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Breathing rate (BR) is a key physiological parameter used in a range of clinical settings. Despite 

its diagnostic and prognostic value, it is still widely measured by counting breaths manually. A 

plethora of algorithms have been proposed to estimate BR from the electrocardiogram (ECG) and 

pulse oximetry (photoplethysmogram, PPG) signals. These BR algorithms provide opportunity 

for automated, electronic, and unobtrusive measurement of BR in both healthcare and fitness 

monitoring. This paper presents a review of the literature on BR estimation from the ECG 

and PPG. First, the structure of BR algorithms and the mathematical techniques used at each 

stage are described. Second, the experimental methodologies that have been used to assess the 

performance of BR algorithms are reviewed, and a methodological framework for the assessment 

of BR algorithms is presented. Third, we outline the most pressing directions for future research, 

including the steps required to use BR algorithms in wearable sensors, remote video monitoring, 

and clinical practice.

Index Terms

Biomedical signal processing; breathing rate (BR); electrocardiogram (ECG); 
photoplethysmogram (PPG); respiratory rate

I Introduction

BREATHING rate (BR) is a key physiological parameter used in a range of clinical settings 

for identification of abnormalities. Despite this, it is still widely measured by counting 

breaths manually. This approach is both labor intensive and unsuitable for use in unobtrusive 

monitoring devices for early detection of deteriorations. Recently, a plethora of algorithms 

have been proposed to estimate BR from the electrocardiogram (ECG) and pulse oximetry 

(photoplethysmogram, PPG) signals. Both the ECG and PPG are commonly acquired during 

clinical assessment, and also by many wearable sensors in healthcare and fitness monitoring. 

Therefore, BR algorithms could provide automated, electronic BR measurements without 

the need for additional sensors.

The aims of this paper are: to provide a comprehensive review of the literature on 

BR estimation from the ECG and PPG; to present a methodological framework for the 

assessment of BR algorithms; and to highlight the most pressing directions for future 

research. The background to the problem is summarized in the remainder of this section. 

In Section II, we present the methodology and results of a review of the literature on the 

topic. The BR algorithms reported in the literature are reviewed in Section III. Section IV-A 

provides a critical review of the experimental methodologies used previously to assess the 

performance of BR algorithms. In Section IV-B, we present a methodological framework 

for assessment of BR algorithms. Finally, in Section V, we highlight the most pressing 

directions for future research. This review builds on the work presented in [1].

A Importance of BR

BR is a valuable diagnostic and prognostic marker of health (also known as respiratory rate). 

In hospital healthcare, it is a highly sensitive marker of acute deterioration [2]. For instance, 

elevated BR is a predictor of cardiac arrest [3] and in-hospital mortality [4], and can indicate 
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respiratory dysfunction [5]. Consequently, BR is measured every 4–6 h in acutely ill hospital 

patients [6]. BR is also used in emergency department screening [7]. In primary care, BR 

is used in the identification of pneumonia [8], [9] and sepsis [10], [11], and as a marker 

of hypercarbia [12] and pulmonary embolism [13], [14]. However, BR is usually measured 

by manually counting chest wall movements (outside of intensive care). This process is 

time consuming, inaccurate [15], [16], and poorly carried out [12], [17]. Furthermore, BR 

monitoring is not widely incorporated into wearable sensors such as fitness devices [18]. 

Therefore, there is potentially an important role for an unobtrusive, electronic method for 

measuring BR, such as the estimation of BR from the ECG or PPG.

B ECG and PPG

The ECG and PPG are easily and widely acquired by non-invasive sensors in both healthcare 

and consumer electronics devices, making them suitable candidates for BR measurement in 

a range of settings.

The ECG is a measure of the electrical current generated by the action potentials in 

the myocardium (heart muscle) each heartbeat. It is acquired by measuring the voltage 

difference between two points on the body surface over time caused by this current [19]. 

The ECG can be measured using low-cost circuitry and electrodes (typically applied to the 

thorax) [20]. Static monitors are used to obtain single ECG measurements during screening 

for heart disorders and for continuous monitoring in critical care units. ECG monitoring is 

also incorporated into wearable sensors for use with ambulatory patients to identify changes 

in heart rate (HR) and rhythm [21] and in personal fitness devices.

The PPG is a measure of changes in blood volume over time in a bed of tissue [22]. It is 

measured by applying a sensor to the skin, or by noncontact imaging of a region of the 

skin using a camera [23]. A tissue bed is illuminated by either a supplementary light source 

(such as an LED) [24] or ambient light [25]. The intensity of light transmitted through or 

reflected from the bed is then measured by a photodetector [26]. Contact PPG measurements 

are commonly performed at peripheral sites (such as the finger or ear) using a low-cost 

pulse oximeter probe, which can be quickly attached [10]. Noncontact measurements are 

performed by measuring the light reflected from areas of exposed skin, such as the face or 

hand [23], [27]. Smartphones and tablets can also be used to acquire contact and noncontact 

PPG signals [28], [29]. The PPG is routinely measured in a wide range of clinical settings to 

obtain peripheral arterial blood oxygen saturation (SpO2) and pulse rate measurements.

It is continuously monitored in critically ill patients and can be monitored in ambulatory 

patients using wearable sensors [30]. In addition, the PPG is used for continuous HR 

monitoring in fitness devices [31]. Further applications of the PPG are being developed, 

including blood perfusion assessment and pulse transit time measurement. These use PPG 

signals obtained simultaneously at multiple sites from a single noncontact imaging PPG 

[23].

C Respiratory Modulation of the ECG and PPG

It is widely reported that the ECG and PPG both exhibit three respiratory modulations as 

illustrated in Fig. 1: baseline wander (BW), amplitude modulation (AM), and frequency 
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modulation (FM) [8], [13], [18], [32]. BR algorithms estimate BR by analyzing one or more 

of these modulations [8], [31].

The physiological mechanisms that cause respiratory modulations can be summarized as 

follows [34]. BW and AM of the ECG are caused by changes in the orientation of the heart’s 

electrical axis relative to the electrodes and changes in thoracic impedance [35]. BW of the 

PPG is due to changes in tissue blood volume caused by: changes in intrathoracic pressure 

transmitted through the arterial tree; and vasoconstriction of arteries during inhalation 

transferring blood to the veins [36]. AM of the PPG is caused by reduced stroke volume 

during inhalation due to changes in intrathoracic pressure, reducing pulse amplitude [37]. 

FM is the manifestation of the spontaneous increase in HR during inspiration, and decreases 

during exhalation, known as respiratory sinus arrhythmia (RSA) [38]. RSA is caused by at 

least three mechanisms [34], which are as follows:

1) changes in intrathoracic pressure during inhalation stretch the sinoatrial node, 

increasing HR;

2) increased vagal outflow during exhalation reduces HR; and

3) reduced intrathoracic pressure during inhalation decreases left ventricular stroke 

volume, causing a baroreflex-mediated increase in HR [39].

The strengths of each modulation may differ between subjects and between patient groups 

[13]. Indeed, large intersubject variations have been observed [34], [40]. Furthermore, 

particular modulations may be diminished in certain groups, such as FM in elderly subjects 

[34]. Consequently, many BR algorithms analyze multiple modulations, providing improved 

performance [8], [18].

II Search Strategy and Results

A review of the literature was performed to identify publications describing BR algorithms 

for use with the ECG or PPG. Publications were identified through manual searches and 

searches of online databases (Google Scholar, IEEE Xplore, PubMed, Science Direct, and 

Scopus). Additional details of the search strategy are provided in Section S1 (Supplimentary 

Material), allowing the search to be reproduced and updated.

A total of 196 publications describing BR algorithms were identified, which form the 

basis for this review [8], [10], [13], [18], [24], [28], [29], [31]–[33], [41]–[226]. The 

earliest publication was in 1971 [211], and only nine more were published between 

then and 1998. Since 1999, the rate of publication has risen steadily to the present rate 

of approximately 20 publications per year (see Fig. S2 [Supplimentary Material]). This 

demonstrates the increasing interest in BR algorithms and the importance placed upon the 

topic. Approximately half of the publications (101, 51.5%) were presented at conferences. 

The remainder were journal articles (88, 44.9%), theses (5, 2.6%), or book chapters (2, 

1.0%).

III BR Algorithms

BR algorithms can be considered to consist of up to five stages, as illustrated in Fig. 2.
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The role of each stage is as follows.

1) Extract Respiratory Signal(s): consists of extracting one or more signals 

dominated by respiratory modulation.

2) Fusion of Respiratory Signals: multiple respiratory signals can be fused to give 

one respiratory signal (optional).

3) Estimate BR(s): consists of estimating a BR from a window of a respiratory 

signal.

4) Fuse BR(s): multiple BR estimates can be fused to obtain one final estimate 

(optional).

5) Quality Assessment: used to reject or mitigate against imprecise estimates 

(optional).

The mathematical techniques that have been used at each stage are summarized in 

this section. Some of the content in this section has been adapted from [18] and [34] 

(CC BY 3.0: http://creativecommons.org/licenses/by/3.0/) and [1] (CC BY 4.0: http://

creativecommons.org/licenses/by/4.0/).

A Extraction of Respiratory Signals

ECG and PPG signals are primarily cardiac in origin, with secondary respiratory 

modulations of much lower magnitudes. Therefore, the first stage of a BR algorithm is 

the extraction of a signal dominated by respiratory modulation from which BR can be more 

easily estimated, as demonstrated in Fig. 3.

Techniques for extraction of a respiratory signal fall into two categories: filter based 

or feature based [13]. Filter-based techniques consist of filtering the raw signal to 

attenuate nonrespiratory frequency components (e.g., bandpass filtering the PPG to extract 

a respiratory signal exhibiting BW). Feature-based techniques consist of extracting beat-by-

beat feature measurements (e.g., the amplitude of each QRS complex). The individual 

processing steps used for extracting a respiratory signal are now described.

1) Elimination of Very Low Frequencies—The first step is the elimination of very 

low frequency (VLF) components of the PPG and ECG, i.e., those at subrespiratory 

frequencies. VLFs have been eliminated through high-pass filtering using: a median filter 

[74], [174], [179]; subtraction of a baseline trend calculated using a linear or polynomial 

fit [10], [148]; or measurements of the baseline at a specific point in the cardiac cycle 

(e.g., shortly before the QRS complex [147], or at midpoints between successive R waves 

[47] in the ECG). A cutoff frequency between 0.03 and 0.05 Hz is typically chosen [148], 

[196], [197], [205]. This step is beneficial regardless of whether a filter- or feature-based 

technique is being used, unless VLFs are removed during data acquisition, for instance by 

some commercial monitors [26].

2) Filter-Based Techniques—Filter-based techniques for extraction of a respiratory 

signal are performed in a single step. Several techniques have been proposed, as listed in 

Table I.
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3) Feature-Based Techniques—Feature-based techniques involve several steps to 

extract a time series of beat-by-beat features. Examples of the use of feature-based 

techniques are shown in Fig. 4. The first step is the elimination of very high frequency 

(VHF) noise by low-pass filtering to improve the accuracy of beat detection and feature 

measurements. Higher cutoff frequencies are used for the ECG (e.g., 40, 75, or 100 

Hz [61], [97], [197]) than the PPG (e.g., 10 or 35 Hz [97], [114]), to preserve the high-

frequency content of the QRS complex. In addition, the ECG is particularly susceptible to 

power-line interference, which may be eliminated using an additional band-stop filter [110]. 

Commercial monitoring devices typically remove VHFs internally, similar to VLFs [26]. 

Next, individual beats are detected (see Section S2-A [Supplimentary Material] for details 

of beat detectors used in the literature). Fiducial points (such as Q- and R-waves, shown as 

black dots in Fig. 4) are then identified for each beat. These are used to measure a feature 

that varies with respiration (such as the difference in amplitudes between Q- and R-waves 

for AM). The fiducial points identified and subsequent feature measurements are specific 

to the particular feature-based technique being used, as summarized in Table II (additional 

features are proposed in [40]). Several feature-based techniques use multilead ECG signals 

[35] or nonstandard leads derived from them [113]. Lastly, the time series of beat-by-beat 

feature measurements is resampled at a regular sampling frequency of approximately 4–10 

Hz. This is usually necessary since signals obtained from beat-by-beat feature measurements 

are irregularly sampled (once per beat), whereas subsequent processing often requires a 

regularly sampled signal. Often linear [8], [210] or cubic spline interpolation [110] is used. 

More complex methods include: Berger’s algorithm, designed for use with an FM signal 

[228], used in [8] and [101], the integral pulse frequency modulation model, also designed 

for use with FM signals [229], used in [193]; and the discrete wavelet transform [179].

4) Elimination of Nonrespiratory Frequencies—Nonres-piratory frequencies 

should be removed from respiratory signals to avoid erroneously identifying spurious 

frequency content as the BR. Bandpass filtering has been used, with cutoffs at either end 

of the range of plausible respiratory frequencies [50], [74], [110], [114], [171]. There is no 

consensus on the optimal range of plausible respiratory frequencies. Furthermore, it may 

need to be adjusted according to the patient population, particularly for children [230]. 

Indeed, some BR algorithms use a range that adapts to the HR [85], [128], [159], [160], 

[209]. As a guideline, Karlen et al. used a conservative range of 4–65 breaths per minute 

(bpm) [8].

B Fusion of Respiratory Signals

The second stage is the fusion of multiple respiratory signals to provide one respiratory 

signal from which BR can be estimated. Multiple respiratory signals can be obtained 

either by extracting multiple signals simultaneously (e.g., by using both the ECG and 

PPG [44] or by using multiple extraction methods [109]) or by segmenting a respiratory 

signal into several (often overlapping) windows and treating these as individual signals [51]. 

Techniques for fusion of multiple respiratory signals are listed in Table III. This stage is 

optional and is intended to increase the accuracy and robustness of BR estimates [44].
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Techniques for fusion of simultaneous respiratory signals result in a single respiratory 

signal with enhanced respiratory content and reduced spurious frequency content. These 

techniques, such as spectral averaging, can improve BR algorithm accuracy even beyond 

that achieved by using the respiratory signal with the strongest respiratory modulation 

[110], [114]. This is beneficial since the relative strengths of different modulations are often 

unknown, since it can vary between individuals and with BR [40]. The contribution of 

spurious frequencies, such as Traube–Hering–Mayer waves at ≈0.1 Hz [132], is reduced 

since these are unlikely to be manifested consistently across all respiratory signals. Fusion 

of spectra obtained from short segments of a single respiratory signal reduces variance and 

increases robustness [110]. This is particularly advantageous during exercise, when there is 

significant motion artifact [53]. Fusion techniques often incorporate quality assessment that 

excludes signals from the calculation which exhibit little respiratory modulation [110]. This 

can prevent a BR from being calculated if there is insufficient respiratory modulation [114], 

which is appropriate when monitoring BR continuously to detect abnormalities.

C Estimation of BRs

The third stage of BR algorithms is the estimation of BR. The input to this stage is a window 

of a respiratory signal and the output is a BR estimate. The techniques used for this stage, 

listed in Table IV, act in either the time or frequency domain. Time-domain techniques 

involve detecting individual breaths, followed by calculation of the BR as the mean breath 

duration. Time-domain techniques have the advantage of not requiring a quasi-stationary 

BR although they are susceptible to spurious breath detection due to abnormal respiratory 

signal morphology [18]. Frequency-domain techniques involve identifying the frequency 

component related to respiration, typically through spectral analysis or identification of the 

instantaneous dominant frequency. One aspect of using AR frequency-domain techniques 

is the selection of a model order, detailed in Section 2-B (Supplementary Material). The 

BR estimation stage may be the last in a BR algorithm. However, two further stages can 

optionally be used and are now described.

D Fusion of BRs

Techniques for fusion of multiple BR estimates can be used to improve the robustness of 

a final BR estimate. Several approaches have been used to fuse simultaneous BR estimates 

derived from different respiratory signals. First, BRs can be fused by averaging using the 

mean, median, or mode [8], [64], [176], optionally after exclusion of outliers [64], [113]. 

The quality of the final estimate can then be assessed from the standard deviation of the 

individual estimates [8]. Second, BRs can be combined by weighting them according to their 

variances [13], [226]. Third, a Kalman filter can be used to fuse BRs, which can be weighted 

according to confidence metrics [128], [163]. Fourth, candidate BRs obtained through AR 

modeling can be fused using the pole magnitude criterion [169] or the pole ranking criterion 

[171]. Finally, BRs derived from a single respiratory signal at different time points can be 

fused using temporal smoothing [114] or particle filtering [122].

E Quality Assessment

Quality assessment techniques are optional and fall into two categories: signal quality 

indices (SQIs) and respiratory quality indices (RQIs).
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SQIs are used to identify segments of ECG or PPG data of low quality, which are typically 

rejected based on the assumption that BRs derived from them are likely to be inaccurate 

[8]. SQIs based on template matching involve constructing a template of average beat 

morphology and calculation of the correlation between individual beats and the template 

[231]. A signal segment is deemed to be of high or low quality by comparing the average 

correlation coefficient for that segment to an empirically determined threshold. Hjorth 

parameters have also been used, quantifying the strength of an oscillation in a signal [176]. 

Furthermore, signal quality can be assessed using multiple beat detectors, with agreement 

between detectors indicating high quality [161]. Beat-by-beat characteristics have also 

been analyzed to identify low-quality input signals, including beat-to-beat intervals, pulse 

amplitudes, and clipped pulses [8].

In addition to SQIs, a relatively recent development in the quality assessment of BR 

algorithms has been the derivation of RQIs [56], [65], [101], [163], [232]. RQIs are used to 

assess the quality of extracted respiratory signals. RQIs are an important development since 

the presence or absence of respiratory modulations of the ECG or PPG is independent of 

the overall quality of those signals and instead varies based on factors such as gender, age, 

pre-existing health conditions, level of hydration, body position, and the value of the BR 

itself [40], [163], [233]. Presently, RQIs assess the quality of respiratory signals based on 

the regularity of breathing peaks and the periodicity of the respiratory waveform. Time- and 

frequency-domain techniques have been used including: statistical analysis of the variations 

in the respiratory peaks [65], Hjorth descriptors, Fourier transform, autoregression, and 

autocorrelation [56], [163]. Because RQIs return a range of values (often between 0 and 1) 

as opposed to a binary outcome, one of the important considerations in RQI implementation 

is the compromise between data retention and improved estimation accuracy. Recent results 

using RQIs to fuse BR estimates from multiple ECG and PPG modulations have shown 

that RQIs both increase data retention and decrease estimation error compared to existing 

fusion methods [232]. Further work is required to investigate the performance of RQIs in the 

presence of diseases that cause irregular or shallow breathing, such as in premature infants at 

risk of apnoea.

IV Assessment of BR Algorithms

A Assessment Methodologies Used in the Literature

A wide range of methodologies were used to assess the performance of BR algorithms in the 

196 publications. These are summarized in Table V and critically reviewed in this section. 

The methods used to obtain Table V are described in Section S3 (Supplimentary Material).

The literature has focused on the development of novel BR algorithms rather than 

comparisons of existing algorithms. This is shown by approximately half (48.0%) of 

publications assessing the performance of only one algorithm, without any comparator. 

Furthermore, only nine publications (4.6%) compared more than ten algorithms. Several 

issues make it difficult to compare the reported performance of algorithms between different 

publications: the use of different statistical measures, the use of data from different 

subject populations, and the lack of standardized implementations of algorithms (with 

the exception of [227]), to name but a few [18]. Consequently, it is not possible to 
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determine from the literature which algorithms perform best. The RRest Toolbox (http://

peterhcharlton.github.io/RRest) has been designed to address these issues [18], [33], [34]. It 

provides standardized implementations of several algorithms, as well as code to assess their 

performance using a range of statistics across multiple publicly available datasets. Further 

comparisons of algorithms would provide equipment designers with much needed evidence 

to determine which algorithms are most suitable for implementation.

Most algorithms assessed in the literature take either the ECG or PPG as the input signal 

(used in 50.0% and 57.1% of publications, respectively). Very few publications reported 

algorithms using both ECG and PPG [44], [81], [138], [145], [170] or pulse transit time 

[44], [69], [81], [97], [110], [111], [114], [213]. It may be beneficial to use multiple input 

signals when they are available, such as in wearable sensors [170].

There are pros and cons to the use of shorter and longer window durations with BR 

algorithms. Most studies used durations of between 30 and 90 s although durations of 

5–300 s have been used [184], [216]. Several studies have investigated the impact of 

window duration on performance [8], [31], [51], [55], [71], [108], [184], [206], [216]. A 

(nonsignificant) trend toward lower errors at longer window durations has been reported [8], 

[31] although there is not yet a consensus as to the optimal window length. The optimal 

length is likely to differ between populations and applications [55]. On one hand, using 

shorter windows reduces both the time required to measure BR and the computational 

requirements of BR algorithms [8]. It also increases the likelihood that the BR is stable 

throughout the window and allows variations in BR to be tracked more accurately, both of 

which are concerns during exercise [51]. On the other hand, longer windows may improve 

the accuracy of algorithms and increase the range of detectable BRs [31]. Consequently, a 

duration of 32 s was chosen as a compromise in [8] and [206].

The datasets used were often not representative of target populations and not publicly 

available. Datasets were often acquired from young, healthy subjects. Fewer publications 

used data acquired from elderly adults (25.5%), patients suffering from chronic diseases 

in the community (11.2%), or acutely ill patients in hospital (7.7%), who are more 

representative of target patient populations. In addition, few publications used ambulatory 

data (16.3%). Some publications used data from ventilated patients (16.3%) or subjects 

breathing in time with a metronome (23.0%). It is not yet clear whether the respiratory 

mechanics of these subjects can be presumed to be similar to those of spontaneously 

breathing patients [18]. Consequently, it is not clear whether the performance of BR 

algorithms reported in these studies is truly indicative of expected performance in target 

populations. A total of 13 publicly available datasets have been used to assess BR algorithms 

(see Table VI). However, only two publications have used more than two datasets [57], 

[111]. The range of available datasets makes it possible to assess algorithms across multiple 

datasets, which is important as performance may differ significantly between datasets [31].

A range of techniques have been used to acquire reference BRs. Typically, a respiratory 

signal such as ImP was acquired from which reference BRs were estimated using a bespoke 

algorithm. Many bespoke algorithms were used although often there was no assessment 

of the performance of these algorithms. This makes it difficult to know whether errors 
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in BR estimates derived from the ECG and PPG were solely due to poor BR algorithm 

performance or contributed to by inaccuracies in reference BRs. Notable exceptions are [18], 

[155], and [184]. In [155], eight methods were used to obtain reference BRs and the final 

estimate was calculated as the mean of the three estimates closest to the median. In [184], 

several algorithms for obtaining reference BRs were compared and time-domain breath 

detection methods were found to be “the only serious candidates,” with frequency-domain 

spectral methods and an autocorrelation method performing poorly. In [18], a time-domain 

breath detection algorithm was also used and its performance was quantified by comparing 

the reference BRs provided by the algorithm to those obtained from manual annotations of a 

subset of the data. An alternative approach is to manually annotate individual breaths in the 

entire dataset [8], [31]. Regardless of the approach chosen, it is important that reference BRs 

are accurate for robust assessment of BR algorithms.

A wide range of statistics have been used to assess BR algorithm performance. Statistics 

were most commonly calculated from the errors between reference and estimated BRs 

(used in 64.8% of publications), including the mean (absolute) error, root-mean-square error, 

and the percentage error. The related LOAs method, consisting of the systematic bias and 

LOAs within which 95% of errors are expected to lie, was used less often (23.5%) even 

though this has the advantage of quantifying both accuracy and precision [18]. This method 

is useful because certain applications require greater accuracy (such as identification of 

pneumonia indicated by BR > 40 bpm [8]), whereas others require greater precision (such 

as detection of acute changes in BR indicative of deterioration [18]). Statistics indicating 

the reliability with which individual breaths are detected were used in 9.7% of publications. 

These included statistics such as sensitivity, specificity, false negative, and false positive 

rates. Correlation coefficients were used in a minority of publications (13.8%). The wide 

range of statistics reflects the difficulty of quantifying the performance of algorithms using 

one single metric.

B Methodological Framework for Algorithm Assessments

We now present a general methodological framework for assessment of BR algorithms. The 

reader is referred to [1, Chs. 6–7] for examples of BR algorithm assessments conducted in 

line with this framework.

1) Purpose of Assessment—It is important to identify the purpose of an algorithm 

assessment: either exploratory analysis or validation of a BR algorithm. Exploratory 

analyses are used to determine the performance of a novel algorithm, often in comparison 

to existing algorithms [31], [90]. They provide evidence to inform the direction of algorithm 

development and can be used to identify candidate algorithms for validation studies. 

Validation studies assess BR algorithms to determine whether they are suitable for a 

particular application [43]. The purpose of the assessment informs the study design.

2) Dataset(s)—The dataset required for an assessment differs according to its purpose. 

In a validation study, the dataset should be as representative as possible of the intended 

application, to ensure the results indicate the expected performance. The subject population 

should be closely matched to the intended users, including: age, level of illness, range of 
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BRs, and type of breathing. Signal acquisition equipment should be similar to that which 

will be used, considering: transducers, signal fidelity (sampling frequency and resolution), 

and any signal filtering. The recording setting, including the presence or absence of subject 

movement, should also be similar. If any publicly available datasets (see Table VI) meet 

these criteria, then they can be used. Otherwise, a novel dataset should be acquired. The 

requirements for datasets in exploratory analyses are less stringent. In fact, variation within a 

dataset can allow a greater range of hypotheses to be tested, such as: multiple heart rhythms 

[216]; young and elderly subjects [169]; multiple input signals (both ECG and PPG) [18]; 

and the presence and absence of movement [171]. An assessment’s generalizability can be 

increased by using multiple datasets.

The methodology used to obtain reference BRs is highly important (see Section IV-A). 

If possible, reference BRs should be obtained independently from the input signals (ECG 

or PPG). For instance, ImP signals are often acquired using the same electrodes as the 

ECG. In contrast, gold standard spirometry signals are measured from air flow at the mouth 

(and nostrils) avoiding dependencies with input signals. Methods for estimating BRs from 

a reference signal should be carefully chosen and preferably evaluated. The reliability 

of manual breath annotations can be improved by using two independent annotators, 

particularly when signal periods containing disagreements between annotators are discarded 

[31]. Reliability can be assessed using interannotator agreement. When using an automated 

algorithm, its performance can be evaluated using manual annotations on a subset of the data 

[18].

3) BR Algorithm(s)—The choice of BR algorithm(s) is straightforward in validation 

studies. The performance of one or a few algorithms is evaluated, without the need for 

additional comparator algorithms, to determine whether the proposed algorithm(s) perform 

sufficiently well for the chosen application.

There are additional considerations when choosing BR algorithms for exploratory studies. 

First, additional comparator algorithms should be included to contextualize the results, 

particularly if using a novel dataset since no comparative results will be available. 

Comparator algorithms should include leading algorithms from the literature (the Smart 

Fusion algorithm [8] is often used for this purpose [31], [106], [223], [226]). It may also be 

beneficial to include algorithms created by varying the technique used at a particular stage 

of the algorithm to identify techniques that improve performance [18], [226]. Second, the 

BR algorithms can be optimized in a preliminary analysis prior to assessment (ideally using 

a separate dataset). Aspects suitable for optimization include: window duration, whether 

or not to use a fusion technique [8], choice of beat detector, which respiratory signals to 

use, and the threshold for quality assessment [1]. For instance, the simulated dataset in [18] 

is suitable for verifying algorithm implementations. Third, the range of BRs that can be 

outputted by an algorithm should be fixed.

4) Statistical Analysis—The nature of the statistical analysis differs between 

exploratory and validation studies. In exploratory studies, a wide range of statistics 

should be used to quantify different aspects of algorithm performance (such as errors, the 

proportion of windows for which a BR estimate is provided, power requirements, and the 
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time delay between the start of signal acquisition and a BR estimate being outputted). The 

analysis need not identify the best algorithm. Rather, it should identify algorithm techniques 

that lead to improved performance. This may be aided by subgroup analyses of algorithms 

that use different techniques and of different subject populations. In validation studies, a 

primary statistic should be identified a priori with which to determine whether the algorithm 

performs sufficiently well. Ideally, a threshold value of this statistic, indicating sufficient 

performance, should be chosen a priori (such as a mean absolute error of < 2 bpm). 

Although there are no standardized performance thresholds, further guidance on selecting 

primary endpoints is provided in Section V-C. Additional statistics can also be used to 

quantify secondary aspects of algorithm performance.

The following should also be considered:

1) whether a statistical test is required to identify improved performance (such as 

the Wilcoxon signed rank test for paired data or the Wilcoxon rank sum test for 

unpaired data [34]);

2) the expected distribution of errors since parametric statistics such as LOAs are 

influenced more by nonnormal error distributions than nonparametric statistics 

such as coverage probability [18]; and

3) whether statistics are required to assess ability to detect apnoea [200], [203].

5) Reproducibility—It is helpful to decide at the outset whether study resources will 

be made publicly available (including datasets, BR algorithms, and evaluation code) [18], 

particularly if ethical approval is needed. One should also decide whether the analysis 

should be reproducible [33].

V Future Research Directions

A Areas for Algorithm Development

There are several promising areas for BR algorithm development. First, little research 

has been conducted into the use of models of respiratory modulations in BR algorithms. 

Womack presented a model relating RSA to respiration [211]. If mathematical models 

such as this were incorporated into BR algorithms, then this could improve performance, 

particularly if they exploit relationships between the different respiratory modulations. 

Second, it has recently been proposed that the BRs provided by many different BR 

algorithms could be fused to improve performance [64], consequently reducing errors and 

increasing the proportion of windows for which a BR estimate is provided [226]. Further 

work is required to determine which BR algorithms should be used in this approach. 

Third, as the availability of annotated data increases, there is opportunity to use machine 

learning techniques in BR algorithms. Fourth, the utility of BR algorithms would be greatly 

enhanced if the uncertainty associated with a BR estimate was quantified since unreliable 

BR estimates could be easily discarded [13]. Fifth, further research is required to identify 

BR algorithms with low-computational requirements that are suitable for use in miniaturized 

devices such as wearable sensors [88], [221]. Finally, BR algorithms that use a breath 
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detection technique could be used to estimate BR variability, which may have utility as a 

marker of mental state and disease progression [210].

B Equipment

Research into BR algorithms has mostly used ECG and PPG signals acquired from 

routine equipment to assess the performance of algorithms. Some research has investigated 

alternative equipment for acquiring ECG and PPG signals, to either improve the 

performance of BR algorithms or to increase their utility.

Design considerations when using PPG signals include the following:

1) the anatomical site for PPG measurement (such as finger, ear, forehead, forearm, 

shoulder, wrist, and sternum), which may influence the strength of respiratory 

modulations [34], [68], [244]–[246];

2) the wavelength of emitted light [28], [247]; and

3) the use of transmission or reflection mode PPG [245].

Each of these factors may influence algorithm performance. Recent research indicates that 

low-fidelity PPG signals can be used with BR algorithms, such as those acquired at low 

sampling frequencies [34] or from smartphones or tablets [28], [29], [102], [115], [116]. 

This will potentially increase the utility of BR algorithms since they could be used in 

ubiquitous devices such as smartphones in resource-constrained settings [29], [102], [115], 

[116].

Design considerations when using ECG signals include: 1) whether suitable signals can 

be acquired without needing electrodes to be attached at several anatomical sites; and 2) 

whether multilead signals confer a significant benefit over single-lead signals. Klum et al. 
proposed that ECG electrodes positioned as little as 24 mm apart can be used to acquire 

respiratory signals [248]. This is promising for the implementation of BR algorithms in 

patch-style wearable sensors [249]. The use of textile-based systems to acquire ECG signals 

has also been investigated [174], [198], [215]. This could allow BR to be monitored by 

incorporating sensors into bed sheets [215] or a specialized t-shirt [128]. It has also been 

proposed that ECG signals could be acquired at locations other than the thorax such as the 

wrist [82] when an FM-based BR algorithm is used. Some studies have investigated the 

relative merits of single- and multilead ECG signals [197], [250] or fusion of respiratory 

signals acquired from single- and multilead signals [117]. It is not yet clear whether 

multilead signals provide improved performance, and therefore whether this should be 

considered when designing ECG acquisition equipment.

C Applications

BR algorithms may have utility in a range of clinical and personal settings, with each 

setting having different requirements. The benefits and challenges of using algorithms in 

each setting are now described.

1) Clinical Assessment—At present, BR is usually measured manually in clinical 

assessment in both hospitals and the community (as described in Section I-A). In contrast, 
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BR algorithms could provide automated BR measurements. The key design challenges in 

this setting are to provide an accurate and precise BR, for most windows of input signal, 

preferably using the PPG since pulse oximeters can be attached quickly and easily, without 

any additional disposables. In particular, BR algorithm designs often include a tradeoff 

between performance and the proportion of windows for which BR estimates are provided 

[8]. The latter is likely to be more important since the present manual BR measurements 

have been reported to have poor performance (e.g., LoAs of −8.6 to 9.5 bpm [15]). 

An attractive case can be made for the use of BR algorithms in 4–6 hourly assessment 

of hospital inpatients since the time saved by using an automated method could reduce 

healthcare costs, and if BR algorithms provide improved performance, then this could 

improve patient safety.

2) Clinical Monitoring Using Wearable Sensors—It is important that wearable 

sensors are capable of monitoring BR since BR is a sensitive marker of physiological 

deterioration preceding adverse events (see Section I-A). However, existing approaches 

for monitoring BR using wearable sensors are not ideal [18]. Many use impedance 

pneumography [251]. This is unobtrusive, involving measurement of variations in thoracic 

impedance with respiration through injection of a high frequency current into the thorax at 

ECG electrodes [252]. However, it is prone to errors caused by posture changes and motion 

[251], and has been observed to be imprecise (e.g., LoAs of −9.9 to 7.5 bpm [15] and −11.1 

to 11.9 bpm [253]). Inductance plethysmography has also been used to monitor BR although 

this requires cumbersome chest bands [251], which may be too uncomfortable for prolonged 

monitoring [254]. More recently accelerometers have been used for BR monitoring [30] 

although this is still an ongoing area of research [255].

An alternative approach is to estimate BR from the ECG or PPG signals already acquired 

by many wearable sensors. This would allow BR to be monitored relatively unobtrusively, 

without an additional transducer. Wearable sensors can acquire ECG and PPG continuously, 

whereas clinical deterioration usually occurs over several hours. Therefore, one has the 

luxury of being able to discard data from which a BR cannot be confidently estimated. The 

key challenge is to provide accurate BR estimates since erroneous estimates may trigger 

false alerts, which are resource consuming and can erode trust in the wearable sensor [256]. 

Fusion techniques can reduce the frequency of erroneous estimates [18]. An additional 

challenge arises due to ambulatory data being highly susceptible to artifact, caused by poor 

sensor contact or movement [13], [198]. Methods for improving BR algorithms for use with 

wearable sensors include the following:

1) using SQIs to identify (and discard) artifactual data [231];

2) using techniques to reduce the influence of motion artifact [55], [88], [107], 

[135], [144], [198]; and

3) fusing BRs according to the uncertainties associated with each determined by 

either deriving features from extracted respiratory signals (such as variation 

in breath-to-breath intervals) [65] or analyzing the respiratory signals using 

Gaussian processes [13].
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Furthermore, wearable sensors often acquire more than one signal from which BR could be 

estimated to improve robustness to artifact, such as ECG and PPG [44], [170] or ECG and 

accelerometry [65], [128]. The impact of motion on BR algorithms should be investigated 

further [59], as it is important both in clinical settings (such as during mobilization 

after surgery) and for fitness applications. Such a study would require reliable reference 

respiratory monitoring (such as spirometry) and would benefit from incremental increases in 

the level of motion (such as on a treadmill).

3) Exercise Monitoring—It has been proposed that BR algorithms could be used 

in exercise monitoring. In healthcare, BR algorithms could be used during stress tests, 

which otherwise require a device (such as a spirometer), which is uncomfortable and may 

interfere with breathing [51]. Typically the ECG signal would be used since it is already 

monitored during exercise tests. This is a particularly challenging setting because: 1) input 

signals are greatly contaminated with motion artifact; and 2) ideally BR would be provided 

continuously, making it difficult to reject periods of low quality data. Temporal filtering has 

been widely used in this setting to increase BR algorithm performance [51], [53], [112]. In 

addition, multilead ECG signals have been used to improve performance, involving deriving 

cardiac rotation angles, including correction and rejection of outlying measurements [53].

BR algorithms could also be used in fitness devices. Many fitness trackers do not measure 

BR, but do acquire PPG for HR monitoring [31]. The ability to measure BR would be a 

valuable addition. This setting is less challenging than that of exercise tests since continuous 

BRs are not required, but could be provided only when expected to be reliable. In addition, 

BRs do not need to be as accurate as in healthcare. However, in this setting, the PPG is likely 

to be highly corrupted by motion artifact [13].

4) Telemonitoring in the Home—Telemonitoring can be used to conduct frequent 

assessment of physiology in patients with chronic diseases living at home [257]. 

Telemonitoring setups often include a pulse oximeter, which patients use to assess their 

own HR and SpO2 [31]. However, it is difficult to measure BR remotely. A simple solution 

would be to incorporate a BR algorithm into a pulse oximeter. Indeed, Shah et al. recently 

found that BRs estimated from telemonitoring PPG data were predictive of exacerbations 

in chronic obstructive pulmonary (COPD) disease [258]. The design challenges in this 

setting are similar to those for clinical assessment although greater importance should be 

placed on obtaining an accurate BR than obtaining the measurement quickly. Ideally, a 

telemonitoring device would estimate BR in real time, continuing until an estimate with a 

high degree of confidence was available. The user would then be prompted to remove the 

device. Furthermore, if an abnormal BR was detected, then the user could be prompted to 

repeat the measurement to reduce the likelihood of false alerts.

5) Remote Video Monitoring—The applications presented so far require sensors to be 

attached to the subject [259]. This requires manual intervention, may be poorly tolerated 

[260] and may cause discomfort and skin irritation [259], particularly when used over 

prolonged time periods. It has recently been proposed that BR algorithms could be applied 

to imaging-PPG signals acquired using noncontact video cameras [23]–[25], [27], [152]. 

Additional preprocessing steps are required to extract PPG signals from imaging-PPG 
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videos for use with BR algorithms [23]: automatic detection of a region of interest (such 

as the face); synthesis of spatial information to extract a signal from the region; and color 

channel selection (using information from either a single or multiple color channels). HR 

and SpO2 can also be estimated from imaging-PPG signals, increasing their utility [25], 

[27]. Further work is required to determine whether BR measurements are best extracted 

from the cardiac-synchronous component of imaging-PPG signals, or from the changes in 

reflected light caused by the motion of breathing.

D Translation Into Clinical Practice

Three key areas for future work to translate BR algorithms into clinical practice are now 

considered.

First, it is not clear whether different patient populations and clinical settings require 

different BR algorithms. This may arise due to differences in the requirements of algorithms 

(e.g., precision versus the proportion of windows for which an estimate is provided) or 

differences in respiratory physiology between patient groups (such as breathing patterns or 

the strength of respiratory modulations). Therefore, the first area for future work is to assess 

the performance of BR algorithms in the patient populations in which they are intended 

to be used. This will provide evidence for the expected performance of a BR algorithm in 

a particular target population (such as children [125], [189], [209]), and it will allow the 

most suitable BR algorithm for that population to be identified. For instance, Addison et 
al. have conducted several studies to assess the performance of BR algorithm performance 

across a range of populations (low-acuity hospitalized patients [43], [54] and patients in the 

postanesthesia care unit [151]) and in the presence of several pathophysiologies (respiratory 

disease [72], congestive heart failure [150], and COPD disease [149]). This provides an 

understanding of the performance of the Medtronic Nellcor BR algorithm (found to have 

LoAs of 0.07 ± 3.90 bpm in hospitalized patients [54]) and how its performance may be 

affected by pathophysiologies. Further, investigation of the impact of cardiac arrhythmias 

on performance is much needed [216] since arrhythmias may affect the physiological 

mechanisms responsible for respiratory modulation of the ECG and PPG [261].

Second, BR algorithms must be implemented in clinical monitors to be widely used in 

clinical practice. This review identified one clinical monitor in which a BR algorithm 

has been implemented: the Nellcor bedside patient monitoring system with reported 

LoAs of 2.25 ± 10.60 bpm when assessed against capnography derived BRs in patients 

undergoing procedural sedation and analgesia for endoscopy procedures [200]. This clinical 

implementation of a BR algorithm marks the beginning of a new phase in the use of 

BR algorithms since research into the potential clinical benefit of BR algorithms can be 

conducted with greater ease after clinical implementation. The process of implementing BR 

algorithms in monitors is likely to benefit from collaboration across multiple disciplines.

The third key area for future work is to conduct clinical trials to determine how BR 

algorithms can be used to deliver benefit to patients. These are likely to consist of two 

stages: an observational trial to determine whether a BR algorithm could be expected to 

be beneficial, followed by an interventional trial in which clinicians respond to the BRs, 

prompting changes in treatment. The first stage could be conducted using retrospective 
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analysis of ECG or PPG signals, whereas the second is likely to require a clinical monitor 

in which a BR algorithm has been implemented. For example, Shah et al. used a PPG-based 

BR algorithm to perform a retrospective analysis of the utility of BR for prediction of 

exacerbations in COPD patients [258]. They observed that BRs derived from the PPG were 

predictive of exacerbations although the clinical utility of this approach needs to be assessed 

in an interventional trial.

E Novel Physiological Insights

Novel insights into respiratory physiology can be gained by using BR algorithms in settings 

where it would otherwise not be practical to either measure BR or to monitor it continuously. 

In [195] and [262], an ECG-based BR algorithm was used to study changes in BR in the 

days following an acute myocardial infarction through secondary analysis of Holter ECG 

monitoring. This led to the insight that an elevated nocturnal BR (of ≥ 18.6 bpm) was 

associated with an increased risk of nonsudden cardiac death. It has also been suggested that 

BR algorithms can be used to investigate changes in breathing patterns due to pathology. 

In [185], an ECG-based BR algorithm was used to study changes in inspiration time, 

exhalation time, and the ratio of inspiration to exhalation time (as well as BR), associated 

with schizophrenia. In this particular study, no respiratory signal was available, so the BR 

algorithm provided additional insights.

VI Conclusion

A wide range of algorithms to estimate BR from the ECG and PPG have been reported 

in the literature. These mostly conform to a standardized structure, with many different 

mathematical techniques proposed for each stage. BR algorithms are now being incorporated 

into clinical devices, with encouraging initial studies of their performance and utility in 

both hospitals and the community. Further work is required to identify the most suitable BR 

algorithms for use in different settings and to determine how BR algorithms can be used 

to deliver patient benefit. The great potential of BR algorithms is only likely to be realized 

through close collaboration between researchers, clinicians, and industrial partners.
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Fig. 1. ECG and PPG are subject to three respiratory modulations: baseline wander (BW), 
amplitude modulation (AM), and frequency modulation (FM).
Source: [33] (CC BY-NC 4.0: http://creativecommons.org/licenses/by-nc/4.0/).
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Fig. 2. Stages of a BR algorithm. Dashed stages are optional.
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Fig. 3. 
Extraction of exemplary respiratory signals: ECG (upper plot) and PPG (lower plot) signals 

and extracted respiratory signals (grey) are shown on the left. The corresponding frequency 

spectra are shown on the right. The frequency spectra of the raw ECG and PPG signals 

are dominated by cardiac frequency content at 1.2 Hz. In contrast, the extracted respiratory 

signals are dominated by respiration at 0.3 Hz, which is approximately the BR provided by a 

reference respiratory signal (shown by the dashed line).
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Fig. 4. 
Exemplary feature-based techniques for extraction of respiratory signals from ECG (left) 

and PPG (right) signals: measurements of baseline wander (BW), amplitude modulation 

(AM), and frequency modulation (FM) have been extracted for each beat from fiducial 

points (shown as dots). Adapted from [33] (CC BY-NC 4.0).
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Table I
Filter-Based Techniques for Extraction of Respiratory Signals

• Bandpass filter to eliminate frequencies outside the range of plausible respiratory frequencies [132].

• Use (ensemble) empirical mode decomposition to extract a respiratory signal as either one particular oscillation mode (intrinsic 
mode function, IMF) or the sum of the IMFs indicative of respiration [170], [193].

• Decompose signal using the discrete wavelet transform to reconstruct the detail signal at a predefined decomposition scale [59], 
optionally with automated selection of the mother wavelet [77].

• Extract respiratory oscillation using principal component analysis (PCA) [144] or singular spectrum analysis [134] after 
identifying the periodicity using singular value decomposition. The use of PCA has been refined using multiscale PCA [137], and 
modified multiscale PCA [140], in which wavelet decomposition was combined with PCA. PCA has also been applied to intrinsic 
mode functions extracted using ensemble empirical mode decomposition [157], [158].

• Extract the instantaneous amplitudes or frequencies of cardiac modulation using the continuous wavelet transform [41], the 
Teager-Kaiser energy operator [204], variable frequency complex demodulation [28], [67], the Hilbert transform [129], or the 
synchrosqueezing transform [79].

• Filter using the centered correntropy function [90].

• Decimate by detrending the signal, low-pass filtering to eliminate frequencies higher than respiration, and resampling at a 
reduced sampling frequency [85] of 1-2 Hz [10].

• Extract an electromyogram signal from the high-frequency content (> 250 Hz) of the ECG caused by the activation of the 
diaphragm and intercostal muscles during respiration [95].
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Table II
Feature-Based Techniques for Extraction of Respiratory Signals

• Extract BW as the mean amplitude of peaks and preceding troughs [18] or the mean signal value between consecutive troughs 
[180].

• Extract AM as the difference between the amplitudes of peaks and preceding troughs [8].

• Extract FM as the time interval between consecutive peaks [8].

• Extract peak amplitudes [8].

• Extract trough amplitudes [180].

• PCA of heartbeats [181], [227].

• Extract the kurtosis between adjacent peaks [80].

• Extract the morphological scale variation of part of the signal (e.g., QRS complexes) by comparing the current beat to a template 
beat [45].

• Extract QRS durations [179].

• Extract QRS areas [196].

• Extract maximum Q–R or R–S slopes (using either a straight line fit [113] or fourth-order central moments [185]) or QRS-wave 
angles from the difference between them [113].

• Extract PPG pulse widths [111].

• Extract the difference between the durations of the upslope and downslope of the PPG [207].

• Extract the direction or magnitude of the mean QRS vector axis using the arctangent of the ratio of QRS complex areas from two 
simultaneous ECG leads [195], [224].

• Extract rotation angles of vectorcardiogram loops using multiple ECG leads [53].

• Extract the main direction of the electric heart vector at a specific phase in the cardiac cycle (e.g., T-wave) [165].

• Extract the pulse transit time using the R-wave of the ECG and the subsequent PPG pulse onset [44], [97], peak [213], or upslope 
midpoint [110].

• Extract the maximum upslope during diastole of a venous signal extracted from dual wavelength PPG signals [219].
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Table III
Techniques for Fusion of Respiratory Signals

• Spectral averaging: calculate the individual power spectra of multiple respiratory signals, and then find the average spectrum 
[110], [114], [196].

• Peak-conditioned spectral averaging [110], [114]: only sufficiently peaked spectra are included in calculation of a peak-
conditioned average power spectrum. To qualify, a spectrum must have a certain proportion of its power within an interval 
surrounding the frequency corresponding to the maximum power [51] or the previous BR estimate [114].

• Cross power spectral analysis: calculate the individual power spectra of multiple respiratory signals, and then multiply the spectra 
[117].

• Cross time-frequency analysis [168]: use the smoothed pseudo Wigner–Ville distribution to estimate time–frequency spectra 
between two signals.

• Time–frequency coherence [168]: used to measure the degree of coupling between two signals.

• Vector autoregressive (AR) modeling [138]: the poles of multiple AR models (one for each respiratory signal) are calculated. 
Only those poles that are common to both models, and which fall within the range of plausible respiratory frequencies, are used to 
extract a respiratory signal.

• Point-by-point multiplication of signals [109].

• Use of a neural network with multiple input signals to identify periods of inhalation and exhalation [32], [44].
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Table IV
Techniques to Estimate BR from a Respiratory Signal

Frequency-based techniques

• Spectral analysis: identify the respiratory frequency from a power spectrum calculated using either: the fast Fourier Transform 
[8] (which can operate on unevenly sampled signals [87]), AR spectral analysis using Burg or Yule-Walker algorithms [199], 
the Welch periodogram [111], the short-time Fourier transform [192], the Lomb-Scargle periodogram (which can operate on 
unevenly sampled signals) [52], or sparse signal reconstruction (which can be applied to multiple respiratory signals) [222], 
[223]. The BR is usually identified as the frequency corresponding to the maximum spectral power in the range of plausible 
respiratory frequencies although other approaches have been proposed [224].

• Identify the respiratory frequency as the dominant frequency of a scalogram calculated using the continuous wavelet transform 
[41].

• Identify the common frequency component in multiple respiratory signals using the weighted multisignal oscillator based 
least-mean-square algorithm [92].

• Estimate instantaneous BR [92] using an adaptive notch filter [106], [173] or an adaptive bandpass filter [155].

• Find periodicity using the autocorrelation function [184].

• Estimate the instantaneous BR from either a single signal or multiple signals using a bank of notch filters [153], [154].

• Autoregressive all-pole modeling, with BR estimated from the frequency of either the highest magnitude pole [10], or the lowest 
frequency pole [85]. The (order reduced) modified covariance method has also been used [136], [139]

• Use Gaussian process regression to estimate periodicity [177].

Time-domain breath detection techniques

• Detect breaths using peak detection.

• Detect breaths by identifying zero-crossings with a positive gradient (after detrending) [32].

• Detect breaths from peaks and troughs using (adaptive) thresholding to identify those breaths that have been reliably detected 
[74], [147], [184]
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Table V
Methods Used to Assess BR Algorithm Performance

Category No. publications (%)

Application of BR algorithms

Number of algorithms assessed

1 94 (48.0)

2–5 76 (38.8)

6–10 17 (8.7)

11–15 6(3.1)

≥ 16 3 (1.5)

Input signal(s)

ECG 98 (50.0)

PPG 112(57.1)

Fusion of ECG and PPG 5 (2.6)

Pulse transit time 8 (4.1)

Window duration [s]

< 30 10(5.1)

30–59 46 (23.5)

60–89 50 (25.5)

≥ 90 10(5.1)

Unknown 78 (39.8)

Datasets

Age(s) of subjects [years]

0–0.1: Neonate 5 (2.6)

0.1–17: Pediatric 27 (13.8)

18–39: Young adult 122 (62.2)

40–69: Middle-aged adult 76 (38.8)

≥ 70: Elderly adult 50 (25.5)

Unknown 57 (29.1)

Level(s) of illness

Healthy 127 (64.8)

Sick in community 22(11.2)

Acutely ill 15 (7.7)

Critically ill 52 (26.5)

unknown 9 (4.6)

Type(s) of breathing

Spontaneous 150 (76.5)

Metronome 45 (23.0)

Ventilated 32 (16.3)

Simulated 7 (3.6)

unknown 25 (12.8)

Number of datasets used
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Category No. publications (%)

1 164 (83.7)

2 30 (15.3)

3 1 (0.5)

4 1 (0.5)

Comparison with reference BRs

Reference BR equipment

Air flow or pressure 45 (23.0)

Impedance pneumography (ImP) 48 (24.5)

Capnography 33 (16.8)

Inductance plethymography (InP) 14(7.1)

Piezoelectric 9 (4.6)

Strain gauge 19 (9.7)

Metronome 9 (4.6)

Other 22(11.2)

None 5 (2.6)

unknown 26 (13.3)

Common statistical measures

Error statistic 127 (64.8)

Breath detection statistic 19 (9.7)

Bias 46 (23.5)

Limits of agreement (LOAs) 46 (23.5)

Correlation 27 (13.8)

Proportion of windows 14(7.1)
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Table VI
Publicly Available Datasets Used to Assess BR Algorithms

Dataset Ref No subjs Age ECG PPG Resp sigs Type of breathing Level of illness

Datasets containing breath annotations

BIDMC [31] 53 adult Y Y ImP spont, vent critical

CapnoBase [8] 42 paed, adult Y Y CO2 spont, vent surgery, anesthesia

Datasets without breath annotations

MIMIC-II [234] 23,180 paed, adult Y Y ImP spont, vent critical

MGH/MF [235] 250 paed, adult Y N ImP, CO2 spont, vent critical

MIMIC [236] 72 unk Y Y ImP spont, vent critical

VORTAL [18] 57 adult Y Y ImP, Press spont healthy

Fantasia [237] 40 adult Y N unk spont healthy

UCD Sleep Apnea [238] 25 adult Y N flow spont healthy, apnea

CEBS [239] 20 adult Y N piezo spont healthy

ECG and resp [240] 20 adult Y N flow, pleth spont healthy

MIT-BIH Polysomnographic [241] 18 adult Y N flow spont, vent healthy, apnea

Apnea-ECG [242] 8 adult Y Y InP, flow spont healthy, apnea

Portland State [243] 1 paed Y Y unk unk critical

Definitions: Age—pediatric (paed); respiratory signals (Resp Sigs)—capnometry (CO2), piezoresistive thoracic band (piezo), oral or nasal flow 

(flow), oral–nasal pressure (press), inductance plethysmography (InP), impedance pneumography (ImP), body plethysmography (pleth); Breathing
—spontaneous (spont), ventilated (vent); unknown (unk).
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