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Abstract!

 
Various networks can be defined in real world, such as social network, traffic 

network, scientific co-authorship network, etc. Many phenomena are observed on these 

complex networks and they have a strong influence on society. These phenomena are 

correlated with network structure and the underlying network generation mechanism. 

This research aims to clarify the mechanism of network generation and the relationship 

between phenomena occurring on the network and the network structure. In order to 

comprehend phenomena existing on networks, there is a need to explore the methodology 

of modeling real networks. 

Since current models focusing on single layer cannot precisely represent high-

modularity networks, this research proposed a high-modularity network generation model 

based on a multilayer network. As people belong to many communities in society, such 

as family, school, hobby group, and business organizations, each example is regarded as 

a community in a single layer of a multilayer network. However, measuring each 

relationship in each community is difficult. A network on SNSs that can be observed 

combines all communities. That is, a social network is generated from a multilayer 

network. A synthesized network in the model has either a community structure or a high-

modularity structure. This research applied the proposed model to generate various types 

of networks and compared them with networks in real systems. Not only did it 

successfully represent real networks but it also predicted how real-world networks are 

generated from the model’s parameters. Moreover, hidden structures were estimated by 

proposed multilayer model. This research elaborated the relationship between network 
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structures and social phenomena which has not been clarified so far. Finally, information 

diffusion experiments are carried out and the average influence degree (AID) is calculated. 

By enforcing spreading simulation, this research reproduced more realistic information 

diffusion over multilayer network. 
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Chapter 1.  Introduction 

1.1 Background 

In the real world and artificial systems, a substantial number of entities interact with 

each other, where entities and their relationships can be seen as nodes and links 

respectively. They are organized as complex networks such as social network, scientific 

co-authorship network, traffic network, financial network, etc. Fig. 1-1 shows some 

instances of different type of network. 

There are many advantages to analyze real system by employing complex network. 

For one thing, network theory is simple enough to handle complicated problems. Entities 

and their relationships on a complex system can be simplified as nodes and links. For 

another, when analyzing a real network, existing network tools are handy to measure the 

network structure. 

1.1.1 Relationships between Network Structure and Phenomena 

Many phenomena are observed on various types of complex networks in our daily 

lives, performing a strong influence on our society. For instance, there are information 

diffusion [1], [2], [3], [31], [32] and opinion formation [98], [99] on social networks. 

Errors and attacks [4], [5], [6] happen on financial networks or the Internet. Herd behavior 

[7], [8] occurs on an invention network. These phenomena have been proven to have a 

high correlation with network structure and the mechanism behind network generation. 

Therefore, knowing what kind of structures complex networks have and how these 

structures generate is crucial to the understanding of phenomena. 
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Fig. 1-1 Instances of various networks (Source: (1) and (2) are from Ref. [59] and 

[42]; (3) is from SNAP*1; (4) is from NAS*2) 

 

In social networks, the popularity of social network services (SNSs) or such social 

media as Facebook*3, Twitter*4, Instagram*5, and LinkedIn*6 continues to increase (Fig. 

                                                
 

*1 http://snap.stanford.edu/agm/ 
*2 https://www.nsf.gov/ 
*3 https://www.facebook.com/ 
*4 https://twitter.com/ 
*5 https://www.instagram.com/ 
*6 https://www.linkedin.com/ 
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1-2). For example, Facebook is the most popular online social network (OSN) worldwide. 

Fig. 1-3 presents the number of monthly active Facebook users from the third quarter 

2008 to third quarter 2017. As of the third quarter of 2017, Facebook had 2.07 billion 

monthly active users. A great number of people, notably young generation, use it as a 

source of information. Also, Twitter has proven to be an effective mean of information 

propagation than traditional mass media during the Great Eastern Japan Earthquake in 

Japan 2011. 

 

Fig. 1-2 Percentage of online adults who use SNSs  

(Source*1: Social Media Update 2016) 

                                                
 

*1 http://www.pewinternet.org/2016/11/11/social-media-update-2016/ 
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Fig. 1-3 Number of monthly active Facebook users, 3rd quarter 2008 to 3rd 

quarter 2017 (Source*1: Statista 2017) 

 

Such phenomena as information sharing and propagation (Fig. 1-4) happen on online 

social networks every day and have a strong influence on society. However, these 

phenomena occurring on the network are strongly affected by the network structure. Some 

structures are easy to diffuse information, whereas the other is difficult to do so. The 

spreading results change significantly depending on the structure of network where 

information diffusion occurs. In catastrophic natural disasters, obtaining detailed 

information is beneficial to victims and rescuers, thus it is of importance to build network 

structure that is easy to spread meaningful rescue information and stop rumors. Most work 

considering this research area focuses on which type of network structure is easy to 

                                                
 

*1 https://www.statista.com/statistics/346167/facebook-global-dau/ 
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diffuse [1], [2], [3]. 

 
Fig. 1-4 Illustration of information diffusion on online social networks*1 

 

Other phenomena like error and attack tolerance (Fig. 1-5) appear to highly correlate 

with the structure of network. Several researchers have analyzed different types of 

network structures and find out their relationship to the degree of tolerance against 

random or systematic failures [4], [5], [6]. When nodes and links undergo errors or 

intentional attacks, searching for a structure with high robustness and resiliency means a 

lot to the maintenance of functional complex systems. 

                                                
 

*1 http://cnets.indiana.edu/groups/nan/informationdiffusion/ 
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In financial market, the underlying structure of interaction and relationship among 

investors can be described by a network. Analyses of herd behaviors and network 

structures have attracted attention of many researchers recently [9], [10]. Moreover, 

numerous studies also exist regarding cooperative behavior in the networked agent group 

[11], [10], [11]. 

 

Fig. 1-5 Illustration of the effects of node removal  

on an initially connected network [12] 

 

All these social phenomena occurring in real-life situations are deeply influenced by 

network structure. By looking into how these structure features generate with network 

generation model, it helps to better understanding of complicated phenomena in complex 

systems. 
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1.1.2 Network Generation Model and Multilayer Network 

A great deal of work has explored network structures utilizing network generation 

model. Different generation model is capable of creating a network with a structure of 

different properties. There are many simple generation models such as Erdős-Rényi (ER) 

model, Watts-Strogatz (WS) model, Barabàsi-Albert (BA) model, connecting nearest 

neighbor (CNN) model and so forth. 

For instance, Erdős-Rényi model [13], [14], [15] generates random graphs using 

probabilistic methods. Watts and Strogatz [16] introduced a random graph generation 

model producing graphs with small world properties. It finally leads to graphs with short 

average path lengths and high clustering. Barabàsi and Albert [17] proposed another 

model to generate random scale-free networks. Their model is able to generate networks 

with power-law degree distributions, which is widely observed in many natural systems 

and some social networks. Vázquez [18] bring forth a connecting nearest neighbor model 

to represent network having scale-free property, small world property and a large 

clustering coefficient. However, these generation models are based on single layer and 

inadequate to precisely reproduce real-world networks. 

Multilayer networks provide a rich representation of real-world interaction. Fig. 1-6 

gives a visualization of multilayer dataset from social network called bank-wiring room 

network in the 1930s. Six different types of social interactions about 14 people was 

described by multilayer, such as friendship, job trade, helping, negative, etc. Fig. 1-7 

shows a DBLP network, which is a co-authorship network with 16 layers in computer 

science bibliography website. Fig. 1-8 displays air transportation network of Europe. Four 

distinct airlines are shown in different layers, including Ryanair, Lufthansa, Vueling and 
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British Airways. The aggregation of all airline is also presented in the multilayer network. 

The last network illustrated in Fig. 1-9 is an multilayer of online social network. Each 

layer represents one type of social network in SNSs, e.g. Google, Twitter, and Myspace. 

It can be found that Twitter layer has a large number of nodes and links, which is contrary 

to the case of Google and Myspace. 

 

 

Fig. 1-6 Bank-wiring room network [19] 
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Fig. 1-7 DBLP co-authorship network (Source*1: muxviz) 

 

 

Fig. 1-8 Air transportation network of Europe (Source*1: muxviz) 

                                                
 

*1 http://muxviz.net 
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Fig. 1-9 Online social network (Source*1: Plexmath) 

 

Some work has investigated network features of multilayer network in real data such 

as air transportation systems [20] and online games [21]. Work in Ref. [22] models the 

growth of multilayer network system, and work in Ref. [23] gives statistical mechanics 

of multiplex networks. Furthermore, there are a considerable amount of research on 

dynamics, such as epidemic, information spread, cooperation, diffusion process, and so 

forth [24], [25], [26], [27], [28], [29], [30]. Compared with traditional studies of single 

                                                
 

*1 http://www.plexmath.eu/ 
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layer network, multilayer-based researches can uncover interaction relationships among 

entities which might not be easily identified in the real system. 

1.2 Research Objectives 

This research aims to investigate the mechanism of network generation based on 

multilayer network and tries to clarify the relationship between phenomena occurring on 

the network and the network structure. In order to comprehend social phenomena existing 

on complex systems, there is a need to explore the methodology of modeling real 

networks. Nevertheless, many current models focusing on the single layer cannot 

synthesize a high-modularity network or have a lower precision in producing networks. 

Moreover, as real society often has a multilayer structure, it is reasonable to introduce 

multilayer network in complex network modeling. 

Specifically, this research attempts to do the followings: 

(1) Propose a high-modularity network generation model based on the multilayer 

network to represent networks. 

(2) Estimate the hidden structure in real network from network generation 

mechanism. 

(3) By utilizing the proposed model to simulate spreading process, more realistic 

information diffusion can be reproduced. 

The proposed multilayer-based model is applied to generate a number of networks 

and compare them with real-world networks. Not only did it successfully represent real-

world data but we also found that we can predict how real-world networks are generated 

from the model’s parameters. Accordingly, it is helpful to understand the essence of 

phenomena occurring on real networks. 
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1.3 Outline 

This dissertation proceeds as follows. In chapter 2, previous studies are surveyed to 

give a brief understanding of the research on network generation model. Chapter 3 

proposes a high-modularity network generation model based on multilayer network and 

clarifies how to build a network that resembles network in the real world. A validation is 

carried out to indicate the reliability and reproducibility of this model. Chapter 4 gives 

some experiments to estimate hidden structure of network in real data. In chapter 5, an 

application of multilayer-based model is brought forth by evaluating the accuracy of 

information diffusion. Finally, Chapter 6 makes a conclusion and provides a couple of 

prospective researches regarding this field. 
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Chapter 2.  Previous studies 

Many studies have analyzed the relationship between the structure of network and 

various phenomena. Phenomena that researchers are interested in involve information 

diffusion [1], [2], [3], [31], [32], error and attack tolerance [4], [5], [6], herd behavior [7], 

[8], cooperative behavior [9], [10], [11], and chain bankruptcy of financial institutions 

[33], [34], [35]. In these researches, simulations on diverse network structures are 

implemented in an effort to clarify the influence of network structures on phenomena. 

The purpose of this section is to present fundamental knowledge of network 

generation model in this research. First, some basic generation models and their structure 

properties are introduced. Furthermore, different types of high-modularity network 

generation models used in existing experiments are discussed in detail. Also, the 

disadvantage of current work and necessity of multilayer properties are brought forward 

at the last part. 

2.1 Basic network generation models 

Network generation models have been studied by various scholars for a long period. 

Before discussion goes further, several classical networks and models will be introduced 

in order to exhibit some properties of network structures. 

2.1.1 Classical networks and models 

2.1.1.1 Complete network (CPN) 

Complete network is a network whose nodes are linked one another. Fig. 2-1 is a 
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case in point where the complete network has six nodes. If the number of nodes is N and 

the number of links is equal to M, there exists an equation to display the relationship 

between N and M as follows. 

   ! = # #$%

&
 (2.1) 

 
Fig. 2-1 A complete network with six nodes 

2.1.1.2 Lattice network 

A lattice network positions all nodes on square lattice. Each node is adjacent to its 

upper, lower, left and right nodes, which means a node is only linked to its four neighbor. 

A typical lattice network is shown in Fig. 2-2. 

 

Fig. 2-2 A lattice network 
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2.1.1.3 Regular network 

Regular networks are networks where each node has exactly the same number of 

neighbors. A regular network is highly ordered and every node has the same degree. For 

example, nodes are placed in a circle where every adjacent pair of nodes has two of 

neighbors in common in Fig. 2-3. 

 

Fig. 2-3 A regular network 

2.1.1.4 Random network and Erdős-Rényi model 

Models for generating random graphs is prevalent in earlier research. Erdős-Rényi 

model (ER model) [13], [14], [15] is a famous model that generates random network 

utilizing probabilistic methods. In this model, a network is constructed by means of 

connecting nodes at random. Each link is present or absent with a fixed probability p, 

which is independent from the other links. For a network with N nodes and M links, the 

probability p can be expressed as: 
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   ' = (
)
*
++ (2.2) 

As can be seen from Fig. 2-4, more links will be born and network tends to become 

denser as parameter p increase from 0 to 1. When producing a random network employing 

ER model, the shape of generated network changes every time. 

 

Fig. 2-4 Random graphs generated by ER model 

2.1.2 Small-world network and Watts-Strogatz model 

Stanley Milgram and other researchers devised a small-world experiment [36] 

around the 1960s to make a statistics of the relationship among people and investigate 

average path length for social networks. This classical experiment gives birth to a famous 
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conclusion called “six degrees of separation”. Although our world is big enough, the 

distance between people is really small when social interaction is taken into consideration. 

In addition to short distance between any two persons, social network of people is 

usually highly clustered according to our common sense. As is depicted in Fig. 2-5, 

different types of clusters or communities exist in all aspects of social life, because friends 

of our friends will have a tendency to become friends. 

 

Fig. 2-5 Clustered social network of people 

The small-world phenomenon is a significant discovery on the structure of complex 

networks. According to Duncan J. Watts [16], many real-world systems can be highly 

clustered, like regular lattices, yet have small characteristic path lengths, like random 

graphs. In other words, these sorts of networks retain properties of short average path 

lengths and high clustering coefficients.  

So how can we construct a small-world network with these two properties using an 

artificial generation model? Watts and Strogatz [16] developed a Watts-Strogatz model 

(WS model). As shown in Fig. 2-6, this model starts with a regular ring lattice on the left 

side. Random rewiring of links is proceeded with a probability p. By increasing these 
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rewired links that are called “short cuts”, the path length between arbitrary two nodes 

becomes shorter. When p is equal to 1, network degenerates into a random network. 

 

Fig. 2-6 Network generated by WS model [16] 

 

Fig. 2-7 A network generated by WS model 
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Fig. 2-7 shows a small-world network generated by the WS model. According to this 

figure, WS model produces a highly clustered structure. 

2.1.3 Scale-free network and Barabási-Albert model 

It is universally acknowledged that the rich get richer and the poor get poorer. Also, 

the top 20% of people own 80% of the world’s wealth. The 80/20 rule, a.k.a. Pareto 

principle, is approximately followed by a power law distribution in mathematics. It gives 

an explanation of many natural phenomena that roughly 80% of the effects stem from 20% 

of the causes. Barabási called this property “scale-free” [17], which is widely observed in 

many natural systems and some social networks (see Fig. 2-8). 

 

Fig. 2-8 Power law distribution in Renren network [47] 

 



20 

 

The scale-free property is another great discovery about the structure of a complex 

network. The work of Albert-László Barabási and colleagues in 1999 triggers a boom of 

scale-free network research in the following years. A scale-free network is defined as a 

network whose degree distribution follows a power law. This distribution p(k) represents 

the existence probability of nodes having degree k. The relationship between p(k) and k 

can be approximated by a power function as follows: 

   ' , +~+,$. (2.3) 

where γ is a parameter whose value is typically in the range between 2 and 3. 

 

Fig. 2-9 Preferential attachment of BA model 

Further, in order to simulate the generation of scale-free network, Barabási et al. 

proposed a Barabási-Albert model (BA model) utilizing a mechanism of growth and 

preferential attachment. When linking a new node, high degree nodes are easy to be 

selected. The basic idea of preferential attachment can be illustrated by Fig. 2-9. The red 

nodes have a high degree than others, thus they will be selected with a high probability. 
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The detailed algorithm of BA model can be elaborated in the following steps. 

(1) Create a complete network where the degree of each node is m; 

(2) Add a new node; 

(3) Attach the new node to m nodes which is selected by preferential selection; 

(4) Repeat (2) and (3). 

The probability that node i is selected can be calculated as follows. 

   '/ =
01
022

 (2.4) 

 
Fig. 2-10 A network generated by BA model 

A network constructed by BA model is presented in Fig. 2-10. Some hub nodes with 
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many links are present in the generated network. 

2.1.4 Connecting Nearest Neighbor (CNN) model 

The small-world network generated by WS model does not exhibit a power law 

degree distribution. On the other hand, a standard BA model cannot produce a small-

world network. Can we find out an algorithm that builds a network with both small-world 

and scale-free property? 

Vázquez bring forth a connecting nearest neighbor model (CNN model) [18] to 

represent such network. Based on an idea that friends of one’s friends will tend to become 

one’s friends, this model repeats two steps to create a network. 

(1) Add a new node to the preferentially selected node i with probability p and create 

potential links between the new node and all the neighbor of i; 

(2) With probability 1�p, convert one potential link selected at random into a link. 

 

Fig. 2-11 Procedure of network generation by CNN model 

Fig. 2-11 depicts the procedure of network generation in detail, whereas Fig. 2-12 
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gives a visualization of network produced by CNN model. This algorithm can yeild a 

network with a power law degree distribution, a short average path length and a large 

clustering coefficient. 

 
Fig. 2-12 A network generated by CNN model 

2.1.5 Other generation models 

Many generation models given above will be utilized in this research, e.g. complete 

network (CPN), ER model, WS model, BA model and CNN model� which will be 

discussed in detail later. In addition to the discovery of classical models, a great number 
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of new models [37], [38], [41], [40], [41] are proposed to discribe the generation or 

growth of network. Some variants extend the standard model and include such important 

properties as small-world effect and scale-free distribution of degree. 

 

Fig. 2-13 A network generated by HK model 

For instance, Holme-Kim model (HK model) [37] added an additional “triad 

formation” step to BA model in order to incorporate the high clustering. If a new node is 

connected to node i in the previous preferential attachment step, then one more link from 

the new node to a randomly chosen neighbor of node i will be added. The algorithm 

executes preferential attachment at first, and then performs triad formation with 
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probability p. Similar to CNN model, HK model has an ability to obtain networks with 

high clustering coefficient. Besides, the clustering coefficient can be adjusted by adjusting 

the value of p. Fig. 2-13 gives an exhibition of network generated by HK model. From 

this graph, it can be noticed that many nodes are connected with a triangle forming some 

local clusters, which feature can hardly be found in the network produced by BA model. 

Klemm and Eguiluz [38] device a dynamical model that extends scale-free network 

with small world behavior. Newman et al. [39] employs a bipartite structure to generate 

affiliation networks with both small-world and scale-free properties. Wang’s model [40] 

is also a hybrid of BA model and WS model to mimic real-world systems. Another 

network generation model, introduced by Catanzaro et al. [41], present a growth model 

producing a degree-assortative network for the purpose of describing the behavior of 

social networks.!

2.2 High-modularity network generation models 

The terms, small-world and scale-free are commonly accepted as significant 

statistical properties of network strucutre. Besides the two properties, community is 

another structural features of importance to comprehend social phenomena on society. 

Community structure reveals the internal organization of nodes, therefore, it is salient in 

determining the characteristics of people in same group or circle. From the 2000s, it gains 

a large quantity of attentions from many researchers [42], [43], [43], [45], [46], [47]. 

Before going into further, the relationship between modularity and community structure 

will be illuminated at first. 
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2.2.1 Modularity 

Modularity, proposed by Newman [44], [45], is one measure of the community 

structure. It measures the strength of a division of a network into communities. 

An undirected graph is defined as G = (V, E), where V and E represent nodes and 

links respectively. Then the number of nodes and links is denoted as N and M (|V| = N and 

|E| = M). Aij is an element of the adjacent matrix of G. 

   3/4 =
1++++(7, 9) ∈ <
0+>?ℎABC7DA

 (2.5) 

The degree of a node i can be defined as ki = �jAij. Thus, the modularity Q is defined 

as follows. 

   E = %

&(
3/4 −

0102
&(

G H/, H4/4   

   = %

&I
3/4 − J/4 G H/, H4/4  (2.6) 

where Ci represents node i that belongs to community Ci. G H/, H4  is 1 if i and j 

are in the same community and 0 otherwise. Pij is the probable node degrees between 

node i and j at random. In this studies, the value of Q is acquired by performing 

community detection using Newman’s method. 
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Fig. 2-14 A network with high modularity 

 

Modularity is an important characteristic of real-world networks and reflects 

whether a network exhibits the property of a community. High-modularity implies dense 

intra-community links and fewer inter-community links and it measures a good division 

of a network into communities, or a better community structure. As is clearly shown in 

the Fig. 2-14, the links within each community are more than the ones between 

communities, thus this network has a high-modularity property or an apparent community 

strucutre. 

The following sections will introduce some baseline models producing network with 

community structure, including LFR benchmeark, Kronecker graph and Pasta’s model. 

The multilayer-based model proposed in this research will make a comparision to them 

from the perspective of network features. 

2.2.2 Lancichinetti-Fortunato-Radicchi benchmark 

The Lancichinetti-Fortunato-Radicchi (LFR) benchmark [48] is derived from the 

issue of testing a community detection algorithm. Before the introduction of LFR 
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benchmark, standard tests involve constructing simple artificial graphs with a built-in 

community structure. However, these graphs fail to reflect some real features of network 

in reality. 

The most famous benchmark before LFR benchmark is an algorithm designed by 

Girvan and Newman [42]. The procedure of Girvan-Newman (GN) benchmark begins as 

this:  

(1) Each network was constructed with 128 nodes, divided into four groups with 32 

nodes each.  

(2) Links were connected between node pairs independently at random, with a 

probability Pin within communities and Pout between communities where Pin < Pout. The 

average degree of the network is keeped as 16 by adjusting probability. 

However, some obvious drawback concerning this benchmark can be discerned. On 

one hand, degree of all nodes is approximately the same. On the other hand, all 

communities of generated network have the same size. Both two features suggest that GN 

benchmark cannot be considered as a effective model to generate a real network with 

community structure. 

The characteristics of real networks lie in the heterogeneity of both degree and 

community size. According to previous studies [43], [49], [50], [51], the distribution of 

community sizes follows a power law distribution in real systems. Further, the distribution 

of node degree of real networks can also be approximated by a powe law [4], [52], [53]. 

Hence, both the degree and community size distribution are assumed as power laws in 

LFR benchmark with exponents K% and K&, respectively. The implement of algorithm 

for LFR benchmark are presented as follows. 

(1) The degree of each node is selected from a power law distribution with exponent 
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K%. The maximal and minimal degrees kmin and kmax are chosen to ensure the average 

degree k. Linking of nodes is carried out by configuration model. 

(2) A mixing parameter µ is utilized to control the fractions of links among 

communities, which is the ratio of the number of external neighbors of a node by a node’s 

total degree. 

(3) The community sizes are taken from a power law distribution with exponent 

K&. The two extremes of community size smin and smax are set to meet some constrains: 

DI/L > ,I/L and DINO > ,INO. 

(4) All nodes are homeless at first. A node enters a randomly selected community if 

there is enough capacity, otherwise it remains homeless. In latter iterations, a homeless 

node is assigned to a community at random. If the community is complete, a randomly 

chosen node will be kicked out and become homeless. Iteration stops when there is no 

homeless node. 

(5) Rewiring steps are executed to ensure the mixing parameter µ. 

LFR benchmark can synthesize networks with planted community structures. A 

network constructed by LFR benchmark with 500 nodes is shown in Fig. 2-15. LFR 

benchmark generalizes GN benchmark by introducing features of real network. GN 

benchmark is actually an instance of LFR benchmark with community sizes equal to 32 

nodes, and the degree of each node equal to 16. Later on Bródka proposed an extension 

of LFR benchmark called mLFR benchmark [54] which is able to generate multi-layered 

social networks. The algorithm organizes link distribution following power law 

distribution, changes degrees of nodes through the layers, and change membership of 

node on layers. 
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Fig. 2-15 A network generated by LFR benchmark [48] 

 

2.2.3 Kronecker graph model 

Kronecker graph [57] is another approach to modeling real networks with 

communities. The foundation of Kronecker graph model is hierarchical network. It is a 

common intuition that real networks are often hierarchically organized into communities. 

Then these communities grow recursively, creating similar copies of themselves. For 

hierarchical network model, its algorithm synthesizes networks by recursive way. It also 

enables the reproduction of some properties in real networks, such as scale-free topology 

and high clustering of the nodes. However, it differs from WS model in the distribution 

of nodes’ clustering coefficients, because high degree nodes tend to have a small 

clustering coefficient rather than a constant value. 
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Fig. 2-16 The iterative construction of Ravasz's model [56] 

 

Ravasz et al. [55], [56] identified some inherent natures of real networks including 

scale-free, hierarchical, and modular structure. They proposed a simple hierarchical 

network model, which starts with several small clusters of five densely linked nodes. 

These clusters combine to form larger and self-similar clusters. Conducting this self-

similar nesting process eventually results in a strict, fine structure with hierarchy and 

community as well as scale-free topology. The figure in Fig. 2-16 gives the iterative 

construction process of this model. 

Leskovec and his coauthers raised a more general Kronecker graph model [57] than 

Ravasz’s model to produce a hierarchical structure in a real network. Their algorithm 

begins with initiator graph P%  with Q%  vertices and <%  edges. The algorithm 

recursively generates successively larger self-similar graphs P&, PR, PS, PT, ... such 

that k-th graph P0  has Q0 = Q%
0  vertices. To do this, they construct a sequence of 

graphs from initiator graph P% by iterating the Kronecker product. 
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Given two matrices A and B with sizes U×W  and '×X  respectively, then the 

Kronecker product A�B is the U'×WX block matrix.  

   3⊗ Z =
[%%Z ⋯ [%LZ
⋮ ⋱ ⋮

[I%Z ⋯ [ILZ
 (2.7) 

 

Fig. 2-17 A case of adjacent matrix of Kronecker graph [57] 

 

In order to obtain P0 from P0$%, it needs to expand each vertex in P0$% in by 

converting it into a copy of P% and joing the copies according to the adjacencies in P0$%. 

An adjacent matrix of PS is given in Fig. 2-17. 

Through the steps above, the Kronecker graph model can model the self-similar 

structure and produce hierarchical networks that exhibit properties of hierarchy, scale-

free and community structure in real networks. 

2.2.4 Pasta's model 

Model proposed by Pasta et al. [58] is a tunable and growing network generation 
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model. Not only does it form small-world and scale-free properties, but it constructs a 

network with hierarchical community structure. Specifically, node degree distribution 

within a community follows a power law. Moreover, clustering coefficients within each 

of the communities is fairly high. Finally, hierarchy of internal structure of communities 

is crucial topological characteristics for creating synthetic networks that resemble 

networks in real systems. 

Five parameters of this model are listed below. They are required as input at the 

beginning of algorithm. 

(1) The number of nodes N; 

(2) The number of links for each newly added node m; 

(3) The minimum number of communities c; 

(4) The probability of triad formation Pt; 

(5) The probability of having inter-cluster links Pc. 

The procedure of constructing a network by Pasta’s method can be elaborated 

through the following steps. The illustration in Fig. 2-18 reveals some crucial steps in the 

creation of network. 

(1) c triads denoting c communities are added to network. A link is randomly chosen 

between every two different communities. 

(2) A new node n1 is added and attached to an existing node n2 which is selected 

based on preferential attachment. 

(3) With probability Pt, n1 is connected to m�1 other nodes preferentially chosen 

from the community of n2, resulting in a triad structure. m�1 nodes can be either neighbors 
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or non-neighbors of n2. 

(4) A new node n3 is added and attached to an existing node n4 which is again 

selected based on preferential attachment. In this step, a limitation is imposed that n3 does 

not belong to the community of node added in the previous step. 

(5) With probability Pt, n3 is connected to m�1 other nodes which are preferentially 

chosen from the community of n4, forming a triad structure. m�1 nodes can be either 

neighbors or non-neighbors of n4. 

(6) The communities of n2 and n4 in the previous steps are connected by a link with 

probability Pc. Two endpoints of the added link are preferentially chosen in both 

communities. 

(7) Repetition is performed from step (4) till the network evolves into a size of n. 

 

Fig. 2-18 The constructing process of Pasta’s model [58] 
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By enforcing the algorithm above, Pasta’s model is able to synthesize networks with 

hierarchical community structure as well as small-world and scale-free properties. This 

model is tunable and flexible by modifying different values of parameter. A generated 

network of Pasta’s model is presented in Fig. 2-19. Different colors show a variety of 

communities, where a hierarchical structure is present. 

 

 
Fig. 2-19 A network generated by Pasta’s model [58] 
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2.3 Summary 

In this chapter, some previous work regarding network generation model, especially 

high-modularity network generation models were presented. 

To begin with, some important properties of network were introduced, such as small-

world phenomenon and scale-free topology. Later on, some basic networks and network 

generation models are listed as follows: 

(1) Classical networks and models: Complete network (CPN), Erdős-Rényi (ER) 

model, etc. 

(2) Watts-Strogatz (WS) model;  

(3) Barabási-Albert (BA) model; 

(4) Connecting Nearest Neighbor (CNN) model; 

(5) Other models: Holme-Kim (HK) model, etc. 

Moreover, the definition of modularity is brought forth to explain the term of “high-

modularity”, which is nearly equal to the meaning of good community structure. It 

measures the strength of a division of a network into communities. After that, three types 

of network generation model synthesizing networks with communities were disscussed, 

including: 

(1) Lancichinetti-Fortunato-Radicchi (LFR) benchmark; 

(2) Kronecker graph model; 

(3) Pasta’s model. 

LFR benchmark synthesizes networks with planted community structures. 

Kronecker graph model employs a self-similar nesting process to produce a hierarchical 
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structure, which constructs a sequence of graphs from initiator graph K1 by iterating the 

Kronecker product. And Pasta’s model is a tunable and growing network generation 

model with community structures that ensures three properties of communities: internal 

structure, power-law degree distribution, and high clustering coefficients. 

The three models and some basic model like CPN, ER, WS, BA and CNN models 

are assumed as baseline of experiments in following chapters. 
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Chapter 3.  High-modularity network generation model 

based on the multilayer network 

As discussed in Chapter 2, a network with good community structure has a high 

modularity. From the viewpoint of modeling real properties of networks, it is significant 

to develop a reliable high-modularity network generation model that can show good 

reproducibility. Unfortunately, network generation models presented in Chapter 2 are 

inadequate to precisely reproduce real networks. Therefore, in order to synthesize 

networks with communities, the development of high-modularity network generation 

model with high degree of accuracy is very urgent. 

A multilayer structure is introduced to construct a network because it provides a rich 

representation of real-world interaction. For example, people in daily life belong to many 

communities in society, such as family, school, hobby group, and business organizations  

(Fig. 2-5). Each example is regarded as a community in a single layer of a multilayer 

network. However, a network that can be observed on social network services (SNSs) 

does not reflect such multilayer structure, because it combines all communities. 

Measuring each relationship in each community is fairly difficult. Hence, the utilization 

of a multilayer structure can uncover such hidden properties of networks and other 

structure features in real data. 

The high-modularity network generation model proposed in this research exploits 

the multilayer structure behind a real network, because a social network is actually a 

superimposed multilayer network. With such critical structure property, proposed model 

can reproduce real networks with higher precision than other high-modularity network 

generation models. By introducing this multilayer-based model, we have reason to believe 
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that a statistically more accurate and more realistic representation of real networks can be 

obtained. 

As baseline models, LFR model (LFR), Kronecker graph model (Kronecker) and 

Pasta’s model (Pasta) are talked about in Chapter 2. More details of proposed model are 

elaborated in next section. 

3.1 Overview of model 

A social network in real world is regarded as a multilayer network [19], because 

people are usually members of different social relationships: family, school, hobby group, 

business organizations, etc. A layer represents one kind of relationship in a social 

interaction and each layer contains many communities. The networks obtained from 

social networks are superimposed networks of all communities. 

 

Fig. 3-1 Generation process of proposed model 

The generation process of proposed model is shown in Fig. 3-1. Each node in the 

superimposed network (the inferior network B in Fig. 2) belongs to a few communities. 
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Nodes are connected to other nodes that belong to the shared communities. The link 

between two nodes in the superimposed network can only appear when there is a link 

between two nodes in some communities. 

Moreover, different communities in the same layer are assumed to be exclusive. 

They have different sizes and network structures. Each node can belong to only one 

community in each layer for the simple reason that most people only belong to one family, 

one university, or one company. In Fig. 3-1, the same colored communities represent 

communities in the same layer. To imitate a real-world network, our model can change 

parameters to control the network structures of communities, the size of communities, the 

numbers of member communities, and so on. 

3.2 Model parameters 

 

Fig. 3-2 Main parameters of our proposed model 
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In my study, the model has four critical parts to control the generating process: 

community size distribution, number of layers, an inner community network model, and 

inter-layer degree correlation. Fig. 3-2 depicts the simple process of selection. 

3.2.1 Community size distribution 

The distribution of the community sizes is a functional relationship between two 

quantities: community size (number of nodes in a community) and the frequency of the 

same size. 

Real networks possess a broad distribution of community sizes. According to some 

studies, the distribution of real networks can be fairly well approximated by a power law 

[43], [48], [49], [50], [60], where small-sized communities are numerous but large-sized 

ones are scarce in the real world. 

 

 

Fig. 3-3 A log-log plot of community size distribution in proposed model 
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In my model, the size of the communities is taken from power-law distribution 

' , ~,$` with exponent β. We chose typical values of real networks with 1 ≤ b ≤ 2 

[48]. A log-log plot of community size distribution used in proposed model is shown in 

Fig. 3-3. It follows a power law distribution. 

3.2.2 Number of layers 

How many layers are necessary to accurately describe the structure of a multilayer 

network? Recent research has concluded that real networks have a small number of layers 

[61]. In my model, this value s is selected within a range between 2 and 10. It can be 

optimized by maximizing the similarity between synthesized networks and target 

networks in real systems. In Fig. 3-5, the proposed multi-layer model include three layers, 

where the layer at the bottom of three layers involve two communities. 

 

Fig. 3-4 A case of proposed model with three layers 
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3.2.3 Inner community network model 

Nodes can be connected within a community in many ways. One simple idea is to 

connect all the nodes in one layer with each other by the links as a complete network. But 

in the social interaction of human society, not all the members in a group are friends. In 

this simulation, I used five basic models and their combinations to build links among 

nodes within a community. The basic models include: 

(1) Erdős-Rényi (ER) model [13], [14], [15]; 

(2) Watts-Strogatz (WS) model [16];  

(3) Barabási-Albert (BA) model [17]; 

(4) Connecting Nearest Neighbor (CNN) model [18]; 

(5) Complete network (CPN). 

Two of schemes above are combined into an inner community model. For example, 

BA+CNN is a hybrid model where layers with small-sized communities are created by 

the BA model and the others with large-sized communities are generated by the CNN 

model. The algorithm simulates the h percent of the layers with the first model and the 

1−h percent with the second one so as to secure the best generated network. However, 

complete network cannot be the second model because the largest communities, which 

are all created by complete networks, fail to satisfy real-world data (due to too much 

links). Consequently, 20 combination models are used in the construction of an inner 

community (see Tables 6 to 9). 
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3.2.4 Inter-layer degree correlation 

The way of connecting nodes in different layers with various degrees will lead to a 

completely different network structure. When performing layer aggregation, it is 

considered whether the same node entity has a degree correlation in different layers. The 

inter-layer degree correlation controls connection mode of links among communities in 

different layers.  

 

Fig. 3-5 Inter-layer degree correlation in proposed model 

 

Two correlation methods are implemented in proposed model: correlation and 

random. If a node has a degree correlation with each layer, the node with the higher degree 

in one layer is also the high-degree node in the other. When there is no degree correlation 

between inter-layers, the degree of each node is selected randomly in each layer. As is 

described in Fig. 3-5, the red node has a highest degree in gray community of one layer. 

At the same time, it is a high-degree node in orange community of the other layer. It can 
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be concluded that there exists an inter-layer degree correlation for the two communities 

in different layers. 

3.3 Procedure of Algorithm 

My algorithm of multilayer-based model begins with the number of nodes and links 

(N and M) as input data. The proposed model’s procedure is elucidated through the 

following steps: 

(1) Create s layers (2 ≤ D ≤ 10) and determine the number of nodes at each layer 

Qd by N and parameter t (0 < ? < 1): 

   Qd = Q ∙ ? (3.1) 

Algorithm will traverse t from 0.1 to 1 by every 0.1 step and select the best value for 

each layer. This step is shown in Fig. 3-6. 

 

Fig. 3-6 The creation of layers  
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(2) Create a number of communities whose sizes are selected from a power-law 

distribution with exponent β (1 ≤ b ≤ 2). The number of nodes in all the communities is 

calculated by formula as follows: 

   Qg = Qd
h
di%  (3.2) 

where Nc is the community’s size. At this time, no links are constructed within 

communities. The creation of communities can be expressed by Fig. 3-7. 

 

 

Fig. 3-7 The creation of communiites 

 

(3) Assign communities to each layer in ascending order by size. The smallest 

community is placed first and then the next larger size. If the number of nodes of the 

current community exceeds the capacity of the current layer, we turn to the next layer. 

Fig. 3-8 gives the assigning process of communities. 
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Fig. 3-8 The placement of communities on layers 

 

(4) Connect the nodes in each community by the selected inner community network 

model. A link exists between two nodes if they are connected by a corresponding model. 

All possible parameter values of model are traversed. Here, the inter-layer degree 

correlation is considered, too. If there is a degree of correlation, the node with a higher 

degree in one layer will also be a high-degree node in the other. Such formation process 

of inner-community structure is sketched in Fig. 3-9. 
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Fig. 3-9 Connection of nodes within communities 

 

(5) Aggregate all the layers of the multilayer network into one layer. Nodes 

j/ 7 = 1,… , X , which represent the same entity in different layers of the multilayer 

network, are integrated into one node x. Nodes x and y in the aggregated network are 

linked if corresponding j/ and l4in a multilayer network are connected in either of their 

respective layer communities. When the aggregated network consists of too many or too 

few links, we reject it (the number of links of generated network !m with !m < ! −

5%! or !m > ! + 5%!), because it cannot reproduce a real-world network with a 

proper number of links. Fig. 3-10 displays the operation of aggregating all communities 

in different layers. 

(6) Traverse every possible parameter value and select the best ones by optimizing 

distance D (D will be defined in next section). 
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Fig. 3-10 Aggregation of all communities in different layers 

 

Some discrete values of parameters used in generation algorithm above are listed in 

Table. 3-1. 

Table. 3-1 Values of parameters in algorithm 

Parameter Discrete values of each parameter 

s 2, 3, 4, 5, 6, 7, 8, 9, 10 

t 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

β 1, 2 

h 0.2, 0.4, 0.6, 0.8 
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3.4 Measurement 

The values of parameter are optimized by minimizing the distance between the real-

world data and the generated data in the proposed model. Distance D is defined by the 

normalized Euclidean distance of the network features between two networks. In this 

paper, five representative network features below are utilized to quantitatively measure 

the whole network. 

(1) Clustering coefficient C; 

(2) Assortativity r; 

(3) Modularity Q; 

(4) Power index of degree distribution γ; 

(5) Coefficient of determination of degree distribution R2. 

3.4.1 Clustering coefficient C 

A clustering coefficient [16] measures the extent to which a network’s nodes tend to 

cluster together. In social networks, if most friends of a person are also friends of each 

other, the clustering coefficient is relatively high. It measures the clannishness of a typical 

circle of friends. For instance, networks produced by WS model have a high clustering 

coefficient. 

For node i in a network, clustering coefficient Ci, which is defined by the ratio of the 

existing links between the nodes within its neighborhood to the number of potential links, 

can be described as the following formulas: 
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   H/ =
&q1

01 01$%
 (3.3) 

   H = %

#
H//  (3.4) 

where ki is the degree of node i. ki(ki−1)/2 is the number of edges that might exist 

near its neighborhood. N is the number of nodes and Ei is the number of connected links 

among the nodes within the neighborhood of node i. The overall clustering coefficient of 

the network is the average of each clustering coefficient Ci. This network index shows 

how well the local nodes of a network cluster together. 

3.4.2 Assortativity r 

Assortativity [62], [63], or assortative mixing, reflects the preference that nodes in a 

network tend to be connected to others in a similar way. It indicates the degree correlation 

relationship between nodes. As the specific measure of assortativity varies, one can be 

defined as following formula: 

   B =
(rs 41011 $ (rs s

*1
41t01

*

(rs 41
*t01

*
1 $ (rs s
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41t01

* (3.5) 

where ji and ki are the degrees of two nodes that are connected by link i, and M is the 

number of links. 



52 

 

 

Fig. 3-11 Networks with positive and negative assortativity [64] 

(a) nodes connect to nodes with similar degree (r>0) 

(b) nodes connect to nodes with different degree (r<0) 

 

The value of assortativity r lies between −1 and 1 (−1 ≤ B ≤ 1). When r falls into a 

positive value, nodes of similar degrees prefer to attach to each other (Fig. 3-11 a). 

Nevertheless, when r becomes negative, nodes of different degrees prefer to attach to each 

other (Fig. 3-11 b). That is, high-degree nodes tend to link to low-degree nodes. 

According to Newman [62], [63], assortative mixing (r>0) is a characteristic of 

social networks. On the other hand, disassortative mixing (r<0) patterns are often found 

in other networks like technological and biological networks. 

3.4.3 Modularity Q 

Modularity defines how well a network is divided into communities. The detailed 

expression in mathematics has been discussed in Chapter 2. The network in Fig. 3-12 

indicates a high-modularity property. Dense links exist within each community, whereas 
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fewer links go across two communities. 

 

 
Fig. 3-12 A high-modularity network [65] 

 

Modularity is an important characteristic of networks in real systems, reflecting 

whether a network exhibits the property of a community. In my study, since we produce 

networks with community structure by simulations, it is a significant index for evaluating 

networks. 

3.4.4 Power index of degree distribution γ 

Degree distribution p(k) is the probability that one node connects to k other nodes. 

Even though it only captures a small amount of information about a network, degree 

distribution can distinguish different types of networks, especially a scale-free network. 
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If a network follows a power-law distribution, its degree distribution is determined by its 

power index γ [17]. The relation between degree k and distribution p(k) can be written as 

the following formula: 

   ' , ∝ ,$. (3.6) 

For networks with a scale-free property, constant parameter γ represents the power 

index of degree distribution. The γ value of most networks typically falls between 2 and 

3, except for rare exceptions. 

3.4.5 Coefficient of determination of degree distribution R2 

The coefficient of determination measures importance in statistical analysis [63]. 

When analyzing networks, this coefficient describes how well the degree distribution 

obeys a power-law distribution and explains the variability in the dataset. The following 

is a general definition: 

   v& = w1$x *
1

x1$x *
1

= 1 − x1$w1 *1

x1$x *
1

 (3.7) 

where yi is the observed data with a value of log p(k), l is the mean of yi, and fi is 

the predicted data value associated with yi. The coefficient of determination R2 ranges 

from 0 to 1. The closer the R2 value is to 1, the more the network exhibits a typical scale-

free property. 

3.5 Evaluation Function 

Even though other network features may exist, this study utilize the above five 
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measurements, because they can capture three vital properties of real network: 

community structure, small-world and scale-free. Furthermore, the distance of two 

networks is quantitatively evaluated by D, which is a normalized Euclidean distance 

between produced network Gi and target network G0. Distance D is defined through the 

following equation [66], [67].  
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&
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where C, r, Q, γ, and R2 are the network features of a network. σ is the standard 

deviation of each feature calculated from a real-world network dataset and is used as 

normalization. With this evaluation function, we measured how well our proposed model 

reproduced four real-world datasets: A Facebook network, a Renren network, a 

collaboration network, and an air traffic control network. 

Why were a network index and a normalized Euclidean distance used in the 

evaluation? It is widely admitted that generating networks with identical target topologies 

is impossible. There is no perfect solution for representing the similarity of two networks. 

As a result, employing a proper network index is an effective way to partially capture 

topologies among networks. Modularity measures the strength of the division of a 

network into communities, thus is able to reflect community structure. A clustering 

coefficient captures the richness of tie weights, which is an important indicator of small 

world network. Scale-free topology can be described by power index of degree 

distribution and coefficient of determination of degree distribution. Other index of 

assortativity represent the inclination of connection among nodes. Finally, extra indexes 

can be easily added to this function if it needs to evaluate new parts of the network 

topologies. As for the weight of each item in evaluation function, emphasis on individual 
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network feature is not placed, because this research treats different structure properties 

equally. Consequently, distance D is calculated with the sum of five items. 

3.6 Summary  

This section proposed an effective high-modularity network generation model by 

layer aggregation based on a multilayer network to represent real networks. Section 3.1 

gave an overview of this model. Four integral parameters were introduced in section 3.2, 

which is presented as follow: 

(1) Community size distribution; 

(2) Number of layers; 

(3) Inner community network model; 

(4) Inter-layer degree correlation. 

In section 3.3, the procedure of algorithm is elaborated through many steps with 

figures. First, the power-law distribution is employed to generate community size 

distributions. The number of layers was set from 2 to 10. Later on, many basic models 

(ER, BA, WS, CNN model, a complete network) and their combinations were chosen to 

build links within nodes inside a community. Finally, the inter-layer degree correlation 

was selected by random or positive correlation. 

Section 3.4 discussed the specific network features exploited in evaluation equation, 

including clustering coefficient C, assortativity r, modularity Q, power index of degree 

distribution γ, coefficient of determination of degree distribution R2. 

Section 3.5 use the five network features to measure the similarity between the 

targeted and produced networks. The similarity can be calculated quantitatively by a 
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normalized Euclidean Distance D with all of these features. 
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Chapter 4.  Simulation of network generation 

Simulation models are constructed as approximate imitations of real life. In this 

study, simulations of network generation were enforced to imitate real networks. As every 

newly designed simulation model needs to be verified, this chapter brought forth 4 real 

network datasets of different types as ground truth. Their network features were 

calculated in advance. The Euclidean distance D discussed in Chapter 3 was then adopted 

for the goal of analyzing the accuracy of generation algorithm. 

4.1 Network Datasets 

Four datasets of real networks are introduced in our evaluation experiments: two 

social networks (Facebook and Renren network), a collaboration network, and an air 

traffic control network. 

4.1.1 Facebook network 

Facebook network dataset were acquired from the open data repository in 

networkrepository.com*1. The network used in our experiments contained 8,578 nodes 

and 405,450 links and reflects the social relationship within Yale University. Only the 

information of the link relationships can be seen, and there is no personal profile 

information about each node. 

                                                
 

*1 http://networkrepository.com/index.php 
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4.1.2 Renren network 

Renren network is a Facebook-like SNS network in China. This study collected the 

link relationships of users from Peking University (PKU) using the Renren API [47]. The 

network data acquired from Renren have 2,309 nodes and 60,532 links. These users were 

all 2009 PKU graduates. 

4.1.3 Collaboration network 

The data of collaboration networks were obtained from the Stanford Large Network 

Dataset Collection (SNAP*1). This research utilized a scientific co-authorship network 

called “ca-GrQc” (Arxiv General Relativity and Quantum Cosmology), which is an 

undirected network with 5,242 nodes and 14,496 links. In this dataset, nodes represent 

scientists and links represent collaborations of paper. The data cover papers from January 

1993 to April 2003. 

4.1.4 Air traffic control network 

The air traffic control network dataset is part of the Koblenz Network Collection*2. 

This network was constructed from the USA's Federal Aviation Administration (FAA) 

National Flight Data Center (NFDC), Preferred Routes Database. The nodes represent 

airports or service centers, and links are created from strings of preferred routes 

recommended by the NFDC. The network having 1,226 nodes and 2,408 links were 

                                                
 

*1 http://snap.stanford.edu/data/index.html 
*2 http://konect.uni-koblenz.de/networks/ 
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identified in 2016. Rather than a social network as Facebook or Renren, this dataset is a 

traffic real-world network. Employing this dataset to verify whether our model can 

capture the important features of a non-social network. 

4.2 Simulation and experimental results 

Simulation was carried out ten times to secure networks for each group of parameters 

to synthesize a network similar to the target network. This section compared proposed 

model with the baseline models by calculating distance D. 

4.2.1 Simulation process 

Simulations were conducted with the baseline and proposed multilayer-based 

models to mimic four real networks. Since many parameters are real numbers, traversing 

all the continuous values of the parameters is impossible. Discrete values were selected 

with intervals. Table. 4-1 summarizes the parameters set for the inner network generation 

model. 

 

Table. 4-1 Discrete values of parameters in inner model 

Inner model Discrete values of each parameter 

ER (p) 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

BA (m) 1, 2, 3, 4, 8, 12, 16, 20 

WS (m) 4, 8, 12, 16, 20 

CNN (p) 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

 

Table. 4-1 lists the discrete values of the parameters in the inner community model 
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of our proposed generation model. The letter in parenthesis under the column of inner 

model represents the main parameter of each model. The ER model has a random graph 

where each edge has fixed probability p of being present or absent. Algorithm traverse p 

from 0.05, 0.1, 0.2 to 0.9. The BA model starts with an initial network. At each time, a 

new node is added, and m links are created between the new node and the nodes selected 

from the graph. Since a generated network is constrained by the number of nodes and 

links, parameter m whose value is too big will lead to a network with too many links. 

Therefore, the biggest value of m is 20. Parameter m of the WS model is the number of 

edges connected to each vertex and represents the local neighborhood size. Since it must 

be an even number, m traverses between 4 and 20 by four steps, which is also constrained 

by the number of nodes and links like the BA model. Finally, the CNN model has a single 

parameter p called the conversion probability. p is decided by the number of nodes and 

links, too. The discrete values of p are selected from 0.05, 0.1, 0.2 to 0.9. 

The algorithm selected all the possible discrete values of the parameters to produce 

networks with N nodes and M links. Furthermore, four network features and the distances 

from the real-world data were calculated for both the baseline and proposed models. The 

minimization of distance D is executed in order to find the best parameters for every 

generation model. 

 



 

 

Table. 4-2 N
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ork topology of Facebook netw
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Facebook 
(N

:8578 
M
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ER

 
B

A
 

C
N

N
 

K
ronecker 
[k=13] 

Pasta  
[c=10; 
Pt=0.5 

Pc=1.0] 
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ultilayer 

[ba(m
=32)+ 

cnn(p=0.1),  
corr, 

10 layers] 
C

lustering coefficient C
 

0.2424 
0.0110 

0.0445 
0.4956 

0.1577 
0.3779 
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ssortativity r 
0.0186 

0.0025 
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-0.2395 
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0.1636 

0.0218 
0.0051 

0.0540 
0.0449 

0.3303 
0.1453 
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distribution γ 
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1.9661 
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0.6503 

1.4099 
1.1489 
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0.7027 

0.0366 
0.8196 

0.8574 
0.3852 

0.8219 
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istance D
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4.2414 

5.4465 
3.1861 

1.6794 
0.1133 
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N

N
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µ=0.2] 

K
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[k=11] 
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0.7250 

13.8717 
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0.2899 
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Table. 4-4 N
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D
istance D
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Table. 4-5 N
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0.0095 
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0.0568 
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4.2.2 Comparison between Baseline and Proposed Models 

This section makes a comparison between proposed models and baseline modes, 

such as LFR benchmark, Kronecker graph model and Pasta’s model. The distances 

between the generated network and real networks with different models are 

straightforwardly displayed in Fig. 4-1. 

 

 

Fig. 4-1 Comparison of distance D for different models 

 

Table. 4-2 to Table. 4-5 show the details of our experimental results for four datasets: 

Facebook, Renren, the collaboration network, and the air traffic control network. The 

features of the four networks and their distances from the generation models are precisely 

recorded. The first row exhibits the real-world network, three basic models (ER, BA, and 
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CNN), three baseline models (LFR, Pasta, and Kronecker, discussed in related work), and 

our multilayer-based model. The main parameters of the models are listed in square 

brackets. In proposed model, three parameters represent the inner community model, the 

inter-layer correlation, and the layer number. The parameter selection of the inner 

community model is listed in Table. 4-1, and the inter-layer correlation is given by two 

kinds of situations: correlation or random. The number of layers is an integer that ranges 

between 2 and 10 (See Section 3.2.2). The last column shows the best outcomes. 

Minimum distance D is selected from different parameter combinations by our multilayer 

model. Since the ER model lacks a scale-free property, it is difficult to estimate reasonable 

constants γ and R2 to represent the degree distribution. Thus, γ and R2 in Table. 4-4 and 

Table. 4-5 are marked by NaN. They are omitted when calculating distance D. Moreover, 

modularity Q of the ER random network in Table. 4-4 (0.1389) and Table. 4-5 (0.2517) 

is high. According to a previous work of Guimera et al. [68], ER graphs have high 

modularity due to the fluctuations in the establishment of links, which are magnified by 

the large number of ways in which a network can be partitioned into modules. Since these 

parameters of network indexes do not affect the final evaluation of the distance compared 

to other networks, special adjustments are not conducted for modularity. 

According to Table. 4-3, Table. 4-4, and Table. 4-5, modularity Q of a synthesized 

network is high for LFR, Pasta, and multilayer-based model: Q>0.4 for Table. 4-3 and 

Q>0.5 for Table Table. 4-4, where a network has an obvious community structure if 

Q>0.3 [45]. Hence, multilayer-based model along with the LFR and Pasta models can 

produce high-modularity networks or networks with strong community structure. 

However, in Table. 4-2, the modularity is so low that most models could never produce 

networks with high modularity. In addition, since the LFR model cannot reach a 
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convergence to reproduce a Facebook network (Yale), the result is not listed in Table. 4-

2 and Fig. 4-1. Other basic models, like the CNN model, cannot generate networks with 

community structure as real-world networks, so they barely acquired networks with high 

modularity. 

For assortativity r, multilayer-based model can replicate this value more precisely 

than the other models in all four datasets because it incorporated the inter-layer degree 

correlation of the nodes in the algorithm. Since the inter-layer degree correlation in our 

model controls the neighbor number of the nodes, proposed model produces a network 

with a bigger range of assortativity values and finds the best one that resembles the real-

world data. From Table. 4-2 to Table. 4-5, multilayer-based model reproduces this 

property better than the LFR and Pasta models. 

Finally, proposed model outperforms other existing models considering Distance D. 

A multilayer model is capable of reproducing two social networks (Facebook and Renren) 

and the air traffic control network with distance D < 1, which represents a high similarity 

to real networks. Other generation models could never achieve this result, except LFR in 

Table. 4-1 (with 0.7250, which remains worse than our model’s 0.2899). Although D is 

over 1 for the collaboration network, our model still outperformed the other baseline 

models (Table. 4-4). Considering Fig. 4-1, the red column exhibits that multilayer-based 

model has the shortest distance for four datasets. 

To conclude, proposed multilayer model and the LFR and Pasta models are high-

modularity generation schemes, but multilayer-based model outperforms the others on 

average. 
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4.2.3 Reason for effectiveness of proposed model 

The LFR, Pasta, and proposed models are capable of generating networks with high 

modularity. Nonetheless, multilayer-based generation model captured the network 

features in the real world better than the other models. The reason why my proposed 

method imitated the real-world networks much better than the other models lies in the 

following two reasons. 

One one hand, my model can produce not only multilayer construction but also the 

settings of the number of layers. Multilayer structure provides a rich representation of a 

real network. For instance, such previous models as ER, BA, CNN, and LFR from Table. 

4-2 to Table. 4-5 are single layer networks, while generated networks of my model can 

be a multilayer ER, multilayer BA, or a multilayer LFR based on the selected parameters. 

In fact, mLFR benchmark proposed by Bródka [54] is a multilayer version of LFR, which 

can be a subset of our model by setting each layer with LFR model. My proposed 

multilayer model handles such cross-layer information and uncovers the hidden topology 

features of network in a real system, which are ignored by other existing models. 

Furthermore, algorithm incorporated a parameter called the number of layers to precisely 

control the reproduction. 

On the other hand, since the inner community model is a mixture of different existing 

models, the generated networks are hybrid multilayers with such different models as ER, 

WS, and so forth. Since a multilayer structure simplifies putting various models on 

disparate layers, I combined diverse models and exploited their specialties to establish 

my hybrid model. Such a hybrid feature is beneficial for modeling different types of real-

world networks and generating the most similar networks in the real world. For example, 
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a social network (Facebook or Renren) is a mixture of the CNN and other models. The 

CNN model is useful for capturing some common features of social communication, 

while the other model controls the discrepancy between the Facebook and Renren data. 

Considering a co-authorship network, communities in different layers are built up with 

the CNN model and the complete network. The complete network describes the co-author 

relationships within the tiny communities of a technical paper, whereas the CNN model 

summarizes co-authorship among different papers. In addition, the air traffic control 

network is reproduced involving the BA and ER models rather than the CNN model as 

inner community models, for the reason that it is a non-social network and has a scale-

free topology. 

4.3 Estimation of hidden structure in real network 

This section makes en effort to employ multilayer-based model to estimate hidden 

structure of real system. By looking into what features of this model contribute to 

synthesizing networks, it helps to better understanding of the hidden structure in real 

network. 

The generation algorithm combines different inner community network models to 

reproduce four networks. All of the parameters were traversed for 20 different inner 

models and the best results were chosen. Table. 4-6 to Table. 4-9 illustrate the distances 

between the real-world networks and the simulation results with our models. The 

horizontal and vertical axes represent two inner community network models in my 

algorithm. The horizontal axis encompasses the inner models to create layers with large-

sized communities, while layers with small-sized communities are created by models in 

the vertical axis. The numbers in the parentheses are the layers for constructing a 
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multilayer network. In this section, the hidden structures are discussed for the four 

networks according experimental results. 

4.3.1 Facebook network 

According to Table 6, models with 8 to 10 layers generate the shortest distances for 

most occasions. Hence, a tendency exists where Yale’s social network has a relatively 

high layer structure. The best one is a 10-layer network with BA+CNN as an inner model 

(the red figure in Table. 4-6). Furthermore, the proposed models (with the BA model, the 

CNN model, or their combination as an inner model) tended to outperform other 

combinations. However, users from Yale did not exhibit an apparent community structure 

because Facebook dataset’s modularity is too low (0.1636) (cf. Table. 4-2). 

 

Table. 4-6 Distance from Facebook network (Yale) with different inner model 

combinations (Horizontal axis: models in large-sized communities) 

Distance D ER BA WS CNN 

ER 0.6114 (8) 0.4527 (8) 0.4758 (10) 0.3965 (8) 

BA 0.4873 (8) 0.2592 (9) 0.4287 (10) 0.1133 (10) 

WS 1.0578 (9) 0.4930 (9) 1.7686 (8) 1.2752 (10) 

CNN 0.4650 (7) 0.2821 (5) 0.3697 (8) 0.2060 (9) 

CPN 1.9499 (8) 1.6361 (4) 2.1306 (5) 3.4626 (5) 
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4.3.2 Renren network 

The distance between the Renren and the produced networks is depicted in Table. 4-

7 with different combinations of inner community network models. Unlike the Facebook 

data, the Renren network enjoys a lower layer (mostly between 3 and 4) in the multilayer 

structure. A 3-layer network with the ER+CNN model and inter-layer correlation 

produced the best Renren data result. 

 

Table. 4-7 Distance from Renren network (PKU) with different inner model 

combinations (Horizontal axis: models in large-sized communities) 

Distance D ER BA WS CNN 

ER 2.4501 (4) 1.7929 (3) 1.9555 (9) 0.2899 (3) 

BA 2.8298 (3) 3.2489 (3) 2.2715 (3) 0.2969 (3) 

WS 2.3805 (4) 1.3842 (4) 1.5864 (3) 0.5400 (4) 

CNN 2.5782 (4) 2.7413 (5) 1.4147 (3) 0.4979 (5) 

CPN 1.8828 (3) 0.7104 (5) 1.5945 (2) 0.8020 (3) 

 

Following part makes a comparison of two similar online social networks. From the 

viewpoint of the number of layers, Facebook tends to have more layers than the Renren 

network. This expresses that Yale (Facebook) has more kinds of relationships among 

users, who might come from the following communities: fraternities, sororities, academic 

majors, grades, ethnic groups, etc. On the other hand, the Renren network just has a low 

number of layers, which is partly due to the small size of the dataset. 2,309 nodes have 
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students who graduated from Peking University in 2009. Such an ivy league university 

like Yale might have more kinds of relationships that go across their students’ social 

communication than a Chinese university due to the diversity of students. Thus, a model 

with 8 to 10 layers can better express the Facebook data, while a model with 3 to 5 layers 

represents the Renren network. 

Furthermore, let us consider the inner community network model. The Facebook 

network with BA+CNN and the Renren network with ER+CNN outperformed the other 

models (Table. 4-6 and Table. 4-7). Both networks utilized the CNN model to connect the 

links of inner communities with large sizes, because this approach is more suitable for 

large networks and captures the features of the large clustering coefficient as well as the 

small-world property, which could never be well exhibited in a small dataset. However, 

the BA model suggests that the Facebook network has a scale-free property within the 

nodes, which means that Yale students might be friends with others who have many 

friends. In contrast, the ER model implies that the Renren network has a free connection 

between different students in small communities at Peking University. 

4.3.3 Collaboration network 

The data shown in Table. 4-8 give the distance from the collaboration network for 

different inner community network models. A combination of the CPN and CNN models 

as an inner community model performed the best. As for the number of layers, it can be 

identified that no apparent range for this co-authorship network, like in the Facebook and 

Renren networks. 
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Table. 4-8 Distance from co-authorship network (ca-GrQc) with different inner 

model combinations (Horizontal axis: models in large-sized communities) 

Distance D ER BA WS CNN 

ER 14.1916 (3) 16.6345 (2) 6.1614 (3) 2.3690 (7) 

BA 14.6491 (2) 16.5003 (2) 9.9046 (9) 4.2168 (2) 

WS 13.9773 (3) 16.5852 (2) 9.9789 (4) 4.1124 (2) 

CNN 13.7575 (2) 16.6140 (8) 8.3799 (2) 4.1100 (2) 

CPN 6.9651 (2) 4.7510 (2) 6.2434 (10) 1.3256 (6) 

 

The CPN+CNN network performed best because of the mechanism behind the co-

authorship network. The data used in my model are from a scientific co-authorship 

network of Arxiv General Relativity and Quantum Cosmology. When constructing a 

network, all of the author nodes who co-author a paper are connected. Complete networks 

fit fairly well with such small communities in co-authorship networks. One example of 

co-authorship network from Information Systems Research Seminar in Scandinavia can 

be observed in Fig. 4-2. There are many small communities of complete network and one 

large connected component with several local clusters. 

Additionally, the CNN model creates networks with a high clustering coefficient as 

well as small-world and scale-free properties and captures the basic features of larger 

communities in collaboration networks. Compared with baseline models, multilayer-

based model produced a network with high modularity better than other models. In 

summary, proposed multilayer-based generation model with a CPN+CNN network as an 

inner community model produced a network that most closely resembles a co-authorship 

network in real life. 
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Fig. 4-2 IRIS Conference co-author network from 1978 to 2006 

(Source: Molka-Danielsen, IRIS2007, 2007 [69]) 

 

4.3.4 Air traffic control network 

Unlike other social networks, the CNN model does not play a vital role in the air 

traffic control network. The ER and BA models capture the best features of the inner 

community network construction. Also, no obvious tendency of layer’s number can be 

found in Table. 4-9. 
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Table. 4-9 Distance from air traffic control network with different inner model 

combinations (Horizontal axis: models in large-sized communities) 

Distance D ER BA WS CNN 

ER 1.5621 (2) 0.0568 (3) 3.4606 (2) 0.4696 (3) 

BA 0.8587 (2) 0.0993 (6) 3.7990 (5) 0.0818 (5) 

WS 1.7069 (3) 0.1999 (4) 3.9288 (3) 0.8238 (10) 

CNN 1.7149 (3) 0.0690 (10) 4.1295 (5) 0.1766 (2) 

CPN 1.3896 (2) 1.0423 (2) 9.3750 (3) 6.6970 (6) 

 

The BA model denotes that large inner communities in the air traffic control network 

are built with a scale-free property. This conforms to our image that air transportation 

networks often include hub airports that are linked to smaller airports, such as the Narita 

and Frankfurt airports. In addition to connecting hub airports, experimental result 

suggests that small airports are randomly connected to other small airports because small-

sized inner communities are created with the ER model. The multilayers in proposed 

model can also reflect different airlines in the air traffic control network. Therefore, 

multilayer-based model is not limited to social networks; it is also applicable to other 

types of real-world networks, such as air traffic control networks, etc. 

4.4 Summary 

This chapter discussed simulation experiments and investigate the experimental 

results. Simulation of network generation was conducted by proposed multilayer-based 

model, some basic models and three baseline model: LFR benchmark, Kronecker graph 
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model and Pasta’s model. Three real network were immitated by simulation, which are 

shown as follows: 

(1) Facebook network (Yale): 8,578 nodes and 405,450 links; 

(2) Renren network (PKU): 2,309 nodes and 60,532 links; 

(3) Scientific co-authorship network (ca-GrQc): 5,242 nodes and 14,496 links; 

(4) Air traffic control network: 1,226 nodes and 2,408 links. 

By comparing proposed model with baseline, it illustrated that multilayer-based 

model can perform better than others in reproducing four real networks from the 

viewpoint of network features. Further, this study analyzed what features of this model 

contribute to synthesizing networks. A number of hidden structure can be found by 

multilayer-based model. For instance, co-authorship networks may be generated from a 

combination of CNN model and complete network. 
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Chapter 5.  Reproduction of realistic information diffusion 

Diffusions of information which can be observed occur in many single networks, 

however, it may not be a real case because real networks often involve multilayer 

structures. Hence, more realistic information spreading over multilayer networks could 

be realized if we introduce multiple layers and enforce multilayer information 

propagation. 

In previous chapters, a network generation model by layer aggregation based on 

multilayer network was developed to imitate networks in real data. In this process, a 

multilayer model was constructed to represent underlying multilayer structure. This 

chapter utilized such multilayer network to simulate information diffusion in a more 

realistic way. 

A measurement of information diffusion, average influence degree (AID), is 

calculated. Proposed model succeeded in reproducing information propagation over 

multilayer network by comparing AID of built multilayer structure with real data. Before 

stepping in simulation and evaluation parts, some related work about information 

diffusion, especially diffusion in multilayer network, will be introduced at first. 

5.1 Information diffusion model 

Information diffusion appears to be one of most important phenomena in real 

networks. Studies on diffusions or spreading processes have been conducted for many 

years in various research fields such as informatics, sociology, biology, epidemiology, 

and so forth. According to Zafarani et al. [70], information diffusion is defined as the 

proceeding that information or knowledge is disseminated so as to reach many people or 
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entities through interactions. It contains three essential parts: senders, receivers and 

medium. Besides social communication, this definition is also applicable to other 

propagation fields. 

Information diffusion model is thus a tool for modeling such information diffusion 

process. There are two major methodologies for modeling: one is the epidemic model 

(perspective of senders); the other is decision-based model (perspective of receivers). 

When talking about information diffusion model, epidemic model comes to most people’s 

mind. Epidemic model reckons information as infectious disease so that the information 

spreading can be described by infection process. For example, SIR (Susceptible-Infected-

Recovered) model [71] and SIS (Susceptible-Infected-Susceptible) model [79] are well-

known epidemic model used in analyzing social phenomena. On the other hand, decision-

based model like LT (Linear Threshold) model [86] also appears in some studies. 

Until now, a great number of information diffusion models in both single and 

multilayer networks have been proposed in solving different issues. In this section, 

several classical information diffusion models and other models in multilayer network 

will be discussed in detail. 

5.1.1 Epidemic model 

In epidemic model, information is diffused from the perspective of senders. That is, 

information spreads through the interaction between nodes of network, and these nodes 

as senders determine whether to distribute information to their adjacent nodes. In most 

case, senders only handle information around themselves in a local level. A couple of 

epidemic models have modeled spreading processes including SIR model, SIS model, IC 

model, SI1I2R model, etc. 
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5.1.1.1 SIR model 

In Susceptible-Infected-Recovered (SIR) model [71], a node performs three types of 

states: Susceptible (S), Infected (I), and Recovered (R). All nodes are susceptible and not 

immune to the disease at first. With infection rate α 0 ≤ # ≤ 1 , susceptible nodes 

become infected and are capable of spreading the disease to their neighbors. After time 

span of t, the infected nodes will recover from the disease with a recovery rate β 

0 ≤ % ≤ 1 , having immunity from further infection. The transformation of node’s state 

in SIR model can be illustrated through Fig. 5-1. Three colors represent three different 

states of nodes respectively. One node transfers from one state to the other with defined 

probability. 

 

Fig. 5-1 The state of node in SIR model 

 

An application of SIR model was proposed in order to analyze the spread of rumors 

happening in Great Eastern Japan Earthquake in Japan 2011 (3.11 earthquake) [101]. 

Once the receiver of a message becomes aware that it is a rumor, he or she will not believe 

the rumor again. More application case of SIR model can be also found in other references 
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[72], [73], [74]. 

5.1.1.2 SIS model 

Rather than two states of nodes in SIR model, Susceptible-Infected-Susceptible (SIS) 

model [79] has only two types of states: Susceptible (S) and Infected (I). In other words, 

the recovery of nodes does not occur and infected nodes will be changed back to 

susceptible states with probability γ 0 ≤ & ≤ 1  after infection. Fig. 5-2 presents the 

transforming process of a node’s state. Only two colors show two states of Susceptible 

and Infected. More research concerning SIS model and details can be referred in some 

literatures [79], [80], [81]. 

 

Fig. 5-2 The state of node in SIS model 

 

5.1.1.3 Independent cascade model 

SIR and SIS models are two important dynamic models in classical information 

diffusion research. Later on, a number of variants or extensions like SI1I2R [82], [83] 

have been brought forth by different researchers. The independent cascade model (IC 
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model), developed by Goldenberg et al.[84], is one of the most significant versions of 

extension. 

IC model is a time-discrete variant of SIR model, where the node can exhibit two 

states: Active and inactive. Parameter '()  0 ≤ '() ≤ 1 is the propagation rate of 

information. At the beginning, some nodes (or one node) called seeds are tagged as active 

nodes in advance. At time t, the active node i attempts to transmit information to one of 

its adjacent inactive nodes j with probability '(), and i has only once chance to activate 

j. If neighbor j is successfully activated at time t+1, it becomes active. Otherwise, node j 

remains inactive. When the active node no longer increases, spreading process terminates. 

Independent cascade is such a stochastic process that information is transmitted through 

cascade propagation. The start and termination state of IC model is shown in Fig. 5-3. 

The yellow nodes display the inactive nodes, while the red ones represent the active nodes. 

 

Fig. 5-3 The start and termination state of IC model 

 

IC model is of importance in this study, because an extension of IC model based on 

multilayer network will be employed in latter experiments. In this section, a measure is 

introduced to characterize the ability of information diffusion. That is average influence 
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degree (AID) [97], which can be obtained from the following function: 

   σ = , -.
/01
2

3 (5.1) 

The influence degree σ 4  of a node v is defined as the expected number of active 

nodes when information diffusion process terminates, in which node v is a seed node 

activated at the beginning. For instance, Fig. 5-3 (a) gives information diffusion that starts 

from an active node 0. As the information diffusion proceeds and finally stops in a state 

like Fig. 5-3 (b), 10 of 13 nodes become active in the network. Therefore, σ 0 , the 

influence degree of node 0, is 10/13. By calculating the average of influence degree σ 4 , 

it leads to the result of AID. 

5.1.2 Decision-based model 

Decision-based model [90], also known as threshold models, is an spreading model 

from the perspective of receivers. Nodes decide whether to receive information depending 

on their neighbor [86], [87], [88], [89]. Two types of method can be found in decision-

based studies including: informational and direct-benefit effects [100]. Most studies focus 

on the informational effects. Two of them will be discussed in this section: Linear 

threshold model and Watts threshold model. 

5.1.2.1 Linear threshold model 

Linear threshold model (LT model) [86], [91], proposed by Granovetter, is originally 

utilized to model the spread of influence. If node u and v are linked in LT model, they 

have an influence puv on each other. Let Adj[u] be the set of node u’s neighbors, then there 
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is a formula below to make sure the sum of influence from node u’s neighbors does not 

exceed 1. 

   '5--∈78)[5] ≤ 1 (5.2) 

Further, there is a threshold θ for each node and an equation as follows:  

   '5--∈78)7;<[5] ≥ >5 (5.3) 

where AdjAct[u] is the set of active nodes that are adjacent to node u. At each time, 

the inactive node u is activated when the sum of influence from its active neighbors is 

larger than the threshold θ. Spreading process terminates when there are no newly 

activated nodes. As shown in Fig. 5-4, it presents the activation process of node u in 

information diffusion. 

 

Fig. 5-4 Activation process in LT model 
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5.1.2.2 Watts threshold model 

Watts improved linear threshold model in order to analyze global cascades on a 

random network [87], which is latter called Watts threshold model. He investigated the 

role of threshold and the relationship between cascade propagation and connectivity of 

the network. If the threshold fraction of neighbors who have adopted a decision satisfies 

a global cascades condition, a node will decide to accept it. A generating function for 

susceptible nodes can be employed in order to obtain such particular condition, which is 

described by following: 

   ?@ A = B('(A((  (5.4) 

where pi represents the probability that a node possesses degree i. Following function 

will lead to different values as condition of k changes, in which f gives the distribution of 

the threshold fraction of nodes. 

   B( =
1333333333333333333333333C = 0

D A EAF/(
@ 333C > 0 (5.5) 

When information diffusion happens in a sparse, random network, the cascade sizes 

follow a power law distribution. On the other hand, local stability of nodes plays a 

significant role in a dense network as global cascade propagation starts. Further, more 

and more heterogeneous thresholds increase the vulnerability of network to the global 

cascades. 

5.1.3 Spreading model in multilayer networks 

With the development of multilayer network analysis technology, the spreading 
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models discussed in previous section have been extended to multilayer version for both 

epidemic models and decision-based models. 

For epidemic models, for instance, many studies modeled information propagation 

over multilayer networks such as SIR model [75], [76], [77], [78], SIS model [80], [81]. 

IC model was also generalized to simulate cascade propagation over a multilayer network 

[85]. The information diffusion across layers performs a different infection rates 

compared with diffusion within layers. In the literature [94], [95], [96], infection rates 

differ depending on the types of links. 

As for Watts threshold model, some extensions have modeled spreading processes 

in multilayer networks [92], [93]. According to their conclusions, multilayer structure can 

facilitate the global cascades compared with single layer structure. 

In this chapter, an extended independent cascade model considering cross-layers 

delay [102] is employed to carry out information spread simulation over multilayer 

network. The state of a node can be active or inactive. If an inactive node is successfully 

activated by its neighbors, it becomes active and has the ability of disseminating 

information to both intra-layer and across-layers neighbor nodes. The intra-layer 

probability is given by puv 0 < '5- ≤ 1 , whereas the cross-layers probability is defined 

by quv 0 < J5- ≤ 1 . Fig. 5-5 gives an illustration of information propagation process 

of this model where cross-layers delay is considered at each time step. As depicted in the 

Fig. 5-5, an across-layers propagation happens at time t1 and t2. the counterpart of active 

node in the lower layer at t0 will be activated with probability quv at t1. Information 

propagation terminates when no active nodes increase in multilayer network. 
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Fig. 5-5 Information diffusion with cross-layers delay 

 

The average influence degree (AID) over multilayer network, which is called 

“multilayer AID” in this research, can be also calculated by formula (5.1). All nodes 

representing the same entity in different layers are treated as one entity node. If one of 

nodes describing the same entity is activated at the end of simulation, the entire entity 

node will be tagged as active. Hence, the AID for multilayer network is the average of all 

entity nodes’ infection degree. 

5.2 Simulation of information diffusion and results 

In this section, the difference of AID between multilayer network and aggregated 

single network is investigated. The former AID calculated from information spreading 

over multilayer network is called “multilayer AID”, whereas the latter AID for single 

network is called “singular AID”. Singular AIDs are often the cases which can be seen 

from real-world data of multilayer network. Nevertheless, they cannot describe realistic 

information diffusion over different types of links in real interactions, because most real 

networks have multilayer structures. As a matter of fact, spreading model over multilayer 
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network introduced in previous section and multilayer AID is capable of capturing more 

accurate information propagation in real-world systems. Therefore, the objective of this 

section is to synthesize multilayer networks according to network features of aggregated 

real multilayer networks and calculate their multilayer AIDs. By investigating the 

difference of multilayer AID between original and produced multilayer networks, we can 

see whether proposed multilayer model can reproduce more realistic information 

diffusion occurring on data in real life, rather than a simple information propagating 

process without a consideration of multilayer structure. 

This section introduces two real multilayer networks used in information diffusion 

experiments at first. Then a “OAR” process is presented to explain the procedure of 

evaluation. Finally, some experimental results will be shown to denote the accuracy and 

effectiveness of proposed multilayer network model. 

5.2.1 Real multilayer network datasets 

Two real multilayer networks are included with the purpose of evaluating realistic 

information diffusion. One is a social network with multilayer structure and the other is a 

multiplex transport network. Both of them can be downloaded freely from web dataset*1. 

5.2.1.1 CKM physicians’ innovation network 

This CKM physicians’ innovation network (Physicians) is a social multilayer 

network collected by Coleman, Katz and Menzel on medical innovation [103], involving 

physicians from four towns in Illinois, Peoria, Bloomington, Quincy and Galesburg. As 

                                                
 

*1 http://deim.urv.cat/~manlio.dedomenico/data.php 
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displayed in Table. 5-1, this dataset*1 contains 246 nodes and 1,551 links, as well as 3 

layers. Layers are built through three socio-metric matrices. The nodes were linked with 

the influence of network ties on the physicians’ adoption of a new drug, tetracycline. 

When carrying out information propagating simulation, influence of medical innovation 

flows through different layers of the multilayer network, resulting in an influence 

spreading network. 

Table. 5-1 Basic features of Physicians’ innovation network 

Network Nodes’ number Links’ number Layers’ number 

Physicians 246 1,551 3 

 

5.2.1.2 London multiplex transport network 

The data of London multiplex transport network was acquired in 2013 from the 

official website of Transport for London*1 [104]. In this multilayer network, nodes and 

links denote train stations and existing routes between stations in London. Basic 

information of this network includes 369 nodes, 441 links, and 3 layers (cf. Table. 5-2). 

Three layers correspond underground line, Over-ground line, and DLR stations’ line. If 

an epidemic disease breaks out in this metropolitan city, the disease spreading through 

different traffic tools can be represented by the information diffusion over the London 

multiplex transport networks. 

                                                
 

 
*1 https://www.tfl.gov.uk/ 
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Table. 5-2 Basic features of London multiplex transport network 

Network Nodes’ number Links’ number Layers’ number 

London transport 369 441 3 

 

5.2.2 The “OAR” process 

In order to evaluate the accuracy of information diffusion over multilayer network, 

an “Original-Aggregated-Reconstructed (OAR)” process is proposed. It can be 

represented through three steps: 

(1) O step: An original multilayer network is constructed from real data or artificial 

data from simulation (cf. Fig. 5-6); 

(2) A step: Aggregating all layers into a monolayer network (cf. Fig. 5-7); 

(3) R step: Reconstructing multilayer structure from the monolayer network. (cf. Fig. 

5-8) 

5.2.2.1 O step 

The first “O” step expresses the construction of an original multilayer network, 

which is a multilayer network from real dataset in this research. As shown in Fig. 5-6, it 

is an instance of original multilayer network that will be used for further information 

diffusion. Moreover, simulation experiments of information spread over this multilayer 

network are carried out and their average influence degrees (AIDs) are calculated as 

baseline. 
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Fig. 5-6 Original multilayer network from real data 

 

5.2.2.2 A step 

The second “A” step represents the aggregation process of original multilayer 

network. All layers of a multilayer network are aggregated into one layer and the AID of 

information diffusion over monolayer network is calculated later. This process of 

aggregation can be illustrated in Fig. 5-7. 
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Fig. 5-7 Aggregation into a monolayer network 

 

5.2.2.3 R step 

The final “R” means the reconstruction of a multilayer network with multilayer 

model. As depicted in Fig. 5-8, the multilayer structure is rebuilt by proposed multilayer 

model taking fully use of the network features of aggregated single layer in “A” step. 

Another experiments of information propagations are conducted over the reconstructed 

multilayer network as well as the computation of multilayer AIDs. By comparing the AID 

of rebuilt multilayer network with baseline AID of the original multilayer network, it 

helps to evaluate the accuracy of information diffusion through multilayer network. If 

AID in the third “R” step resembles the baseline AID in the first “O” step, it can be 

concluded that proposed multilayer method can reproduce more realistic information 

diffusion than a singular layer method. 
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Fig. 5-8 Reconstruction of multilayer from monolayer network 

 

5.2.3 Experimental results of information diffusion 

Two real multilayer networks, CKM physicians’ innovation network and London 

multiplex transport network, appear to be employed in “O” step. Later on, aggregation of 

multilayer networks was done in “A” step. Here, IC model and its extended version in 

section 5.1.3 were implemented to simulate information spreading process. AID of both 

situations, multilayer AID and singular AID, were calculated and shown in Table. 5-3. In 

this research, information propagation over multilayer network of real system is reckoned 

as realistic spreading process, thus the value of multilayer AID is regarded as ground truth 

for evaluating information diffusion of rebuilt multilayer network. As described in Table. 
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5-3, AID of multilayer network has a smaller value than single network due to the cross-

layers delay for both cases. 

Table. 5-3 AIDs of two real networks 

 Physicians’ innovation London transport 

Multilayer AID 0.3005 0.0201 

Singular AID 0.3113 0.0234 

 

The reconstruction of a multilayer network was called “R” step. In order to reproduce 

information diffusion of original real multilayer network, network features of aggregated 

networks were utilized by proposed multilayer models. This multilayer networks are 

created with same nodes and links as real multilayer networks, having the number of 

layers between 2 and 10. Each multilayer network is created with distinct inner model, 

which is a combination of five different models. This model synthesizes an artificial 

multilayer network by minimizing the distance D in Function (3.8) between aggregated 

original network and produced network. Further, information spreading is carried out 

over reconstructed multilayer network and the multilayer AID is obtained by calculation. 

The results are shown in Table. 5-4 as a comparison with multilayer and singular AID for 

both set of real networks. 

Table. 5-4 Comparison of AIDs between real data and reconstructed network 

 Physicians’ innovation London transport 

Multilayer AID 0.3005 0.0201 

Singular AID 0.3113 0.0234 

Multilayer AID of 
rebuilt network 

0.8615 0.0095 
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Table. 5-5 Distances for physicians’ innovation network 

(Horizontal axis: models in large-sized communities) 

Distance ER BA WS CNN 

ER 3.4802 0.2461 0.4570 1.6260 

BA 2.1196 0.0873 0.4684 0.6240 

WS 2.5909 0.1838 0.6819 0.8037 

CNN 1.9235 0.1091 1.8230 0.3732 

CPN 3.1885 0.2655 2.7543 5.5455 

 

Table. 5-6 Multilayer AIDs for physicians’ innovation network 

(Horizontal axis: models in large-sized communities) 

AID ER BA WS CNN 

ER 0.7565 0.2484 0.4227 0.6371 

BA 0.8981 0.8615 0.3337 0.7408 

WS 0.8353 0.9211 0.4519 0.7470 

CNN 0.7981 0.8835 0.7679 0.7552 

CPN 0.7353 0.7105 0.3705 0.3828 

 

As presented in Table. 5-4, reconstructed multilayer networks cannot reproduce 

accurate information diffusions for two real networks, since the value of 0.8615 and 

0.0095 deviate from original multilayer AIDs and singular AIDs. 
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Table. 5-7 Distances for London transport network 

(Horizontal axis: models in large-sized communities) 

Distance ER BA WS CNN 

ER 0.6769 0.9971 0.1027 2.4530 

BA 0.7486 1.0376 0.9303 3.0459 

WS 0.7398 1.4120 0.0488 3.8120 

CNN 0.4249 1.1534 0.5936 2.3154 

CPN 4.7062 1.2113 3.2626 5.4341 

 

Table. 5-8 Multilayer AIDs for London transport network 

(Horizontal axis: models in large-sized communities) 

AID ER BA WS CNN 

ER 0.0484 0.0625 0.0096 0.0468 

BA 0.1529 0.0626 0.0081 0.0407 

WS 0.0480 0.0667 0.0095 0.0457 

CNN 0.0627 0.0674 0.0091 0.0321 

CPN 0.0468 0.0500 0.0106 0.0365 

 

 

Table. 5-5 and  

 

Table. 5-7 give minimum distances for all possible inner model combinations in 

detail, whereas Table. 5-6 and Table. 5-8 depict corresponding multilayer AIDs. Both two 

set of multilayer AIDs have a serious deviation from baseline multilayer AIDs. The 
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reason is that minimizing distance of network features, such as clustering coefficient, 

modularity, etc., is not enough to characterize all topological structure features of original 

multilayer network, especially information propagation. Therefore, other properties are 

necessary to be introduced in order to improve the method of optimization. 

In this research, singular AID of aggregated network is utilized to obtain the best 

rebuilt multilayer network. The detail process is illustrated through the following steps: 

First, distance D in Function (3.8) is calculated. Instead of minimizing distance D, 

10 best rebuilt multilayer networks are selected for each inner model combination. 

Second, the differences of singular AID between aggregated real networks and 

aggregated constructed multilayer networks are calculated. 

Finally, best multilayer network with the minimum difference of singular AID is 

chosen from 10 rebuilt networks. 

 

Table. 5-9 Comparison of AIDs between real data and  

reconstructed network with new method 

 Physicians’ innovation London transport 

Multilayer AID 0.3005 0.0201 

Singular AID 0.3113 0.0234 

Multilayer AID of 
rebuilt network 

0.3020 0.0224 

 

After selection of best multilayer network, simulation of information diffusion is 

enforced and the multilayer AIDs of reconstructed network is acquired by using formula. 

This result can be presented in Table. 5-9. 
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Table. 5-10 Distances of singular AIDs for physicians’ innovation network 

(Horizontal axis: models in large-sized communities) 

Distance ER BA WS CNN 

ER 0.0048 0.0045 0.0001 0.2781 

BA 0.4099 0.0416 0.0020 0.2687 

WS 0.2652 0.0607 0.2575 0.0214 

CNN 0.0506 0.0964 0.0831 0.2262 

CPN 0.3417 0.0662 0.1022 0.1784 

 

Table. 5-11 AIDs of rebuilt multilayer physicians’ innovation network 

(Horizontal axis: models in large-sized communities) 

AID ER BA WS CNN 

ER 0.3067 0.2584 0.3020 0.5565 

BA 0.6429 0.2196 0.3121 0.5264 

WS 0.4534 0.3189 0.4583 0.2320 

CNN 0.2031 0.3396 0.3171 0.4933 

CPN 0.5921 0.3069 0.3259 0.4862 

 

Furthermore, the Table. 5-10 and Table. 5-12 displayed the smallest distance for 

every inner model combination. The red figures give the smallest distance and denote 

best combinations. Table. 5-11 and Table. 5-13 described the corresponding AID of 

rebuilt multilayer network. 
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For both physicians’ innovation network and London multiplex transport network, 

AIDs of reconstructed multilayer networks in “R” step not only have a smaller value than 

single layer in “A” step, but are closer to original real multilayer network in “O” step. 

 

Table. 5-12 Distances of singular AIDs for London transport network 

(Horizontal axis: models in large-sized communities) 

Distance ER BA WS CNN 

ER 0.0495 0.0232 0.0077 0.0228 

BA 0.0072 0.0154 0.0042 0.0148 

WS 0.0510 0.0202 0.0003 0.0045 

CNN 0.0160 0.0254 0.0011 0.0230 

CPN 0.0521 0.0002 0.0030 0.0106 

 

Table. 5-13 AIDs of rebuilt London multiplex transport network 

(Horizontal axis: models in large-sized communities) 

AID ER BA WS CNN 

ER 0.0594 0.0314 0.0114 0.0410 

BA 0.0305 0.0283 0.0129 0.0314 

WS 0.0655 0.0371 0.0132 0.0241 

CNN 0.0155 0.0322 0.0146 0.0343 

CPN 0.0519 0.0224 0.0191 0.0250 

 

According to Table. 5-10 and  

Table. 5-5, it can be observed that WS+ER as inner model produced smallest 
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distance of 0.0001. Moreover, the AID of rebuilt multilayer network with WS+ER 

combination is 0.3020, which is less than 0.3113 (the singular AID of aggregated real 

network) and closest to 0.3005 (the multilayer AID of original real network). Accordingly, 

more realistic information diffusion can be inferred by applying proposed method and 

minimizing distance of singular AIDs for CKM physicians’ innovation network. 

As shown in Table. 5-12 and Table. 5-13, the smallest distance between singular 

AIDs of aggregated real networks and aggregated constructed networks is 0.0002, and 

BA+CPN as inner model can produce an AID of multilayer with the value 0.0224, which 

is smaller than singular AID value of real data (0.0234) and closer to original multilayer 

AID (0.0201). As the multilayer AID of produced network resembles original multilayer 

AID of real data compared with singular AID, it can be concluded that proposed method 

can reproduce realistic information propagation for London transport network. 

Therefore, experimental results show that the proposed multilayer model is capable 

of reconstructing a multilayer network which can perform a relatively realistic 

information diffusion property for different types of real networks. 

5.3 Conclusion 

This chapter utilized the proposed multilayer model to carry out spreading 

simulation over multilayer network and calculated the average influence degree (AID). It 

succeeded in verifying the effectiveness of multilayer model in reproducing realistic 

information diffusion. 

Section 5.1 briefly introduced several classical information diffusion models, such 

as epidemic model and decision-based model. In epidemic model, agents of the network 

spread information through their neighbor to other agents. Three classical model, SIR, 
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SIS, and Independent Cascade (IC) model, are well-known epidemic models. On the other 

hand, decision-based model is derived from the idea that agents decide whether to receive 

information depending on their local neighbor. Two of the most important models, linear 

threshold model and Watts threshold model, were described in detail in this parts. 

Section 5.2 discussed the experiments of information propagation simulation in 

detail. Real multilayer networks used for simulation were talked in 5.2.1. Next part of 

5.2.2 expressed the “OAR” process and calculated AID of information diffusion for two 

multilayer networks and one aggregated network. In 5.2.3, real multilayer networks are 

employed to evaluate proposed multilayer model and corresponding experimental results 

were shown. According to the results of comparison, it comes to a conclusion that the 

proposed multilayer model successfully reproduced realistic information spreading over 

multilayer network. 
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Chapter 6.  Conclusion 

6.1 Discussion and conclusion 

This research attempts to explore the mechanism of network generation based on 

multilayer network and clarify the relationship between phenomena occurring on the 

network and the network structure. Many networks observed in real life have community 

structure, or high-modularity property. Existing studies focusing on the single network, 

however, cannot produce high-modularity networks with high precision. Considering the 

multilayer property of many real systems, multilayer network is introduced to model 

network generation. 

Presently, this research has made the following contributions: 

(1) Proposed a high-modularity network generation model by layer aggregation 

based on the multilayer network to produce artificial networks that resemble real 

networks; 

(2) Estimated the hidden structures in real networks by investigating how artificial 

networks are constructed from generation model; 

(3) Reproduced realistic information diffusion over multilayer network by enforcing 

spreading simulation. 

To begin with, the developed multilayer model is a generation model that can 

reproduce networks in real systems. The core property of created networks is high-

modularity, or community structure. In order to construct a high-modularity network, 

proposed model encompasses four essential parts: community size distribution, number 
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of layers, inner community network model, and inter-layer degree correlation. They 

control the topological structure of produced networks. 

Specifically, the community size follows a power-law distribution with exponent β. 

For number of layers, its value ranges between 2 and 10. In inner communities, ER, BA, 

WS, CNN, a complete network (CPN), and their combinations were chosen to build links 

within nodes inside a community. Moreover, the inter-layer degree correlation was 

selected by random or positive correlation. 

As for measurements, a couple of network features are chosen to measure the 

similarity or distance between the produced networks and target real networks, such as 

clustering coefficient C, assortativity r, modularity Q, power index of degree distribution 

γ, and coefficient of determination of degree distribution R2. Employing five 

representative network features, this research quantitatively evaluates the distance of two 

networks by a normalized Euclidean distance D. 

For the purpose of simulating network generation of real world, four real networks 

of different types were given in this research, including the Facebook network (Yale 

University), the Renren network (Peking University), a collaboration network (a scientific 

co-authorship network of Arxiv general relativity), and an air traffic control network 

(preferred routes database). 

To clarify whether the proposed model can properly reproduce real networks, three 

existing models for constructing real networks are implemented as baseline: 

Lancichinetti-Fortunato-Radicchi (LFR) benchmark, Kronecker graph model, and Pasta’s 

model. LFR benchmark model synthesizes networks with planted community structures 

with some strong constraints. Kronecker graph employs a self-similar nesting process to 

produce a hierarchical structure. Pasta’s model is a tunable and growing network 
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generation model that ensures 3 properties of communities: internal structure, power-law 

degree distribution, and high clustering coefficients. These baseline models can produce 

networks with community structures. 

In simulations, multilayer-based model combined all of the parameter values to 

mimic four real networks. A comparison of proposed model and baseline model was 

drawn so as to evaluate the accuracy of proposed model. The experimental results showed 

that proposed model outperformed other baseline in reproducing real networks with 

community structure. 

Furthermore, this research successfully estimated hidden structures of networks in 

real system, which cannot be completed by other existing models. For instance, the 

comparison results show that the dataset in Facebook (Yale University) is estimated to 

have a high number of layers (about 8 to 10 layers), whereas the Renren dataset (Peking 

University) has a relatively low value (mostly between 3 and 4). That is to say, Yale has 

more kinds of relationships among students than Peking University due to the diversity 

of students’ source. Other two real network data do not exhibit an obvious tendency of 

number of layers. In the scientific co-authorship network, researchers who co-author a 

paper tend to form a small community with a complete network. On the contrary, the 

features of larger communities can be captured by CNN model. Hence, the generation 

model with CPN plus the CNN model as an inner community model obtained networks 

that resemble the real-world data most. For the air traffic control network, a combination 

of the ER and BA models reflects the existence of many hub airports and other smaller 

airports are randomly connected. 

Finally, this research employed the proposed multilayer model to simulate 

information propagation over multilayer networks and calculated the average influence 
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degree (AID) of information diffusion. Both singular AIDs and multilayer AIDs were 

calculated to make a comparison for two types of real multilayer networks: CKM 

physicians’ innovation network and London multiplex transport network. By minimizing 

the distance based on network features and singular AIDs, this research can infer 

multilayer AIDs of original multilayer networks. Simulation results discovered that 

proposed model can reproduce more realistic information diffusion than the single 

network by enforcing spreading simulation over multilayer networks. 

As discussed above, this research proposed a new high-modularity network 

generation model based on multilayer network. Not only did it synthesize high-

modularity networks that resemble real world data, but it reproduced realistic information 

propagation as well. Moreover, mechanism of network generation can be uncovered by 

employing this multilayer-based model, thus it helps to the understanding of hidden 

structure in real networks 

6.2 Future work 

Even though the high-modularity network generation model proposed by layer 

aggregation based on multilayer reproduced the target real networks fairly well, several 

disadvantages still remain unsolved. Some prospective improvements or future studies 

are presented as follows. 

Firstly, current algorithm of network generation model completely searches all 

possible values of parameters by minimizing the normalized Euclidean distance. As the 

full search is time-consuming, future work will consider optimization methods to 

accelerate this process. 

Secondly, even though the number of nodes (links) used in this research can be 
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extended to a thousand (hundred thousand) level, it is worthy of analyzing real networks 

on a larger scale. 

Thirdly, improvement of evaluation methodology will be considered. Since weights 

of the evaluation function are not effectively used, future studies will place emphasis on 

some specific features by adding weights. Also, other network features may also be easily 

introduced into the evaluation function.  

Finally, the average influence degree (AID) was used to evaluate the ability of 

information diffusion. However, other measurements of information spreading process 

still exist, such as cascade velocity, transmissibility probability, etc. Analysis of such 

various measurements will also be research objective in the future. 
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