
Weakly Supervised Network Traffic Classification
Rui Aguiar

Stanford University
raguiar2@stanford.edu

Swathi Iyer
Stanford University

swathii@stanford.edu

1 INTRODUCTION
Accurate network traffic classification is essential for a va-
riety of applications, such as security, quality of service, or
monitoring. Traffic classification can be applied at ingress
ports to separate traffic into different flows or queues, and
can therefore be handled with different policies.
Different methods have been applied to classify network

traffic. The most basic is to characterize them based on its
source and destination ports. However, this is not too useful
when services use non-standard ports. Another method is
to inspect the payload of the packet. This method also has
its drawbacks, in that its computationally intensive, and
also impossible when traffic is encrypted. Because of these
shortcomings, traffic classification has been a problem of
interest to machine learning researchers, who have applied
a variety of metrics from labeled flow trace data to classify
network traffic. We expand on this research, taking into
account the fact that much of the network traffic data in
the world is unlabeled. In our approach, we use a weakly
supervised method to improve on the problem domain of
labeled network traffic data classification. We a statistical
approach, which relies on packet features such as packet
length, arrival times, etc. In particular, we generate a set
of heuristics based on traffic features to massively increase
the amount of labeled data and improve traffic classification
accuracy.

2 RELATEDWORK
Existing literature on network traffic classification generally
falls into one of a few categories: port number-based meth-
ods, deep packet inspection, and statistical classification. The
advantages of using source and destination port numbers
is that it can be fast and low resource-consuming. It is also
supported by many network devices, and does not require
the application-layer payload, which protects users’ privacy.
However, several applications and services do not use fixed
port numbers, for which this method cannot be applied [4].
Payload-based classification using deep packet inspec-

tion works by analyzing the application-level payload of
the packet for characteristics unique to certain applications.
This is known as Signature Analysis, where a signature is a
pattern associated with an application. For example, some ap-
plications embed certain bytes or characters into the payload

that allow a classification to identify them [1]. On draw-
back to this method include poor performance, in having
to inspect the payload of each packet that comes through.
Another drawback is as a classification engine builds up a ref-
erence database of signatures to check new traffic against, it
also needs to maintain and periodically update this database
with new applications and new developments in protocols
[4].

The statistical approach is based on statistical analyses of
the features of network traffic flow, such as byte frequencies,
packet sizes, or packet arrival times. This can often be faster
than even a port-based method. Various statistical methods
have been tried, including Naive Bayes filter, K-means, and
Random Forest [4]. Success of these methods can vary based
on network traffic properties. For example, some authors
of a Naive Bayes-based method found that some classes of
traffic had much higher accuracies than others, due to the
fact that there simply weren’t enough examples in certain
classes [9].

3 DATASET
The dataset we are using is a combination of labeled and
unlabeled data. The labeled dataset was collected at the Uni-
versidad Del Cauca by doing packet captures at various times
in the day. Each IP flow 87 features, including source and des-
tination IP addresses, ports, packet arrival times, application
used on that flow, etc. There are over 1 million datapoints
in this original dataset. However, we limit our use to a few
tens of thousands of datapoints, to balance out the amount of
unlabeled data we were able to capture for this paper using
the flowmeter package, which is very computationally ineffi-
cient, sometimes taking days and tens of gigabytes of RAM to
generate just a few hundred datapoints. The team collected
their flow statistics using CICFlowmeter, and collected the
application protocol by doing a Deep Packet Inspection with
ntopng.
We collected the unlabeled data in a similar fashion, by

doing packet captures at various times in the day, and collect-
ing flow statistics using a CICFLowmeter-based python tool
called Flowmeter, which allowed us capture almost all of the
flow statistics available in the labeled dataset captured using
CICFLowmeter. We later augment our unlabeled data using
heuristics for weak supervision, so did not collect the appli-
cation protocols. We collected around 20K lines of unlabeled
data.

1



SIGCOMM’18, August 21-23, 2018, Budapest, Hungary Aguiar, Iyer

4 METHODS
4.1 Baseline
Our baseline was a simple shallow MLP classifier with one
hidden layer. Our input to this classifier was a vector of dif-
ferent discrete and continuous numeric features of a packet
flow, such as source port, destination port, average/max/min
packet length, average/max/min header length, flow time, etc.
We ran the baseline across about 80 different L7 protocols.
We ran this baseline for about 10 epochs across 20000 cap-
tured packets using the Adam optimizer with a learning rate
of 0.01. Using this classifier, we achieve around 45 percent
accuracy on protocol classification, which is significantly bet-
ter than random guessing given the number of classes that
we have, but far from the achievable SOTA. Despite the fact
that classification with neural networks has been somewhat
successfully applied in network traffic classification before
using 1-dimensional convolutional neural networks, this was
with an order of magnitude more data than we were training
our model on. Because we had a relatively small number of
examples, we decided that we were mis-using deep learning
and potentially overfitting to our training set or otherwise
not generalizing well on the prediction task that we were
attempting. This realization motivated our switch to a more
shallow, interpretable model (random forest) that we had
seen others have past success with in our research on this
task.

4.2 Random Forest
After concluding that a deep learning approach was per-
haps not appropriate for the amount of data that we were
using, we tried a supervised random forest approach. We
set our model parameters to a max depth of 6, and the num-
ber of estimators to be 50. We did not have a cap on the
maximum number of leaf nodes. The model takes in the
numeric features of the labeled dataset similar to how our
deep learning approach worked, and outputs a predicted L7
protocol name (e.g. Google, HTTP, etc.). We were able to get
to around 80 percent accuracy with a simple random forest
model, which is a significant step up from our MLP classifier,
but we believed that we could still do better by introducing
weak supervision.

4.3 Random Forest with Weak Supervision
Our random forest model seemed to work well for classifica-
tion, so we build on top of this one for our weakly supervised
model, by extending it with the unlabeled dataset. We used
wireshark and tcpdump in collection with flowmeter to col-
lect about 20k unlabeled packets (we collected far more pack-
ets with wireshark, but flowmeter was only able to analyze
about 20k in total across a period of weeks), and proceeded
to use heuristics from our knowledge of networking and our

labeled dataset in order to approximately guess the protocol
of certian packet flows with reasonable probability.

4.4 Heuristics
We used the snorkel library to write and apply our labeling
functions to our dataset. Each labeling function used some
information from a packet flow to make a protocol classi-
fication decision (or abstain from one because there is not
enough information to be sure). We then use a voting scheme
to determine what protocol to classify a packet flow as. We
had a variety of labeling functions of varying strength based
off of packet information gained from both our knowledge
of network traffic, and heuristics from our labeled dataset.
An example labeling function is shown below, and pretty
much all of our heuristics follow the similar format

@labeling_function()
def check_dest_port_https(x):

src_https = x['src_port'] == 443
dst_https = x['dst_port'] == 443
is_https_port = src_https or dst_https
return HTTPS if is_https_port else ABSTAIN

Where we assign a certain protocol class based off of some
feature of the dataset, or ABSTAIN from that labeling func-
tion if there is no signal.

4.4.1 Source and Destination Port.

The immediately obvious heuristic to classify protocol is
by using the source and destination port. Several well-known
network protocols such as HTTP/S are known to use port
80/443. We performed this labeling function across several
protocols to classify our unlabeled traffic, the most impactful
of which was HTTP/S.

4.4.2 Packet Size.
Another feature we looked at was max/min/average packet
size. We decided that this was an important feature after
performing some analysis onto our labeled dataset, where
we saw that if the average packet length was 6, the flow had a
greater than ninety five percent probability of being a HTTP
flow.We used both the average and max packet length across
a flow to label our data.

4.4.3 Flow Duration.
Another heursitic that we derived from looking at our dataset
was that of flow duration. We found the average flow dura-
tion for each of a list of common protocols in our labeled
dataset, and then applied a window around that flow dura-
tion, and triggered this labeling function from our dataset if
it was within that flow duration window. Obviously, this type

2



Weakly Supervised Network Traffic Classification SIGCOMM’18, August 21-23, 2018, Budapest, Hungary

of function is not as indicative of protocol as, say, port num-
ber but it was still able to help with our voting scheme for
numerous examples, especially those going to nonstandard
ports.

4.5 Voting Scheme
To make decisions after our heuristic functions had been
applied to each flow in our dataset, we used a majority vot-
ing classifier which makes decisions according to the most
frequent protocol labeled across all of our heuristic functions
- that is, a majority voting protocol that can be expressed for
a class c over a list L as follows:

{
𝑐 𝑐𝑜𝑢𝑛𝑡 (𝑐) ≥ (𝑐𝑜𝑢𝑛𝑡 (𝐿)/2)&&(𝑐 > −1)
−1 𝑒𝑙𝑠𝑒

If any given class had themajority of votes from the heuris-
tic functions, we classified the flow as being of that proto-
col. If not, we abstained from classifying that packet flow.
This gave us a hit rate of around 50 percent for each of the
classes, meaning that we had about 10k weakly labeled data
points to augment our existing dataset with. We also experi-
mented with a weighted voting scheme - that is, if the port
is 443 or 80, we know that the protocol is HTTP/S with a
very high probability, so we can just classify our network
as HTTP/s without looking at the other labeling functions
that give less of a guarantee. We did not find a significant
performance delta between this voting scheme, so we gener-
ated our graphs and results using the simple majority voter,
though different voting schemes across heuristic functions
could be a good extension and source of future work to deter-
mine which labeling functions captured the strongest signals
from the data.

5 RESULTS
We ran our random forest model across several different
dataset sizes from a tiny size off 500 to a larger size of 30
thousand data points to understand the impact of the ratio of
unlabeled data to labeled data across several different ratios.
The results are outlined in Figure 1, where we benchmark the
same model across augmented and non-augmented datasets.
In addition to comparing models, we thought it was im-

portant to better illustrate the learning curves of our dataset
to show scalability and generalizability of our random forest
model when applied with a weakly supervised augmented
dataset.
Finally, we benchmarked every model across a series of

trials with varying amounts of data to get the average classi-
fication accuracy and included our results in figure 3.

Figure 1: Performance comparison of the same classi-
fier with weak supervision vs without

6 EVALUATION
As illustrated in figure 1, it seems that the augmentation
of our weakly supervised dataset across our random forest
classifier produces significantly better performance across
all dataset sizes, from the unlabeled data being far larger than
the amount of labeled data to a much smaller fraction of the
labeled data. It seems that our heuristic labeling functions
are able to actually capture a significant amount of signal
from our unlabeled data, and our model can extrapolate well
from this signal. If we used the full million or so lines from
our dataset, assuming we have a corresponding fraction of
unlabeled data, it would probably be safe to extrapolate that
this type off dataset augmentation would continue to be
helpful in performing protocol classification. The average
accuracy of each classifier model across 5 different trials of 5
different dataset sizes is illustrated in figure 3, where we can
see that the weak supervision approach outperforms both
benchmarks by a significant amount.

One interesting nuance in figure 1 is that the the accuracy
actually goes down as we go from a tiny dataset size off
500 labeled data points (with 100 or so in the validation set)
to over 20000 labeled data points. This is likely due to the
validation set size, where we end up overfitting a tiny subset
of our data. In this case, the model actually is generalizing
far better with more data points, though it is not reflected in
an immediately obvious way with our graph.
We also performed some model analysis across our ran-

dom forest classifier and weakly supervised dataset by plot-
ting the learning curves using k-fold cross validation for our
model. we can see from the learning curve in figure 2 that
the generalizibilty of the model increases with the number
of training examples. We can see that the training examples
and cross-validation scores are beginning to converge as we

3



SIGCOMM’18, August 21-23, 2018, Budapest, Hungary Aguiar, Iyer

Figure 2: Learning curves of our random forest classi-
fier with a weakly supervised dataset

Model Accuracy
Multi-Layer Perception 0.45

Random Forest 0.82
Random Forest + weak supervision 0.872

Figure 3: Average classification accuracy of each of our
methods

get to just a few thousand datapoints. Additionally, the scal-
abality and performance of the model both increase with the
number of training examples, indicating that adding more
data (whether labeled or weakly supervised) will increase
the performance of the model. Interesting followup work
here would be to use a far larger dataset and see the learn-
ing curves and model generalizibility, and to compare this
generalizability with a purely labeled dataset.

7 FUTUREWORK
In the future, it would be good to apply this problem frame-
work in experimentation with different model architectures
such as 1 dimensional convolutional neural networks and
even just deeper MLP models to understand how deep learn-
ing can be better applied to this problem. Another piece of
future work is performing more hyperparameter tuning (per-
haps with a grid search) to drive accuracy as high as possible.
This would also work in conjunction with a deeper under-
standing of the random forest model, which you could in-
spect to understand which features it used across the dataset
to make decisions - model interpratibility in general for this
problem is an interesting piece of followup work. We would
also like to experiment further with heuristic selection, and
see how collecting more data might affect performance. Fi-
nally, one could apply this problem at massive scale (millions
or tens of millions of datapoints) with a similar ratio of unla-
beled data to see how weak supervision generalizes across
real traffic flows in the internet.

8 CONCLUSION
Because of the sheer quantity of unlabeled data and the ra-
tio of unlabeled to labeled data available for any problem
domain, it is a very reasonable assumption to make that un-
supervised, weakly supervised and semi supervised learning
will become more important as AI is applied to many more
problem domains. Additionally, network traffic classification
is a domain where AI methodologies including both white-
box and black-box models have potential to be applicable.
In our paper, we have shown that in network traffic clas-

sification problem settings where there is a smaller quantity
of labeled data, or at least a larger quantity of unlabeled data
relative to the amount of labeled data, we can hand-design
heuristic functions from our knowledge about networking

4



Weakly Supervised Network Traffic Classification SIGCOMM’18, August 21-23, 2018, Budapest, Hungary

protocols in order to actually derive a relatively strong signal
from the noise of the unlabeled data. While there is still much
work to be done in terms of both the actual classification
methodology and approach, as well as design of heuristic
functions and collection of unlabeled data at scale, we be-
lieve that we have provided a benchmark for other papers
attempting similar problems in the future.

REFERENCES
[1] Tomasz Bujlow, Valentín Carela-Español, and Pere Barlet-Ros. Extended

independent comparison of popular deep packet inspection (dpi) tools
for traffic classification.

[2] Jeffrey Erman, Anirban Mahanti, Martin Arlitt, Ira Cohen, and Carey
Williamson. Semi-supervised network traffic classification. SIGMETRICS
Perform. Eval. Rev., 35(1):369–370, June 2007.

[3] Jeffrey Erman, Anirban Mahanti, Martin Arlitt, Ira Cohen, and Carey
Williamson. Semi-supervised network traffic classification. In Proceed-
ings of the 2007 ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, SIGMETRICS ’07, page
369–370, New York, NY, USA, 2007. Association for Computing Machin-
ery.

[4] Dr Dinesh Harkut. An overview of network traffic classification meth-
ods. 02 2015.

[5] W. John and S. Tafvelin. Heuristics to classify internet backbone traffic
based on connection patterns. In 2008 International Conference on
Information Networking, pages 1–5, 2008.

[6] Antonios Minas Krasakis, Evangelos Kanoulas, and George Tsatsaro-
nis. Semi-supervised ensemble learning with weak supervision for
biomedical relationship extraction. In AKBC, 2019.

[7] Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen
Wu, and Christopher Ré. Snorkel. Proceedings of the VLDB Endowment,
11(3):269–282, Nov 2017.

[8] Juan Rojas Meléndez, Alvaro Rendón, and Juan Corrales. Personalized
service degradation policies on ott applications based on the consump-
tion behavior of users. Lecture Notes in Computer Science, pages 543–557,
05 2018.

[9] Denis Zuev and Andrew W. Moore. Traffic classification using a sta-
tistical approach. In Proceedings of the 6th International Conference on
Passive and Active Network Measurement, PAM’05, page 321–324, Berlin,
Heidelberg, 2005. Springer-Verlag.

5


	1 Introduction
	2 Related Work
	3 Dataset
	4 Methods
	4.1 Baseline
	4.2 Random Forest
	4.3 Random Forest with Weak Supervision
	4.4 Heuristics
	4.5 Voting Scheme

	5 Results
	6 Evaluation
	7 Future Work
	8 Conclusion
	References

