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Abstract
Financial portfolio optimization is the process
of sequentially allocating wealth to a collection
of assets (portfolio) during consecutive trading
periods, based on investors’ risk-return profile.
Automating this process with machine learning
remains a challenging problem. Here, we design
a deep reinforcement learning (RL) architecture
with an autonomous trading agent such that, given
a portfolio, weight of assets in the portfolio are
updated periodically, based on a global objective.
In particular, without relying on a naive applica-
tion of off the shelf model-free agent, we train
our trading agent within a novel model-based RL
architecture using an infused prediction module
(IPM), and a behavior cloning module (BCM),
extending standard actor-critic algorithms. We
further design a back-testing and trade execution
engine which interact with the RL agent in real
time. Using historical real financial market data
over multiple years, we simulate daily trading
with practical constraints, and demonstrate that
our proposed model is robust, profitable and risk-
sensitive, as compared to baseline trading strate-
gies and model-free RL agents as used in prior
work.

1. Introduction
Reinforcement learning (RL) consists of an agent interact-
ing with the environment, in order to learn an optimal policy
by trial and error for sequential decision-making problems
(Bertsekas, 2005; Sutton & Barto, 2018). The past decade
has witnessed the tremendous success of deep reinforce-
ment learning (RL) in the fields of gaming, robotics and
recommendation systems (Lillicrap et al., 2015; Silver et al.,
2016; Mnih et al., 2015; 2016). However, its applications in
the financial domain have not been explored as thoroughly.
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Dynamic portfolio optimization remains one of the most
challenging problems in the field of finance (Markowitz,
1959; Haugen & Haugen, 1990). It is a sequential decision-
making process of continuously reallocating funds into a
number of different financial investment products, with the
main aim to maximize return while constraining risk. Clas-
sical approaches to this problem include dynamic program-
ming and convex optimization, which require discrete ac-
tions and thus suffer from the ‘curse of dimensionality’ (e.g.,
(Cover, 1991; Li & Hoi, 2014; Feng et al., 2015)).

There have been efforts made to apply RL techniques to al-
leviate the dimensionality issue in the portfolio optimization
problem (Moody & Saffell, 2001; Dempster & Leemans,
2006; Cumming et al., 2015; Jiang et al., 2017; Deng et al.,
2017; Guo et al., 2018; Liang et al., 2018). The main idea is
to train an RL agent that is rewarded if its investment deci-
sions increase the logarithmic rate of return and is penalised
otherwise. However, these RL algorithms have several draw-
backs. In particular, the approaches in (Moody & Saffell,
2001; Dempster & Leemans, 2006; Cumming et al., 2015;
Deng et al., 2017) only yield discrete single-asset trading
signals. The multi-assets setting was studied in (Guo et al.,
2018), however, the authors did not take transaction costs
into consideration, thus limiting their practical usage. In re-
cent study (Jiang et al., 2017; Liang et al., 2018), transaction
costs were considered but it did not address the challenge
of having insufficient data in financial markets for the train-
ing of robust machine learning algorithms. Moreover, the
methods proposed in (Jiang et al., 2017; Liang et al., 2018)
directly apply a model-free RL algorithm that is sample
inefficient and also doesn’t account for the stability and risk
issues caused by non-stationary financial market environ-
ment. In this paper, we propose a novel model-based RL
approach, that takes into account practical trading restric-
tions such as transaction costs and order executions, to stably
train an autonomous agent whose investment decisions are
risk-averse yet profitable.

We highlight our main contributions to realize a model-
based RL algorithm for our problem setting. Our first contri-
bution is an infused prediction module (IPM), which incor-
porates the prediction of expected future observations into
state-of-the-art RL algorithms. Our idea is inspired by some
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attempts to merge prediction methods with RL. For exam-
ple, RL has been successful in predicting the behavior of
simple gaming environments (Oh et al., 2015). In addition,
prediction based models have also been shown to improve
the performance of RL agents in distributing energy over
a smart power grid (Marinescu et al., 2017). In this paper,
we explore two prediction models; a nonlinear dynamic
Boltzmann machine (Dasgupta & Osogami, 2017) and a
variant of parallel WaveNet (van den Oord et al., 2018).
These models make use of historical prices of all assets in
the portfolio to predict the future price movements of each
asset, in a codependent manner. These predictions are then
treated as additional features that can be used by the RL
agent to improve its performance. Our experimental results
show that using IPM provides significant performance im-
provements over baseline RL algorithms in terms of Sharpe
ratio (Sharpe, 1966), Sortino ratio (Sortino & Price, 1994),
maximum drawdown (MDD, see (Chekhlov et al., 2005)),
value-at-risk (VaR, see (Artzner et al., 1999)) and condi-
tional value-at-risk (CVaR, see (Rockafellar et al., 2000)).

Our second contribution is a behavior cloning module
(BCM), which provides one-step greedy expert demonstra-
tion to the RL agent. Our idea comes from the imitation
learning paradigm (also called learning from demonstra-
tions), with its most common form being behavior cloning,
which learns a policy through supervision provided by ex-
pert state-action pairs. In particular, the agent receives ex-
amples of behavior from an expert and attempts to solve a
task by mimicking the expert’s behavior, e.g., (Bain & Som-
mut, 1999; Abbeel & Ng, 2004; Ross et al., 2011; Kimura
et al., 2018). In RL, an agent attempts to maximize expected
reward through interaction with the environment. Our pro-
posed BCM combines aspects of conventional RL algo-
rithms and supervised learning to solve complex tasks. This
technique is similar in spirit to the work in (Nair et al., 2018).
The difference is that we create the expert behavior based on
a one-step greedy strategy by solving an optimization prob-
lem that maximizes immediate rewards in the current time
step. Additionally, we only update the actor with respect
to its auxiliary behavior cloning loss in an actor-critic algo-
rithm setting. We demonstrate that BCM can prevent large
changes in portfolio weights and thus keep the volatility low,
while also increasing returns in some cases.

To the best of our knowledge, this is the first work that
leverages the deep RL state-of-art, and further extends it to
a model-based setting for real-world application in financial
portfolio management. Here we demonstrate our approach
extending the standard the off-policy actor-critic algorithm -
deep deterministic policy gradients (DDPG) (Lillicrap et al.,
2015)). Additionally in the appendix, we also provide algo-
rithms for differential risk sensitive model-based deep RL
for portfolio optimization. For the rest of the main paper,
our discussion will be centered around how our model-based

architecture can improve the performance of the off-policy
DDPG algorithm.

2. Preliminaries and Problem Setup
In this section, we briefly review the literature of deep rein-
forcement learning and introduce the mathematical formula-
tion of the dynamic portfolio optimization problem.

A Markov Decision Process (MDP) is defined as a 6-
tuple 〈T, γ,S, 3A, P, r〉. Here, T is the (possibly infi-
nite) decision horizon; γ ∈ (0, 1] is the discount fac-
tor; S =

⋃
t St is the state space and A =

⋃
tAt is

the action space, both assumed to be finite dimensional
and continuous; P : S × A × S → [0, 1] is the tran-
sition kernel and r : S × A → R is the reward func-
tion. Policy is a mapping µ : S → A, specifying the
action to choose in a particular state. At each time step
t ∈ {1, . . . , T}, the agent in state st ∈ St takes an ac-
tion at = µ(st) ∈ At, receives the reward rt and tran-
sits to the next state st+1 according to P. The agent’s ob-
jective is to maximize its expected return given the start
distribution, Jµ , Est∼P,at∼µ[

∑T
t=1 γ

t−1rt]. The state-
action value function, or the Q value function, is defined as
Qµ(st, at) , Esi>t∼P,ai>t∼µ[

∑T
i=t γ

(i−t−1)ri|st, at].

Deep deterministic policy gradient (DDPG) algorithm (Lil-
licrap et al., 2015) is an off-policy model-free reinforce-
ment learning algorithm for continuous control which utilize
large function approximators such as deep neural networks.
DDPG is an actor-critic method, which bridges the gap
between policy gradient methods and value function ap-
proximation methods for RL. Intuitively, DDPG learns a
state-action value function (critic) by minimizing the Bell-
man error, while simultaneously learning a policy (actor) by
directly maximizing the estimated state-action value func-
tion with respect to the network parameters.

Financial portfolio management is the process of constant
redistribution of available funds to a set of financial as-
sets. Our goal is to create a dynamic portfolio optimization
scheme that periodically generates trading decisions and
then act on these decisions autonomously. We consider a
portfolio of m + 1 assets, including m risky assets and 1
risk-free asset (e.g., cash or U.S. treasury bond). We in-
troduce such notation: given a matrix g, we denote the ith

row of g by gi,:, and the jth column by g:,j . We denote the
closing, high and low price vectors of trading period t as pt,
ph
t and pl

t where pi,t is the closing price of the ith asset in
the tth period. In this paper, we choose the first asset to be
risk-free cash, i.e., p0,t = ph

0,t = pl
0,t = 1. We further de-

fine the price relative vector of the tth trading period as ut ,
pt � pt−1 = (1, p1,t/p1,t−1, . . . , pm,t/pm,t−1)> where
� denotes the element-wise division. In addition, we let
hi,t , (pi,t − pi,t−1)/pi,t−1 denote the percentage change
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of closing price at time t for asset i, the space associated
with its vector form h:,t (hi,:) as H:,t ⊂ Rm (Hi,: ⊂ Rk1)
where k1 is the time embedding of prediction model. We de-
fine wt−1 as the portfolio weight vector at the beginning of
trading period t where its ith element wi,t−1 represents the
proportion of asset i in the portfolio after capital realloca-
tion and

∑m
i=0 wi,t = 1 for all t. We initialize our portfolio

with w0 = (1, 0, . . . , 0)>. Due to price movements in the
market, at the end of the same period, the weights evolve
according to w

′

t = (ut �wt−1)/(ut ·wt−1), where � is
the element-wise multiplication. Our goal at the end of
period t is to reallocate portfolio vector from w

′

t to wt by
selling and buying relevant assets. Paying all commission
fees, this reallocation action shrinks the portfolio value by
a factor c̄t , c

∑m
i=1 |w

′

i,t − wi,t| where c is the transac-
tion fees for purchasing and selling. In particular, we let
ρt−1 denote the portfolio value at the beginning of period
t and ρ

′

t at the end. We then have ρt = c̄tρ
′

t. The imme-
diate reward is the logarithmic rate of return defined by
rt , ln(ρt/ρt−1) = ln(c̄tρ

′

t/ρt−1) = ln(c̄tut ·wt−1).

We define the normalized close price matrix at time t by
Pt , [pt−k2+1 � pt|pt−k2+2 � pt| · · · |pt−1 � pt|1]
where 1 , (1, 1, . . . , 1)> and k2 is the time embed-
ding. The normalized high price matrix Ph

t is defined by
Ph
t , [ph

t−k2+1�pt|ph
t−k2+2�pt| · · · |ph

t−1�pt|ph
t�pt],

and low price matrix Pl
t can be defined similarly. We fur-

ther define the price tensor as Yt , [Pt Ph
t Pl

t]. Our
objective is to design a RL agent that observes the state
st , (Yt,wt−1) and takes a sequence of actions (port-
folio weights) over the time at = wt such that the final
portfolio value ρT = ρ0Est∼P,at∼µ[exp(

∑T
t=1 γ

t−1rt)] is
maximized.

3. System Architecture
In this section, we discuss the detailed design of our pro-
posed RL based automatic trading system.

The portfolio optimization framework referenced in this
paper is represented in Figure 1 and is a modular system
composed of a data handler (DH), an algorithm engine (AE)
and a market simulation environment (MSE). The DH re-
trieves market data and deals with the required data trans-
formations. It is designed for continuous data ingestion.
The AE consists of the infused prediction module (IPM),
the behavior cloning module (BCM) and the RL agent. We
refer the readers to Algorithm 1 in the supplementary mate-
rial for further details. The MSE is an online event-driven
module that provides feedback of executed trades, which
can eventually be used by the AE to compute rewards. In
addition, it also executes investment decisions made by the
AE. The strategy applied in this study is an asset alloca-
tion system that rebalances the available capital between
a portfolio of pre-selected assets including cash on a daily

Figure 1. Autonomous portfolio optimization framework.

decision frequency.

The data used in this paper is a mix of U.S. equities1 on
tick level (trade by trade) aggregated to form open-high-low-
close (OHLC) bars on an daily frequency.

In the financial portfolio management, a common bench-
mark strategy is the constantly rebalanced portfolio (CRP)
(Cover, 1991), where at each period the portfolio is rebal-
anced to the initial wealth distribution among the m+ 1 as-
sets including the cash. Here in additional to baseline model-
free DDPG agent, we use CRP as a benchmark. Transaction
fees c have been fixed at a conservative level of 20 basis
points2 and, given the use of market orders, an additional
50 basis points of slippage is applied.

We evaluate the performance of the trained RL agent and
benchmarks using standard measures as Sharpe and Sortino
ratios, value-at-risk (VaR), conditional value-at-risk (CVaR),
maximum drawdown (MDD), annualized volatility and an-
nualized returns. Let Y denote a bounded random variable.
The Sharpe ratio of Y is defined as SR , E[Y ]/

√
var[Y ].

Sharpe ratio, representing the reward per unit of risk, has
been recognized not to be always desirable since it is a sym-
metric measure of risk and, hence, penalizes the low-cost
events. Sortino ratio, VaR and CVaR are risk measures
which gained popularity for taking into consideration only

1We use data from Refinitiv DataScope, with experiments car-
ried out on the following U.S. Equities: Costco Wholesale Corpo-
ration, Cisco Systems, Ford Motors, Goldman Sachs, American
International Group and Caterpillar. The portfolio selection proce-
dure is outside the scope of this paper. An additional asset is cash
(in U.S. dollars), representing the amount of capital not invested
in any other asset. Furthermore, a generic market variable (S&P
500 index) is used as additional feature. The data is shared in
supplementary files, which will be made available publicly later.

2One basis point is equivalent to 0.01%.
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the unfavorable part of the return distribution, or, equiva-
lently, unwanted high cost. Sortino ratio is defined similarly
to Sharpe ratio, though replacing the standard deviation√

var[Y ] with the downside deviation. The VaRα with level
α ∈ (0, 1) of Y is the (1−α)-quantile of Y , and CVaRα at
level α is the expected return of Y in the worst (1− α) of
cases.

3.1. Network Architecture

In order to illustrate our proposed off-policy version of dy-
namic portfolio optimization algorithm, we adapt the actor-
critic style DDPG algorithm (Lillicrap et al., 2015). In this
setting, at least two networks (one for the actor and one
for the critic) are required in the agent as shown in Figure
2. Furthermore, our implementation utilizes both target
networks (Mnih et al., 2015) and parameter noise explo-
ration (Plappert et al., 2017), which in itself necessitates
two additional networks for the actor. Our agent, compris-
ing of six separate networks (four networks for the actor and
two networks for the critic), is described in Algorithm 1 of
supplementary material Section A.

Figure 2. Agent architecture.

We next discuss how the agent is trained and tested. For
each episode during training, we select an episode of data
by selecting a random trading date that satisfies our desired
episode length. At each time step of the episode, market
data, i.e., data corresponding to the current time step of
interest, fetched via the data fetcher is used to train the IPM
which produces predictions of price percentage changes
in the next time step. At the same time, the agent’s net-
works are updated by making use of data sampled from
the memory (also referred to as the replay buffer) via the
prioritized experience replay (Schaul et al., 2015). Once
the agent’s networks are updated, an action, i.e., desired
portfolio allocation in the next time step, can be obtained
from the actor network that has been perturbed with the pa-
rameter noise. The MSE then executes this noisy action and
the agent moves to the next state. The corresponding state,
action, rewards, next state and computed one-step greedy
action produced by the BCM, are stored in the memory.
This process is repeated for each step in the episode and for
all episodes. During the testing period, the IPM continues to
be updated at each time step while the agent is frozen. Such

that, it is no longer trained and actions are obtained from
the actual actor network, i.e., the actor network without
parameter noise.

As shown in Figure 2, actor and critic networks in the agent
consist of feature extraction (FE), feature analysis (FA) and
network improvement (NI) components. The FE layers aim
to extract features given the current price tensor Yt. In our
experiments, we have pre-selected 8 assets including cash
and a time embedding k2 = 10. This essentially means
that we have a price tensor of the shape 3 × 8 × 10 if
using the channels first convention. The FE layers can be
either LSTM-based recurrent neural networks (RNN, see
(Hochreiter & Schmidhuber, 1997)) or convolutional neural
networks (CNN, see (Krizhevsky et al., 2012)). We find that
the former typically yields better performance. Thus, the
price tensor is reshaped to a 24× 10 tensor prior to being
fed to the LSTM-based FE network.

The outputs at each time step of the LSTM-based FE net-
work are concatenated together into a single vector. Next,
the previous actions, wt−1, is concatenated to this vector.
Finally, it is further concatenated with a one-step predicted
price percentage change vector produced by the IPM and a
market index performance indicator (i.e., the price ratio of
a market index such as the S&P 500 index). The resulting
vector is then passed to a series of dense layers (i.e., multi-
layer perceptrons), which we refer to as the feature analysis
(FA) component.

Finally, we have a network improvement (NI) component for
each network which specifies how the network is updated.
Specifically, NI synchronizes the learning rates between the
actor and the critic, which preserves training stability by
ensuring the actor is updated at a slower rate than the critic
(Bhatnagar et al., 2009). It is also important to note that
the actor network’s NI component receives gradients from
the BCM, which makes use of one-step greedy actions to
provide supervised updates to the actor network to reduce
portfolio volatility.

3.2. Infused Prediction Module

Here, we implemented and evaluated two different multivari-
ate prediction models, trained in an online manner, differing
in their computational complexity. As the most time efficient
model, we implemented the nonlinear dynamic Boltzmann
machine (Dasgupta & Osogami, 2017) (NDyBM) that pre-
dicts the future price of each asset conditioned on the history
of all assets in the portfolio. As NDyBM does not require
backpropagation through time, it has a parameter update
time complexity of O(1). This makes it very suitable for
fast computation in online time-series prediction scenarios.
We also implemented another version of IPM using dilated
convolution layers inspired by the WaveNet architecture
(van den Oord et al., 2018). As there was no significant
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difference in predictive performance noticed between the
two models, in the rest of the paper we provide results with
the computationally efficient NDyBM based IPM module.
However, details of our WaveNet inspired architecture can
be seen in supplementary material.

We use the state-space augmentation technique, and con-
struct the augmented state-space S̃ , St × H:,t+1 ×
H:,t+1 × H:,t+1: each state is now a pair s̃t ,
(st,xt+1), where st ∈ St is the original state, and
xt+1 , (h:,t+1,h

h
:,t+1,h

l
:,t+1) ∈ X ⊂ Rm×3 where

h:,t+1,h
h
:,t+1,h

l
:,t+1 ∈ H:,t+1 is the predicted future close,

high and low asset percentage price change tensor.

The NDyBM can be seen as an unfolded Gaussian Boltz-
mann machine for an infinite time horizon i.e. T → ∞
history, that generalizes a standard vector auto-regressive
model with eligibility traces and nonlinear transformation
of historical data (Dasgupta & Osogami, 2017). It repre-
sents the conditional probability density of x[t] given x[:t−1]

as, p(x[t]|x[:t−1]) =
∏N
j=1 pj(x

[t]
j |x[:t−1])3. Where, each

factor of the right-hand side denotes the conditional proba-
bility density of x[t]j given x[:t−1] for j = 1, . . . , N . Where,
N = m× 3 are the number of units in the NDyBM. Here,
x
[t]
j is considered to have a Gaussian distribution for each j:

pj(x
[t]
j |x[:t−1]) = 1√

2π σ2
j

exp
(
−
(
x
[t]
j −µ

[t]
j

)2
2σ2
j

)
.

Here, µ , (µj)j=1,...,N is the vector of expected values of
the j-th unit at time t given the history up to t− 1 patterns.
It is represented as:
µ[t] = b +

∑d−1
δ=1 F[δ]x[t−δ] +

∑K
k=1 Gk α

[t−1]
k .

Where, b , (bj)j=1,...,N is a bias vector, α
[t−1]
k ,

(α
[t−1]
j,k )j=1,...,N areK eligibility trace vectors, d is the time-

delay between connections (i, j) and
F[δ] , (f̃i,j)(i,j)∈{1,...,N}2 for 0 < δ < d, Gk ,
(gi,j,k)(i,j)∈{1,...,N}2 for k = 1, . . . ,K are N ×N weight
matrices. The eligibility trace can be updated recursively as,
α
[t]
i,j,k = λk α

[t−1]
i,j,k + x

[t−di,j+1]
i . Here, λk is a fixed decay

rate factor defined for each of the k column vectors. Addi-
tionally, the bias parameter vector b, is updated at each time
using a RNN layer. This RNN layer computes a nonlinear
feature map of the past time series. Where in, the output
weights from the RNN to the bias layer along with other
NDyBM parameters (bias, weight matrices and variance),
are updated online using a stochastic gradient method.

Following (Dasgupta & Osogami, 2017)4, the NDyBM is
trained to predict the next time-step close, high and low
percentage change for each asset conditioned on the history

3For mathematical convenience, xt and x[t] are used inter-
changeably.

4Details of the learning rule and derivation of the model as per
the original paper. Algorithm steps and hyper-parameter settings
are provided in supplementary.

of all other assets, such that the log-likelihood of each time-
series is maximised. As such NDyBM parameters are up-
dated at each step t, following the gradient of the conditional
probability density of x[t]: ∇θ log p(x[t]|x[−∞,t−1]) =∑N
i=1∇θ log pi(x

[t]
i |x[−∞,t−1]).

In the spirit of providing the agent with additional mar-
ket signals and removing non-Markovian dynamics in the
model, along with the prediction, we further augment the
state space with a market index performance indicator. The
state space now has the form s̃t , (st,xt+1, It) where,
It ∈ R+ is the market index performance indicator for time
step t.

3.3. Behavior Cloning Module

In finance, some investors may favor a portfolio with lower
volatility over the investment horizon. To achieve this, we
propose expert behavior cloning , with the primary purpose
of reducing portfolio volatility while maintaining reward to
risk ratios. One can broadly dichotomize imitation learn-
ing into a passive collection of demonstrations (behavioral
cloning) versus an active collection of demonstrations. The
former setting (Abbeel & Ng, 2004; Ross et al., 2011) as-
sumes that demonstrations are collected a priori and the
goal of imitation learning is to find a policy that mimics
the demonstrations. The latter setting (Daumé et al., 2009;
Sun et al., 2017; Kimura et al., 2018) assumes an interactive
expert that provides demonstrations in response to actions
taken by the current policy. Our proposed BCM in this
definition is an active imitation learning algorithm. In par-
ticular, for every step that the agent takes during training, we
calculate the one-step greedy action in hindsight. This one-
step greedy action is computed by solving an optimization
problem, given the next time period’s price ratios, current
portfolio distribution and transaction costs. The objective
function is to maximize returns in the current time step,
which is why the computed action is referred to as the one-
step greedy action. For time step t, the objective function is
as follows:

max
wt

ut ·wt − c
∑m
i=1 |wi,t − wi,t−1|

s.t.
∑m
i=0 wi,t = 1, 0 ≤ wi,t ≤ 1, ∀i.

(1)

Solving the above optimization problem for wt yields an
optimal expert greedy action denoted by āt. This one-step
greedy action is then stored in the replay buffer together
with the corresponding (st, at, rt, st+1) pair. In each train-
ing iteration of the actor-critic algorithm, a mini-batch of
{(si, ai, ri, si+1, āi)}Ni=1 is sampled from the replay buffer.
Using the states si that were sampled from the replay buffer,
the actor’s corresponding actions are computed and the log-
loss between the actor’s actions and the one-step greedy
actions āi is calculated:
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Table 1. Deep RL based portfolio optimization agent performance comparison across the different models (last column represents
IPM+BCM combined model). Best performance in bold.

CRP Model-free Baseline IPM BCM Model-based Combined
Final accnt. value 574859 570482 586150 577293 580899

Cummulative return 14.97% 14.11% 17.23% 15.46% 16.18%
Annualized return 7.25% 7.14% 8.64% 7.77% 8.09%

Annualized volatility 12.65% 12.79% 14.14% 12.81% 12.77%
Sharpe ratio 0.57 0.56 0.61 0.61 0.63
Sortino ratio 0.80 0.78 0.87 0.85 0.89

VaR0.95 1.29% 1.30% 1.41% 1.28% 1.27%
CVaR0.95 1.93% 1.93% 2.11% 1.92% 1.91%

MDD 13.10% 13.80% 12.60% 12.60% 12.40%

L̄µ = −1×∑N
i=1

∑m
j=0 āi,j log(µ(si))j + (1− āi,j) log(1− (µ(si))j)

N(m+ 1)
.

(2)

Gradients of the log-loss with respect to the actor net-
work ∇θµL̄µ can then be calculated and used to perturb
the weights of the actor slightly. Using this loss directly
prevents the learned policy from improving significantly
beyond the demonstration policy, as the actor is always tied
back to the demonstrations. To achieve this, a fixed factor
λ is used to discount the gradients such that the actor net-
work is only slightly perturbed towards the one-step greedy
action, thus maintaining the stability of the underlying RL
algorithm. Following this, the typical DDPG algorithm (see
algorithm 1 in supplementary section A) is executed to train
the agent.

4. Experiments
In all experiments5 the time period spanning from 1 Jan-
uary 2005 to 31 December 2016 (11 years of daily data)
was used to train the agent, while the time period between
1 January 2017 to 31 December 2018 (2 years) was used
to test the agent out of sample. We initialize our portfolio
with $500, 000 in cash. We implement a CRP benchmark
where funds are equally distributed among all assets, in-
cluding the cash asset. We also compare the model-free
DDPG agent as a baseline (i.e., without infused prediction
and behavioral cloning, all other settings remain the same)6.
It should be noted that, compared to the implementation in
prior work (Jiang et al., 2017; Deng et al., 2017; Liang et al.,
2018) our baseline agent is situated in a more realistic trad-
ing environment that does not assume an immediate trade
execution. In particular, our backtesting engine executes
market orders at the open of the next OHLC bar, as well

5Algorithm of our model-based DDPG agent is detailed in
supplementary material Section A.

6Our baseline is superior to the prior work as (Jiang et al., 2017)
due to the addition of prioritized experience replay and parameter
noise for better exploration.

as adds slippage to the trading costs. Additional practical
constraints are applied such that fractional trades of an asset
are not allowed. In addition, in the case of the combined
model, at training time the data provided to the agent is aug-
mented with samples from a generative adversarial network
(GAN) (Goodfellow et al., 2014; Li et al., 2015) generated
HLC (high, low, close) data at a daily frequency. Details of
our GAN implementation is provided in the supplementary
section E. Augmenting with GAN data in the case of the
model-free baseline did not make a significant difference to
the performance.

As shown in Table 1, by making use of just IPM, we observe
a significant improvement over the baseline in terms of
Sharpe (from 0.56 to 0.61) and Sortino (from 0.78 to 0.87)
ratios, indicating that we are able to get more returns per unit
risk taken. This agent also achieves the highest annualized
return overall. However, we note that the volatility of the
portfolio is significantly increased (from 12.79% to 14.14%)
along with an increase in VaR and CVaR (downside risk)
values. As such the IPM by itself provides considerable
increase in the return however at the expense of increased
risk of the portfolio. One possible reason for increase in
risk could be due to the added complexity of IPM module
making the agent prone to mistakes when the data comes
from the tail end of the distribution or significantly different
from training set data distribution.

Introducing the one-step greedy BCM agent considerably
reduces the risk of the portfolio as observed from the reduc-
tion in annualized volatility, VaR and CVar values. However
behavior cloned agent is unable to generalize well as indi-
cated by the reduction in return of the portfolio. To mitigate
the drawbacks of the individual modules, we make use of
all our contributions as a single model-based framework
(i.e. combined model). As shown in Table 1, the combined
model is not only better than the performance of the CRP
and baseline model free agent, but achieves similar per-
formance as the IPM based model in terms of annualized
return, but surpasses all the previous models in terms of
both Sharpe (from 0.61 to 0.63) and Sortino ratios (from
0.87 to 0.89). It is worthwhile to note that addition of BCM
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has a strong impact in reducing volatility (from 12.84% to
12.77%), MDD (from 12.7% to 12.4%) and the value at risk
measures (VaR and CVaR).

We can conclude that IPM by itself considerably improves
portfolio management performances in terms of annualized
returns along with better Sharpe and Sortino ratio as com-
pared to baseline. This is particularly attractive for investors
who aim to maximize their returns per unit risk. However,
it is important to note that this may impact the annualized
standard deviation or volatility of the performance. BCM
as envisioned, helps to reduce portfolio risk as seen by its
ability to either reduce volatility or MDD across all runs.
It is also interesting to note its ability to improve the risk
to return (reward) ratios. Enabling all three modules, our
proposed model-based approach can achieve significant per-
formance improvement as compared with benchmark and
baseline. The risk sensitivity of the RL agent can be fur-
ther improved by reward shaping based on risk measures.
In this direction, we provide details on an additional risk
adjustment module (that can adjust the reward function con-
tingent on risk) with experimental results in supplementary
material.

5. Conclusion
In this paper, we proposed a model-based deep reinforce-
ment learning architecture to solve the dynamic portfolio
optimization problem. To achieve a profitable and risk-
sensitive portfolio, we developed infused prediction and
greedy expert behavior cloning modules, and further inte-
grated them into an automatic trading system. The stability
and profitability of our proposed model-based RL trading
framework were empirically validated on several indepen-
dent experiments with real market data and practical con-
straints. In order to provide direct risk sensitive feedback to
the RL agent, it is also possible to shape the reward function
making use of online measures of Sharpe ratio and down-
side risk. We formulate such a risk-adjustment mechanism
that can work together with our model-based approach. We
present the algorithmic details and experimental results with
this addition in the supplementary section D. In general
our model-based architecture is applicable not only to the
financial domain, but also to general reinforcement learning
domains which require practical considerations on decision
making risk.
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A. Algorithm
Our proposed model-based off-policy actor-critic style RL
architecture is summarized in Algorithm 1.

Algorithm 1 Model-based Deep Reinforcement Learn-
ing for Dynamic Portfolio Optimization
1: Input: Critic Q(s̃, a|θQ), actor µ(s̃|θµ) and perturbed ac-

tor networks µ(s̃|θµ̃) with weights θQ, θµ, θµ̃ and standard
deviation of parameter noise σ.

2: Initialize target networks Q′, µ′ with weights θQ
′
← θQ,

θµ
′
← θµ

3: Initialize replay buffer R
4: for episode = 1, . . . ,M do
5: Receive initial observation state s1
6: for t = 1, . . . , T do
7: Predict future price tensor xt+1 with prediction models

using st and form augmented state s̃t
8: Use perturbed weight θµ̃ to select action at = µ(s̃t|θµ̃)
9: Execute action at, observe reward rt and new state st+1

10: Predict next future price tensor xt+2 using prediction
models with inputs st+1 and form the augmented state
s̃t+1

11: Solve the optimization problem (1) for the expert greedy
action āt

12: Store transition (s̃t, at, rt, s̃t+1, āt) in R
13: Sample a minibatch of N transitions,

(s̃i, ai, ri, s̃i+1, āi), from R via prioritized replay,
according to temporal difference error

14: Compute yi = ri + γQ′(s̃i+1, µ
′(s̃i+1|θµ

′
)|θQ

′
)

15: Update the critic θQ by annealing the prioritized replay
bias while minimizing the loss:

1

N

N∑
i=1

(yi −Q(s̃i, ai|θQ))2

16: Maintain the ratio between the actual learning rates of
the actor and critic

17: Update θµ using the sampled policy gradient:

1

N

∑
i

∇aQ(s̃, a|θQ)|s̃=s̃i,a=µ(s̃i|θµ)∇θµµ(s̃|θµ)|s̃=s̃i

18: Calculate the expert auxiliary loss L̄ in (2) and update
θµ using∇θµ L̄µ with factor λ

19: Update the target networks: θQ
′
← τθQ + (1− τ)θQ

′
,

θµ
′
← τθµ + (1− τ)θµ

′

20: Create adaptive actor weights µ̃′ from current actor
weight θµ and current σ: θµ̃

′
← θµ +N (0, σ)

21: Generate adaptive perturbed actions ã′ for the sampled
transition starting states s̃i: ã′ = µ(s̃i|θµ̃

′
). With pre-

viously calculated actual actions a = µ(s̃i|θµ), cal-
culate the mean induced action noise: d(θµ, θµ̃

′
) =√

1
N

∑N
i=1 Es [(ai − a′i)2]

22: Update σ: if d(θµ, θµ̃
′
) ≤ δ, σ ← ασ, otherwise σ ←

σ/α
23: end for
24: Update perturbed actor: θµ̃ ← θµ +N (0, σ)
25: end for

http://proceedings.mlr.press/v80/oord18a.html
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Table 2. Hyperparameters for the DDPG actor and critic networks.
Actor network Critic network

FE layer type RNN bidirectional LSTM RNN bidirectional LSTM
FE layer size 20, 8 20, 8
FA layer type Dense Dense
FA layer size 256,128,64,32 256,128,64,32

FA layer activation function Leaky relu Leaky relu
Optimizer Gradient descent optimizer Adam optimizer
Dropout 0.5 0.5

Learning rate Synchronized to be 100 times slower than
the critic’s actual learning rate 10−3

Episode length 650
Number of episodes 200
σ for parameter noise 0.01

Replay buffer size 1000

B. Hyperparameters for Experiments
We report the hyperparameters for the actor and critic net-
works in Table 2.

Nonlinear Dynamic Boltzmann machine in the infused pre-
diction module uses the following hyper-parameter settings:
delay d = 3, decay rates λ = [0.1, 0.2, 0.5, 0.8] i.e. k = 4,
learning rate was 10−3, with standard RMSProp optimizer.
The input and output dimensions were fixed at three times
the number of assets, corresponding to the high, low and
close percentage change values. The RNN layer dimen-
sion is fixed at 100 units with a tanh nonlinear activation
function. A zero mean, 0.01 standard deviation noise was
applied to each of the input dimensions at each time step, in
order to slightly perturb the inputs to the network. This in-
jected noise was cancelled by applying a standard7 Savitzky-
Golay (savgol) filter with window length 5 and polynomial
order 3.

For the variant of WaveNet (van den Oord et al., 2018) in
the infused prediction module, we choose the number of
dilation levels L to be 6, filter length f to be 2, the number
of filters to be 32 and the learning rate to be 10−4. Inputs are
scaled with min-max scaler with a window size equal to the
receptive field of the network, which is fL+

∑L−2
i=0 f

i = 95.

For the RNN-GAN, we select the number of training set to
be 30,000, noise latent dimension H to be 8, batch size to
be 128, time embedding k1 to be 95, generator RNN hidden
units to be 32, discriminator RNN hidden unit to be 32 and
a learning rate 10−3. For each episode in Algorithm 1, we
generate and append two months of synthetic market data
for each asset.

For the BCM, we choose the factor λ = 0.1 to discount the
gradient of the log-loss.

7As implemented in scientific computing package Scipy.

C. Details of Infused Prediction Module
C.1. Nonlinear Dynamic Boltzmann Machine

Algorithm

In Figure 4 we show the typical unfolded structure of a
nonlinear dynamic Boltzmann machine. The RNN layer
(of a reservoir computing type architecture) (Jaeger, 2003;
Jaeger & Haas, 2004) is used to create nonlinear feature
transforms of the historical time-series and update the bias
parameter vector as follows: b[t] = b[t−1] + A>Ψ[t]

Where, Ψ[t] is a M × 1 dimensional state vector at time t
of a M dimensional RNN. A is the M × N dimensional
learned output weight matrix that connects the RNN state to
the bias vector. The RNN state is updated based on the input
time-series x[t] as follows: Ψ[t] = tanh

(
WrnnΨ[t−1] +

Winx[t]
)
.

Here, Wrnn and Win are the RNN internal weight matrix
and the weight matrix corresponding to the projection of the
time-series input to the RNN layer, respectively.

The NDyBM is trained online to predict x̃[t+1] based on
the estimated µ[t] for all time observations t = 1, 2, 3, . . . .
The parameters are updated such that the log-likelihood
LL(D) =

∑
x∈D

∑
t log p(x[t]|x[−∞,t−1]), of the given fi-

nancial time-series data D is maximized. We can derive
exact stochastic gradient update rules for each of the param-
eters using this objective (can be referenced in the original
paper). Such a local update mechanism, allows an O(1) up-
date of NDyBM parameters. As such a single epoch update
of NDyBM occurs in sub-seconds� 1s as compared to a
tens of seconds update of the WaveNet inspired model. Scal-
ing up to large number of assets in the portfolio, in an online
learning scenario this can provide significant computational
benefits.

Our implementation of the NDyBM based infused predic-
tion module is based on the open-source code available at
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https://github.com/ibm-research-tokyo/
dybm. Algorithm 3 describes the basics steps.

Algorithm 2 Online asset price change prediction with the
NDybM IPM module.
1: Require: All the weight and bias parameters of NDyBM

are initialized to zero. The RNN weights, Wrnn initial-
ized randomly fromN (0, 1), Win initialized randomly from
N (0, 0.1). The FIFO queue is initialized with d − 1 zero
vectors. K eligibility traces {α[−1]

k }Kk=1 are initialized with
zero vectors

2: Input: Close, high and low percentage price change for each
asset at each time step

3: for t = 0, 1, 2, ... do
4: Compute µ[t] using µ[t] = b +

∑d−1
δ=1 F

[δ]x[t−δ] +∑K
k=1 Gk α

[t−1]
k & update the bias vector based on RNN

layer
5: Predict the expected price change pattern at time t using

µ[t]

6: Observe the current time series pattern at x[t]

7: Update the parameters of NDyBM based on
∇ log p(x[t]|x[−∞,t−1])

8: Update FIFO queues and eligibility traces by α
[t]
i,j,k =

λk α
[t−1]
i,j,k + x

[t−di,j+1]

i

9: Update RNN layer state vector
10: end for

Figure 4. A nonlinear dynamic Boltzmann machine unfolded in
time. There are no connections between units i and j within a
layer. Each unit is connected to each other unit only in time. The
lack of intra-layer connections enables conditional independence
as depicted.

C.2. WaveNet inspired multivariate time-series
prediction

We use an autoregressive generative model, which is a vari-
ant of parallel WaveNet (van den Oord et al., 2018), to

learn the temporal pattern of the percentage price change
tensor xt ∈ Rm×3, which is the part of state space that
is assumed to be independent of agent’s actions. Our net-
work is inspired by previous works on adapting WaveNet
to time series prediction (Mittelman, 2015; Borovykh et al.,
2017). We denote the ith asset’s price tensor at time t as
xi,t = (pi,t, p

h
i,t, p

l
i,t). The joint distribution of price over

time X = {x1, . . . ,xT } is modelled as a factorized product
of probabilities conditioned on a past window of size k1:

p(X) =

T∏
t=1

m∏
i=1

p(xi,t|xt−k1 , . . . ,xt−1, θ).

The model parameter θ is estimated through maximum like-
lihood estimation (MLE) respective to p(X). The joint
probability is factorized both over time and different assets,
and the conditional probabilities is modelled as stacks of
dilated causal convolutions. Causal convolution ensures that
the output does not depend on future data, which can be
implemented by front zero padding convolution output in
time dimension such that output has the same size in time
dimension as input.

Figure 5 shows the tensorboard visualization of a dilated
convolution stack of our WaveNet variant. At each time t,
the input window (xt−k1 , . . . ,xt−1) ∈ X k1 ⊂ Rm×3×k1
first goes through the common F1 layer, which is a depth-
wise separable 2d convolution followed by a 1× 1 convolu-
tion, with time and features (close, high, low) as height and
width and assets as channel. Output from F1 is then feed
into different stacks of the same architecture as depicted in
Figure 5, one for each different asset. Fl and Rl denotes
dilated convolution with filter length f and relu activation at
level l, which has dilation factor dl = f l−1. Each Rl takes
the concatenation of Fl and Rl+1 as input. This concate-
nation is represented by the residual blocks in the diagram.
The final M layer in Figure 5 is a 1× 1 convolution with 3
filters, one for each of high, low and close, and the output
is exactly xi,t. The output from m different stacks is then
concatenated to produce the prediction xt.

The reason for modelling the probabilities as such is two-
fold. First, it addresses the dependency on historical patterns
of the financial market by using a high order autoregressive
model to capture long term patterns. Models with recur-
rent connections can capture long term information since
they have internal memory, but they are slow to train. A
fully convolutional model can process inputs in parallel,
thus resulting in faster training speed compared to recurrent
models, but the number of layers needed is linear to k1. This
inefficiency can be solved by using stacked dilated convolu-
tion. A dilated convolution with dilation factor d uses filters
with d − 1 zero inserted between its values, which allows
it to operate in a coarser scale than a normal convolution
with same effective filter length. When stacking dilated

https://github.com/ibm-research-tokyo/dybm
https://github.com/ibm-research-tokyo/dybm
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convolution layers with filter length f , if an exponentially
increasing dilation factor dl = f l−1 is used in each layer
l, the effective receptive fields will be fL, where L is the
total number of layers. Thus large receptive field can be
achieved with having logarithmic many layers to k1, which
has much fewer parameters needed compared to a normal
fully convolutional model.
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Figure 6. Out of sample actual and predicted closing price move-
ment for asset Cisco Systems.

Secondly, by factoring not only over time but over different
assets as well, this model makes parallelization easier and
potentially has better interpretability. The prediction of each
asset is conditioned on all the asset prices in the past window,
which makes the model easier to run in parallel since each
stack can be placed on different GPUs.

The serial cross correlation R at lag ` for a pair of discrete
time series x(t), y(t) is defined as

Rxy(`) =
∑
t

x(t)y(t− `).

Roughly speaking, Rxy(`) measure the similarity be-
tween x and a lagged version of the y. The peak α =
arg max`Rxy(`) indicates that x(t) has highest correlation
with y(t + α) for all t on average. If x(t) is the predicted
time series, and y(t) is the real data, a naive prediction
model simply takes the last observation as prediction and
would thus have α = −1. Sometimes a prediction model
will learn this trivial prediction and we call this kind of
model trend following. To test whether our model has
learned a trend following prediction, we convert the pre-
dicted percentage change vector xt back to price (see Figure
6) and calculated the serial cross-correlation between the
predicted series and the actual. Figure 7 clearly shows that
there is no trend following behavior as α = 0.
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Figure 7. Trend following analysis on predicted closing price
movement for asset Cisco Systems.

D. Risk-adjustment Module
In this section, we discuss the risk-adjustment module
(RAM) which is aimed to optimize portfolio risk directly.
We adapt the framework of recurrent deterministic policy
gradient (RDPG, see (Heess et al., 2015)) technique which
is a natural extension of DDPG to memory-based control
setting with recurrent neural networks, and adjust our risk
preference.

Note that the sampled minibatch from the replay buffer in
Algorithm 1 is of the form

(st1 , at1 , rt1 , st1+1), . . . , (stK , atK , rtK , stK+1).

The critic and actor networks are then updated according
to these disjointed (non-successive) samples, i.e., stk+1 6=
stk+1

,∀k = 1, . . . ,K − 1. Different from DDPG replay
buffer which stores a time-step experience, RDPG replay
buffer stores a complete trajectory. In other words, each
sample in the DDPG replay buffer is a state-action-reward-
next state tuple, while each sample in the RDPG replay
buffer is a trajectory starting from a given initial state. When
we sample from the RDPG replay buffer, different trajecto-
ries are sampled.

Different from the original RDPG (Heess et al., 2015), the
update rules of our RDPG are the same as DDPG except that
samples from the replay buffer are trajectories instead of
disjoint transitions, and that both critic and actor networks
in RDPG still take augmented state s̃i as inputs. The details
of these changes are in Algorithm 3

Having access to trajectory sampling also allows us to apply
risk-adjustment to our RL objective. Following (Moody
& Saffell, 2001), we consider new risk-aware objectives
including differential Sharpe ratio (DSR) and differential
downside deviation ratio (DDR). To define the DSR, recall
the definition of Sharpe ratio SR and denote its value at time
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t by SRt:

SRt =
E[rt]√
var[rt]

, (3)

where rt is the logarithmic rate of return for period t. The
differential Sharpe ratio Dt is then obtained by considering
the moving average of the returns and standard deviation of
returns in (3), and expanding to first order in the adaptation
rate η

dt ,
dSRt
dη

=
ωt−1∆νt − 0.5νt−1∆ωt

(ωt−1 − ν2t−1)
3
2

, (4)

where νt and ωt8 are exponential moving estimates of the
first and second moments of rt

νt = νt−1 + η∆νt = νt−1 + η(rt − νt−1),

ωt = ωt−1 + η∆ωt = ωt−1 + η(r2t − ωt−1).

The DSR has several attractive properties including facil-
itating recursive updating, enabling efficient on-line opti-
mization, weighting recent returns more and providing in-
terpretability (Moody & Saffell, 2001).

To define the DDR, we need first to define the downside
deviation ddT as

ddT ,

(
1

T

T∑
t=1

min{rt, 0}2
) 1

2

,

which is the square root of the average of the square of the
negative returns. Using the downside deviation as a measure
of risk, we can now define the downside deviation ratio
(DDR) as

DDRT ,
E[rt]

ddT
. (5)

The DDR is then defined by considering the exponential
moving average of the returns and the squared downside
deviation of returns in (6), and by expanding to the first
order in the adaption rate η of DDR:

dt ,
dDDRt
dη

=


rt−0.5νt−1

ddt−1
if rt > 0,

dd2t−1(rt−0.5νt−1)−0.5νt−1r
2
t

dd3t−1
otherwise,

(6)
where

νt = νt−1 + η(rt − νt−1),

dd2t = dd2
t−1 + η(min{rt, 0}2 − dd2t−1).

The DDR rewards the presence of large average positive
returns and penalizes risky downside returns. The procedure
of obtaining the risk-sensitive RDPG agent for dynamic
portfolio optimization is summarized in Algorithm 3.

8This is different from wt in the main paper to denote the
portfolio weights.

We perform the experiments with initial values ν0 = ω0 =
dd0 = 0, and add ε = 10−8 to the denominators in (4)
and (6) to avoid division by zero. The results of DSR can
be found in Table 3 below. We can observe similar phe-
nomenon to before as shown in Table 1, where the rewards
were scaled by a fixed number9. In particular, the use of
IPM drastically improves the Sharpe (from 0.56 to 0.60)
and Sortino (from 0.78 to 0.84) ratios. Using the combined
model-based approach produces the best results compared
to just DSR in terms of Sharpe (from 0.56 to 0.63) and
Sortino (from 0.78 to 0.88) ratios.

Results for models with DDR are given in Table 4. We
again see that using IPM compared to just DDR improves
both Sharpe (from 0.57 to 0.59) and Sortino (from 0.79 to
0.83) ratios. However, we can observe that the annualized
volatility is not significantly impacted when comparing IPM
with the combined model (from 12.75% to 12.74%). This
could be due to the difference in risk adjustment of the
rewards.

We show that the use of risk-adjusted rewards such as DSR
and DDR does not detrimentally impact performance, more-
over, it presents an alternative way of scaling the rewards
without the need of heuristically setting a scaling factor.

E. Data Augmentation with Recurrent GAN
The limited historical financial data may prevent us from
scaling up the deep RL agent. To mitigate this issue, we pro-
vide a mechanism for augmenting the dataset via a recurrent
generative adversarial networks (RGAN) framework (Este-
ban et al., 2017) and generate synthetic financial time series.
The RGAN follows the architecture of a regular GAN, with
both the generator and the discriminator substituted by recur-
rent neural networks. Specifically, we generate percentage
change of closing price for each asset separately at higher
frequency than what the RL agent uses. We then downsam-
ple the generated series to obtain the synthetic series of high,
low, close (HLC) triplet vector xt. This approach avoids the
non-stationarity in market price dynamics by generating a
stationary percentage change series instead, and the gener-
ated HLC triplet is guaranteed to maintain their relationship
(i.e., generated highs are higher than generated lows).

We assume implicitly that the ith assets’ percentage change
vector hi,: follows a distribution: hi,: ∼ pidata(hi,:). Let H
be the hidden dimension. Our goal is to find a parameterized
functionGiψ such that given a noise prior pz(z), z ∈ Rk1×H

the generated distribution pig(G
i
ψ(z)) are empirically simi-

lar to the data distribution pidata(hi,:). Formally, given two
batches of observations {Giψ(z)(j)}bj=1, {h

(j)
i,: }bj=1 from

9All experiment results shown in Table 1 were generated by
scaling the rewards by a factor of 103.
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Table 3. Performances for different models (all models are risk-adjusted by DSR risk measure. accnt. and ann. are abbreviations for
account and annualized respectively).

DSR IPM BCM Combined model
Final accnt. value 570909 575709 571595 579444

Ann. return 7.17% 7.62% 7.24% 7.96%
Ann. volatility 12.79% 12.75% 12.81% 12.68%

Sharpe ratio 0.56 0.60 0.57 0.63
Sortino ratio 0.78 0.84 0.79 0.88

VaR0.95 1.30% 1.27% 1.30% 1.25%
CVaR0.95 1.93% 1.91% 1.94% 1.90%

MDD 13.70% 12.40% 13.70% 12.20%

Table 4. Performances for different models (all models are risk-adjusted by DDR risk measure. accnt. and ann. are abbreviations for
account and annualized respectively).

DDR IPM BCM Combined model
Final accnt. value 571790 574791 571737 578091

Ann. return 7.26% 7.54% 7.25% 7.84%
Ann. volatility 12.81% 12.75% 12.79% 12.74%

Sharpe ratio 0.57 0.59 0.57 0.62
Sortino ratio 0.79 0.83 0.79 0.86

VaR0.95 1.30% 1.27% 1.30% 1.27%
CVaR0.95 1.94% 1.91% 1.93% 1.91%

MDD 13.70% 12.40% 13.70% 12.40%

distributions pig and pidata where b is the batch size, we want
pig ≈ pidata under certain similarity measure of distributions.

One suitable choice of such similarity measure is the maxi-
mum mean discrepancy (MMD) (Gretton et al., 2012). Fol-
lowing (Li et al., 2015), we can show (see supplementary

material) that with RBF kernel, minimizing M̂MD
2

b , which
is the biased estimator of squared MMD results in matching
all moments between the two distribution pa, pb.

As discussed in previous works (Arjovsky et al., 2017; Ar-
jovsky & Bottou, 2017), vanilla GANs suffer from the prob-
lem that discriminator becomes perfect when the real and
the generated probabilities have disjoint supports (which is
often the case under the hypothesis that real-world data lies
in low dimensional manifolds). This could lead to generator
gradient vanishing, making the training difficult. Further-
more, the generator can suffer from mode collapse issue
where it succeeds in tricking the discriminator but the gen-
erated samples have low variation.

In our RGAN architecture, we model each asset i separately
by a pair of parameterized function Di

φ, G
i
ψ, and we use

M̂MD
2
, the unbiased estimator of squared MMD between

pig and pidata, as a regularizer for the generator Giψ , such that
the generator not only tries to ’trick’ the discriminator into
classifying its output as coming from pidata, but also tries

to match pig with pidata in all moments. This alleviates the

aforementioned issues in vanilla GAN: firstly M̂MD
2

is
defined even when distributions have disjoint supports, and

secondly gradients provided by M̂MD
2

are not dependent
on the discriminator but only on the real data. Specifically,
both the discriminator Di

φ and the generator Giψ is trained
with gradient descent method. The discriminator objective
is:
maxφ

1
b

∑b
j=1

[
logDi

φ(h
(j)
i ) + log

(
1−Di

φ(Giψ(z(j)))
)]

,

and the generator objective is:

minψ
1
b

∑b
j=1

[
log
(

1−Di
φ(Giψ(z(j)))

)]
+ ζM̂MD

2

given a batch of b samples {z(j)}bj=1 drawn independently
from a diagonal Gaussian noise prior pz(z), and a batch of
b samples {h(j)

i }bj=1 drawn from the data distribution pidata

of the ith asset.
In order to select the bandwidth parameter σ in the RBF
kernel, we set it to the median pairwise distance between
the joint data. Both discriminator and generator networks
are LSTMs (Hochreiter & Schmidhuber, 1997).

Although generator directly minimises estimated M̂MD
2
,

we go one step further to validate the RGAN by conducting
Kolmogorov-Smirnov (KS) test.
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Algorithm 3 Risk-adjusted model-based deep reinforce-
ment learning algorithm.
1: Input: Critic Q(s̃, a|θQ), actor µ(s̃|θµ) and perturbed actor

networks µ(s̃|θµ̃) with weights θQ, θµ, θµ̃, standard deviation
of parameter noise σ and risk adaption rate η.

2: Initialize target networks Q′, µ′ with weights θQ
′
← θQ,

θµ
′
← θµ

3: Initialize replay buffer R
4: for episode= 1, . . . ,M do
5: Receive initial observation state s1
6: Initialize ν0, ω0 and dd0 for DSR and DDR
7: for t = 1 . . . , T do
8: Predict future price tensor xt+1 using prediction models

with inputs st and form augmented state s̃t
9: Use perturbed weight θµ̃ to select action at = µ(s̃t|θµ̃)

10: Take action at, observe reward rt and new state st+1

11: Predict next future price tensor xt+2 using prediction
models with inputs st+1 and form the augmented state
s̃t+1

12: Solve the optimization problem (1) for the expert greedy
action āt

13: Compute the DSR or DDR dt based on (4) or (6)
14: end for
15: Store trajectory (s̃1, a1, d1, s̃2, āt, . . . , s̃T , aT , dT , s̃T+1, āT )

in R
16: Sample a minibatch of size K from replay buffer

{(s̃k1 , ak1 , dk1 , s̃k2 , āk1 , . . . , s̃kT , akT , dkT , s̃kT+1 , ākT )}Kk=1.
17: Compute ykt = dkt + γQ′(s̃kt+1 , µ

′(s̃kt+1 |θ
µ′)|θQ

′
) for

all k = 1, . . . ,K and t = 1, . . . , T
18: Update the critic θQ by minimizing the loss:

1

TK

T∑
t=1

K∑
k=1

(ykt −Q(s̃kt , akt |θ
Q))2

19: Update θµ using the sampled policy gradient:

1

TK

T∑
t=1

K∑
k=1

∇aQ(s̃t, a)|θQ)|s̃t=s̃kt ,a=µ(s̃kt |θµ)×

∇θµµ(s̃t|θµ)|s̃t=s̃kt

20: Calculate the expert auxiliary loss L̄ in (2) and update θµ

using∇θµ L̄µ with factor λ
21: Update the target networks: θQ

′
← τθQ + (1 − τ)θQ

′
,

θµ
′
← τθµ + (1− τ)θµ

′

22: Create adaptive actor weights µ̃′ from current actor weight
θµ and current σ: θµ̃

′
← θµ +N (0, σ)

23: Generate adaptive perturbed actions ã′ for the sampled
transition starting states s̃i: ã′ = µ(s̃i|θµ̃

′
). With pre-

viously calculated actual actions a = µ(s̃i|θµ), cal-
culate the mean induced action noise: d(θµ, θµ̃

′
) =√

1
N

∑N
i=1 Es [(ai − a′i)2]

24: Update σ: if d(θµ, θµ̃
′
) ≤ δ, σ ← ασ, otherwise σ ←

σ/α
25: Update perturbed actor: θµ̃ ← θµ +N (0, σ)
26: end for

E.1. Details on MMD measure and KS-statistics test

Maximum mean discrepancy (MMD) (Gretton et al., 2012)
is a pseudometric over Prob(X ), the space of probability
measures on some compact metric set X . Given a family of
functions F , MMD is defined as

MMD(F , pa, pb) = sup
f∈F

Ex∼pa [f(x)]− Ex∼pb [f(x)].

When F is the unit ball in a Reproducing Kernel Hilbert
Space (RKHS) H associated with a universal kernel K :
X × X → R, i.e. {f ∈ H : ‖f‖∞ ≤ 1}, MMD(F , pa, pb)
is not only a pseudometric but a proper metric as well,
that is MMD(F , pa, pb) = 0 if and only if pa = pb.
One example of a universal kernel is the commonly used
Gaussian radial basis function (RBF) kernel K(x, y) =
exp

(
−‖x− y‖2/(2σ2)

)
.

Given samples {xi}Mi=1, {yi}Ni=1 from pa, pb, the square of
MMD has the following unbiased estimator:

M̂MD
2

=
1(
M
2

) M∑
i=1

M∑
j 6=i

K(xi, xj)−
2

MN

M∑
i=1

N∑
j=1

K(xi, yj)

+
1(
N
2

) N∑
i=1

N∑
j 6=i

K(yi, yj).

We also have the biased estimator where the empirical esti-
mate of feature space means is used

M̂MD
2

b =
1

M2

M∑
i=1

M∑
j 6=i

K(xi, xj)−
2

MN

M∑
i=1

N∑
j=1

K(xi, yj)

+
1

N2

N∑
i=1

N∑
j 6=i

K(yi, yj).

Note that the RBF kernel has the following representation

K(x, y) = exp

(
−‖x‖

2 + ‖y‖2

2σ2

)
exp

(
〈x, y〉
σ2

)
=C

∞∑
n=0

〈x, y〉n

σ2nn!

=C

∞∑
n=0

〈φn(x), φn(y)〉
σ2nn!

where C is the constant exp
(
−||x||2 + ||y||2/(2σ2)

)
, and

φn({·) is the feature map of polynomial kernel of degree
n. Following (Li et al., 2015), we can rewrite the biased
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estimator M̂MD
2

b with φn:

M̂MD
2

b =C

∞∑
n=0

1

σ2nn!

[
1

M2

M∑
i=1

M∑
j 6=i

〈φn(xi), φn(xj)〉

− 2

MN

M∑
i=1

N∑
j=1

〈φn(xi), φn(yj)〉

+
1

N2

N∑
i=1

N∑
j 6=i

〈φn(yi), φn(yj)〉
]

=C

∞∑
n=0

1

σ2nn!

∥∥∥∥∥∥ 1

M

M∑
i=1

φn(xi)−
1

N

N∑
j=1

φn(yj)

∥∥∥∥∥∥
2

.

Therefore minimizing M̂MD
2

b can be seen as matching all
moments between the two distribution pa, pb.

Although we can do multivariate two-sample test with
MMD, it suffers from the curse of dimensionality. Thus
instead of looking at the distribution of percentage change
vector hi, we perform two-sample test on the distribution
ph of percentage change series hi,t itself. Specifically, we
use the Kolmogorov-Smirnov test, which is a two-sample
test method based on ‖ · ‖∞ norms between the empirical
cumulative distribution functions of the two distributions.
For each asset of interest, we divide the data set into a
training and a validation set, where the training set is used
to train the RGAN model. Then we generate a batch of
samples with the trained RGAN. For each generated series,
we perform the KS test between it and every series in the
validation set and calculates the maximum p-value from
which. The average of these maximum p-values, denoted
by p̄max, among all the generated samples is then used to
determine the goodness of fit of the given generated series.
The average p̄max across all assets in our portfolio is 0.11,
which shows that we cannot reject the null hypothesis that
the generated distribution and the data distribution is the
same.
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Figure 5. The network structure of WaveNet.


