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Abstract In this paper, we propose a discriminative aggre-
gation network (DAN) method for video-based face recog-
nition and person re-identification, which aims to integrate
information from video frames for feature representation ef-
fectively and efficiently. Unlike existing video aggregation
methods, our method aggregates raw video frames directly
instead of the features obtained by complex processing. By
combining the idea of metric learning and adversarial learn-
ing, we learn an aggregation network to generate more dis-
criminative images compared to the raw input frames. Our
framework reduces the number of image frames per video
to be processed and significantly speeds up the recognition
procedure. Furthermore, low-quality frames containing mis-
leading information can be well filtered and denoised during
the aggregation procedure, which makes our method more
robust and discriminative. Experimental results on several
widely used datasets show that our method can generate dis-
criminative images from video clips and improve the overall
recognition performance in both the speed and the accuracy
for video-based face recognition and person re-identification.
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1 Introduction

Video-based face recognition and person re-identification
have been attracting increasing efforts and interests over the
past few years (Wolf et al, 2011; Hu et al, 2014a; Beveridge
et al, 2013; Chen et al, 2015; Yang et al, 2016a; Li et al,
2014a; Wen et al, 2016; Schroff et al, 2015; Parkhi et al,
2015; Chen et al, 2016a; Zheng et al, 2016; Wang et al,
2016), which has many potential practical applications such
as visual surveillance and scalable video search. Compared
to image-based face recognition and person re-identification,
video-based recognition is more challenging because there
are many noisy frames in face and person videos which con-
tain unfavorable poses and viewing angles. Furthermore, as
the video usually consists of plenty of frames (e.g. more
than 100 frames), it brings considerable computational bur-
dens for the state-of-the-art video-based recognition meth-
ods such as the deep neural networks. Therefore, it is de-
sirable to present a framework that can denoise the original
videos by extracting useful information from noisy data and
reducing the overall runtime. In other words, a new frame-
work which can aggregate the information from raw videos
and keep the same or even higher discriminative ability for
efficient video-based face recognition and person re-identification
is desirable and required. Since faces in video usually have
similar appearance but vary in pose, image quality, occlu-
sion and etc, it is possible to integrate the information across
video frames and denoise the input video at the same time.

There have been varieties of efforts on integrating infor-
mation from different image frames to represent the whole
video (Huang and Van Gool, 2016; Huang et al, 2016; Yang
et al, 2016a; Lu et al, 2016; Cevikalp and Triggs, 2010).
However, most of them focus on extracting features from
raw video frames, which means that feature extraction is
performed at first before the matching procedure. This kind
of strategy will harm the recognition performance because
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Fig. 1 The basic idea of our proposed video frame aggregation
method, where we take video-based face recognition as an example.
For each face video clip, we integrate the information of each video
to produce few synthesized face images with the discriminative ag-
gregation network before feature extraction. The supervision signal of
our proposed framework makes the synthesized images more discrim-
inative than original frames in the feature space. Having completed
the video frame aggregation procedure, we only need to pass the few
aggregated face images into the feature extraction network and thus
greatly speed up the overall face recognition system.

some image frames of low quality may mislead the sys-
tem into wrong decisions, which cannot be easily distin-
guished in the feature space because such information is
usually lost during the feature extraction stage. Therefore, it
is important to conduct video frame aggregation before fea-
ture extraction for video-based face recognition and person
re-identification.

Generative adversarial networks (GAN) have achieved
great success in many fields of computer vision (Goodfel-
low et al, 2014; Chen et al, 2016b; Radford et al, 2015; Isola
et al, 2016; Zhang et al, 2016a; Larsen et al, 2015; Reed et al,
2016). Inspired by the basic idea of adversarial learning,
we propose a GAN-like aggregation network which takes
an video clip as the input and reconstruct a single image
as the output. However, the output image produced by the
generative adversarial network is only visually similar to
the original data, but does not guarantee any discriminative
power. On the other hand, metric learning (Hu et al, 2014a;
Schroff et al, 2015; Guillaumin et al, 2009; Wen et al, 2016)
has been one of the most discriminative techniques in face
recognition and person re-identification, which maps sam-
ples into a semantic feature space where they can be well
distinguished. By combining metric learning with adversar-
ial learning, we are able to train a generative model that can
produce photo-realist images and provide even stronger dis-
criminative ability simultaneously.

In this paper, we propose a discriminative aggregation
network (DAN) method for video-based face recognition
and person re-identification, where the overall framework

is shown in Fig. 1. By combining metric learning and adver-
sarial learning, DAN can aggregate the useful information of
an input video into one or several images that are discrimi-
native in the feature space for recognition. Since the number
of images to be processed is greatly reduced, our framework
significantly speeds up the whole recognition system. Un-
like existing methods which extract features from raw video
frames before other information fusion strategies, our frame-
work directly fuses the information from one raw video into
several images, and can thus distinguish low quality frames
and denoise the input video simultaneously. For video clips
with large pose variations (e.g. video tracklets in the per-
son re-identification task), we propose a video-level spa-
tial transformer network (V-STN) to align video frames be-
fore aggregation, which is a video extension of spatial trans-
former networks (Jaderberg et al, 2015) and aligns video
clips by utilizing cross-frame information. As a part of DAN,
V-STN can also be learned in an end-to-end manner without
extra labels and stabilize the training of DAN.

The contributions of this work are summarized as fol-
lows:

1. We propose a framework to aggregate video clips be-
fore feature extraction for video-based face recognition
and person re-identification. By combining the idea of
metric learning and adversarial learning, we develop a
discriminative aggregation network (DAN) to boost the
recognition performance and reduce the computational
complexity simultaneously.

2. We propose a video-level spatial transformer network
(V-STN) as an important part of DAN to align video
clips before aggregation and utilize cross-frame infor-
mation, and apply it for video-based person re-identification
to handle large pose and viewpoint variations.

3. We conduct extensive video-based face recognition and
person re-identification experiments with detailed abla-
tion studies to demonstrate the effectiveness of our pro-
posed approach. Experimental results on four widely used
datasets including the YouTube Face (YTF) (Wolf et al,
2011), Point-and-Shoot Challenge (PaSC) (Beveridge et al,
2013), YouTube Celebrities (YTC) (Kim et al, 2008),
IARPA Janus Benchmark-A (IJB-A) (Klare et al, 2015),
IARPA Janus Benchmark-B (IJB-B) (Whitelam et al,
2017) and Motion Analysis and Re-identification Set (MARS)
datasets (Zheng et al, 2016) are presented to show that
DAN can accelerate the recognition speed and improve
the recognition performance simultaneously.

2 Related Work

In this section, we briefly review four related topics: 1) video-
based face recognition, 2) video-based person re-identification,
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3) deep metric learning, and 4) conditional image genera-
tion.

2.1 Video-based Face Recognition

Existing video-based face recognition methods (Yang et al,
2016a; Lu et al, 2016; Wang et al, 2012; Lu et al, 2013; Hu
et al, 2011; Huang et al, 2014, 2015; Lu et al, 2015; Taigman
et al, 2014; Schroff et al, 2015; Parkhi et al, 2015; Sun et al,
2015; Wen et al, 2016; Chen et al, 2012; Hu et al, 2011)
can be mainly categorized into two classes: still-based and
video-based. For the first category, each video is considered
as a set of images and the information from different frames
is integrated for recognition. These methods are designed to
solve the general still-based face recognition, where they can
be easily applied into video-based face recognition (Taig-
man et al, 2014; Schroff et al, 2015; Parkhi et al, 2015; Sun
et al, 2015; Wen et al, 2016; Ding and Tao, 2017). We con-
sider this type of methods as the basis of video-based face
recognition, and our model is built upon this type of meth-
ods. For the second category, each video is modeled as an
image set, and the similarity between videos is computed
by the properties of image sets. In previous works, image-
set-based models have a variety of forms. For example, Ce-
vikalp et al. and Hu et al. modeled image sets as affine
hulls (Cevikalp and Triggs, 2010; Hu et al, 2011). Huang et
al. calculated the distances between image sets using the dis-
tances between SPD manifolds (Huang et al, 2015; Huang
and Van Gool, 2016). Lu et al. represented image sets as a
set of n-order statistics (Wang et al, 2012; Lu et al, 2013).
Yang et al. proposed an attention-based model to aggregated
features of image sets (Yang et al, 2016a). Chen et al. built a
dictionary-based method to model temporal information in
video (Chen et al, 2012). For methods from both classes, the
key challenge is how to represent a video as a single fea-
ture. In their works, they first represent frames in videos us-
ing handcrafted feature vectors or deep neural networks, and
then aggregate these features. To obtain robust and discrim-
inative representation for face recognition, there have been
many efforts to train a more powerful and robust still-based
face recognition model such as (Cao et al, 2018; Wright
et al, 2009; Ding and Tao, 2017; Wang et al, 2014). Different
from these works that try to improve recognition model, we
focus on improving the quality of input information. In this
work, we represent face videos in a different way, where
we aggregate image frames at the beginning and speed up
the recognition process by using an adversarial learning ap-
proach.

2.2 Video-based Person Re-identification

In recent years, video-based person re-identification meth-
ods have attracted great attention in computer vision (Zheng
et al, 2016; Wang et al, 2016; Xiao et al, 2016; Zhong et al,
2017; Tesfaye et al, 2017; Hermans et al, 2017; Zhou et al,
2017; Lin et al, 2017). Similar to video-based face recogni-
tion, existing video-based person re-identification methods
can be also divided into two major groups: generic meth-
ods for solving both still-based and video-based person re-
identification, and methods exploit the characteristics from
image sequences or image sets for person re-identification.
Feature matters in the person re-identification problem. For
example, (Xiao et al, 2016) proposed a domain guided dropout
method to combine training data from different datasets, which
is the first step to solve the insufficient data in person re-
identification. In (Hermans et al, 2017), an modified triplet
loss was used to achieve better optimization for feature ex-
tractor. Sequential information has been proven to be use-
ful to boost the video-based person re-identification perfor-
mance. For example, (Zheng et al, 2016; Wang et al, 2016;
Zhou et al, 2017) combined the spatial and temporal infor-
mation in person videos and observed the importance of se-
quential information in video-based person re-identification.
Furthermore, structural information of the camera network
was exploited in (Lin et al, 2017), which is also helpful for
both image-based and video-based person re-identification.
However, efficient models for video-based re-identification
have not been visited yet, which is desirable to improve the
recognition speed of a practical person re-identification sys-
tem.

2.3 Deep Metric Learning

A variety of metric learning algorithms have been proposed
in recent years, and many of them have been successfully
applied to improve the performance of face recognition and
person re-identification systems (Hu et al, 2014a; Schroff
et al, 2015; Guillaumin et al, 2009; Wen et al, 2016). How-
ever, most previous metric learning methods learn a linear
mapping to project samples into a new feature space, which
suffer from the nonlinear relationship of face and person
samples, which usually lie on or nearby a nonlinear man-
ifold. Deep metric learning (Hu et al, 2014a) aims to pro-
duces discriminative features through the combination of
deep learning and metric learning, where its key idea is to
explicitly learn a set of hierarchical nonlinear transforma-
tions to map samples into other feature space for matching,
which unify feature learning and metric learning as a joint
learning framework. These deep metric learning methods
have shown state-of-the-art performance for various visual
understanding applications such as face recognition, person
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re-identification, cross-modal matching, and image set clas-
sification. For example, Hu et al. (Hu et al, 2014a) em-
ployed a fully connected network to achieve parametric met-
ric learning. Schroff et al. presented a triplet loss function
for feature embedding. Wen et al. proposed the center loss
function to improve the faces distribution in feature space.
Different from deep metric learning methods, we propose
a new image embedding method to guide an aggregation
network to synthesize discriminative images for recognition
tasks.

2.4 Conditional Image Generation

Conditional image generation aims to generate image based
on input condition for a specific purpose. Image super-resolution
(Dong et al, 2014, 2016) is one of the most important ap-
plication of image generation techniques. Similar with the
idea of super-resolution, in this work, we try to improve the
quality of input video via a generative model. Goodfellow
et al. (Goodfellow et al, 2014) proposed the idea of genera-
tive adversarial networks (GAN), which has attracted great
attention in computer vision in recent years (Chen et al,
2016b; Radford et al, 2015; Isola et al, 2016; Zhang et al,
2016a; Larsen et al, 2015; Reed et al, 2016). Compared to
conventional generative models, GAN has shown promising
performance for generating sharper images, which demon-
strated strong abilities of photo-realistic image synthesis and
has been applied in many vision tasks. For example, Larsen
et al. combined a variational autoencoder (VAE) (Kingma
and Welling, 2013) with GAN to take the advantages from
both models and learned a high-level abstract visual fea-
tures embedding (Larsen et al, 2015). Zhang et al. devel-
oped the idea of deep convolutional GAN (Radford et al,
2015) and text-to-image synthesis (Reed et al, 2016) and
achieved impressive results on image synthesis (Zhang et al,
2016a), Isola et al. studied on a variety of image-to-image
translation applications in computer vision by combining the
traditional n-norm distance loss and adversarial loss (Isola
et al, 2016). Ledig et al. employed a GAN-like network
by using a loss function defined by high-level features to
improve the perceptual quality of image super-resolution.
However, little progress has been made in exploiting the idea
of adversarial learning for recognition tasks. In our work, we
combine the idea of adversarial learning with metric learn-
ing to aggregate photo-realistic images discriminatively for
boosting the video-based face recognition and person re-
identification performance.

3 Approach

In this section, we first formulate the problem of video-based
face recognition and person re-identification with the pro-

posed discriminative aggregation network. Then we show
the overall framework and the training methodology of our
proposed method. Lastly, we present the proposed V-STN
method for video clip alignment before aggregation, which
aims to handle the large pose and viewpoint variations of
persons in videos across different cameras.

3.1 Problem Definition

We first take video-based face recognition as an example
to illustrate the basic idea of our proposed method. Video-
based face recognition aims to recognize whether a face video
belongs to a certain subject. Such videos usually contain
more than 100 frames (like videos in the YouTube Face dataset)
and brings considerable computational burdens for existing
methods. The goal of our discriminative aggregation net-
work (DAN) framework is to aggregate a long video into one
or a few frames while still remains or increases the discrim-
inative power, which can be used for effective and efficient
face recognition.

Specifically, we denote our goal as the following objec-
tives:

V m→ Xn (1)

subject to

m > n (2)

and

Dis(F(Xp),F(Xn))> Dis(F(Vp),F(Vn)), (3)

where V m is the input video with m frames and Xn is the ag-
gregated n images, with m is much greater than n. The sub-
scripts p and n refer to positive and negative samples and
F is the feature extraction network. We used a function Dis
to evaluate the discriminative ability between positive and
negative samples. This means that we can greatly reduced
the number of images to be processed with DAN, while the
aggregated images still have more discriminative ability in
the feature space of certain CNN F . By maximizing the dis-
criminative ability of synthesized images and limiting the
number of input frames, only the most informative frames
are remained after aggregation, which enables our model to
identify low quality frames and denoise input videos.

3.2 Overall Framework

Fig. 2 shows the overall framework of our proposed discrim-
inative aggregation network (DAN) framework. DAN con-
sists of 3 sub-networks, which are defined as the aggregation
(generator) network G, the discriminator network D and the
feature extraction network F . We denote the whole video as
V . For the ease of implementations, at each time we aggre-
gate a subset S of V into a single image, so that the input of G
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Fig. 2 Detailed architecture of our proposed framework. The numbers are either the feature map channel for convolutional blocks or feature
dimension for fully connected layers. The synthesized image has the same height and width as the input video frame. The output of aggregation
network is then fed into the discriminative network for adversarial learning, and the feature extraction network to increase the discrimination.
Different losses are applied at different places as illustrated in this figure.

is a subset S and the output is a single discriminative image
X . The discriminator D aims to judge whether the image is
generated by G or selected from the original video, forming
adversarial learning with G. The feature generator network
F extracts features from the aggregated images, and tries to
make the feature as discriminative as possible in the feature
space.

The aggregation network G starts with several convolu-
tion blocks into smaller feature maps, and then reconstructs
the aggregated output image with several deconvolution blocks,
where the kernel size of all convolution layer is 3× 3. We
also add a skip connection between the first and high-level
feature maps by following another GAN based framework (Ledig
et al, 2016). For ease of implementation, input frames are di-
rectly concatenated along their channel dimension. The dis-

criminator network D consists of several convolution blocks
and finally produces 1 output denoting whether the image is
generated or selected from the original video. For the aggre-
gation network, each convolutional block consists of a stan-
dard convolution layer and a batch normalization layer (Ioffe
and Szegedy, 2015). For the discriminator network, each
convolutional block is a standard convolution layer. The ker-
nel size and stride of convolutional layers is 3×3 and 1×1
respectively. All max pooling layers have the kernel size of
2× 2 and a stride of 2. For the upsampling layer, we use a
bilinear filter with stride 2 to upscale feature maps. All hid-
den layers in both G and D use PReLU (He et al, 2015) as
activations, and the output layer of G uses the tanh nonlin-
earity to produce normalized pixel values. The output layer
of D use the sigmoid nonlinearity to produce the possibil-
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ity of whether the input image is true or synthesized. G and
D are trained iteratively so that they can provide loss signal
to each other to reach an optimal balance, where the gener-
ated output of G cannot be distinguished from ground-truth
images. For the feature extraction network F , we use the net-
work provided by the author of (Wen et al, 2016), which is
a residual convolutional network (He et al, 2016). We keep
F unchanged during the training process.

3.3 Loss Function

We expect that our framework DAN can aggregate a video
clip into a single image while at the same time gain more
discriminative power. To achieve this, we design the follow-
ing loss function:

L = λL Dis +ηL Rec + γL GAN (4)

where L Dis is the discriminative loss, L Rec is the recon-
struction loss, and L GAN is the adversarial loss. We set the
weight of adversarial loss γ to 0.01 following (Isola et al,
2016) and set λ and η to 1 in all of our experiments.

3.3.1 Discriminative Loss

Samples from face and person datasets consists of posi-
tive video pairs and negative video pairs. We use the term
(X ,P) for positive pairs and (X ,N) for negative pairs, where
X is the aggregated image, P and N are positive and neg-
ative samples randomly chosen from the other video clips
respectively.

To make the generated image discriminative, we propose
the discriminative loss as follows:

L Dis =

{
(||F(X)−F(P)||2−α)+ y = 1
(β −||F(X)−F(N)||2)+ y = 0

(5)

and

α = min
A∈S
||F(A)−F(P)||2 (6)

where y is the label either 1 or 0 denoting positive or nega-
tive pairs, F is the feature extraction network, S is the subset
clip to be aggregated, and A is one of a frame in it. We use
the Euclidean distance to compute the distance between two
feature representations. α is the smallest distances between
all frames in S and P. β is a manually set constant margin.
The subscript + means max(0, ·).

The basic idea of this loss is that if we sample a positive
video pair from training data, and take a subset S of one
video for aggregation and randomly sample a frame P from
the other video, we expect the aggregated image X is closer
to P than any other frame from the original video subset
S in the feature space of F . Contrarily, if negative sample is

considered, we expect the distance between generated X and
N is greater than a certain margin. With such a loss function,
we guarantee the feature of aggregated image extracted by
F is more discriminative than original frames.

3.3.2 Reconstruction Loss

Since we reconstruct a face image from a compressed rep-
resentation, we need to exert reconstruction loss on the out-
put image. Here we compared three forms of reconstruction
losses as shown in Fig. 2.

Pixel-wise MSE loss is the most widely used objective
function for existing frameworks like (Dong et al, 2016; Shi
et al, 2016), which is calculated as:

L Rec
MSE =

1
NI
||I−X ||2F (7)

where I is the original image and X is the reconstructed one.
NI is the number of total pixels in an image.

Another reconstruction loss is the one proposed in (Ledig
et al, 2016), which focuses on the feature map difference be-
tween reconstructed or original image, as shown in the bot-
tom part in Fig. 2. The loss function is defined as follows:

L Rec
FM =

1
N

n

∑
i=1
||φi(I)−φi(X)||2F (8)

where φ maps image to its high-level feature maps, and in
our case. We use the convolutional part of feature extraction
network F as φ . The subscript i denotes the index of chan-
nel, with totally n feature maps. NFM is the number of total
entries of feature maps.

We cannot naively define the above two forms of recon-
struction loss, as there are multiple images in the input S.
For ease of implementation, we choose I according to the
following rule:

I =

{
argminA∈S||F(A)−F(P)||2 y = 1
argmaxA∈S||F(A)−F(N)||2 y = 0

(9)

However, the two forms of reconstruction loss both fo-
cus on visually similarity, from a shallow to upper level.
They can guarantee visual characteristics but not semantic
information or discriminative power. DAN focuses on the
feature representation extracted from the aggregated image,
so it is naturally to apply reconstruction loss to the feature
embedding. Hence, we propose the following reconstruction
loss:

L Rec
FC = ||F(X)−mean(F(V m))||2 (10)

where F is the feature extraction network, and V m is the
original video consisting of m frames. We expect that the
feature of reconstructed image is close to the mean of fea-
tures extracted from V per frame to reduce the intra-class
distance.

We present detailed analysis on these three forms of re-
construction losses in Section 4.3.
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Algorithm 1 Minibatch Stochastic Gradient Descent.
Input: Training video pairs, learning rate lr, iterative number It , and

parameter λ ,η .
Output: Aggregation network G
1: Initialize G with MSE pretrained model.
2: Initialize D with pretrained model.
3: Load model of F .
4: for iter < It do
5: for k steps do

– Sample a video V from the training set, and aggregate a subset
S into image X = G(S).

– Sample a frame A from the subset S
– Update the discriminator by ascending its stochastic gradient:

∇L GAN

6: end for
– Sample a video sampling V from the training set, and aggre-

gate a subset S into image X = G(S).
– Calculate the reconstruction target of L Rec from selected V
– Update the aggregation by descending its stochastic gradient:

∇L = ∇(L Dis +L Rec +Ebatch[log(1−D(G(S))])

7: end for
8: return Neural network G

3.3.3 Adversarial Loss

In addition to the reconstruction loss, we also add the ad-
versarial loss to our framework as widely adopted in GAN-
based frameworks (Chen et al, 2016b; Radford et al, 2015;
Isola et al, 2016; Zhang et al, 2016a; Larsen et al, 2015;
Reed et al, 2016). This encourages G to generate aggregated
outputs that are close to the natural distribution, by forming
adversarial learning with G. The loss is defined based on the
possibility whether an image comes from the original video,
denoted as:

L GAN = EA∼ptrain(A)[logD(A)] (11)

+ EV m∼ptrain(V m)[log(1−D(G(V m))]

Here D(G(V m)) is the probability that the aggregated
image G(V m) is a natural image taken from the original
video V m. The goal of D is to maximize LGAN while G tends
to minimize it. D and G play the minimax game until reach-
ing a balanced state. D and G are trained iteratively follow-
ing commonly used settings.

The overall training procedure of our DAN method is
summarized in Algorithm 1.

3.4 V-STN for Video-based Person Re-identification

For video-based person re-identification, frames in video clips
usually have large pose and location variations, because of
changing human pose and imperfect human detections (for
example, human bounding boxes in (Zheng et al, 2016) were
generated by the inaccurate DPM detector (Felzenszwalb

et al, 2010)). However, convolutional neural networks are
lack of the ability to be spatially invariant to the input date.
Since the above-proposed DAN is a fully convolutional model,
large variations in video clips will significantly harm the per-
formance of our model and lead to unstable training process.
To tackle this problem, we propose an extension of spatial
transformer networks (Jaderberg et al, 2015), called video-
level STN as a pre-processing module for input video clips,
which takes the video clips as input and produces aligned
video frames to provide spatial transformation capabilities
for DAN.

The spatial transformer (Jaderberg et al, 2015) is an op-
erator to perform spatial transformation on the input data,
which consists of three components: localisation network
floc, grid generator and sampler. The operator produces an
affine transformation parameters θ for the input feature maps
U ∈ RW×H×C with width W , height H and C channels and
applies the corresponding transformation Tθ on U . Our pro-
posed video-level spatial transformer network (V-STN) is
built upon the spatial transformer operator. Different from
the original spatial transformer operator, the input data of
our framework is a video clip instead of a single image. To
utilize the cross-frame information for video clip alignment,
we design a video-level spatial transformer operator, which
is detailed as follows.

Given a video clip X ∈ RN×W×H×C with N frames, the
video-level localisation network f̂loc aims to estimate the
affine transformation parameters θ̂ ∈ RN×2×3 for video clip
alignment. Then, a video-level grid generator and a video-
level sampler are used to apply transformation parameters θ̂

to corresponding frames in X and produce an aligned video
clip X̂ .

The video-level localisation network f̂loc begins with sev-
eral convolutional blocks into smaller feature maps, and then
produce affine transformation parameters θ̂ with two attached
fully connected layers. Each convolutional block consists of
a 3×3 convolutional layer with stride 2, a batch normaliza-
tion layer and a PReLU activation. The detailed architecture
of V-STN is illustrated in Fig. 3.

Following (Jaderberg et al, 2015), we train the V-STN
model in an end-to-end manner as a part of DAN, so that the
video-level localisation network can be directly optimized
for the above objectives via back propagation. More tech-
nical details about the gradient expression of STN can be
found in (Jaderberg et al, 2015).

4 Experiments

We conducted experiments to evaluate our proposed DAN
and V-STN methods on four widely used datasets for video-
based face recognition and person re-identification, includ-
ing YouTube Face (YTF) (Wolf et al, 2011), Point-and-Shoot
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Fig. 3 Detailed architecture of V-STN. The numbers are either the feature map channel for convolutional blocks or feature dimension for fully
connected layers. N is the number of frames in input video clip.

Table 1 Detailed information of the feature extraction network for
video-based face recognition on YTF, PaSC and YTC. We present the
number of parameters, FLOPs and face verification accuracy (%) on
the LFW and YTF datasets.

# Parameters FLOPs LFW accuracy YTF accuracy
2.75×107 2.9×109 97.96 93.16

Challenge (PaSC) (Beveridge et al, 2013), YouTube Celebri-
ties (YTC) (Kim et al, 2008), IARPA Janus Benchmark-
A (IJB-A) (Klare et al, 2015), IARPA Janus Benchmark-B
(IJB-B) (Whitelam et al, 2017) and Motion Analysis and Re-
identification Set (MARS) (Zheng et al, 2016). Specifically,
we evaluated our DAN on YTF, PaSC and YTC datasets for
face recognition, and DAN with V-STN on MARS for per-
son re-identification.

4.1 Datasets and Protocols

YTF: The YouTube Face (YTF) dataset is a widely used
video face dataset, which contains 3,425 videos of 1,595 dif-
ferent subjects. In this dataset, there are many challenging
videos, including amateur photography, occlusions, prob-
lematic lighting, pose and motion blur. The length of face
videos in this dataset vary from 48 to 6,070 frames, and the
average length of videos is 181.3 frames. In experiments,
we followed the standard verification protocol and tested
our method for unconstrained face 1 : 1 verification with the
given 5,000 video pairs. These pairs are equally divided into
10 splits, and each split has around 250 intra-personal pairs
and around 250 inter-personal pairs.

PaSC: The Point-and-Shoot Challenge (PaSC) dataset
contains 2,802 videos of 265 subjects. In this dataset, videos
have different distances to the camera, viewpoints, the sen-
sor types and etc. The dataset is composed of two parts, in

which videos are taken by control and handheld cameras
respectively. Compared to the YTF dataset, PaSC is more
challenging because faces in this dataset have full pose vari-
ations. We followed the standard 1 : N verification protocol
and tested our method on both control and handheld parts of
the dataset.

YTC: The YouTube Celebrities (YTC) dataset contains
1,910 videos of 47 subjects and the number of frames varies
from 8 to 400. We followed the protocol of standard ten-fold
cross validation and randomly selected 3 videos for training
and 6 videos for testing for each subject in each fold. We
used the dataset to evaluate the performance of our method
on the video-based face identification task.

IJB-A and IJB-B: The IARPA Janus Benchmark-A (IJB-
A) consists of 5,712 images and 2,085 videos from 500 sub-
jects, with an average of 11.4 images and 4.2 videos per sub-
ject. The IJB-A dataset is challenging since all images and
videos in this dataset are captured from unconstrained en-
vironment and vary in expression and image qualities. The
IARPA Janus Benchmark-B (IJB-B) datasets is an extension
of IJB-A, where more than 21,800 images from 1,845 sub-
jects and 55,000 frames from 7, 011 videos are contained
in this dataset. In the IJB-A and IJB-B datasets, images and
video frames that belong to the same subject are grouped
into several ”templates”, where recognition algorithm needs
to perform face verification or identification on these tem-
plates instead of face images or frames. For the IJB-A dataset,
our model was trained on training set of each split and eval-
uated on the corresponding test set for both face verification
and identification tasks. In the IJB-B dataset, two gallery
sets that are disjoint from each other are provided. Since
training set is not provided in the IJB-B dataset, we divided
all templates into two subsets for training and evaluation re-
spectively, where the training set is disjoint with the gallery
set. Therefore, two different models are trained for each gallery



Learning Discriminative Aggregation Network for Video-based Face Recognition and Person Re-identification 9

Table 2 Detailed information of the datasets used for training the feature extraction network for person re-identification.

Dataset #identities #training images #testing images # camera detection method

CUHK01 (Li and Wang, 2013) 971 1552 388 2 hand
CUHK03 (Li et al, 2014b) 1467 21012 5252 5 DPM
PRID (Hirzer et al, 2011) 385 2997 749 2 -
Shinpuhkan (Kawanishi et al, 2014) 24 18004 4500 16 -
VIPeR (Gray et al, 2007) 632 506 126 2 hand
3DPeS (Baltieri et al, 2011) 193 420 104 6 hand
iLIDS (Zheng et al, 2009) 119 194 48 - hand
Market-1501 (Zheng et al, 2015) 1501 12,936 19,732 6 DPM
Our combination 3380 63536 5252 - -

Table 3 Detailed information of feature extraction network for video-
based person re-identification. We present the number of parameters,
FLOPs and rank-1 accuracy (%) on the CUHK03 and MARS datasets.

#Parameters FLOPs rank-1 CUHK03 rank-1 MARS
2.56×107 6.1×108 87.87 84.29

using the corresponding training set, and the 1:N identifi-
cation performance is measured across two gallery sets for
both mixed media and video face recognition tasks.

MARS: The Motion Analysis and Re-identification Set
(MARS) dataset is an extended version of the Market1501
dataset for video-based person re-identification, which con-
tains 20,478 tracklets of 1,268 identities captured by 6 dif-
ferent camera views. Bounding boxes of this dataset is au-
tomatically generated by the DPM person detection detec-
tor (Felzenszwalb et al, 2010)). Due to the inaccuracy of
the detector, this dataset contains 3,248 distractors. We used
the dataset to evaluate our DAN with V-STN on the video-
based person re-identification task by following the evalua-
tion codes and splits provided by the authors of MARS.

4.2 Implementation Details

In this section, we present the implementation details of our
approach from five aspects: 1) data pre-precessing, 2) fea-
ture extraction networks, 3) training details, 4) testing de-
tails, and 5) experimental environments.

Data Pre-processing: For video-based face recognition,
we employed the MTCNN method (Zhang et al, 2016b) to
detect 5 points landmarks for each face frame per video by
following (Wen et al, 2016). If the detection fails, we used
the landmarks provided by datasets. Moreover, we used sim-
ilarity transformation to align faces according to the land-
marks, and cropped and resized faces to remove the back-
ground information. In our experiments, we use 224×224
face images for IJB-A and IJB-B and use 112×96 images
for other datasets according to the input sizes of feature ex-
traction networks. For video face identification task (Task

5) of IJB-B, since only the first frame in each video is an-
notated, we employ the face detection algorithm described
in (Yang et al, 2016b) to find faces in the following frames.
Having detected all faces in videos, we use a pre-trained face
recognition provided by the author of (Cao et al, 2018) to
remove faces that belong to different subject from the first
frame by applying a threshold. After filtering , we obtained
7,110 templates that are composed of video frames, where
the length of templates vary from 1 to 1241 frames and the
average length is 13.2 frames. For video-based person re-
identification, the bounding boxes provided by dataset were
directly used for training and testing. As mentioned above,
we resized each bounding box into 144×56 pixels. In order
to reduce the influences of different lengths of videos, each
video was re-sampled to 200 frame. In practice, our aggre-
gation network can be applied to images of arbitrary size
since it is fully convolutional. In our experiments, we only
computed the cosine similarity by using feature vectors of
frames or images directly to measure the recognition perfor-
mance for both the video-based face recognition and person
re-identification tasks. Here we did not use the horizontal
flip, multi-cropping, PCA and re-ranking tricks for all ex-
periments. The reason is that most state-of-the-art methods
also have not utilized these tricks and we expect to compare
our method with these methods fairly.

Feature Extraction Networks: For the video-based face
recognition task in YTF, PaSC and YTC, we used the still
face recognition network trained by the supervision signal
of the joint softmax loss and center loss (Wen et al, 2016)
provided by authors of (Wen et al, 2016). Architecture of
the network is a 29-layer residual network that is not applied
bottleneck structure, where the kernel size and stride of all
convolutional layers are set to 3× 3 and 1, and the kernel
size and stride of all max pooling layers are set as 2×2 and
2, respectively. The network used the PReLU function (He
et al, 2015) as activations. We present the detailed infor-
mation of the network in Table 1. For the face verification
task, we followed the standard protocol of the LFW (Huang
et al, 2007) and YTF (Wolf et al, 2011) datasets. Since the



10 Yongming Rao, Jiwen Lu, Jie Zhou

Table 4 Comparisons of the baseline person re-identification network with state-of-the-art results.

CUHK03 MARS
Method rank-1 rank-5 rank-10 mAP rank-1

MARS (Zheng et al, 2016) - - - 49.3 68.3
Guided Dropout (Xiao et al, 2016) 75.3 - - - -
Joint Spatial and Temporal (Zhou et al, 2017) - - - 50.7 70.6
Triplet Loss (Hermans et al, 2017) 75.5 95.2 99.2 67.7 79.8
Our 87.87 96.78 98.18 69.58 84.29

IJB-A and IJB-B datasets contain more challenging face im-
ages and frames, we employ more powerful face recogni-
tion network (Cao et al, 2018) as the feature extraction net-
work, which is a SENet-50 (Hu et al, 2018) model trained on
an unconstrained face dataset called VGGFace2 (Cao et al,
2018). For the video-based person re-identification task, we
used a feature extractor CNN by following (Xiao et al, 2016).
To build a strong baseline network to demonstrate the ef-
fectiveness of proposed method, we adopted an ImageNet
pre-trained ResNet-50 (He et al, 2016) network as the back-
bone CNN. Following (Xiao et al, 2016), we only trained
a single model by using a combination of serval person re-
identification datasets (Xiao et al, 2016): CUHK01 (Li and
Wang, 2013), CUHK03 (Li et al, 2014b), PRID (Hirzer et al,
2011), Shinpuhkan (Kawanishi et al, 2014), VIPeR (Gray
et al, 2007), 3DPeS (Baltieri et al, 2011), iLIDS (Zheng
et al, 2009) and additional Market-1501 (Zheng et al, 2015)
dataset. CUHK01 was captured by using two camera views
and contains 1552 images totally. CUHK03 consists of five
different pairs of camera views, which has more than 14,000
images of 1467 subjects. PRID extracts pedestrian images
from recorded trajectory video frames with two camera views,
which contains 1134 identities in total. Shinpuhkan is a large-
scale dataset with more than 22,000 images of only 24 sub-
jects captured by 16 cameras. The other 3 datasets are rela-
tively small, and we keep them in our training data to main-
tain the diversity. In our implementations, an extra dataset
Market-1501 was used, which is another large-scale dataset
with more than 32,000 images of 1501 subjects. We find
that adding this dataset can greatly improve the ability of
feature extraction network, since the Market-1501 dataset
can provide rich information on intra-personal variations. At
the training stage, we used both the training and the testing
data of all of above-mentioned dataset for training except
CUHK03 and Market-1501, and the test set of CUHK03
was used for validation. The detailed information of these
datasets and training data of our model are summarized in
Table 2. In our implementations, each image was resized
into 144× 56 pixels as (Xiao et al, 2016), which has been
proven to be a good trade-off between computational com-
plexity and accuracy. At the training stage, horizontal flip-
ping was used for data augmentation. We employed a joint

softmax loss and triplet loss as supervision signal to train the
network, where the margin of triplet loss was set to 0.3 and
the size of mini-batch was set to 128. In each mini-batch,
we sampled 4 images for each identity and thus each mini-
batch contains exactly 32 identities. A standard SGD opti-
mizer with momentum 0.9 and weight decay of 0.0001 was
used. The network was trained for 80 epoches with initial
learning 0.01, and we decreased the learning rate by 10 at
40 and 60 epoch. We further evaluated our feature extrac-
tor on the test sets of CUHK03 and MARS by following the
standard protocol, which is presented in Table 3. We com-
pared our baseline model with other works on the test sets
of CUHK03 and MARS in Table 4.

Training Details: We set the input of aggregation net-
work as 20 video frames in our implementations, which is
a good trade-off of efficiency and complexity. When train-
ing the adversarial networks, we followed the standard ap-
proach (Goodfellow et al, 2014) and set k as 1. We alter-
nately updated one step for the discriminator network and
one step for the aggregation network. To optimize our pro-
posed networks, we employed the mini-batch stochastic gra-
dient descent (SGD) with the batch size of 16 and applied
the Adam (Kingma and Ba, 2014) optimizer. We set the
learning rate, β1 and β2 as 0.0001, 0.5 and 0.999, respec-
tively. We used the aggregation and discriminator networks
pre-trained by the supervision signal of the MSE loss as ini-
tialization before using the other reconstruction losses and
discriminative losses to avoid the local optima. Each net-
work was trained for 10,000 iterations. We turned off the up-
date of batch normalization parameters during the test time
to ensure that the output depends only on the input (Ioffe
and Szegedy, 2015). To improve the ability and robustness
of DAN model, input video frames are chosen in random or-
der, thus the order of input frames will not affect the quality
of synthesized image. The parameter λ and η in equation 4
is set as 1.0, and the weight of GAN loss γ is set as 0.01,
which is the same as (Isola et al, 2016). For PaSC and YTC
which have relatively small training sets, we fine-tuned the
model trained on all videos of YTF to report the recognition
result. For IJB-A and IJB-B, we choose to aggregate video
frames in template instead of the whole template, because:
1) compared to images, video frames are the most redundant
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Table 5 Comparisons of the average verification accuracy (%) of our
method with the state-of-the-art face verification results on the YTF
dataset.

Method Accuracy

LM3L (Hu et al, 2014b) 81.3±1.2
DDML (Hu et al, 2014a) 82.3±1.2
EigenPEP (Li et al, 2014a) 84.8±1.4
DeepFace-single (Taigman et al, 2014) 91.4±1.1
DeepID2+ (Sun et al, 2015) 93.2±0.2
FaceNet (Schroff et al, 2015) 95.12±0.39
Deep FR (Parkhi et al, 2015) 97.3
NAN (Yang et al, 2016a) 95.72±0.64
Wen et al. (Wen et al, 2016) 94.9
CNN 93.16±0.97
DAN 94.28±0.69
CNN-finetuned 94.12±0.76
DAN-finetuned 95.01±0.60

and computationally dense part in face recognition system;
2) our method focuses on reduce redundant computational
cost on video frames that have similar face appearance but
vary in pose, image quality, occlusion and etc. Moreover,
aggregating the whole template that include faces from dif-
ferent ages and backgrounds is difficult to learn and will sig-
nificantly harm recognition perform while the diversity of
faces in input template is reduced. For mixed media tasks in
IJB-A and IJB-B, each video was re-sampled to 20 frames,
then a DAN model was trained to aggregate these frames to a
single image. Following the practice in (Cao et al, 2018), we
generate descriptor of each template by averaging descriptor
of each media, where the descriptor of each media is com-
pute by averaging the CNN feature vectors of images in that
media. For video identification task in IJB-B, we did not re-
sample input video and aggregated every 20 frames to a im-
age, thus feature vector of a input video can be obtained by
averaging the CNN features of aggregated images. A DAN
model with V-STN was trained for the MARS dataset, and
we report the results on the test set of MARS by following
the standard protocol.

Testing Details: For all of these datasets, we firstly used
our proposed method to aggregate the whole video into 10
images by aggregating every 20 frames to a single image
following their order. Then we use the feature extraction
network and the mean-pooling operation to represent each
video as a single feature vector. For the face verification
task, we used the cosine similarity and threshold compari-
son, where thresholds were computed from the training set.
For the classification task, we computed the cosine similar-
ity between examples in the training set and the testing set
and decided the categories according to the nearest neighbor
rule.

Table 6 Comparisons of the verification rate (%) of our method with
the other state-of-the-art results on the PaSC dataset at a false accept
rate (FAR) of 0.01.

Method Control Handheld

PittPatt 48.00 38.00
DeepO2P (Ionescu et al, 2015) 68.76 60.14
VGGFace 78.82 68.24
SPDNet (Huang and Van Gool, 2016) 80.12 72.83
GrNet (Huang et al, 2016) 80.52 72.76
CNN 90.78 78.67
DAN 92.06 80.33
CNN-finetuned 93.76 91.34
DAN-finetuned 94.88 92.12

Table 7 Comparisons of the classification accuracy (%) of our method
with the other state-of-the-art results on the YTC dataset.

Method Accuracy

MDA (Wang and Chen, 2009) 67.2±4.0
LMKML (Lu et al, 2016) 70.31±2.52
MMDML (Lu et al, 2015) 78.5±2.8
GJRNP (Yang et al, 2016b) 81.3±2.0
DRM-WV (Hayat et al, 2015) 88.32±2.14
CNN 96.79±1.27
DAN 97.32±0.71
CNN-finetuned 96.88±1.12
DAN-finetuned 97.70±0.72

Experimental Environments: For the video-based face
recognition task, our models were trained and tested by us-
ing the Python interface of Caffe (Jia et al, 2014) on a Tesla
K80 GPU. For video-based person re-identification, our method
was implemented using the PyTorch interface (Paszke et al,
2017) on a GTX 1080Ti GPU.

4.3 Results and Analysis

4.3.1 Comparisons with State-of-the-Arts

Tables 5-10 show the recognition results of different meth-
ods on the YTF, PaSC, YTC, IJB-A, IJB-B and MARS datasets,
respectively. For all these six datasets, we report the average
accuracy obtained by our framework, denoted as DAN in
these tables. We also report the results by directly passing
all the video frames through feature extraction CNN F with
mean pooling for comparison, which is denoted as CNN in
these tables.

The results show that DAN outperforms the original CNN
for dense feature extraction on all datasets. This is a strong
baseline with high computation complexity, showing that
the aggregated images produced by DAN are more discrim-
inative than original video frames. These results also show
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Table 8 Comparisons of mixed media verification and identification performance of our method with recent state-of-the-art results on IJB-A
dataset.

1:1 verification TAR (%) 1:N identification accuracy (%)
Method FAR=0.1 FAR=0.01 FAR=0.001 rank-1 rank-5 rank-10

Pooling Faces (Hassner et al, 2016) - 81.9 63.1 82.8 92.1 94.3
Disentangled (Tran et al, 2017) - 77.4 ± 2.7 53.9 ± 4.3 85.5 ± 1.5 94.7 ± 1.1 -
Domain Adaptation (Sohn et al, 2017) 97.0 ± 0.1 86.4 ± 0.7 64.9 ± 2.2 89.5 ± 0.3 95.7 ± 0.2 96.8 ± 0.2
Template Adaptation (Hermans et al, 2017) 97.9 ± 0.4 93.9 ± 1.3 83.6 ± 2.7 92.8 ± 1.0 97.7 ± 0.4 98.6 ± 0.3
NAN (Yang et al, 2016a) 97.8 ± 0.3 94.1 ± 0.8 88.1 ± 1.1 95.8 ± 0.5 98.0 ± 0.5 98.6 ± 0.3
VGGFace2 (Cao et al, 2018) 99.0 ± 0.2 96.8 ± 0.6 92.1 ± 1.4 98.2 ± 0.4 99.3 ± 0.2 99.4 ± 0.1
CNN 98.1 ± 0.4 94.0 ± 1.2 90.3 ± 2.1 97.7 ± 0.5 98.9 ± 0.2 99.3 ± 0.1
DAN 98.3 ± 0.4 94.1 ± 0.9 91.0 ± 1.4 98.0 ± 0.4 99.0 ± 0.2 99.3 ± 0.1

Table 9 Comparisons of mixed media and video identification performance of our method with recent state-of-the-art results on IJB-B dataset.

1:N mixed media accuracy (%) 1:N video accuracy (%)
Method rank-1 rank-5 rank-10 rank-1 rank-5 rank-10

IJB-B (Whitelam et al, 2017) 79.0 85.0 90.0 - - -
VGGFace2 (Cao et al, 2018) 90.2 ± 3.6 94.6 ± 2.2 95.9 ± 1.5 - - -
CNN 89.1 ± 3.5 93.5 ± 2.0 95.0 ± 1.3 70.3 ± 3.8 78.6 ± 3.2 80.2 ± 2.5
DAN 89.9 ± 3.0 93.7 ± 1.8 95.2 ± 1.2 73.2 ± 3.0 80.4 ± 2.7 82.2 ± 2.0

Table 10 Comparisons of the mAP and rank-1 accuracy (%) of our
method with the other state-of-the-art results on the MARS dataset.

Method mAP rank-1

Compact Appearance (Zhang et al, 2017) - 55.5
Multi-target (Tesfaye et al, 2017) - 68.2
MARS (Zheng et al, 2016) 49.3 68.3
Joint Spatial and Temporal (Zhou et al, 2017) 50.7 70.6
Quality Aware (Liu et al, 2017) 51.7 73.7
Re-ranking (Zhong et al, 2017) 68.5 73.9
Triplet Loss (Hermans et al, 2017) 67.7 79.8
CNN 69.58 84.29
DAN with V-STN 70.23 84.65

the robustness and denoising ability of the proposed DAN
method.

Compared to previous state-of-the-art methods, DAN out-
performs all of them on PaSC, YTC and MARS. On YTF,
DAN achieves competitive but not the best result. This is
largely due to the baseline CNN which is comparatively
weaker than those of (Schroff et al, 2015) and (Yang et al,
2016a). But the gained improvement over baseline CNN re-
sult has already proven the effectiveness. To further show
the effectiveness of the proposed method, we fine-tuned the
baseline CNN model on the training set of the correspond-
ing video face datasets following the practice in (Ding and
Tao, 2017) and supervised by the triplet loss with the learn-
ing rate of 0.001 and keep all other experiment settings un-
changed. The results are shown in Table 5-7, where the re-

sults measured on fine-tuned models are referred as CNN-
finetuned and DAN-finetuned. We can see that our method
can still improve final results based on the fine-tuned CNN
model. These results prove that our method generalizes well
with different feature embedding models.

Experimental results IJB-A and IJB-B are shown in Ta-
ble 8 and Table 9 respectively, where performance is re-
ported using the true accept rates (TAR) at different false
positive rates (FAR=0.1, 0.01, 0.001) for verification task
and rank-n accuracy (n=1, 5, 10) for identification task. It
can be observed that our method can consistently outper-
form the baseline method and achieve competitive results
compared to recently proposed state-of-the-art methods. These
results show that our method generalizes well on different
datasets and can handle unconstrained faces. For the mixed
media recognition task, since the final descriptor of template
is a combination of image and video features, our method
can only slightly improve the baseline method. However,
DAN can reduce around 70% redundant computation cost
on feature extraction (67.7% on IJB-A and 71.2% on IJB-
B). It can be observed that CNN baseline of video-based
identification is much lower than other tasks. We believe it
is because that the gallery sets of IJB-B only consisted of
images, and the domain gap between image and video can
severely harm recognition performance. Since our method
can help video frames to have better embedding in feature
space and close the gap between frames and images, our
method can significantly improve recognition performance
in this task.
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Table 11 Runtime analysis on YTF with the 29-layers Residual net-
work.

Method Runtime(ms) Processed frames

CNN 819.7 181
Random + CNN 42.0 10
DAN 126.1 200

Table 12 Runtime analysis on MARS with ResNet-50. Note that we
report the average inference time on all videos on the test set of MARS.

Method Runtime(ms)

CNN 124.32
Random + CNN 7.77
DAN with V-STN 10.53

4.3.2 Runtime Analysis

Efficiency is one advantage of our framework. To show the
efficiency of our method, we give a short analysis of the
runtime of our method. For dense feature extraction base-
lines, we calculated that the average frame number of the
YTF dataset is 181.3, which is used to measure the run-
time. For the random CNN protocol, we randomly selected
10 frames from the video and measure the forward time. For
our DAN, we measured the overall time including aggregat-
ing 200 frames into 10 images with DAN and the forward
time of CNN. Similar results can be also observed on the
MARS dataset with the V-STN model. The results are shown
in Table 11 and Table 12, respectively.

From these tables, we see that our DAN is much faster
than the baseline method with the dense feature extraction,
and has only little overhead compared to the random sam-
pling baseline. Moreover, DAN achieves the best recogni-
tion performance among all these compared methods, which
further shows the effectiveness and efficiency of our pro-
posed DAN framework.

4.3.3 Ablation Study

To further understand and analyze the performance of our
proposed method, we conducted several ablation experiments
as follows.

Investigation of the influence of frame numbers: To
investigate into the influence of frame numbers, we formed
two subsets of original video frames besides dense CNN fea-
ture pooling: (1) randomly sampling the same number of
frames as generated by DAN from the original video, which
is 10 in our case; (2) performing mean pooling on similar
faces and summarizing the whole video as 10 frames. We
measured the performance by the mean pooling on corre-
sponding CNN features and denoted results as Random +
CNN and Hierarchical Pooling respectively. Results with

Fig. 4 CMC curve on MARS. DAN with V-STN surpasses all other
baseline models and V-STN can greatly improve the performance of
our previous DAN model without V-STN.

Fig. 5 The examples of original video frames and the aggregated
images (on the left), and the distribution of their features after t-
sne (Maaten and Hinton, 2008) (on the right). The crossings refer to
original video frames and the dots refer to synthesized images. From
the distribution we can see that DAN can decrease the intra-class dis-
tance while increase the inter-class distance.

different inference methods are presented in Table 13. We
see from this table that our proposed DAN method consis-
tently outperforms all other inference methods on all four
datasets, including dense feature extraction, random sam-
pling and hierarchical pooling methods. Note that for video
clips with large pose variances such as videos from the MARS
dataset, directly performing the mean pooling operator on
original frames will significantly harm the recognition per-
formance, which shows that our method is more robust and
effective than other methods.

Investigation of Loss Functions: To investigate the ef-
fectiveness of different terms of the loss function of our
DAN, we conducted experiments with different variations of
DAN with different combinations of these loss terms. Here
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Table 13 Investigation of the influence of frame numbers used in our method and the corresponding accuracy (%).

YTF PaSC YTC MARS
Method Accuracy Control Handheld Accuracy mAP rank-1

CNN 93.16±0.97 90.78 78.67 96.79±1.27 69.58 84.29
Random + CNN 92.80±1.17 89.12 78.03 96.63±1.31 67.23 81.22
Hierarchical Pooling 93.15±1.12 89.83 78.23 96.78±1.25 52.12 69.22
DAN 94.28±0.69 92.06 80.33 97.32±0.71 70.23 84.65

Table 14 Investigation of different loss functions and the corresponding accuracy (%).

Adversarial loss Discriminative loss Reconstruction loss Accuracy
L GAN L Dis L Rec

MSE L Rec
FM L Rec

FC

X 91.38±0.74
X 92.50±0.96
X X 92.36±0.90
X X 92.46±0.97
X X 92.92±0.81
X X X 93.02±0.88
X X X 93.16±0.93
X X X 94.28±0.69

we analyze the effects of each loss function with detailed
experiments on YTF. The results are shown in Table 14. As
shown in this table, we see that training with the MSE re-
construction loss provides the basic baseline, where the dis-
criminative ability is reduced and significant performance
drop is obtained. Moreover, introducing the adversarial loss
contributes to more realistic and therefore more discrimina-
tive images can be obtained than the MSE loss for recog-
nition. However, it is worse that the alternative which used
the dense CNN feature extraction baseline. Therefore, com-
bining the adversarial loss and the reconstruction loss can
further improve the performance slightly.

For the reconstruction loss, we provided comparisons
between three forms of loss L Rec: the MSE loss, the fea-
ture map loss and the feature embedding loss. The MSE
loss focuses on low level visual characteristics, and thus can
make little contribution to the discriminative power of the
extracted feature. The feature map loss exerts supervision
on high level activation map and is closer to perceptual sim-
ilarity. Such characteristics can help to distinguish person in
some degree, but still cannot guarantee the distribution in
the final feature embedding. On the contrary, our proposed
L Rec

FC directly supervises the feature embedding itself, and
introduces metric learning into the training, thus can make
the aggregated images even more dividable in the feature
space.

The most important observation is that bringing the dis-
criminative loss L Dis to the system can greatly boost the
recognition performance, which is also the main contribu-
tion of our work. By combining the discriminative loss L Dis

Table 15 Ablation experimental results of our methods with and with-
out the V-STN model, where the mAP and rank-1 accuracy (%) on
MARS are reported.

Method mAP rank-1

DAN without V-STN 61.27 78.12
DAN with V-STN 70.23 84.65

and the feature embedding based reconstruction loss L Rec
FC ,

we can obtain the best result beyond the CNN baseline.
Effectiveness of V-STN: To demonstrate the effective-

ness of our proposed V-STN method for video-based person
re-identification, we trained a DAN model without V-STN.
We present the comparison of these two models in Table 15.
It can be observed that results of DAN significantly decrease
by 9% and 6% of mAP and accuracy respectively, when we
removed V-STN from the DAN model. We also report the
CMC curve on MARS by following the standard protocol
of (Zheng et al, 2016) and Fig. 4 shows the results of our
method with and without the V-STN. We see that our pro-
posed DAN model with V-STN surpasses all other baseline
models and V-STN greatly improves the recognition perfor-
mance of our previous DAN without V-STN model.

4.3.4 Visualization

To investigate the effectiveness of the proposed DAN, we vi-
sualize some results in Fig. 5. The visualization results con-
sist of 2 parts: raw video frames and aggregated images, as
well as their distributions in the feature space after reduc-
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Fig. 6 Visual results on YTF. We presented the original video frames
(on the left) and the aggregated images (on the right). Input 20 video
frames are sampled every 4 frames.

ing the feature dimension into 2 with t-SNE (Maaten and
Hinton, 2008). We see that the aggregated images are vi-
sually similar to the original images, with very good qual-
ity including good positions, viewing angles, illuminations,
etc., which are very important to recognition. Bad quality
frames with blurring or unfavorable viewing angles are de-
noised during the aggregation procedure.

We plot the distributions of original videos with 200
frames and the aggregated 10 images. We see that DAN en-
larges the margin between negative video pairs, especially
the first example, and reduce the intra-class distance. This
clearly demonstrates that aggregated images by DAN have
better discriminative power and robustness than the original
videos. Fig. 6 and Fig. 7 show more visual results of our
generative model on YTF and MARS, respectively. It can
be observed that the synthesized images are visually better
than input frames and our proposed DAN can denoise the
low-quality frames.

4.4 Limitations

Some failure cases on YTF and MARS are presented in
Fig. 8. In the first case, the DAN model fails to remove un-
seen occlusion such as subtitle in video. In the second case,
DAN model fails to capture useful information from very
noisy input video. Since the aggregation model is trained
without additional labels and ”good” examples are not ex-

Fig. 7 Visual results on MARS. We presented the original video
frames (on the left) and the aggregated images (on the right). Input
20 video frames are sampled every 4 frames.

Fig. 8 Example Failure cases on the YTF and MARS datasets. We pre-
sented the original video frames (on the left) and the aggregated images
(on the right). Input 20 video frames are sampled every 4 frames. These
examples are selected as some of the worst generated images on these
datasets. Failure cases are usually caused by unusual or very noisy in-
puts.
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plicitly presented to model, DAN model cannot remove un-
usual noise in videos.

Since our method focuses on reducing redundant com-
putational cost of video-based face recognition system and
is designed for integrate information across frames in the
same video, where faces have similar appearance and back-
ground, our method can hardly aggregate generic image sets
such as ”templates” in the IJB-A and IJB-B datasets, which
may have large variations in ages and environments and con-
tain few redundant images.

5 Conclusion

In this paper, we have proposed a discriminative aggregation
network (DAN) method for effective and efficient video-
based face recognition and person re-identification. By com-
bining metric learning and adversarial learning, our DAN
can aggregate useful information of an input video into one
or few more discriminative images in the feature space, which
can be used for both face recognition and person re-identification.
To our best knowledge, DAN is one of the first aggrega-
tion frameworks that takes raw video frames as input instead
of feature embedding. With our aggregation framework, the
generated images have smaller intra-class distances and greater
inter-class distances in the feature space, contributing to the
discriminative power and robustness of the recognition sys-
tem. Furthermore, runtime is greatly reduced as we only
need to pass few output images through the feature extrac-
tion network for face recognition and person re-identification.
Experimental results on four widely used datasets have been
proposed to demonstrate the effectiveness of our framework.
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