
tablishes the mappings based on the already mapped
elements. When all mappings are established, based on
the inconsistency check rules, we perform the consistency
checking based on the analysis graph.

The rest of this paper is structured as follows. In Section
IT we provide a brief review of the consistency checking
approaches based on RM and our work’s background. In
Section IIT we describe our automated and hierarchical
consistency checking approach. To evaluate the capability
and performance of our approach, we introduce the ex-
perimental setup, present the results, and analyze them
to evaluate how does our approach perform in Section IV.
Finally, in Section V we conclude our work and point out
the future work.

II. The Related Work and Background

To address the architectural drift problem which will
impact the maintenance of system as well as the software
evolution, many consistency checking approaches between
architecture and code have been proposed. We briefly
review the current studies on consistency checking, and
then figure out what can be improved. The background
of our work is also introduced.

A. The Related Work

Technically, current major consistency checking ap-
proaches can be categorized into the following types [3],
[24]):
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(1) Manual consistency check. Manually evaluate the
factors that may cause inconsistencies between archi-
tecture design and code [3]. The efficiency of this type
of approaches is very low, and the check results are
error-prone.

Dependency Structure Matrix [25] based consistency
check.The consistency check between architecture de-
sign and code can be transformed into the comparison
between two matrices, which can record the class,
package and their relationships. Thus once the matri-
ces are built, the consistency check can be performed
automatically.

Reflexion Model based consistency check. Reflexion
Model (RM) was first proposed by Murphy et al.
[1]. The prerequisite of this approach is the existence
of the architecture design described with a modeling
language, and the source code. Then, a structure used
for mapping the software architecture and the code
should be established [16]. The consistency check can
be automatically done based on the mapping and
inconsistency check rules.

It is argued that the Reflexion Model technique is very
effective in consistency check [5], [25]. Thus, most consis-
tency checking approaches are based upon the Reflexion
Model technique [1], such as Ali et al. [35] and Buckley
et al. [36], [37], along with tools like JITTAC [19], [27],
SAVELife [26], and ARTOS [28], etc. However, many
approaches still need the manual mapping establishment
[6]. It is very challenging to build the mapping during
software evolution for three primary reasons: 1) the code
changes may be in multiple forms (such as the addition,
deletion, name changing, and the hierarchy changing);
2) the relationships and structures of classes in both
architecture design and code are always complex; 3) the
hints about the mappings between architecture design and
code are limited.

To address the mapping establishment problem, MQAt-
tract [4] and CountAttract [12] exceed many other al-
gorithms, especially in the hierarchical mapping estab-
lishment. Through the following analysis, we choose the
CountAttract algorithm and improve it to establish the
mappings between composited components:

1) Clustering algorithms are considered as an effective
way dealing with component and package mappings



during the reflexion process [13], [14]. The CountAt-
tract algorithm is an effective clustering algorithm.
Many algorithms cluster all elements in one iteration
[14], which may impact the mapping accuracy. The
CountAttract algorithm can be improved to address
this problem.

Current CountAttract algorithm [11], [12] calculates
the Attraction (We call the possibility of mapping
low-level elements and high-level elements as At-
traction) only based on the dependency between
unmapped and mapped low-level elements [15]. It
does not consider the dependency of each element’s
children, which may cause a mapping problem in the
following scenario: we have already mapped a low-
level element (e.g., a package) to a high-level element
(e.g., a component), and the majority of dependencies
between this package and other packages belong to
very few children of this package (i.e., one or two
classes). When these children are moved from the
origin package to a new package, the origin package’s
attraction to its mapped component will decrease
while the new package’s attraction will increase,
which may cause the calculated mapping to change
due to the attraction calculation. However, neither
do the hierarchy of packages in the code nor the
hierarchy of components in the architecture design
change, so the actual mapping should not change
either.

Based on these reasons, we propose an Improved Coun-
tAttract Mapping, an automatic and incremental mapping
algorithm by improving the existing methods using the
existing mappings and heuristic information in the model-
driven software development. Our proposed algorithm will
be detailedly explained later.

B. Background

UML component diagram and class diagram are often
used for architecture designing, but each diagram cannot
cover all aspects of the architecture, for example, the
component diagram demonstrates the module division of
the system but lacks of details, while the class diagram
shows the details of one module but lacks of external
dependencies. Therefore, in our previous work, we defined
an architecture modeling language Architecture Model
Description Language (AMDL) which contains several
UML elements essential to the architecture design, such as
system, component, class and interface. The meta-model
of AMDL is shown in Fig.2. We also designed to transform
the architecture model into Java code skeletons.

We built a prototype to support all essential steps of
model-driven software development, including the archi-
tecture design, the Java code skeleton generation with
comments for tracing between high-level design element
and low-level code implementation.
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III. Our Approach

We propose a heuristic hierarchical consistency checking
approach by improving the mapping algorithm between
the software architecture and the Java implementation,
based on the premise that initial tracing between design
and code are established. The input of our approach
consists of three parts: (1) an architecture design in the
form of AMDL which combines the UML component
diagram and class diagram; (2) the source code developed
from the code skeleton that is generated from the ar-
chitecture design; (3) the automatically created mappings
between the architectural elements and the generated code
elements. The output is a list of inconsistencies.

Following the Reflexion Model [1] theory, the proce-
dure of our approach is three-folds: First, we extract
the overview of the architecture design (specified using
AMDL) as the high-level analysis graph, and the overview
of the code as the low-level analysis graph. Second, we
establish the complete analysis graph for consistency
check by building the mappings between elements in
these two graphs. Since the code skeleton records the
tracing information from architectural elements, mappings
between these elements can be automatically established,
leaving all manually changed elements to be mapped.
We analyzed that the following manual development may
cause architectural inconsistency: the addition, deletion,
name or hierarchy change of an element, and the rela-
tionship change between elements. Thus, we propose an
improved mapping method for these manually changed
elements based on the clues provided by the mapped
elements. Third, once all architectural and code elements
are mapped, the consistency check can be easily done
through performing inconsistency identification.

We introduce our approach in the following parts. In
Section ITI-A we define the check rules for inconsistency
identification. In Section III-B we introduce the automatic
analysis graph establishing method using the traces gener-
ated automatically during MDA and our proposed heuris-
tics. In this part, we propose an improved CountAttract
algorithm to complete the analysis graph. In Section ITI-C
we explain the hierarchical consistency checking process.

A. Inconsistency Check Rules

The inconsistency check rules are critical for the con-
sistency check. In this section we define the check rules
based on traditional checking rules [16], [30], [32], which
often have two parts: absence and divergence. An absence
inconsistency is defined as an architecture element or
relationship does not have a corresponding reference in
code, while a divergence inconsistency is defined as a code
element or relationship does not have a corresponding ref-
erence in architecture design. However, these rules cannot
distinguish some specific changes like the code element’s
addition, deletion and hierarchical change, so they need
to be specified for architect and practitioners’ favor in
detail. Based on traditional checking rules, we define
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Fig. 2: AMDL Meta Model

all inconsistencies that we mean to check in two parts:
element inconsistencies and relationship inconsistencies.

In this paper, to be clear, we call architecture element
as high-level element, and call code element as low-level
element, so as relationships. A high-level element may
represent a system, a component, a class or an interface in
the architecture design. A low-level element may represent
a package, a class or an interface in the code. All these
definitions are listed in Table. I:

1) Element Inconsistency Check Rules: Each of these
inconsistencies corresponds to an element changing sce-
nario: element absence, element divergence, low-level
element’s name changing, low-level element’s hierarchy
changing, and the changing both on low-level element’s
name and hierarchy. We detailedly explain each inconsis-
tency check rule in Table.II.

2) Relationship Inconsistency Check Rules: These in-
consistencies each corresponds to a relationship changing
scenario: relationship absence, and relationship diver-
gence, as shown in Table.IIl.

B. Analysis Graph Establishing Method

In order to automatically check the consistency be-
tween the architecture design and the code, taking into
account the complexity and difference of elements and
relationships in both the architecture design and the
codes, most consistency checking approaches extracted an
analysis graph. The analysis graph is a middle structure
that contains not only the structural information of both
architecture design and code, but also their mappings. An
example of an analysis graph is shown in Fig.3. Once the
analysis graph is completed, the consistency checking can
be easily done according to the mapping. In this section,
we firstly introduce our analysis graph. Then we explain
the analysis graph establishing method, including elements
and relationships extraction and automated mapping.

1) Analysis Graph Composition: Our analysis graph
contains all elements from the architecture design and the
code, and all types of relationships between elements, as
listed in Table. I.
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2) Analysis Graph Establishment: Once the compo-
sition of the analysis graph is determined, the analysis
graph can be established from the architecture design
and the code. Our analysis graph establishment method
can be divided into two parts: elements and relationships
extraction, and automated reflexion model construction
based on initial mapping.

a) Elements and relationships extraction: This step
is used for extracting all elements and relationships from
architecture design and code. We propose two algorithms
for extraction from these artifacts: architecture design
parse using Domdj, and reverse engineering from source
code using JavaParser and MoDisco.

In our previous tool, the architecture design is recorded
in XML file. We extract the architecture design elements
and relationships in the architecture design file, and record
each high-level element’s type, name and parent, and each
relationship’s source and target elements, All architectural
elements and relationships are transformed into analysis
graph elements respectively.

We use JavaParser and MoDisco to extract classes,
interfaces, packages and their relationships from the code.
For each code element, we record its type, name and
parent, and all types of relationships related with this
element. For each package, we also record its children. All
code elements and relationships are transformed into its
corresponding elements and relationships in the analysis
graph.

b) Improved CountAttract Mapping for automatic
mapping establishment based on existing mapping: After
all elements and relationships are extracted, there should
be mappings between architecture and code elements.
Based on the reasons explained in Section II-A, we pro-
pose the Improved CountAttract Mapping, an automatic
and incremental mapping algorithm by improving the
existing methods using existing mappings and heuristic
information obtained during the model-driven software
development.

In order to introduce our algorithm clearly, we use
relational algebra to describe all elements and their re-
lationships in the analysis graph. HG (High-level Graph)



TABLE I: High-level and Low-level Definitions
Description
system, component, class and interface
package, class and interface
Association, Inheritance and Realization are used to analyze the relationship between classes or
interfaces. Dependency is used to analyze the relationship between system and component in the
architecture design, and package in the code. Hierarchical Relationship is used to demonstrate

Analysis Graph Composition
High-level element
Low-level element

Relationships of element

the hierarchy between architectural elements or code elements. Mapping is used to map the
high-level elements and their corresponding low-level elements.

TABLE II: Element Inconsistency Check Rules

Inconsistency

Description

Element absence

a high-level element cannot be mapped to any low-level element

Element divergence

a low-level element cannot be mapped to any high-level element

Low-level element’s name change

a high-level element and its mapped low-level element which is at the same layer have different
element names. By saying “at the same layer”, we mean that the high-level element can be
mapped to a low-level element, and both their direct parent nodes can be mapped, too.

Low-level element’s hierarchy
change

a high-level element and its mapped low-level element which has the same element name are at
different layers. By saying “at different layers”, we mean that the architecture element can be
mapped to a low-level element, but their direct parent nodes cannot be mapped.

Low-level element’s name and
hierarchy change

a high-level element and its mapped low-level element have different names, and they are at

different layers

TABLE III: Relationship Inconsistency Check Rules

Inconsistency

Description

Relationship absence

a high-level relationship cannot be mapped to any low-level relationship

Relationship divergence

a low-level relationship cannot be mapped to any high-level relationship

Legends
O High-level Element
D Low-level Element

sty > Dependency

- Hierarchical Relationship

Mapping

Fig. 3: An Example of Analysis Graph

represents architecture design which is composed of high-
level elements (represented as Ep) and their relationships
(represented as Rpy) in the analysis graph. LG (Low-
level Graph) represents code which is composed of low-
level elements (represented as Ep) and their relationships
(represented as Rp) in the analysis graph. These symbols
are listed in (1):

HG = (Ey,Ry) LG = (EL,RyL)
Eg ={h1,....;hn} EpL={l1,....1n}
Ry =FEyg x Ey R;, = FEp X Fp,

(1)

Py (Epg) represents the hierarchy between high-level ele-
ments, as shown in (2). Py (hy) = ho means that the high-
level element hsy is the direct parent of high-level element
hi. Similarly, we use Pp(FEL) to represent the hierarchy
between low-level elements. Equation (2) can be used
iteratively several times, for example, Py (Pg(h1)) = hs
means that the high-level element h3 is the parent of the
parent of high-level element h;. We simply mark this as
P%(hy) = hs. The same is true with the low-level equation.
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PH(EH) :FEy — Ey P;LI(EH) :Fyg — Ey
PL(EL)ZEL%EL PEL(EL)ZEL—)EL

n e Ny

n e N4
(2)
Map(Ey) represents the mapping between high-level
elements and low-level elements, for example, Map(l;) =

h1 represents that the low-level element [y is mapped to
the high level element h;. This relation is shown in (3).

Map(EL) : Ep — En (3)

Based on the relational algebra above, we can explain
our algorithm for constructing the mappings with two
steps: firstly, we try to map a low-level element to a
high-level element using the high-level element’s chil-
dren’s information. If the information are not enough
to make mapping decisions, then secondly, we improve
the CountAttract algorithm to calculate the possibility of
mapping the unmapped low-level elements and the high-
level elements by heuristically using the information of the
children of high-level and low-level elements, and decide



the mappings based on calculation result. Our improved
algorithm can deal with the scenario we mentioned before
where the current CountAttract algorithm may cause
problems.

At the first step of our algorithm, we use inner-similarity
to map low-level elements to high-level elements. The
inner-similarity between a low-level element and a high-
level element is defined as the ratio of high-level element’s
children which are mapped to a low-level element’s child
to all children of the high-level element. When the ratio
is higher than a predetermined threshold, we believe
that a mapping should be established between these two
elements. Equation (4), (5) and (6) show the first step of
out algorithm.

|Childrenmapped(hy, ;)|

nlishs) = |Children(h;)| )
Childrenmapped(hj, l;) ={h | Ca(h, hj)A
Hlk S EL, CL(Z )
and Map(l,) = h} 5)
Children(h;) ={h | Cg(h, h;)}
Cr(hi, hyj) is true <= 3dn € Ny, Pi(h;) =
Cr(li,1;) is true <= 3In € Ny, P1'(l;) =
Map(l) = 1 o) = o)
l; is not mapped 7n(l;, hj) < «
In (4), n(l;, hj) represents the inner-similarity of the

low-level element I; and the high-level element h;, which
is the ratio of can-be-mapped children (represented as
the number of elements in Childrenappea(hj, ;) and all
children of h; (represented as the number of elements
in Children(h;)) . We count the children of h; using
Cr(hi, h;) as defined in (5), and pick those which can
be mapped to a child of I; using Map(EL) as defined
in (3). Equation (6) shows how to make a mapping
decision between [; and h; based on n(l;, h;). First, we
should choose a threshold value a € [0,1]. w means the
similarity between I; and hj, the closer to 1 means the
more possibility that /; should be mapped to ;. According
to previous studies [13], we set a = 0.5. If n(l;, h;) is
greater than w, then the mapping between [; and h;
will be established. Otherwise, the mapping will not be
established, then [; will be labeled as not mapped and be
put into the unmapped set represented as U. When all
low-level elements in Fj are checked in the first step, we
will turn into the second step if U is not empty.

At the second step of our algorithm, we improve the
current CountAttract algorithm to map all low-level ele-
ments in the U to high-level elements. First, we calculate
the Attraction value for each unmapped low-level element
l; and the high-level element h;. This generates several
candidate low-level elements which possibly should be
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mapped to h;. Then, we automatically choose a low-level
element among all candidates, and establish a mapping
with h;. The second step of our algorithm will not stop
until all low-level elements are mapped to high-level
elements.

Equation (7) and (8) show how to calculate the Attrac-
tion value of low-level element [; and high-level element
hj (represented as A(l;, hj)).

A(li, hy) = o1(lj, hy)
Vi;:CL(15,1:) )
+ oa(lj, hy)
Vij:{li,l;}eRLAMap(l;)€EEy
(1) 1, Map(l;) € Exg ANC(Map(l;), h;)
o1(lj, h;) =
R 0, otherwise
(8)
ool hy) = 1, {Map(l;),h;} € Ry
2\ ) 0, otherwise

The Attraction value of low-level element I; and high-
level element h; is composed of two parts. The first part
is the weighted sum of ;’s children (maybe the children of
children, checked by Cp) which can be mapped to one of
h;’s children (maybe the children of children, checked by
Cy). The second part is the weighted sum of [;’s associated
low-level elements which can be mapped to one of h;’s
associated high-level elements.

We calculate the Attraction value for each unmapped
low-level element [; and the high-level element h;, and
use (9) to generate two candidate sets [13], candSet; (h;)
and candSeta(h;). Then, we automatically choose one
candidate low-level element in these two candidate sets,
and map it to h;.

candSety(h;) = {l| A(l,h;) > X (h;)}
candSety(hj) = {l| A(l,h;) = X (h;) + sd(h;)}
1
X(hy) == A hy)
Ul e v
1 R
sd(h;) = (Al h;) — X(h;))?
U1 v

Each candidate in candSeti(h;) has the Attraction
value no less than the average of UmappedSet’s elements’
Attraction values. Each candidate in candSets(h;) has the
Attraction value no less than the average plus the standard
deviation of UmappedSet’s elements’ Attraction values.
We believe that the larger of a candidate’s Attraction value
is, the more possible that a mapping should be established
between this candidate and the high-level element h;. To
choose a candidate automatically and appropriately, we
apply the following strategies:

(1) If there is only one candidate in candSets(h;), then
establish a mapping between this candidate and h;.



(2) If there are no candidates or more than one candidates
in candSeta(h;), then if it is the first time trying to
map low-level elements with the high-level element A,
stop mapping with h; and try to establish mappings
with other high-level elements which have not been
tried with. When all other high-level elements have at
least tried for one time, then try to establish mapping
with h; for the second time.

If it is the second time trying to establish
mapping with h;, then recalculate candSet;(h;)
and candSety(h;). If there are no candidates in
candSety(hj) this time, then choose the one with
the largest Attraction value in candSetq(h;) as the
candidate. If there are one or more candidates in
candSety(h;), then choose the one with the largest
Attraction value in candSets(h;) as the candidate.
Then, establish a mapping between the chosen candi-
date and h;.

With the heuristic algorithm above, we can automati-
cally establish the analysis graph between HG and LG as
defined in (1).

C. Hierarchical consistency checking

After the analysis graph is established, we check the
inconsistencies between architecture design and code ac-
cording to the inconsistency check rules in Section ITI-A.
Since the inconsistency check rules consist of two parts,
our hierarchical consistency check also contains two parts:
element consistency check and relationship consistency
check.

First, we detect the element inconsistencies, including
“element absence”, “element divergence”, “low-level el-
ement’s name changing”, “low-level element’s hierarchy
changing” and “low-level element’s name and hierarchy
changing”.

Second, we detect the relationship inconsistencies based
on the element consistency check result, including “re-
lationship absence” and “relationship divergence”. The
relationship consistency check follows these steps:

1) All relationships in the architecture design that come
from or target to high-level elements which have the
“element absence” inconsistencies will be considered
to have the “relationship absence” inconsistencies.
All relationships in the code that come from or
target to low-level elements which have the “element
divergence” inconsistencies will be considered to have
the “relationship divergence” inconsistencies.

For each of the rest relationships in the architecture
and in the code, firstly find the relationship’s origin
source element and origin target element, and record
the mapping elements for each origin elements. If the
mapped elements do not have the same relationship
type or direction as the origin elements do, then
this relationship will be considered as “relationship
absence” if the origin elements are high-level elements,
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otherwise it will be considered as “relationship diver-
gence” if the origin elements are low-level elements.

IV. Experimental Setups and Results

Given the goal of this study in Section I, we define the
following research questions, and the evaluation experi-
ment. We use our prototype to perform all experiments. In
our prototype, the consistency checking module can check
consistency between the architecture design and the codes
evolved from the generated ones.

A. Research Questions

To evaluate our approach, we define two research
questions.

RQ1: How is the capability of our approach?

To figure out the difference between our approach and
others on detecting inconsistencies, approach automation
and hierarchical-supportiveness, we should compare with
various consistency checking approaches and tools. This
includes major approaches such as JITTAC [19], and other
related works.

RQ2: How is the performance of our approach compared
with the state-of-arts?

To evaluate the precision and recall of our approach, and
figure out to what extent has our approach improved the
state-of-arts, we should conduct a series of experiments
on different projects, and compare the results with other
major approaches, in order to analyse the performance of
our approach thoroughly.

B. Addressing the RQ1

1) Experiment Design: To evaluate the capability of our
approach, we compare it with other existing consistency
checking approaches from the respective of MDA-focused
or not, automated or not, be able to check the hierarchical
consistency or not, and supporting checking the detailed
inconsistency or not (related with the elements and four
kinds of relationships). We achieve this comparative anal-
ysis through a mini-sized survey by focusing on the above
four aspects.

2) Experiment Results and Analysis: Table IV lists all
referred approaches and the aspects we compare with. The
column of “MDA” shows that most current approaches do
not support model-driven software development, except
for our approach and Biehl et al. [16]. However, Biehl’s
approach only considers architecture design drawn in class
diagrams, thus only checks the inconsistency of classes
and interfaces. Our approach is based on an extensible
architecture design model, which contains class, interface,
system and component. So, our approach can cover more
specific relationships and inconsistencies. Finally, our
approach implements the automated checking very well
and the only human efforts need to be done are the
architecture design before coding.

We also compare the tools that support consistency
checking with our prototype, and the results are listed
in Table V.



TABLE IV: Consistency Checking Approach Comparison

Inconsistency Checking

Approaches Association Inheritance and Dependency Element MDA Automated | Hierarchical
Between Realization Between Systems Inconsis-
Classes and Between Classes and Components tency
Interfaces and Interfaces
Our Approach v v v v v v v
JITTAC [19] X X v X X X v
Biehl’s [16] v X X X v v X
Dependency v X v X X X v
Structure Matrix [20]
SAVELife X X v X X X v
ARTOS X X v X X X v
Knodel’s [17] X X v X X X v
Haitzer’s [18] v X v Partly v/ X X v
TABLE V: Consistency Check Tools Comparison
Tool Architecture Description Architecture Element Variety License
Our Prototype AMDL v -
StructurelO1 Wireframe, Hierarchical description X Industrial
Sonar J Hierarchical description X Industrial
ConQAT Wireframe X Open-source
Lattix LDM [20] Wireframe X Industrial
Macker Wireframe X Open-source
XRadar Wireframe X Open-source
Classycle [21] Wireframe, Hierarchical description X Open-source
ReflexML [22] Component Diagram v Open-source

In Table V, we do the comparison from the aspects
of architecture description, supporting the variety of
architecture elements, and license. Most of the open-source
tools use wireframe to describe the architecture design,
so that their abilities to describe various elements such
as interface or port are limited. Only our prototype and
ReflexML [22] support various elements in the architecture
description, while our’s has rich semantics and detailed
information of all types of elements using AMDL.

C. Addressing the RQ2

1) Experiment Design: To evaluate the performance of
our approach, we choose Beihang Tongyan and ASM as
two industrial cases according to the following reasons:
First, the mapping is a tedious and error-prone work
for human, so we can’t use manual mapping results for
comparison with the automated mapping results. Thus,
we need to find a more feasible way. Second, the final
goal of our method is to improve the consistency checking
job. We argue that if the our mapping is correct, then the
inconsistencies found by our method will be acknowledged
by developers since they will map the same elements and
find the same inconsistency. Otherwise, if our mapping
is incorrect, then the detected inconsistency will not be
acknowledged by developers. So, the performance of our
approach can be evaluated through consistency check,
which is more feasible for human efforts and more practical
for software development. In this way, the results can be
easily compared with other approaches.

Due to the above reasons, for each case, we use our
prototype to establish the architecture design. And ac-
cording to the nature of the case systems, we set different
scenarios, including software evolution or inconsistency
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injection. Then we run our algorithm to check consistency
for each scenario, and recruited volunteers or developers
to verify the results. The validated results are evaluated
using measurements like precision and recall.

In case that each approach may perform differently on a
specific scenario, a detailed analysis between the rationales
of our approach and others are given after each result,
aiming at explaining the performance theoretically. The
compared rationales include the mapping methodology,
element inconsistency types and relationship inconsistency
types.

a) Subject Projects: Beihang Tongyan project is
developed by our colleagues, so the developers can be con-
sulted for evaluation. Its architecture has been refactored
from version 1.0 to version 2.0 which conforms to its archi-
tecture design better, thus we use our prototype to build
version 2.0’s architecture, and detect the inconsistency
between version 1.0’s code and the built architecture. Two
developers are invited to decide whether they can agree
with the inconsistencies found by our tool. The automated
detecting results are also checked by an external reviewer
from a different research institution in addition to the
project’s developers.

Since some types of inconsistencies may not be included
in the Beihang Tongyan, we select an open-source project
ASM ! and inject some inconsistencies manually for
evaluation. ASM was selected because there are sufficient
documentations online to explain its architecture design
so that we can build its architecture in our prototype.
We recruited two volunteers (denoted as P1 and P2) to
inject any inconsistency they want into ASM’s code. Each

Lhttps://asm.ow2.io/



volunteer injects 30 inconsistencies, as listed in Table VI.
After the inconsistency injection, we let them check each
other’s injected inconsistencies to avoid bias.

Since our approach mainly improves the current RM-
based consistency checking approaches, we perform three
other popular approaches for comparison, including RM-
based approaches and others: JITTAC [19], Biehl’s ap-
proach [16] and the Dependency Structure Matrix ap-
proach [20]. JITTAC [19] and the Dependency Structure
Matrix approach [20] need the predefined mappings be-
tween the elements in software design and source code, so
we manually establish the mappings between components
in design and packages in source code.

b) Measurements: We use our approach to check
consistency in both cases automatically, and validate the
results through verification of developers and volunteers.
Based on the automatic consistency check results and
manual verifications, we use precision and recall to mea-
sure the performance of the approaches.

In the consistency checking results, we record the
number of those which are totally agreed by developers
and volunteers as cNum. By saying “totally agreed”, we
mean that the manual check report the same result as our
approach does. The number of identified inconsistencies
which are basically agreed are recorded as bNum, which
means that the result is truly an inconsistency, but it is
not detailed enough. These results may be located into
a deeper level of the architecture design or code if they
are done manually. The number of inconsistencies which
are disagreed by developers or volunteers are recorded as
dNum. Finally, we record the number of inconsistencies
that developers or volunteers believe to be but our
approach can’t find out as nfNum.

Using the marks defined above, we can define the
precision and recall in (10).

Precisi cNum
recision =
cNum + bNum + dNum + nf Num
(10)
cNum + bNum
Recall =

cNum + bNum + dNum + nf Num

2) Experiment Results and Analysis for RQ2:

a) Experiment Results on Beihang Tongyan: The
results of each inconsistency type are listed in Table VII.
The results are verified by two developers. Since they both
have the similar understanding of Beihang Tongyan’s two
versions’ architectures and codes, their evaluation towards
our check results are all the same. Thus, we give the overall
analyzing results in Table VIII.

In Table VIII, we can see that our approach finds 301
inconsistencies, while 277 are totally agreed by developers.
These results show that our approach can reach the
precision of 90.82% and the recall of 95.74%, both higher
than all other three approaches.

The 15 inconsistencies which are basically agreed by
developers are due to the package merging. During the
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code evolution, 15 packages merge into one package.
According the Attraction calculation between high-level
and low-level elements, our analysis graph establishing
method (see Section III-B) can map the new package in
the code to all 15 high-level elements in the architecture
design which are mapped to the original 15 packages in
the old version of code. Thus, there are 15 “low-level
element’s hierarchy changing” inconsistencies as defined in
ITI-A1. These 15 results are basically agreed by developers.
However, they point out that it could be clearer if we
define this type of inconsistency as “low-level element’s
merging”.

There are nine “relationship divergence” inconsistencies
which are disagreed by developers. This is because of the
merging of packages cause some element’s hierarchy to
change, therefore some relationships’ source elements or
target elements differ from the original mapped elements.
We do not have the “low-level element’s merging” incon-
sistency checking, so this type of inconsistency is reported
inaccurately.

There are four inconsistencies that we do not find out.
These are four function changes which do not cause the
change of the relationship between classes or interfaces.
Since our approach cares more about the architecture
consistency, we do not take code changes that are too
much detailed into consideration.

We also briefly analyzed the results of other approaches
in order to find out the reasons that their results differ
from ours. JITTAC [19] finds 119 inconsistencies. JIT-
TAC [19] maps the Dependency between systems and
components in the architecture design to the Dependency
between packages in the code. These mappings are very
accurate in consistency checking, so all 119 inconsistencies
found by JITTAC [19] are totally agreed by developers.
JITTAC [19] does not check the Realization or Depen-
dency between classes and interfaces, or the element
change, so 182 inconsistencies are not found by JITTAC
[19]. Biehl’s approach [16] finds 109 inconsistencies. This
approach only checks the Dependency between classes
and interfaces, while the Inheritance and Realization
between classes or interfaces, the Dependency between
components and packages, or the element change are
not checked. Thus, 196 inconsistencies are not found by
Biehl’s approach [16]. The Dependency Structure Matrix
approach [20] finds 195 inconsistencies, where 186 are
totally agreed by developers. The Dependency Structure
Matrix approach [20] checks Association between classes
and interfaces and Dependency between components and
packages, which makes its precision and recall higher
than JITTAC [19] and Biehl’s approach [16]. However,
9 “relationship divergence” inconsistencies are disagreed
by developers, which is the same case with our approach.
The Dependency Structure Matrix approach [20] does not
check the Inheritance and Realization between classes or
interfaces, or the element change, so 110 inconsistencies
are not found.



TABLE VI: Injected Inconsistencies

Volunteer Element Inconsistency Relationship Inconsistency Total
EIT [ EI2 | EI3 | EI4 [ EI5 | RIT | RI2| RI3 | RI4 | RI5 | RI6 | RI7 [ RIS
P1’s Injection 3 4 3 1 1 2 3 2 5 1 3 1 1 30
P2’s Injection 5 3 3 7 2 0 3 0 1 1 1 1 3 30

Meanings of EIl1 - EI5:

Meanings of RI1 - RIS8:

1) EIl: Element absence 1) RI1: Association absence
2) EI2: Element divergence 2) RI2: Association divergence
3) EI3: Low-level element’s name changing 3) RI3: Inheritance absence
4) EI4: Low-level element’s hierarchy changing 4) RI4: Inheritance divergence
5) EI5: Low-level element’s name and hierarchy changing 5) RI5: Realization absence
6) RI6: Realization divergence
7) RIT: Dependency absence
8) RI8: Dependency divergence
TABLE VII: Consistency Check Results of Beihang Tongyan
A h Element Inconsistency Relationship Inconsistency
pproac EIl [ EI2 [ EI3 | EM | EI5 | RII [ RI2 [ RI3 | R4 | RI5 [ RI6 | RI7 | RIS
Our Approach 47 0 0 54 3 117 2 1 0 1 0 55 21
JITTAC [19] 0 0 0 0 0 0 0 0 0 0 0 117 2
Bieh!’s approach [16] 0 0 0 0 0 107 2 0 0 0 0 0 0
Dependency Structure Matrix [20] 0 0 0 0 0 117 2 0 0 0 0 55 21
Note: EIl1 - EI5 and RI1 - RI8 are the same as Table VI
TABLE VIII: Analysis of Consistency Check Results of Beihang Tongyan
Approach Inconsistency Num Dgx]ci(;sors Vor?]s]aj;c;n nfNum Precision Recall
Our Approach 301 277 15 9 4 90.82% 95.74%
JITTAC [19] 119 119 0 0 182 39.01% 39.01%
Biehl’s approach [16] 109 109 0 0 196 35.73% 35.73%
Dependency Structure Matrix [20] 195 186 0 9 110 60.98% 60.98%

b) Experiment Results on ASM: We use our ap-
proach to check the consistency between ASM’s architec-
ture design and two volunteer’s injected code, and confirm
the results with each volunteer respectively. The results
for each volunteer are shown in Table IX and Table X.

For P1, we find 73 inconsistencies. 72 are totally agreed
by P1. The one inconsistency which is not found is the
change of methods and attributes within a class, which
does not cause any change of relationships between classes
or interfaces. This type of change is not detected in our
method, same as the reason we explained in the consis-
tency check results of Beihang Tongyan. JITTAC [19] finds
11 dependency divergences between packages, which are
all totally agreed by P1. Both Biehl’s approach [16] and
the Dependency Structure Matrix approach [20] find the
same association absences and association divergences in
the total of 17, since they mainly check the relationship
change between classes and interfaces.

For P2, we find 98 inconsistencies. 95 findings are totally
agreed by P2. Two findings are basically agreed. One
is the “low-level element’s name changing” inconsistency
which is caused by the moving of all elements from one
package to another package. The other one is the “element
divergence” inconsistency that is caused by the class
addition in a package. One finding is not agreed by P2,
which is a “dependency divergence” inconsistency caused
by the element merging. The rejection reason is that the

check result should give the “low-level element’s merging”
inconsistency. JITTAC [19] finds dependency absences and
dependency divergences in the total of 46. Biehl’s approach
[16] finds association absences and association divergences
in the total of 45. The Dependency Structure Matrix
approach [20] finds association absences, association diver-
gences, dependency absences and dependency divergences
in the total of 53. These results are all totally agreed
by P2. However, element inconsistencies, the inheritance
inconsistencies and the realization inconsistencies are not
accurately checked by any of these three approaches.

To sum up the comparison between our approach and

other three approaches, we can find that:

e The Improved CountAttract Mapping algorithm did
improve the mapping establishment in the RM tech-
nique, which results in better consistency check per-
formance. Our approach reaches higher precision and
recall than other three approaches due to the explicit
inconsistency checking, the usage of initial mapping
and automatic reflexion model method, and the
consideration of both element change and relationship
change during software evolution. However, we do not
consider the merging or division of elements, which
has caused some check results that are not agreed by
developers and volunteers.

o JITTAC [19] performs well in the consistency check-
ing of relationships between components and pack-
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TABLE IX: Analysis of Consistency Check Results of ASM for P1

Approach Inconsistency Num Vl?]l\?;l:;er S Ven;ﬁ;::;in W Num Precision Recall

Our Approach 73 72 0 0 1 98.63% 98.63%

JITTAC [19] 11 11 0 0 62 15.06% 15.06%

Biehl’s approach [16] 17 17 0 0 56 23.28% 23.28%

Dependency Structure Matrix [20] 17 17 0 0 56 23.28% 23.28%
TABLE X: Analysis of Consistency Check Results of ASM for P2

Approach Inconsistency Num Vl;)}\}ls;cser S Ven;i]ffag;(;n W Num Precision Recall

Our Approach 98 95 2 1 0 96.94% 98.98%

JITTAC [19] 46 46 0 0 52 46.94% 46.94%

Biehl’s approach [16] 45 45 0 0 53 45.92% 45.92%

Dependency Structure Matrix [20] 53 53 0 0 45 54.08% 54.08%

ages, but it cannot check the relationships between
classes and interfaces. Biehl’s approach [16] supports
the automatic consistency check of associations be-
tween classes and interfaces, but it lacks of the check
of dependency changing. The Dependency Structure
Matrix approach [20] reaches high precision and recall
due to its ability to check the association between
classes and interfaces, and the dependency between
components and packages. However, all of the three
approaches do not support the detailed consistency
check of low-level elements, including the low-level
element’s name changing and hierarchy changing.

D. Threats to Validity

According to the taxonomy proposed by Wohlin et al.
[29], there are three potential threats of validity that
may apply to our work: threats to construct and internal
validity, threats to external validity.

1) Threats to construct and internal validity: To rein-
force the construct validity and internal validity of our
study, we conducted experiments on two projects. One
of the subject projects, Beihang Tongyan, contains the
inconsistencies caused during the system evolution. Each
automated inconsistency checking result on this project
was checked independently by its two developers, to reduce
the impact of subjectivity. To ensure our approach can
detect as many types of inconsistencies as possible for
different software, we let two volunteers independently
inject any types of inconsistencies into the other open-
source project, ASM, to do further evaluation. To alleviate
the bias of subjective evolution on the automated checking
results, we also ask the two volunteers to check each other’s
injected inconsistencies. Anyway, since the order in which
other approaches are compared may affect the evaluation
results, we plan to perform more case studies using random
comparison order.

2) Threats to external validity: We evaluated our ap-
proach on two projects to cover different development
scenarios that may cause inconsistencies. Especially, in
the experiment on ASM, we allow volunteers to inject
any types and numbers of inconsistencies, thus ensures
our work’s external validity. In principle, our work is

applicable for any Java projects, as long as the architecture
design is similar to UML like AMDL, and the initial
mapping between source code and architectural elements
are established. Anyway, to mitigate any potential threats
to external validity futher, we plan to perform more
experiments on larger projects which may cover more
types of inconsistencies. We hope that this can help make
our results more applicable in practice.

V. Conclusion

Inconsistencies between architecture and source code oc-
cur inevitably during the software maintenance. Although
lots of good work has been done to identify the incon-
sistencies, challenges still exist. Most work requires huge
manual annotations on the mappings between the software
design and source code. Others which use some algorithms
for automation, however, may miss some inconsistency
types which are really helpful for the synchronization. In
addition, the hierarchy between the elements in design
and/or code increases the difficulties of mapping estab-
lishment. To solve these problems, we proposed a method
to automatically identify the hierarchical inconsistencies
between architecture design and Java implementation. We
firstly define the finer-grained inconsistency types. Then
we build analysis graph of software design and the source
code by proposing the Improved CountAttract Mapping
algorithm for hierarchical mapping. Finally, we detect the
inconsistency based on rules.

We use an industrial project and an open-source project
to evaluate the capability and performance of our method.
The ratio of detected inconsistencies acknowledged by
developers reflects our method’s performance. For the
industrial project, 95.74% detected inconsistencies are ac-
knowledged by developers, and 90.82% are totally agreed
by them. For the open-source project, more than 98%
detected inconsistencies are acknowledged by two of our
volunteers (98.63% and 98.98% respectively), and more
than 96% are totally agreed by them (98.63% and 96.94%
respectively). To support all of the work mentioned in this
study, we improved our previous prototype. Any interested
academic researchers can contact us for using this tool.
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For future work, we will promote our approach to
address the low-level element’s merging inconsistencies,
and perform additional experiments on larger projects
(even non-MDA ones) in order to explore the approach’s
robustness after adding more types of inconsistencies. We
will also do more comparisons between our approach and
the combination of other approaches, in order to figure out
what scenarios can benefit the most from our approach,
and inspire better consistency check approaches.
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