Isabelle Modelchecking for Insider Threats

Florian Kammiiller!

Middlesex University, London, UK,

f.kammueller@mdx.ac.uk

Abstract. The Isabelle Insider framework formalises the technique of
social explanation for modeling and analysing Insider threats in infras-
tructures including physical and logical aspects. However, the abstract
Isabelle models need some refinement to provide sufficient detail to ex-
plore attacks constructively and understand how the attacker proceeds.
The introduction of mutable states into the model leads us to use the
concepts of Modelchecking within Isabelle. Isabelle can simply accommo-
date classical CTL type Modelchecking. We integrate CTL Modelcheck-
ing into the Isabelle Insider framework. A running example of an IoT
attack on privacy motivates the method throughout and illustrates how
the enhanced framework fully supports realistic modeling and analysis
of IoT Insiders.

1 Introduction and Overview

Insider threats pose a serious problem for security and privacy that is inherently
hard to control since the attack comes from a user within the security perime-
ter. Techniques to tackle these challenges need to be application oriented and yet
thorough. We propose in this paper to further explore the rigorous modeling and
analysis of Insider attacks including infrastructures based on logics: we extend
the Isabelle Insider framework with Modelchecking thus combining the practical
advantages of policy invalidation with mathematical proof and expressive mod-
els. We validate our extension on a case study of a privacy attack on the IoT
performed by an Insider.

The original invalidation idea [18] uses the advantages of Modelchecking to
find attacks by Insiders on infrastructures. Starting from an invalidated policy,
the attempt to modelcheck fails producing an attack vector. The Isabelle Insider
framework [20] implements the process of social explanation inspired by Max
Weber’s work on sociology to model and analyse Insider threats. This framework
is a general tool to integrate logical rigour and automated reasoning at the
infrastructure level validated on major Insider patterns identified by the CERT
Insider guide. Preliminary applications of the Isabelle Insider framework, for
example, to Insider threats in the IoT [16] or to Insider threats in aviation [15],
show that the framework is capable of expressing realistic case studies. However,
to support a systematic identification of detailed attacks from known general
attack cases or patterns, more details from the context of the application, e.g.
the physical infrastructure, need to be integrated into the model.

The integration of attack trees into the Isabelle Insider framework [14,24] is
an important first step to exemplify attack vectors. Attack trees refine an at-
tack case into more detailed sub-attacks which are then successors in the attack
tree but they do not provide clues how to find these refinements. For a given
attack vector, however, we need a more systematic way to explore the infrastruc-
ture graph with its associated actors, policies and credentials, to constructively
identify the Insider attack.

In this paper, we revisit the invalidation approach by providing a substan-
tial extension of the Isabelle Insider framework to accommodate Modelchecking
of infrastructures. Our contribution is an extension of the Insider framework
by a notion of graph-based state and state-transition. In addition, we embed
Kripke-structures and the temporal logic CTL into Isabelle to analyse Insider
attacks by Modelchecking. Thereby, we finally provide the missing link of the Is-
abelle Insider framework to the invalidation approach. The extended framework
is motivated by and illustrated on an IoT Insider attack.

2 Background

In formal analysis of technical scenarios, the motivation of actors and the re-
sulting behaviour of humans is often not considered because the complexity is
beyond usual formalisms. The Isabelle Insider framework [20] provides expres-
siveness to model infrastructures, policies, and humans while keeping up the level
of proof automation. In this section, we give a short summary of this framework
for modeling and analysing Insider attacks. A detailed technical introduction is
given in [20] and the sources are online [1]. We also present the IoT case study
in the current section.

2.1 Social Explanation in Isabelle

The Isabelle Insider framework [20] is based on a logical process of sociological
explanation [12] inspired by Weber’s Grundmodell, depicted in Figure 1, to ex-
plain Insider threats by moving between societal level (macro) and individual
actor level (micro).

The standard example to illustrate the process of macro-micro-macro transi-
tions in the spirit of Max Weber is to explain the relationship between ‘protestant
ethic’ and ‘the spirit of capitalism’. Protestantism has lead to changes in familial
socialization, a ‘familial revolution’ (macro to micro-level). The change of edu-
cational style employed by protestant parents (micro-level) has equipped their
children with ‘strong internalized achievement drives’. This has created the spirit
of capitalism back on the collective, the macro-level, and has lead to the spread
of a new type of actor, the entrepreneur.

In the application of the steps (a-c) of the logic of explanation, the insider’s
move over the ’tipping’ point is seen as (a), the actual Insider attack as step (b)
and the damages caused by the attack as step (c) in Figure 1.

social collective
situation explanandum

(@) (©)

\

actor action

(b)

Fig.1. The ‘Grundmodell’ of sociological explanation [10]: a macro-micro-macro-
transition explains sociological phenomena by breaking down the global facts from
the macro level (a) onto a more refined local view of individual actors at the micro-
level (b). Finally those micro-steps are generalized and lifted back onto the macro-level
(c) to explain the global phenomenon.

The interpretation into a logic of explanation is formalized in Isabelle’s Higher
Order Logic. This Isabelle formalisation constitutes a tool for proving security
properties using the assistance of the semi-automated theorem prover [20]. Is-
abelle/HOL is an interactive proof assistant based on Higher Order Logic (HOL).
Applications can be specified as so-called object-logics in HOL providing rea-
soning capabilities for examples but also for the analysis of the meta-theory.
Examples reach from pure mathematics [17] to software engineering [13]. An
object-logic contains new types, constants and definitions. These items reside
in a theory file, e.g., the file Insider.thy contains the object-logic for social
explanation of Insider threats (see [20,1]). This Isabelle Insider framework is
a conservative extension of HOL. This means that our object logic does not
introduce new axioms and hence guarantees consistency.

The micro-level and macro-level of the sociological explanation give rise to
a two-layered model in Isabelle, reflecting first the psychological disposition and
motivation of actors and second the graph of the infrastructure where nodes
are locations with actors associated to them. Security policies can be defined
over the agents, their properties, and the infrastructure graph; properties can
be proved mechanically with Isabelle. We demonstrate the application of the
Isabelle Insider framework in Section 3.1 on an IoT Insider case study presented
next.

2.2 Challenge IoT Insider

The Internet-of-Things (IoT) denotes the combination of physical objects with a
virtual representation in the Internet. It consists not only of humans but a vari-
ety of “Things” as well. From a security and privacy perspective, at this point the
IoT could be perceived as a hopeless case since all prevention aspects of security

(confidentiality, integrity, and availability) are inherently weak, and unwanted
tracking and monitoring throws the doors wide open to privacy attacks. Insiders
using the IoT represent a significant challenge for enterprises. The paper [23]
assesses this problem in detail, and outlines several vectors through which insid-
ers may attack their employers. The structure of [23] draws on the VERIS 4A
approach to define cyber attacks [27]. This includes understanding the assets at
risk in the attack, the actors (or insiders) that launch the attack, the attributes
(or impact) of the attack on the asset, and the specific actions involved in the
attack. Below, we present two of the attack vectors (AVs) from [23] in the broad
context of the VERIS approach; the first one perpetrated by a malicious insider
(MI) and the second by an unintentional insider (UI) threat. They give a gist
of Insider attack cases and the informality of their description. The former one
MI-A4 is used as a basis for modeling and analysis throughout this paper in the
form of the “Employee Blackmail” case as presented below.

MI-AV4: Using the storage system on a smart device, the insider is able to
copy sensitive data (e.g., IP or files) from the organisation’s computers to the
device and remove it from the enterprise. Bluetooth or NFC may be preferred
for this attack as organisations now tend to monitor USB connections. This
attack is possible with any IoT device with a storage capability.

UI-AVT: As a result of improperly configured or inadequately protected insider
smart devices (e.g., a smart-watch and a paired smartphone), the commu-
nications channel between them is compromised by a malicious third-party.
This party then gathers enterprise data via the notifications, schedules, mes-
sages synchronised across devices. Further detail on such attacks on wear-
ables can be found in [25]. We note that this attack could be conducted
by another insider as well. This attack is possible with any device with a
notification and storage capability.

2.3 Example — Employee Blackmail

The insider in this case is an employee in the IT department of a manufacturing
company. He has received a formal warning from the CEO because there had
been reports that the employee had abused colleagues. This warning has been
contrived by the CEO himself who had an extramarital liaison with one of the
employees with whom the insider had been flirting with. Following that, the
IT employee heard rumours that he might be dismissed, which constituted the
precipitating event that made him an insider: he planned his revenge.

From a report by an online security blog, the Bitdefender Research Team [4],
the insider knew that it was possible to eavesdrop on and intercept communica-
tions between a smart-watch and a smartphone. The vulnerability was described
in some detail on the blog. So, when the CEO purchased a smart-watch paired
with his smartphone, the insider then exploited the vulnerability using addi-
tional methods found on hacking forums. He could move freely in the offices and
could thus get into close range to collect data communicated between the CEQO’s

smartphone and smart-watch. Although the communicated data has been en-
crypted before being transmitted via the Bluetooth protocol, the encryption used
a 6-digit PIN code as a key in addition to data obfuscation (adding redundant
“padding” to the clear text). Using publicly available decryption algorithms, the
insider was thus able to get the key information.

Once the encryption was broken, the Insider could use this credential to
collect data on incoming phone calls, SMS and emails, and personal and work
related calendar. Finally, the insider blackmailed the CEO with the stolen infor-
mation that also implied the CEQ’s liaison with a colleague: he threatened to
show it to his wife and children unless he would receive a large severance package
and good references. The 4As for this case are as follows:

Assets: Sensitive company and personal information;

Actors: Malicious insider;

— Attributes: Unauthorised data access then used for blackmail and fraud; and
Actions: Attack Vector UI-AVT7 (where an insider is the perpetrator).

This case highlights a key weakness in IoT devices, i.e., the limited security
features with these devices and a clever attack building on personal knowledge
helped by current reports and malicious Web forums.

3 IoT Case Study in Isabelle Insider Framework

3.1 Infrastructure Graph and Policies

We now present the formalisation of the ‘Employee blackmail’ in the Isabelle In-
sider framework. Isabelle sources of this case study are available [1]. For the ap-
plication to the office scenario, we only model two identities, Boss and Employee
representing an employee and his boss. The actors that are legal participants of
the scenario are summarized in the following set of office actors as a locale defi-
nition office_actors. The full Isabelle/HOL syntax for a locale definition uses
fixes and defines sections but in all subsequent definitions we omit these and
also drop the types for conciseness of the exposition. The double quotes ’’s’”
create a string in Isabelle/HOL;

fixes office_actors :: identity set
defines office_actors_def: office_actors = {’’Boss’’}

In a similarly simplified abstraction, we consider the office’s architecture as a sim-
ple graph having three locations: employee’s office, boss office, and smartphone
defined as locale definitions and summarized in the set office_locations.

sphone = Location 2

boss0 = Location 1

employee0 = Location O

office_locations = { employee0 , bossO, sphone }

As the topology of the infrastructure, we define the following graph where the
actors Boss and Employee reside in their respective offices. A graph is quite
naturally given as a set of nodes of locations and the actors residing at certain
locations are specified by a function associating lists of nodes with the locations.

ex_graph = Lgraph {(boss0, employee0), (employee0O, sphone)}
(A x. if x = bossO then [’’Boss’’]
else (if x = employeeO then [’’Employee’’] else []))

In an infrastructure, the actors can have credentials like PINs or they can have
roles. We define the assignment of the credentials as predicate over actors. These
predicates are true for actors that have these credentials. For the office scenario,
the credentials express that the office actor Boss possess the PIN for the encryp-
tion to the smartphone.

ex_creds = (M x. if x = Actor ’’Boss’’ then has (x,’’PIN’’) else True)

Similarly, the locations can have features attached to them, like locks. The pos-
sible states of the smart phone are encrypted or cracked. The Isabelle Insider
framework provides an additional predicate isin that checks the value of a
location against string values, here the location sphone against the string val-
ues ’’encrypted’’ or ’’cracked’’. The following ex_locks defines the smart
phone to be encrypted.

ex_locs = (A x. if x = sphone then (isin x ’’encrypted’’) else True))

Changing the position of the sphone to cracked, i.e., using the PIN of the phone
to decypher messages, corresponds to being able to perform a put action in the
boss’s office. The global policy is thus ‘no one except the boss can put anything
in the boss’s office’:

global_policy I a = a ¢ office_actors —
—(enables I boss0 (Actor a) put)

To guarantee this global policy, local policies need to be defined accordingly.
These local policies are attached to locations in the organization’s graph using a
function that maps each location to the set of the policies valid in this location.
The policies are again pairs: the first element of these pairs are predicates over
actors specifying necessary conditions on actors; the second elements are sets
of actions that are authorized in this location for actors authenticated by the
predicates. In the following definition of local policies for each node in the office
scenario, we additionally include parameters G, ts and 1s to refer to the graph,
the actors’ credentials, and the locations’ features. The predicate Qg checks
whether an actor is at a given location in the graph G.

local_policies G ts 1ls =
(A x. if x = employee0 then {(\ y. True,{get, put, move}) }
else (if x = boss0 then {((\ y. has (y, ’’PIN’’)), { put}),
(X y. True, {move})}
else (if x = sphone then

{((A y. (3 n. (n Qg bossO) A Actor n = x) A
1ls sphone = isin sphone ’’cracked’’, {get, put}))}
else {})))

This policy expresses that any actor can move to the employee’s and the boss’s
office but places the following restrictions on the boss’s one.

put: to perform a put action, i.e., put the PIN and thus crack the phone, an
actor must have the PIN;

move: to perform a get or put action at location sphone, i.e., intercept its
messages, an actor must be at the position boss0, be at position boss0, i.e.,
in the boss’s office, and sphone must be in state cracked.

Although this policy abstracts from the smart watch, and a few other technical
details, it contains the essential features of the ‘Employee blackmail’ scenario.
The smart watch and the communication between the watch and the phone is
seen in this abstraction as part of the smart phone. The main reason for this
coarse abstraction is the conciseness of the exposition in this paper and the fact
that PIN and encryption are shared parameters of the combined smart phone-
watch system.

The graph, credentials, and features are plugged together with the policy
into the infrastructure 0Office_scenario.

Office_scenario = Infrastructure ex_graph
(local_policies ex_graph ex_creds ex_locs)
ex_creds ex_locs

3.2 Analysis of Security and Privacy Properties

Note, that all the above definitions have been implemented as local definitions
using the locale keywords fixes and defines [21]. Thus they are accessible
whenever the locales scenarioOffice is invoked but are not axioms that could
endanger consistency. We now also make use of the possibility of locales to
define local assumptions. This is very suitable in this context since we want to
emphasize that the following formulas are not general facts or axiomatic rules but
are assumptions we make in order to explore the validity of the infrastructure’s
global policy. The first assumption provides that the precipitating event has
occurred which leads to the second assumption that provides that Employee can
act as an insider:

assumes Employee_precipitating_event: tipping_point(astate ’’Employee’’)
assumes Insider_Employee: Insider ’’Employee’’ {’’Boss’’}

The above definitions and assumptions provide the model for the Employee
blackmail Insider attack. We can now state theorems about the security of
the model and interactively prove them in our Isabelle/HOL framework. We
first prove a sanity check on the model by validating the infrastructure for the
“normal” case. For the boss as an office actor, everything is fine: the global

policy does hold. The following is an Isabelle/HOL theorem ex_inv that can
be proved automatically followed by the proof script of its interactive proof.
The proof is achieved by locally unfolding the definitions of the scenario, e.g.,
Office_scenario_def and applying the simplifier:

lemma ex_inv: global_policy Office_scenario ’’Boss’’
by (simp add: Office_scenario_def global_policy def office_actors_def)

However, since the Employee is at tipping point, he will ignore the global policy.
This insider threat can now be formalised as an invalidation of the global com-
pany policy for > >Employee’’ in the following “attack” theorem named ex_inv1:

theorem ex_invl: — global_policy Office_scenario ’’Employee’’

The proof of this theorem consists of a few simple steps largely supported by
automated tactics. Thus Employee can get access to the data and blackmail the
boss. The attack is proved above as an Isabelle/HOL theorem. Applying logical
analysis, we thus exhibit that under the given assumptions the organisation’s
model is vulnerable to an insider.

This analysis follows closely the analysis of Insider attack patterns, like the
Entitled independent [20], and applications to Airplane safety and security. The
formalization and proofs are very similar. This overall procedure uses the strong
assumption that the employee can impersonate the boss thus being able to pro-
vide all credentials and act like the boss. The attack stays abstract without
explaining in detail how the employee finds the means to get hold of the PIN
that then enables him to crack the smart phone. For a more refined approach we
would like to be able to demonstrate how it is possible that the employee finds
the PIN and breaks the encoding of the smart phone communication with the
smart watch.

4 Extensions of Sociological Explanation to State Change

The original approach of invalidation of a global policy based on local policies of
infrastructure scenarios [18] uses the idea of Modelchecking: the attempt to prove
a security property fails but provides a trace of steps in the infrastructure leading
to a state in which the property is violated but more importantly providing a
refined attack trace providing detailed steps leading to the attack.

4.1 Refined Attack Scenario

The scenario representing the office in danger, has a graph in which the actor
Employee is in the boss’s office rather than his own.

ex_graph’ = Lgraph {(boss0, employee0), (employeeO, sphone)}
(A x. if x = boss0 then [’’Boss’’, ’’Employee’’]
else (if x = employeeO then [] else [1))

The credentials of the actors encode now that the employee has the PIN.

ex_creds’ = (M x. if x = Actor ’’Boss’’ then has (x,’’PIN’’)
else (if x = Actor ’’Employee’’ then has (x,’’PIN’’)
else True))

The location features’ settings now encode that the smart phone is cracked.
ex_locs’ = (X x. if x = sphone then (isin x ’’cracked’’) else True))

The local policies stay the same as before but we use the updated graph and
location settings when re-defining the scenario.

Office_in_danger = Infrastructure ex_graph’
(local_policies ex_graph’ ex_creds’ ex_locs’)
ex_creds’ ex_locs’

Analysing this new scenario, we can prove that — as before — the insider
attack by employee is possible, i.e., the global policy does not hold.

— global_policy Office_in_danger ’’Employee’’

Note, however, that in this changed infrastructure, the proof is possible without
invoking the Insider assumption for Employee. In fact, in this changed infras-
tructure the employee has already managed — using his privileges as an insider
— to get hold of the necessary credentials and use them to manipulate the smart
devices and their communication.

The extension that we propose here is to define a notion of state transition
between those different states office_scenario and office_in danger repre-
sented by the respective infrastructure graphs. In introducing the extension to
state transition, we will get the benefits of the invalidation approach to Insider
attacks that lies in discovering attacks by changing the models — here the infras-
tructures.

4.2 Infrastructure Graph State Transition

At this point, we have seen that the Isabelle Insider framework allows to model
and analyse the IoT scenario by using the standard methodology. However, we
have also seen that a detailed analysis of the existing and the changed policies
necessitates to change to scenario 0Office_in_danger. This is a scenario that we
have extracted from an actual insider attack. How can we ensure that there are
no other scenarios that would invalidate the new policy?

The approach taken in the Isabelle Insider framework explores the possible
behaviours of actors by a logical exploration of the enables predicate. This ex-
ploration starts from one specific infrastructure. As we have seen in this case
study, we can model different scenarios by adapting the infrastructure. In the
remainder of this section, we want to sketch an extension of the Isabelle Insider
framework that generalizes this approach.

We introduce a relation on infrastructures as an inductive predicate called
state_transition and introduce the syntactic infix notation I—; I’ to denote
that infrastructures I and I’ are in this relation.

inductive state_transition ::
[infrastructure, infrastructure] = bool ("_ —; _")

The definition of this inductive relation is given by a set of rules. To give an
impression of this definition, we show here just the rule for the move action.

move: [G = graphIl I; a Qg 1; 1 € nodes G; 1’ € nodes G;
a € actors_graph(graphl I); enables I 1 (Actor a) move;
I’ = Infrastructure (move_graph_a all’
(graphI I))(delta I) (tspace I)(1lspace I)
|l =1—-1

The rule for get allows an actor a’ to ‘nick’ something from another actor a
that is in the same location 1; in I’ actor a’ “has” z.

get : [G = graphl I; a Qg 1; has (Actor a, z);
a’ @Qg 1; enables I 1 (Actor a) get;
I’ = Infrastructure (graphI I)(delta I)
(A x. if x = Actor a’ then (has (Actor a’, z))
else (tspace I x))(lspace I)
] =11

The rule for put allows an actor who is in a location and for whom the put action
is enabled to change the state of that location encoded in the isin predicate for
some specific location feature of an application.

put : [G
I)

graphl I; a @Qg 1; enables I 1 (Actor a) put;
Infrastructure (graphI I)(delta I)(tspace I)

(A x. if x = 1 then (isin 1 z) else (lspace I x))
] =11

We show next how Modelchecking in Isabelle can be constructed over this
state transition of the state graph of an infrastructure.

4.3 Modelchecking for Insider Attacks in Isabelle

A very nice and practical feature of Modelchecking is that if the proof of a prop-
erty fails, a counterexample can be provided automatically. This counterexample
consists of a series of steps from the transition relation from an initial state to a
state in which the CTL property is violated. In security applications, for exam-
ple security protocol verification, these sequences of steps correspond to attack
sequences. This advantage also goes for Insider attacks and has been exploited
in the invalidation approach [18].

Modelchecking is in practice very successful mainly due to its full automa-
tion. It is often advertised as a 'push-button’ technique in contrast to automated
verification techniques, for example with Isabelle, where the user has to inter-
act with the tool to verify properties (although, for example, the applications
in the Isabelle Insider framework are mostly performed by quite standard se-
quences of automatic proof procedures). A major problem of Modelchecking is

10

the exponential growth of the number of states — and the notorious ‘state ex-
plosion’ problem that arises as a consequence as soon as infinite data domains
are considered (which is very common in almost all applications). The practical
success of Modelchecking is despite these limitation due to an extension called
Symbolic Modelchecking (SMC) which consists in two main technical advances.
First SMC represent the next step relation not by explicit states but only by
‘symbolic’ states that use variables, e.g. x,y. The next step transition relation
R then needs to be expressed by specification in terms of these variables us-
ing x’,1’ to denote the successor state of variable z,y. The second technical
advance of SMC is the effective representation of boolean formulas over state
variables x,y,z’,y" in the so called (Ordered) Binary Decision Diagram repre-
sentation ((O)BDD). (O)BDD are directed acyclic graphs that allow a concise
representation for any boolean formula.

Due to the expressiveness of HOL, Isabelle allows us to formalise within HOL
the notion of Kripke structures, temporal logic, and formalise the semantics of
Modelchecking by directly encoding the fixpoint definitions for each of the CTL
operators.

Our encoding of Modelchecking is available online [1]. This encoding is not
meant as a competitor for Modelchecking in general but tries to use its good con-
cepts for the analysis of Insider threats. Therefore, the representation of (O)BDD
is not important for us here. (O)BDD serves SMC for the efficiency of represen-
tation of formulas and we are not concerned about this since Isabelle’s Higher
Order Logic provides for formula representation. Also, we do not attempt to pro-
vide Symbolic Model Checking because to a large extent our representation is
largely symbolic since we can use the powerful symbolic language of Higher Or-
der Logic. In addition, we are in fact very specifically interested in some concrete
states of certain variables like has (x, ¢‘PIN’’) for the specification of critical
states of infrastructures. Using Isabelle with an embedding of Modelchecking,
will on the other hand provide us with the means to explore Kripke structures.
The Kripke structures are defined by taking different states of an infrastructure
as its states and the state transition relation —; as transition relation R. Via
explicit evaluation of temporal logic formulas, the possible paths in the Kripke
structure may reveal attacks. Also, it is important to note that the definitions
are constructive thus allowing to use Isabelle’s code generation technique. Hence,
we could actually derive an executable Modelchecker. Another interesting obser-
vation is that we can formalise the classic semantic definitions of CTL-operators
one-to-one in the context of Higher Order Logic although these operators are de-
fined for propositional logic only. To verify the correctness of our approach, we
use some simple implications of essential theorems of Tarski’s theory of fixpoints
[26] which we can prove in Isabelle (formalisation is available online [1]).

Based on the state transition —; over the infrastructures, we define the CTL-
operators EX and AX expressing that property f holds in some or all next states,
respectively.

f0. s —; f0} C f %}

{s. {
{s. 3f0€ f. s —; f0 }

AX f
EX f

11

The CTL formula AG f means that on all paths branching from a state s the
formula f is always true (G stands for ‘globally’). It can be defined using the
Tarski fixpoint theory (see the formalisation available online [1]) by applying
the greatest fixpoint operator.

AG f = gfp(\ Z. f N AX 2)

In a similar way, the other CTL operators are defined. Finally, the labeling
function for states can be defined for the Isabelle Insider framework as a predicate
over infrastructures I based on the behaviour definition enables.

LI=3Jalc. enablesI alc

Modelchecking a formula f in a Kripke structure M for Insiders can now be defined
formally in Isabelle by stating that the initial states of the Kripke structure init
M need to be contained in the set L s of all states states M that imply f.

MEF f= init MC {s € (states M) . s € f A (L s)}

The set of states of the Kripke structure can be defined as the set of states
reachable by the infrastructure state transition from the initial state 0ffice_scenario.

Office_states = { I. Office_scenario —;"* I }

The relation —; * is the reflexive transitive closure — an operator supplied by
the Isabelle theory library — applied to the relation —,.

The Kripke constructor combines the constituents initial state, state set,
state transition relation —; and labeling function L.

Office Kripke = Kripke Office_states {0ffice_scenario} —; L
When we now try to verify the global security policy, the attempt to prove fails.
Office Kripke - AG global_policy

In order to explore more precisely where it fails, we prove the complementary
property.
Office Kripke + EF — global_policy

This final proof reveals the chain of actions that leads to the attack state
Office_in _danger: from the initial state Office_scenario a state transition
(by rule move) moves the boss to the employee’s office. Then, employee can get
the PIN — corresponding to a transition with rule get. Finally, the employee can
move to the boss’s office and is in the possession of the PIN leading to the infras-
tructure Office_in danger. Besides showing the trace of actions, this chain of
actions also highlights the different state graphs traversed by the state transition
relation —; on the way from the initial 0Office_scenario Office_in danger.
The integration of the contextual information into the graphical model permits
the systematic exploration of the actions’ effects on the infrastructure leading to
the attack state. Summarizing, the Modelchecking approach to invalidation can
be integrated into the Isabelle Insider framework.

12

5 Related Work and Conclusions

In this paper, we have provided an extension of the Logical Explanation for
Insider Threats with the Isabelle Insider framework to Modelchecking. As re-
quirements elicitation we used the case study of an IoT Insider attack. We used
the Isabelle Insider framework for the formal modeling showing where abstract
models need more refinement in order to provide sufficient detail to document
the attack and make it more realistic. The introduction of mutable states into
the model has lead us to use the concepts of Modelchecking. We have then shown
how Isabelle can be extended to accommodate classical CTL type Modelcheck-
ing and how this extension can be smoothly integrated into the Isabelle Insider
framework. The case study of the IoT attacker illustrates how the enhanced
framework now fully supports realistic modeling and analysis of IoT Insiders.

The Insider threat patterns provided by CERT [6] use the System Dynamics
models, which can express dependencies between variables. The System Dynam-
ics approach has also been successfully applied in other approaches to Insider
threats, for example, in the modeling of unintentional insider threats [11]. Ax-
elrad et al. [2] have used Bayesian networks for modelling Insider threats in
particular the human disposition. In comparison, the model we rely on for mod-
eling the human disposition is the Isabelle Insider framework, a simplified clas-
sification following the taxonomy given in [22]. On the other side, compared
to all these approaches, the Isabelle Insider framework provides an additional
model of infrastructures and policies allowing reasoning at the individual and
organisational level.

On the formal side within the Insider threat community in general, the work
by Bishop et al [3] is relevant to the Isabelle Insider framework since it also
uses a formal model to analyse Insider threats. Bishop and colleagues use the
LITTLE-JIL process description language, a general framework for Software En-
gineering. It allows the definition of activities, artifacts, and agent specifications.
For the analysis, they use fault tree analysis and finite state verification. While
resembling the Isabelle Insider framework concepts, in comparison, the Isabelle
framework provides more support to express organisations’ infrastructures. The
ready made analysis procedures of LITTLE-JIL provide an easier to use analysis
approach while Isabelle is superior in flexibility, expressivity and thus generality
when it comes to properties.

Logical modeling and analysis of Insider threats has started off by investi-
gating Insider threats with invalidation of security policies in connection with
Modelchecking [18,19]. This early approach also uses infrastructure models of
organisations, actors and policies but necessarily has to be simpler than the Is-
abelle Insider framework since model checking does only support finite models.
The use of sociological explanation has been pioneered in [5] already with first
formal experiments in Isabelle. Finally, the Isabelle Insider framework has been
established [20] and has been validated on two of the main three Insider patterns
the Entitled Independent and Ambitious Leader. Recently an application to IoT
Insiders [16] has consolidated the applicability of the Isabelle Insider framework
but also illustrated an extension of the framework to attack trees. Attack trees

13

have been added to the Isabelle Insider framework [24] to provide the possibility
to refine attacks once they have been identified. This refinement is formalised
together with the notion of attack trees as first introduced in [14]. Another ex-
tension towards probabilistic modeling using Bayes networks (BN) and Markov
decision processes (MDP) has been explored in [7] but not within the Isabelle
Insider framework. Although the work follows the concept of sociological expla-
nation, the tool Matlab is used for the analysis of the micro-level BN and the
Prism Modelchecker provides an analysis of the infrastructure’s representation
as MDP.

Beyond the current state of the Isabelle Insider framework, the application
presented in this paper has shown that a more thorough Insider analysis might
be achieved by generalising the approach of considering different infrastructures
by defining an inductive relation on them. We have intentionally named this
relation ‘state transition’ to refer to the idea of model checking that has initially
inspired the logical approach. We have provided an embedding of the concepts
of model checking in Isabelle. On top of the induction relation, a notion of
validity of formulas in a Kripke structure in combination with temporal logic has
been provided in Isabelle. Embedding Modelchecking into Isabelle has been done
before, e.g. [9], but not in the context of Insider threat analysis. An interesting
observation, however, is that the classical CTL model checking methodology
usually restricted to propositional logic can be applied to Higher Order Logic
formulas.

References

1. F. Kammiiller. Isabelle Insider framework including Modelchecking and Ex-
amples, 2016. Available from https://www.dropbox.com/sh/rx8d09p£f31cv8bd/
AAALKtaP8HMX642fi040g4NLa?d1=0.

2. E.T. Axelrad, P. J. Sticha, O. Brdiczka, and J. Shen. A Bayesian network model for
predicting insider threats. IEEE Security and Privacy Workshops, SPW-WRIT,
2013.

3. M. Bishop, H. M. Conboy, H. Phan, B. I. Simidchieva, G. S. Avrunin, L. A. Clarke,
L. J. Osterweil, and S. Peisert. Insider threat identification by process analysis.
IEEE Security and Privacy Workshops, SPW-WRIT, 2014.

4. Bitdefender. Bitdefender research exposes security risks of
android wearable devices, 2014. Avaialable from http:
//www.darkreading.com/partner-perspectives/bitdefender/
bitdefender-research-exposes-security-risks-of-android-wearable-devices-/
a/d-1id/1318005.

5. J. Boender, M. G. Ivanova, F. Kammiiller, and G. Primiero. Modeling human
behaviour with higher order logic: Insider threats. In STAST’14. IEEE, 2014.
co-located with CSF’14 in the Vienna Summer of Logic.

6. D. M. Cappelli, A. P. Moore, and R. F. Trzeciak. The CERT Guide to Insider
Threats: How to Prevent, Detect, and Respond to Information Technology Crimes
(Theft, Sabotage, Fraud). Addison-Wesley, 2012.

7. T. Chen, F. Kammiiller, I. Nemli, and C. W. Probst. A probabilistic analysis
framework for malicious insider threats. Human Aspects of Information Security,
Privacy, and Trust - Part of HCI International 2015, LNCS 9190, Springer, 2015.

14

®°

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, and J.-G. Smaus.
A fully verified executable 1t] model checker. Computer Aided Verification (CAV
2013), LNCS 8044, Springer, 2013.

H. Esser. Soziologie — Allgemeine Grundlagen. Campus, 1993.

F. L. Greitzer, J. R. Strozer, S. Cohen, A. P. Moore, D. Mundie, and J. Cowley.
Analysis of unintentional insider threats deriving from social engineering exploits.
IEEE Security and Privacy Workshops, SPW-WRIT, 2014.

C. G. Hempel and P. Oppenheim. Studies in the logic of explanation. Philosophy
of Science, 15:135-175, April 1948.

L. Henrio, F. Kammiiller, and M. Rivera. An asynchronous distributed component
model and its semantics. In Formal Methods for Components and Objects, LNCS
5751, Springer, 2009.

M. G. Ivanova, C. W. Probst, R. R. Hansen, and F. Kammiiller. Transforming
graphical system models into graphical attack models. Graphical Models for Secu-
rity, GraMSec’15, LNCS. Springer, 2015. co-located with CSF’15.

F. Kammiiller and M. Kerber. Investigating airplane safety and security against
insider threats using logical modeling. In IEEE Security and Privacy Workshops,
SPW-WRIT. IEEE, 2016.

F. Kammiiller, J. R. C. Nurse, and C. W. Probst. Attack tree analysis for in-
sider threats on the iot using isabelle. In Human Aspects of Information Security,
Privacy, and Trust - Part of HCI International 2016 LNCS. Springer, 2016.

F. Kammiiller and L. C. Paulson. A formal proof of sylow’s theorem. Journal of
Automated Reasoning, 23(3):235-264, 1999.

F. Kammiiller and C. W. Probst. Invalidating policies using structural information.
IEEE Security and Privacy Workshops, SPW-WRIT, 2013.

F. Kammiiller and C. W. Probst. Combining generated data models with formal
invalidation for insider threat analysis. IEEE Security and Privacy Workshops,
SPW-WRIT, 2014.

F. Kammiiller and C. W. Probst. Modeling and verification of insider threats
using logical analysis. IEEE Systems Journal, Special issue on Insider Threats to
Information Security, Digital Espionage, and Counter Intelligence, 2016.

F. Kammiiller, M. Wenzel, and L. C. Paulson. Locales - a sectioning concept
for isabelle. Theorem Proving in Higher Order Logics, TPHOLs’99, LNCS 1690.
Springer, 1999.

J. R. C. Nurse, O. Buckley, P. A. Legg, M. Goldsmith, S. Creese, G. R. T. Wright,
and M. Whitty. Understanding Insider Threat: A Framework for Characterising
Attacks. IEEE Security and Privacy Workshops, SPW-WRIT, 2014.

J. R. C. Nurse, A. Erola, I. Agrafiotis, M. Goldsmith, and S. Creese. Smart insid-
ers: Exploring the threat from insiders using the internet-of-things. International
Workshop on Secure Internet of Things 2015 (SloT 2015), in conjunction with
ESORICS’15, LNCS. Springer, 2015. In print.

C. W. Probst, F. Kammiiller, and R. R. Hansen. Formal modelling and analysis
of socio-technical systems. Semantics, Logics, and Calculi, (Nielsens’ Festschrift).
Springer, 2016.

Symantec. How safe is your quantified self?, 2014. Tech. Rep.

A. Tarski. A lattice-theoretic fixpoint theorem and its applications. Pacific Journal
of Mathematics, 5:285-309, 1955.

VERIS. Veris: The vocabulary for event recording and incident sharing, 2015.
Available from http://veriscommunity.net.

15

