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Abstract: In this paper, we discuss a non-Markovian batch arrival general bulk service single-server
queueing system with server breakdown and repair, a stand-by server, multiple vacation and
re-service. The main server’s regular service time, re-service time, vacation time and stand-by
server’s service time are followed by general distributions and breakdown and repair times of the
main server with exponential distributions. There is a stand-by server which is employed during the
period in which the regular server remains under repair. The probability generating function of the
queue size at an arbitrary time and some performance measures of the system are derived. Extensive
numerical results are also illustrated.
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1. Introduction

Queueing systems with general bulk service and vacations have been studied by many researchers
because they deal with effective utilization of the server’s idle time for secondary jobs. Such queueing
systems have a wide range of application in many real-life situations such as production line systems,
inventory systems, digital communications and computer networks. Doshi [1] and Takagi [2] have
made a comprehensive survey of queueing systems with vacations. A batch arrival M[X]/G/1
queueing system with multiple vacations was first studied by Baba [3]. Krishna Reddy et al. [4] have
discussed an M[X]/G(a, b)/1 model with an N-policy, multiple vacations and setup times. Jeyakumar
and Senthilnathan [5] analyzed the bulk service queueing system with multiple working vacations
and server breakdown.

The first work on re-service was done by Madan [6]. He consider an M/G /1 queueing model,
in which the server performs the first essential service for all arriving customers. As soon as the
first service is executed, they may leave the system with probability (1− θ), and the second optional
service is provided with θ. Madan et al. [7] considered a bulk arrival queue with optional re-service.
Jeyakumar and Arumuganathan [8] discussed a bulk queue with multiple vacation and a control
policy on request for re-service. Recently, Haridass and Arumuganathan [9] analyzed a batch service
queueing system with multiple vacations, setup times and server choice of admitting re-service.

No system is found to be perfect in the real world, since all the devices fail more or less
frequently. Thus, the random failures and systematic repair of components of a machining system
have a significant impact on the output and the productivity of the machining system. A detailed
survey on queues with interruptions was undertaken by Krishnamoorthy et al. [10]. Ayyappan and
Shyamala [11] derived the transient solution to an M[X]/G/1 queueing system with feedback, random
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breakdowns, Bernoulli schedule server vacation and random setup time. An M/G/1 queue with two
phases of service subject to random breakdown and delayed repair was examined by Choudhury
and Tadj [12]. Senthilnathan and Jeyakumar [13] studied the behavior of the server breakdown
without interruption in an M[X]/G(a, b)/1 queueing system with multiple vacations and closedown
time. An M/G/1 two-phase multi-optional retrial queue with Bernoulli feedback, non-persistent
customers and breakdown and repair was analyzed by Lakshmi and Ramanath [14]. Recently, a discrete
time queueing system with server breakdowns and changes in the repair times was investigated by
Atencia [15].

The operating machine may fail in some cases, but due to the standby machines of the queueing
machining system, it remains operative and continues to perform the assigned job. The provision
of stand-by and repairmen support to the queueing system maintains the smooth functioning of the
system. In the field of computer and communications systems, distribution and service systems,
production/manufacturing systems, etc., the applications of queueing models with standby support
may be noted.

This paper is organized as follows. A literature survey is given in Section 2. In Section 3, the
queuing problem is defined. The system equations are developed in Sections 4. The Probability
Generating Function (PGF) of the queue length distribution in the steady state is obtained in Section 5.
Various performance measures of the queuing system are derived in Section 6. A computational study
is illustrated in Section 7. Conclusions are given in Section 8.

2. Literature Survey

Various authors have analyzed queueing problems of server vacation with several combinations.
A batch arrival queue with a vacation time under a single vacation policy was analyzed by
Choudhury [16]. Jeyakumar and Arumuganathan [17] have discussed steady state analysis of an
M[X]]/G/1 queue with two service modes and multiple vacation, in which they obtained PGF of
the queue size and some performance measures. Balasubramanian et al. [18] discussed steady state
analysis of a non-Markovian bulk queueing system with overloading and multiple vacations. Haridass
and Arumuganathan[19]discussed a batch arrival general bulk service queueing system with a variant
threshold policy for secondary jobs. Recently, Choudhury and Deka [20] discussed a batch arrival
queue with an unreliable server and delayed repair, with two phases of service and Bernoulli vacation
under multiple vacation policy.

Queueing systems, where the service discipline involves more than one service, have been
receiving much attention recently. They are said to have an additional service channel, or to
have feedback, or to have optional re-service, or to have two phases of heterogeneous service.
Madan [21] analyzed a queueing system with feedback. Madan [22], generalized his previous model
by incorporating server vacation. Medhi [23] discussed a single server Poisson input queue with
a second optional channel. Arumugananathan and Maliga [24] also examined a bulk queue with
re-service of the service station and setup time. Baruah et al. [25] studied a batch arrival queue
with two types of service, balking, re-service and vacation. Ayyappan and Sathiya [11] derived the
PGF of the non-Markovian queue with two types of service and optional re-service with a general
vacation distribution.

One can find an enormous amount of work done on queueing systems with breakdowns.
For some papers on random breakdowns in queueing systems, the reader may see Aissani et al. [26],
Maraghi et al. [27] and Fadhil et al. [28]. Rajadurai et al. [29] analyzed an M[X]/G/1 retrial queue with
two phases of service under Bernoulli vacation and random breakdown. Jiang et al. [30] have made a
computational analysis of a queue with working breakdown and delayed repair.

The operating system may fail in some cases, but due to stand-by machines, it remains operative
and continuous to perform the assigned job. Madan [31] studied the steady state behavior of a queuing
system with a stand-by server to serve customers only during the repair period. In that work, repair
times were assumed to follow an exponential distribution. Khalaf [32] examined the queueing system
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with four different main servers’ interruption and a stand-by server. Jain et al. [33] have made a
cost analysis of the machine repair problem with standby, working vacation and server breakdown.
Kumar et al. [34] discussed a bi-level control of a degraded machining system with two unreliable
servers, multiple standbys, startup and vacation. Murugeswari et al. [35] analyzed the bulk arrival
queueing model with a stand-by server and compulsory server vacation. Recently, we provided an
excellent survey on standby by Kolledath et al. [36].

3. Model Description

This paper deals with a queueing model whose arrival follows a compound Poisson process with
intensity rate λ. The main server and stand-by servers serve the customers under the general bulk
service rule. The general bulk service rule was first introduced by Neuts [37]. The general bulk service
rule states that the server will start to provide service only when at least ‘a’ units are present in the
queue, and the maximum service capacity is ‘b’ (b > a). On completion of a batch service, if less than
‘a’ customers are present in the queue, then the server has to wait until the queue length reaches the
value ‘a’. If less than or equal to ‘b’ and greater than or equal to ‘a’ customers are in the queue, then all
the existing customers are taken into service. If greater than or equal to ‘b’ customers are in the queue,
then ‘b’ customers are taken into service. The main server may breakdown at any time during regular
service with exponential rate α, and in such cases, the main server immediately goes for a repair, which
follows an exponential distribution with rate η, while the service to the current batch is interrupted.
Such a batch of customers is changed to the stand-by server, which starts service to that batch afresh.
The stand-by server remains in the system until the main server’s repair is completed. At the instant
of repair completion, if the stand-by server is busy, then the current batch of customers is exchanged
to the main server, which starts that batch service afresh. At the completion of a regular service (by
the main server), the leaving batch may request for a re-service with probability π. However, the
re-service is rendered only when the number of customers waiting in the queue is less than a. If no
request for re-service is made after the completion of a regular service and the number of customers in
the queue is less than a, then the server will avail itself of a vacation of a random length. The server
takes a sequence of vacations until the queue size reaches at least a. In addition, we assume that the
service time of the main server and stand-by server, re-service and vacation time of the main server are
independent of each other and follow a general (arbitrary) distribution.

Notations

Let X be the group size random variable of arrival, gk be the probability of ‘k’ customers arriving in
a batch and X(z) be its PGF. Sb(.), R(.), Ss(.) and V(.) represent the Cumulative Distribution Functions
(CDF) of the regular service and re-service time of the main server, the service time of the stand-by
server and the vacation time of the main server with corresponding probability density functions
of sb(x), r(x), ss(x) and v(x), respectively. S0

b(t), R0(t), S0
s (t) and V(0)(t) represent the remaining

regular service and re-service time of service given by the main server, the remaining service time of
service given by the stand-by server and the remaining vacation time of the main server at time ‘t’,
respectively. S̃b(θ), R̃(θ), S̃s(θ) and Ṽ(θ) represent the Laplace–Stieltjes Transform (LST) of Sb, R, Ss

and V, respectively.
For further development of the queueing system, let us define the following:

ε(t) = 1, 2, 3, 4, 5 and 6 at time t; the main server is in regular service, re-service and vacation, and at
time t, the stand-by server is in service and idle, respectively.
Z(t) = j, if the server is on the j-th vacation.
Ns(t) = number of customers in service station at time t.
Nq(t) = number of customers in the queue at time t.
Define the probabilities:
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Tn(t)∆t = Pr{Nq(t) = n, ε(t) = 5}, 0 ≤ n ≤ a− 1,

Pm,n(x, t)∆t = Pr{Ns(t) = m, Nq(t) = n, x ≤ S0
b(t) ≤ x + ∆t, ε(t) = 1},

a ≤ m ≤ b, n ≥ 0,

Rn(x, t)∆t = Pr{Ns(t) = m, Nq(t) = n, x ≤ R0(t) ≤ x + ∆t, ε(t) = 2},
a ≤ m ≤ b, n ≥ 0,

Bm,n(x, t)∆t = Pr{Ns(t) = m, Nq(t) = n, x ≤ S0
s (t) ≤ x + ∆t, ε(t) = 4},

a ≤ m ≤ b, n ≥ 0,

Ql,j(x, t)∆t = Pr{Z(t) = l, Nq(t) = j, x ≤ V0(t) ≤ x + ∆t, ε(t) = 3},
l ≥ 1, j ≥ 0.

4. Queue Size Distribution

From the above-defined probabilities, we can easily construct the following steady state equations:

(λ + η)T0 =
b

∑
m=a

Bm,0(0), (1)

(λ + η)Tn =
b

∑
m=a

Bm,n(0) +
n

∑
k=1

Tn−kλgk, 1 ≤ n ≤ a− 1, (2)

− P
′
i,0(x) = −(λ + α)Pi,0(x) +

b

∑
m=a

Pm,i(0)sb(x) + η
∫ ∞

0
Bi,0(y) dysb(x)

+ Ri(0)sb(x) +
∞

∑
l=1

Ql,i(0)sb(x), a ≤ i ≤ b, (3)

− P
′
i,j(x) = −(λ + α)Pi,j(x) + η

∫ ∞

0
Bi,j(y) dysb(x) +

j

∑
k=1

Pi,j−k(x)λgk,

j ≥ 1, a ≤ i ≤ b− 1, (4)

− P
′
b,j(x) = −(λ + α)Pb,j(x) +

b

∑
m=a

Pm,b+j(0)sb(x) + η
∫ ∞

0
Bb,j(y) dysb(x)

+ Rb+j(0)sb(x) +
∞

∑
l=1

Ql,b+j(0)sb(x) +
j

∑
k=1

Pb,j−k(x)λgk, j ≥ 1, (5)

− B
′
i,0(x) = −(λ + η)Bi,0(x) +

b

∑
m=a

Bm,i(0)ss(x) + α
∫ ∞

0
Pi,0(y) dyss(x)

+
a−1

∑
k=0

Tkλgi−kss(x), a ≤ i ≤ b, (6)

− B
′
i,j(x) = −(λ + η)Bi,j(x) + α

∫ ∞

0
Pi,j(y) dyss(x) +

j

∑
k=1

Bi,j−k(x)λgk,

j ≥ 1, a ≤ i ≤ b− 1, (7)

− B
′
b,j(x) = −(λ + η)Bb,j(x) +

b

∑
m=a

Bm,b+j(0)ss(x) +
j

∑
k=1

Bb,j−k(x)λgk

+ α
∫ ∞

0
Pb,j(y) dy ss(x) +

a−1

∑
k=0

Tkλgb+j−kss(x), j ≥ 1, (8)
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− R
′
0(x) = −λR0(x) + π

b

∑
m=a

Pm,0(0)r(x), (9)

− R
′
n(x) = −λRn(x) + π

b

∑
m=a

Pm,n(0)r(x) +
n

∑
k=1

Rn−k(x)λgk, 1 ≤ n ≤ a− 1, (10)

− R
′
n(x) = −λRn(x) +

n

∑
k=1

Rn−k(x)λgk, n ≥ a, (11)

−Q
′
1,0(x) = −λQ1,0(x) + (1− π)

b

∑
m=a

Pm,0(0)v(x) + R0(0)v(x) + ηT0v(x), (12)

−Q
′
1,n(x) = −λQ1,n(x) + (1− π)

b

∑
m=a

Pm,n(0)v(x) + Rn(0)v(x) + ηTnv(x)

+
n

∑
k=1

Q1,n−k(x)λgk, 1 ≤ n ≤ a− 1, (13)

−Q
′
1,n(x) = −λQ1,n(x) +

n

∑
k=1

Q1,n−k(x)λgk, n ≥ a, (14)

−Q
′
j,0(x) = −λQj,0(x) + Qj−1,0(0)v(x), j ≥ 2, (15)

−Q
′
j,n(x) = −λQj,n(x) + Qj−1,n(0)v(x) +

n

∑
k=1

Qj,n−k(x)λgk, j ≥ 2,

1 ≤ n ≤ a− 1, (16)

−Q
′
j,n(x) = −λQj,n(x) +

n

∑
k=1

Qj,n−k(x)λgk, j ≥ 2, n ≥ a. (17)

Taking the LST on both sides of Equations (3)–(17), we get,

θP̃i,0(θ)− Pi,0(0) = (λ + α)P̃i,0(θ)−
b

∑
m=a

Pm,i(0)S̃b(θ)− η
∫ ∞

0
Bi,0(y) dyS̃b(θ)

− Ri(0)S̃b(θ)−
∞

∑
l=1

Ql,i(0)S̃b(θ), a ≤ i ≤ b, (18)

θP̃i,j(θ)− Pi,j(0) = (λ + α)P̃i,j(θ)− η
∫ ∞

0
Bi,j(y) dy S̃b(θ)−

j

∑
k=1

P̃i,j−k(θ)λgk,

a ≤ i ≤ b− 1, j ≥ 1, (19)

θP̃b,j(θ)− Pb,j(0) = (λ + α)P̃b,j(θ)−
b

∑
m=a

Pm,b+j(0)S̃b(θ)− η
∫ ∞

0
Bb,j(y) dyS̃b(θ)

− Rb+j(0)S̃b(θ)−
∞

∑
l=1

Ql,b+j(0)S̃b(θ)−
j

∑
k=1

P̃b,j−k(θ)λgk, j ≥ 1, (20)

θB̃i,0(θ)− Bi,0(0) = (λ + η)B̃i,0(θ)−
b

∑
m=a

Bm,i(0)S̃s(θ)− α
∫ ∞

0
Pi,0(y) dyS̃s(θ)

−
a−1

∑
k=0

Tkλgi−kS̃s(θ), a ≤ i ≤ b, (21)

θB̃i,j(θ)− Bi,j(0) = (λ + η)B̃i,j(θ)− α
∫ ∞

0
Pi,j(y) dy S̃s(θ)−

j

∑
k=1

B̃i,j−k(θ)λgk,

j ≥ 1, a ≤ i ≤ b− 1, (22)
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θB̃b,j(θ)− Bb,j(0) = (λ + η)B̃b,j(θ)−
b

∑
m=a

Bm,b+j(0)S̃s(θ)−
j

∑
k=1

B̃b,j−k(θ)λgk

− α
∫ ∞

0
Pb,j(y) dy S̃s(θ)−

a−1

∑
k=0

Tkλgb+j−kS̃s(θ), j ≥ 1, (23)

θR̃0(θ)− R0(0) = λR̃0(θ)− π
b

∑
m=a

Pm,0(0)R̃(θ), (24)

θR̃n(θ)− Rn(0) = λR̃n(θ)− π
b

∑
m=a

Pm,n(0)R̃(θ)−
n

∑
k=1

R̃n−k(θ)λgk,

1 ≤ n ≤ a− 1, (25)

θR̃n(θ)− Rn(0) = λR̃n(θ)−
n

∑
k=1

R̃n−k(θ)λgk, n ≥ a, (26)

θQ̃1,0(θ)−Q1,0(0) = λQ̃1,0(θ)− (1− π)
b

∑
m=a

Pm,0(0)Ṽ(θ)− R0(0)Ṽ(θ)

− ηT0Ṽ(θ), (27)

θQ̃1,n(θ)−Q1,n(0) = λQ̃1,n(θ)− (1− π)
b

∑
m=a

Pm,n(0)Ṽ(θ)− Rn(0)Ṽ(θ)

− ηTnṼ(θ)−
n

∑
k=1

Q̃1,n−k(θ)λgk, 1 ≤ n ≤ a− 1, (28)

θQ̃1,n(θ)−Q1,n(0) = λQ̃1,n(θ)−
n

∑
k=1

Q̃1,n−k(θ)λgk, n ≥ a, (29)

θQ̃j,0(θ)−Qj,0(0) = λQ̃j,0(θ)−Qj−1,0(0)Ṽ(θ), j ≥ 2, (30)

θQ̃j,n(θ)−Qj,n(0) = λQ̃j,n(θ)−Qj−1,n(0)Ṽ(θ)−
n

∑
k=1

Q̃j,n−k(θ)λgk, j ≥ 2,

1 ≤ n ≤ a− 1, (31)

θQ̃j,n(θ)−Qj,n(0) = λQ̃j,n(θ)−
n

∑
k=1

Q̃j,n−k(θ)λgk, j ≥ 2, n ≥ a. (32)

To find the Probability Generating Function (PGF) for the queue size, we define the
following PGFs:

P̃i(z, θ) =
∞

∑
j=0

P̃i,j(θ)zj, Pi(z, 0) =
∞

∑
j=0

Pi,j(0)zj, a ≤ i ≤ b,

R̃(z, θ) =
∞

∑
j=0

R̃j(θ)zj, R(z, 0) =
∞

∑
j=0

Rj(0)zj,

B̃i(z, θ) =
∞

∑
j=0

B̃i,j(θ)zj, Bi(z, 0) =
∞

∑
j=0

Bi,j(0)zj, a ≤ i ≤ b, (33)

Q̃l(z, θ) =
∞

∑
j=0

Q̃l,j(θ)zj Ql(z, 0) =
∞

∑
j=0

Ql,j(0)zj, l ≥ 1.
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By multiplying Equations (18)–(32) with suitable power of zn and summing over n (n = 0 to ∞) and
using Equation (33), we get:

(θ − u(z))P̃i(z, θ) = Pi(z, 0)− S̃b(θ)
[ b

∑
m=a

Pm,i(0) + Ri(0) +
∞

∑
j=0

Ql,i(0) + ηB̃i(z, 0)
]
,

a ≤ i ≤ b− 1, (34)

zb(θ − u(z))P̃b(z, θ) = (zb − S̃b(θ))Pb(z, 0)

− S̃b(θ)
[ b−1

∑
m=a

Pm(z, 0) + R(z, 0) +
∞

∑
l=1

Ql(z, 0) + zbηB̃b(z, 0)

−
b−1

∑
j=0

( b

∑
m=a

Pm,j(0)zj + Rj(0)zj +
∞

∑
j=0

Ql,j(0)zj
)]

, (35)

(θ − v(z))B̃i(z, θ) = Bi(z, 0)− S̃s(θ)
[
αP̃i(z, 0) +

b

∑
m=a

Bm,i(0) +
a−1

∑
k=0

Tkλgi−k

]
,

a ≤ i ≤ b− 1, (36)

zb(θ − v(z))B̃b(z, θ) = (zb − S̃s(θ))Bb(z, 0)− S̃s(θ)
[ b−1

∑
m=a

Bm(z, 0) + zbαP̃b(z, 0)

+ λ
a−1

∑
k=0

∞

∑
j=b

Tkzkgj−kzj−k −
b−1

∑
j=0

b

∑
m=a

Bm,j(0)zj
]
, (37)

(θ − w(z))R̃(z, θ) = R(z, 0)− πR̃(θ)
a−1

∑
n=0

b

∑
m=a

Pm,n(0)zn, (38)

(θ − w(z))Q̃1(z, θ) = Q1(z, 0)− Ṽ(θ)
a−1

∑
n=0

[
(1− π)

b

∑
m=a

Pm,n(0)zn + Rn(0)zn

+ ηTnzn
]
, (39)

(θ − w(z))Q̃j(z, θ) = Qj(z, 0)− Ṽ(θ)
a−1

∑
n=0

Qj−1,n(0)zn, j ≥ 2, (40)

where

u(z) = λ + α− λX(z), v(z) = λ + η − λX(z), w(z) = λ− λX(z).

Substitute θ = u(z) in (34) and (35), we get,

Pi(z, 0) = S̃b(u(z))
[ b

∑
m=a

Pm,i(0) + Ri(0) +
∞

∑
j=0

Ql,i(0) + ηB̃i(z, 0)
]
,

a ≤ i ≤ b− 1, (41)

Pb(z, 0) =
S̃b(u(z))

(zb − S̃b(u(z)))

[ b−1

∑
m=a

Pm(z, 0) + R(z, 0) +
∞

∑
l=1

Ql(z, 0)

+ zbηB̃b(z, 0)−
b−1

∑
j=0

( b

∑
m=a

Pm,j(0)zj + Rj(0)zj +
∞

∑
j=0

Ql,j(0)zj
)]

, (42)
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substitute θ = v(z) in (36) and (37), we get,

Bi(z, 0) = S̃s(v(z))
[
αP̃i(z, 0) +

b

∑
m=a

Bm,i(0) +
a−1

∑
k=0

Tkλgi−k

]
, a ≤ i ≤ b− 1, (43)

Bb(z, 0) =
S̃s(v(z))

(zb − S̃s(v(z)))

[ b−1

∑
m=a

Bm(z, 0) + zbαP̃b(z, 0)

+ λ
a−1

∑
k=0

∞

∑
j=b

Tkzkgj−kzj−k −
b−1

∑
j=0

b

∑
m=a

Bm,j(0)zj
]
, (44)

substitute θ = w(z) in (38) to (40), we get

R(z, 0) = πR̃(w(z))
a−1

∑
n=0

b

∑
m=a

Pm,n(0)zn, (45)

Q1(z, 0) = Ṽ(w(z))
a−1

∑
n=0

[
(1− π)

b

∑
m=a

Pm,n(0)zn + Rn(0)zn + ηTnzn
]
, (46)

Qj(z, 0) = Ṽ(w(z))
a−1

∑
n=0

Qj−1,n(0)zn, j ≥ 2. (47)

Substitute Equations (41)–(47) in Equations (34)–(40) after simplification, and we get,

(θ − u(z))P̃i(z, θ) = (S̃b(u(z))− S̃b(θ))
[ b

∑
m=a

Pm,i(0) + Ri(0) +
∞

∑
j=0

Ql,i(0)

+ ηB̃i(z, 0)
]
, a ≤ i ≤ b− 1, (48)

(θ − u(z))P̃b(z, θ) =
(S̃b(u(z))− S̃b(θ))

(zb − S̃b(u(z)))

[ b−1

∑
m=a

Pm(z, 0) + R(z, 0) +
∞

∑
l=1

Ql(z, 0)

+ zbηB̃b(z, 0)−
b−1

∑
j=0

( b

∑
m=a

Pm,j(0)zj + Rj(0)zj +
∞

∑
j=0

Ql,j(0)zj
)]

, (49)

(θ − v(z))B̃i(z, θ) = (S̃s(v(z))− S̃s(θ))
[
αP̃i(z, 0) +

b

∑
m=a

Bm,i(0) +
a−1

∑
k=0

Tkλgi−k

]
,

a ≤ i ≤ b− 1, (50)

(θ − v(z))B̃b(z, θ) =
(S̃s(v(z))− S̃s(θ))

(zb − S̃s(v(z)))

[ b−1

∑
m=a

Bm(z, 0) + zbαP̃b(z, 0)

+ λ
a−1

∑
k=0

∞

∑
j=b

Tkzkgj−kzj−k −
b−1

∑
j=0

b

∑
m=a

Bm,j(0)zj
]
, (51)

(θ − w(z))R̃(z, θ) = (R̃(w(z))− R̃(θ))π
a−1

∑
n=0

b

∑
m=a

Pm,n(0)zn, (52)

(θ − w(z))Q̃1(z, θ) = (Ṽ(w(z))− Ṽ(θ))
a−1

∑
n=0

[
(1− π)

b

∑
m=a

Pm,n(0)zn

+ Rn(0)zn + ηTnzn
]
, (53)

(θ − w(z))Q̃j(z, θ) = (Ṽ(w(z))− Ṽ(θ))
a−1

∑
n=0

Qj−1,n(0)zn, j ≥ 2. (54)



Mathematics 2018, 6, 101 9 of 18

5. Probability Generating Function of the Queue Size

5.1. The PGF of the Queue Size at an Arbitrary Time Epoch

Let P(z) be the PGF of the queue size at an arbitrary time epoch. Then,

P(z) =
b

∑
i=a

P̃i(z, 0) +
b

∑
i=a

B̃i(z, 0) + R̃(z, 0) +
∞

∑
l=1

Q̃l(z, 0) + T(z). (55)

By substituting θ = 0 in Equations (48)–(54), then Equation (55) becomes:

P(z) =

K1(z)
b−1

∑
i=a

(zb − zi)ci + (1− Ṽ(w(z)))K3(z)
a−1

∑
n=0

cnzn

+ K2(z)
b−1

∑
i=a

(zb − zi)di + (Ṽ(w(z))− R̃(w(z)))K3(z)
a−1

∑
n=0

πpnzn

+
[
η[Y1(z)− Ṽ(w(z))K3(z)]− v(z)K2(z) + w(z)Y1(z)

] a−1

∑
k=0

Tkzk

w(z)Y1(z)

(56)

where pi = ∑b
m=a Pm,i(0), vi = ∑∞

l=1 Ql,i(0), qi = ∑b
m=a Bm,i(0), Ri(0) = ri, ci = pi + vi + ri and

di = qi + ∑a−1
k=0 Tkλgi−k and the expressions for K1(z), K2(z), K3(z) and Y1(z) are defined in

Appendix A.

5.2. Steady State Condition

The probability generating function has to satisfy P(1) = 1. In order to satisfy this condition,
applying L’Hopital’s rule and evaluating lim

z→1
P(z), then equating the expression to one, we have,

H = (−λX1)F1, where the expressions H and F1 are defined in Appendix B.
Since pi, ci, di and Ti are probabilities of ′i′ customers being in the queue, it follows that H must

be positive. Thus, P(1) = 1 is satisfied iff (−λX1)F1 > 0. If:

ρ =
λX1(α + η)(1− S̃b(α))(1− S̃s(η))

bαη[S̃b(α)(1− S̃s(η)) + S̃s(η)(1− S̃b(α))]

then ρ < 1 is the condition for the existence of the steady state for the model under consideration.

5.3. Computational Aspects

Equation (56) has 2b + a unknowns c0, c1, ..., cb−1, da, ..., db−1, p0, p1, ..., pa−1 and T0, T1, ..., Ta−1.
Now, Equation (56) gives the PGF of the number of customers involving only 2b + a unknowns.
We can express ci(0 ≤ i ≤ a− 1) in terms of pi and Ti in such a way that the numerator has only 2b
constants. Now, Equation (56) gives the PGF of the number of customers involving only 2b unknowns.
By Rouche’s theorem, it can be proven that Y1(z) has 2b− 1 zeros inside and one on the unit circle
|z| = 1. Since P(z) is analytic within and on the unit circle, the numerator must vanish at these
points, which gives 2b equations in 2b unknowns. We can solve these equations by any suitable
numerical technique.

5.4. Result 1

The probability that n(0 ≤ n ≤ a− 1) customers are in queue during the main server’s re-service
completion rn can be expressed as the probability of n customers in the queue during the main server’s
regular busy period pn as,
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rn = π
n

∑
k=0

γn−k pk, n = 0, 1, 2..., a− 1 (57)

where γn are the probabilities of n customers arriving during the main server’s re-service time.

5.5. Result 2

The probability that n(0 ≤ n ≤ a− 1) customers are in queue cn can be expressed as the sum of
the probability of n customers in the queue during the main server’s busy period and the stand-by
server’s idle time pn and Tn as,

cn =
n

∑
k=0

τ
(1)
n−k pk + τ

(2)
n−kTk, 0 ≤ n ≤ a− 1. (58)

where:

τ
(1)
n =

π(γn − βn) + ∑n
k=1 βkτ

(1)
n−k

1− β0

τ
(2)
n =

ηβn + ∑n
k=1 βkτ

(2)
n−k

1− β0
(59)

γn, βn are the probabilities of n customers arriving during the main server’s re-service and vacation
time, respectively.

5.6. Particular Case

Case 1:
When there is no breakdown and re-service, then Equation (65) reduces to:

P(z) =
(S̃b(w(z))− 1)∑b−1

i=a (z
b − zi)ci + (zb − 1)(Ṽ(w(z))− 1)∑a−1

n=0 cnzn

(−w(z))(zb − S̃b(w(z)))
(60)

which coincides with the PGF of Senthilnathan et al. [19] without closedown.

Case 2:
When there is no breakdown, then Equation (65) reduces to:

P(z) =

(1− S̃b(w(z)))
b−1

∑
i=a

(zb − zi)ci + (zb − 1)(1− Ṽ(w(z)))
a−1

∑
n=0

cnzn

+ (zb − 1)(Ṽ(w(z))− R̃(w(z)))
a−1

∑
n=0

πpnzn

(w(z))(zb − S̃b(w(z)))

(61)

which is the PGF of Jeyakumar et al. [38].

5.7. PGF of the Queue Size in Various Epochs

5.7.1. PGF of the Queue Size in the Main Server’s Service Completion Epoch

The probability generating function of the main server’s service completion epoch M(z) is
obtained from Equations (48) and (49):
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M(z) =

(1− S̃b(u(z)))
[
v(z)(zb − S̃s(v(z)))

( b−1

∑
i=a

(zb − zi)ci −
a−1

∑
k=0

ckzk

+ πR̃(w(z))
a−1

∑
n=0

pnzn + Ṽ(w(z))
a−1

∑
n=0

((1− π)pn + rn + ηTn + vn)zn
)

+ zbη(1− S̃s(v(z)))
( b−1

∑
i=a

(zb − zi)(qi + r(2)i +
a−1

∑
k=0

Tkλgi−k)
)
− v(z)T(z)

]
Y1(z)

(62)

5.7.2. PGF of the Queue Size in the Vacation Completion Epoch

The PGF of the main server’s vacation completion epoch V(z) is obtained from Equations (53)
and (54); we get,

V(z) =
(1− Ṽ(w(z)))∑a−1

n=0((1− π)pn + rn + ηTn + vn)zn

w(z)
(63)

5.7.3. PGF of the Queue Size in the Main Server’s Re-Service Completion Epoch

The PGF of the main server’s re-service completion epoch R(z) is obtained from Equation (52);
we get,

R(z) =
(1− R̃(w(z)))∑a−1

n=0 πpnzn

w(z)
(64)

5.7.4. PGF of the Queue Size in the Stand-by Server’s Service Completion Epoch

The probability generating function of the stand-by server’s service completion epoch N(z) is
derived from Equations (50) and (51); we get,

N(z) =

(1− S̃s(v(z)))
[
zbα(1− S̃b(u(z)))

( b−1

∑
i=a

(zb − zi)ci −
a−1

∑
k=0

ckzk

+ πR̃(w(z))
a−1

∑
n=0

pnzn + Ṽ(w(z))
a−1

∑
n=0

((1− π)pn + rn + ηTn + vn)zn
)

+ u(z)(zb − S̃b(u(z)))
( b−1

∑
i=a

(zb − zi)(qi +
a−1

∑
k=0

Tkλgi−k)− v(z)T(z)
)]

Y1(z)

(65)

6. Some Performance Measures

6.1. The Main Server’s Expected Length of Idle Period

Let K be the random variable denoting the ‘idle period due to multiple vacation processes’.
Let Y be the random variable defined by:

Y =

{
0 if the server finds at least ‘a’ customers after the first vacation

1 if the server finds less than ‘a’ customers after the first vacation

Now,

E(K) = E(K/Y = 0)P(Y = 0) + E(K/Y = 1)P(Y = 1)

= E(V)P(Y = 0) + (E(V) + E(K))P(Y = 1),
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Solving for E(K), we get:

E(K) =
E(V)

(1− P(Y = 1))
=

E(V)(
1−∑a−1

n=0 ∑n
i=0

[
βi[pn + rn + ηTn]

])
6.2. Expected Queue Length

The mean number of customers waiting in the queue E(Q) in an arbitrary time epoch is obtained
by differentiating P(z) at z = 1 and is given by:

E(Q) =

f1(X, Sb, Ss)
[ b−1

∑
i=a

[b(b− 1)− i(i− 1)]ci

]
+ f1(X, Sb, Ss)

[ b−1

∑
i=a

(b(b− 1)− i(i− 1))di

]
+ f2(X, Sb, Ss)

[ b−1

∑
i=a

(b− i)ci

]
+ f3(X, Sb, Ss)

b−1

∑
i=a

(b− i)di

+ f4(X, Sb, Ss, V)
a−1

∑
n=0

ncn + f5(X, Sb, Ss, V)
a−1

∑
n=0

cn

+ f6(X, Sb, Ss, R, V)
a−1

∑
n=0

πnpn + f7(X, Sb, Ss, R, V)
a−1

∑
n=0

πpn

+ f8(X, Sb, Ss, V)
a−1

∑
n=0

nTn + f9(X, Sb, Ss, V)
a−1

∑
n=0

Tn

3(F12)2 , (66)

the expressions for fi(i = 1, 2, ..., 9) are defined in Appendix B.

6.3. Expected Waiting Time

The expected waiting time is obtained using Little’s formula as:

E(W) =
E(Q)

λE(X)
(67)

where E(Q) is given in Equation (66).

7. Numerical Example

A numerical example of our model is analyzed for a particular case with the following assumptions:

1. The batch size distribution of the arrival is geometric with mean 2.
2. Take a = 5 and b = 8, and the service time distribution is Erlang-2 (both servers).
3. The vacation and re-service time of the main server follow an exponential distribution with

parameter ω = 5, ε = 3, respectively.
4. Let m1 be the service rate for the main server.
5. Let m2 be the service rate for the stand-by server.

The unknown probabilities of the queue size distribution are computed using numerical
techniques. The zeros of the function Y1(z) are obtained (see Figure 1) , and simultaneous equations
are solved by using MATLAB. The values which are satisfies the stability condition (see Figure 2) are
used for calculating the table values.

The expected queue length E(Q) and the expected waiting time E(W) are calculated for various
arrival rate sand service rates, and the results are tabulated.

From Tables 1–4, the following observations can be made.
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1. As arrival rate λ increases, the expected queue size and expected waiting time are also increase.
2. When the main server’s and stand-by server’s service rate increases, the expected queue size and

expected waiting time decrease.
3. When the main server’s vacation rate increases, the expected queue size increases.

Table 1. Arrival rate vs. expected queue length and expected waiting time for the values
m1 = 10, m2 = 9.5, α = 1, η = 2, π = 0.3, ε = 3, and ω = 5.

λ ρ E(Q) E(W)

5.00 0.131407 8.657374 0.865737
5.25 0.137978 9.539724 0.908545
5.50 0.144548 10.375816 0.943256
5.75 0.151119 11.149076 0.969485
6.00 0.157689 11.843026 0.986919
6.25 0.164259 12.441064 0.995285
6.50 0.170830 12.927026 0.994387
6.75 0.177400 13.285663 0.984123
7.00 0.183970 13.502456 0.964461
7.25 0.190541 13.563622 0.935422
7.50 0.197111 13.456834 0.897122

Table 2. Main server’s service rate vs. expected queue length and expected waiting time for the
values λ = 5, m2 = 5, α = 1, η = 2, π = 0.3, ε = 3, and ω = 5.

m1 ρ E(Q) E(W)

5.25 0.257410 26.824821 2.682482
5.50 0.248885 26.082729 2.608273
5.75 0.240905 25.388555 2.538855
6.00 0.233420 24.735574 2.473557
6.25 0.226385 24.117976 2.411798
6.50 0.219761 23.531054 2.353105
6.75 0.213513 22.971202 2.297120
7.00 0.207610 22.435611 2.243561
7.25 0.202024 21.921511 2.192151
7.50 0.196731 21.427009 2.142701
7.75 0.191707 20.950354 2.095035
8.00 0.186934 20.490051 2.049005

Table 3. Stand-by server’s service rate vs. expected queue length and expected waiting time for the
values λ = 5, m1 = 10, α = 1, η = 2, π = 0.3, ε = 3, and ω = 5.

m2 ρ E(Q) E(W)

4.0 0.260103 65.007246 4.062953
4.5 0.254645 59.415276 3.713455
5.0 0.249401 53.808260 3.363016
5.5 0.244361 48.320593 3.020037
6.0 0.239515 43.028238 2.689265
6.5 0.234853 37.970425 2.373152
7.0 0.230366 33.162455 2.072653
7.5 0.226045 28.605406 1.787838
8.0 0.22188 24.292435 1.518277
8.5 0.217865 20.212075 1.263255
9.0 0.213991 16.351005 1.021938
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Table 4. The effect of the main server’s vacation rate on expected queue length for the values
λ = 5, m1 = 10, m2 = 9.5, α = 1, η = 2, π = 0.3, and ε = 3.

ω Erlang Exponential

5.00 8.657374 8.279153
5.25 8.808004 8.448114
5.50 8.950939 8.607757
5.75 9.086640 8.758748
6.00 9.215535 8.901685
6.25 9.338068 9.037158
6.50 9.454625 9.165674
6.75 9.565595 9.287730
7.00 9.671330 9.403767
7.25 9.772165 9.514200
7.50 9.868410 9.619407
7.75 9.960351 9.719734
8.00 10.048247 9.815494

Figure 1. MATLAB code for finding the roots.
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Figure 2. MATLAB code for finding the rho value.

8. Conclusions

In this paper, a batch arrival general bulk service queueing system with breakdown and
repair, stand-by server, multiple vacation and control policy on request for re-service is analyzed.
The probability generating function of the queue size distribution at an arbitrary time is obtained.
Some performance measures are calculated. The particular cases of the model are also deduced.
From the numerical results, it is observed that when the arrival rate increases, the expected queue
length and waiting time of the customers are also increase; if the service rate increases (for both
server’s), then the expected queue length and expected waiting time decrease. It is also observed that,
if the main server’s vacation rate increases, then the expected queue length increases.

Author Contributions: G.A.: To describe the model. S.K.: Convert the theoretical model into mathematical model
and solving

Conflicts of Interest: There is no conflict of interest by the author to publish this paper.

Appendix A

The expressions used in Equation (56) are defined as follows:

K1(z) = w(z)(1− S̃b(u(z)))A1(z),

K2(z) = w(z)(1− S̃s(v(z)))A2(z),

K3(z) = Y1(z)− w(z)A1(z)(1− S̃b(u(z))),

where

A1(z) = v(z)(zb − S̃s(v(z))) + zbα(1− S̃s(v(z)))

A2(z) = u(z)(zb − S̃b(u(z))) + zbη(1− S̃b(u(z)))

Y1(z) = u(z)v(z)(zb − S̃b(u(z)))(zb − S̃s(v(z)))− z2bαη(1− S̃b(u(z)))(1− S̃s(v(z))).
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Appendix B

The expressions for fi’s in (66) are defined as follows:

f1(X, Sb, Ss) = 3E1F12,

f2(X, Sb, Ss) = 3F7F12 − 2E1F13,

f3(X, Sb, Ss) = 3F9F12 − 2E1F13,

f4(X, Sb, Ss, V) = 6bαηV1E2F12,

f5(X, Sb, Ss, V) = 3F12[bαηE2V2 + V1(F7 − F2)]− 2bαηE2V1F13,

f6(X, Sb, Ss, R1, V) = 6bαη(R1 −V1)E2F12,

f7(X, Sb, Ss, R1, V) = 3F12[bαηE2(R2 −V2) + (R1 −V1)(F7 − F2)]− 2bαηE2(R1 + V1)F13,

f8(X, Sb, Ss, V) = 6F11F12,

f9(X, Sb, Ss, V) = 3E10F12 − 2F11F13,

where:

E1 = −λX1(α + η)(1− S̃b(α))(1− S̃s(η)),

E2 = S̃b(α)(S̃s(η)− 1) + S̃s(η)(S̃b(α)− 1),

E3 = Sb1(1− S̃s(η)) + Ss1(1− S̃b(α)),

E4 = −λX1(1− S̃s(η)),

E5 = −λX2(1− S̃s(η)) + 2λX1Ss1,

E6 = −λX3(1− S̃s(η)) + 3λX2Ss1 + 3λX1Ss2,

E7 = −λX1(1− S̃b(α)),

E8 = −λX2(1− S̃b(α)) + 2λX1Sb1,

E9 = −λX3(1− S̃b(α)) + 3λX2Sb1 + 3λX1Sb2,

E10 = η[bαηE2V2 −V1(F2 − F7)] + λX2(E1 − F1) + λX1(F9 − F2)− (η/3)(F8 + F10),

F1 = E1 − bαηE2,

F2 = (1− S̃b(α))(1− S̃s(η))[2(λX1)
2 − λX2(α + η)− 2b(2b− 1)αη]

+ [b(b− 1)αη − 2bλX1(α + η)][(1− S̃b(α)) + (1− S̃s(η))]

+ 2[2bαη + λX1(α + η)]E3 + 2bαη(b− Sb1 − Ss1)

F3 = (α + η)(b− Ss1) + E4 − bαS̃s(η),

F4 = (α + η)(b(b− 1)− Ss2)− bα[(b− 1)S̃s(η) + 2Ss1]− 2bλX1 + E5,

F5 = (α + η)(b− Sb1) + E7 − bηS̃b(α),

F6 = (α + η)(b(b− 1)− Sb2)− bη[(b− 1)S̃b(α) + 2Sb1]− 2bλX1 + E8,

F7 = E8(α + η)(1− S̃s(η)) + 2E7F3,

F8 = E9(α + η)(1− S̃s(η)) + 3E8F3 + 3E7F4,

F9 = E5(α + η)(1− S̃b(α)) + 2E4F5,

F10 = E6(α + η)(1− S̃b(α)) + 3E5F5 + 3E4F6,

F11 = bαηE2(ηV1 + λX1) + ηλX1[(α + η)E3 − (1− S̃b(α))F3 + (1− S̃s(η))F5],

F12 = −2λX1F1,

F13 = −3[λX1F2 + λX2F1].

H =

{
2E1 ∑b−1

i=a (b− i)ci + 2E1 ∑b−1
i=a (b− i)di + 2bαηE2V1 ∑a−1

n=0 cn

+2bαηE2(R1 + V1)∑a−1
n=0 πpn + 2F11 ∑a−1

n=0 Tn,
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where:

Sb1 = −λX1S̃
′
b(α), Sb2 = S̃

′′
b (α)(−λX1)

2 − λX2S̃
′
b(α),

Ss1 = −λX1S̃
′
s(η), Ss2 = S̃

′′
s (η)(−λX1)

2 − λX2S̃
′
s(η),

R1 = λX1E(R), R2 = λX2E(R) + λ2X2
1E(R2)

V1 = λX1E(V), V2 = λX2E(V) + λ2X2
1E(V2), X1 = E(X), X2 = E(X2).
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