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Abstract

We design and analyze minimax-optimal algorithms for online linear optimization
games where the player’s choice is unconstrained. The player strives to minimize
regret, the difference between his loss and the loss of a post-hoc benchmark strat-
egy. While the standard benchmark is the loss of the best strategy chosen from a
bounded comparator set, we consider a very broad range of benchmark functions.
The problem is cast as a sequential multi-stage zero-sum game, and we give a
thorough analysis of the minimax behavior of the game, providing characteriza-
tions for the value of the game, as well as both the player’s and the adversary’s
optimal strategy. We show how these objects can be computed efficiently under
certain circumstances, and by selecting an appropriate benchmark, we construct a
novel hedging strategy for an unconstrained betting game.

1 Introduction

Minimax analysis has recently been shown to be a powerful tool for the construction of online
learning algorithms [Rakhlin et al., 2012]. Generally, these results use bounds on the value of
the game (often based on the sequential Rademacher complexity) in order to construct efficient
algorithms. In this work, we show that when the learner is unconstrained, it is often possible to
efficiently compute an exact minimax strategy for both the player and nature. Moreover, with our
tools we can analyze a much broader range of problems than have been previously considered.

We consider a game where on each round t = 1, . . . , T , first the learner selects xt ∈ Rn, and then
an adversary chooses gt ∈ G ⊂ Rn, and the learner suffers loss gt · xt. The goal of the learner is to
minimize regret, that is, loss in excess of that achieved by a post-hoc benchmark strategy. We define

Regret = Loss− (Benchmark Loss) =

T∑
t=1

gt · xt − L(g1, . . . , gT ) (1)

as the regret with respect to benchmark performance L (the L intended will be clear from context).
The standard definition of regret arises from the choice

L(g1, . . . , gT ) = inf
x∈X

g1:T · x = inf
x∈Rn

g1:T · x+ I(x ∈ X ), (2)

where I(condition) is the indicator function: it returns 0 when condition holds, and returns
∞ otherwise. The above choice of L represents the loss of the best fixed point x in the bounded
convex set X . Throughout we shall write g1:t =

∑t
s=1 gs for a sum of scalars or vectors. When L

depends only on the sum G ≡ g1:T we write L(G).
∗Work performed while the author was in the CIS Department at the University of Pennsylvania and funded

by a Simons Postdoctoral Fellowship
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In the present work we shall consider a broad notion of regret in which, for example, L is defined not
in terms of a “best in hindsight” comparator but instead in terms of a “penalized best in hindsight”
objective. Let Ψ be some penalty function, and consider

L(G) = min
x
G · x+ Ψ(x). (3)

This is a direct generalization of the usual comparator notion which takes Ψ(x) = I(x ∈ X ).

We view this interaction as a sequential zero-sum game played over T rounds, where the player
strives to minimize Eq. (1), and the adversary attempts to maximize it. We study the value of this
game, defined as

V T ≡ inf
x1∈Rn

sup
g1∈G

. . . inf
xT∈Rn

sup
gT∈G

(
T∑
t=1

gt · xt − L(g1, . . . , gT )

)
. (4)

With this in mind, we can describe the primary contributions of the present paper:

1. We provide a characterization of the value of the game Eq. (4) in terms of the supremum
over the expected value of a function of a martingale difference sequence. This will be
made more explicit in Section 2.

2. We provide a method for computing the player’s minimax optimal (deterministic) strategy
in terms of a “discrete derivative.” Similarly, we show how to describe the adversary’s
optimal randomized strategy in terms of martingale differences.

3. For “coordinate-decomposable” games we give a natural and efficiently computable de-
scription of the value of the game and the player’s optimal strategy.

4. In Section 3, we consider several benchmark functions L, defined in Eq. (3) via a penalty
function Ψ, which lead to interesting and surprising optimal algorithms; we also exactly
compute the values of these games. Figure 1 summarizes these applications. In particular,
we show that constant-step-size gradient descent is minimax optimal for a quadratic Ψ, and
an exponential L leads to a bounded-loss hedging algorithm that can still yield exponential
reward on “easy” sequences.

Applications The primary contributions of this paper are to the theory. Nevertheless, it is worth
pausing to emphasize that the framework of “unconstrained online optimization” is a fundamental
template for (and strongly motivated by) several online learning settings, and the results we develop
are applicable to a wide range of commonly studied algorithmic problems. The classic algorithm
for linear pattern recognition, the Perceptron, can be seen as an algorithm for unconstrained linear
optimization. Methods for training a linear SVM or a logistic regression model, such as stochastic
gradient descent or the Pegasos algorithm [Shalev-Shwartz et al., 2011], are unconstrained opti-
mization algorithms. Finally, there has been recent work in the pricing of options and other financial
derivatives [DeMarzo et al., 2006, Abernethy et al., 2012] that can be described exactly in terms of
a repeated game which fits nicely into our framework.

We also wish to emphasize that the algorithm of Section 3.2 is both practical and easily imple-
mentable: for a multi-dimensional problem one needs to only track the sum of gradients for each
coordinate (similar to Dual Averaging), and compute Eq. (12) for each coordinate to derive the
appropriate strategy. The algorithm provides us with a tool for making potentially unconstrained
bets/investments, but as we discuss it also leads to interesting regret bounds.

Related Work Regret-based analysis has received extensive attention in recent years; see Shalev-
Shwartz [2012] and Cesa-Bianchi and Lugosi [2006] for an introduction. The analysis of alternative
notions of regret is also not new. Vovk [2001] gives bounds relative to benchmarks similar to Eq. (3),
though for different problems and not in the minimax setting. In the expert setting, there has been
much work on tracking a shifting sequence of experts rather than the single best expert; see Koolen
et al. [2012] and references therein. Zinkevich [2003] considers drifting comparators in an online
convex optimization framework. This notion can be expressed by an appropriate L(g1, . . . , gT ), but
now the order of the gradients matters. Merhav et al. [2006] and Dekel et al. [2012] consider the
stronger notion of policy regret in the online experts and bandit settings, respectively. Stoltz [2011]
also considers some alternative notions of regret. For investing scenarios, Agarwal et al. [2006]
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setting L(G) Ψ(x) value update

soft feasible set −G
2

2σ
σ
2
x2 T

2σ
xt+1 = − 1

σ
g1:t

bounded-loss betting − exp(G/
√
T ) −

√
Tx log(−

√
Tx) +

√
Tx →

√
e Eq. (12)

standard regret −|G| I(|x| ≤ 1) →
√

2
π
T Eq. (14)

Figure 1: Summary of specific online linear games considered in Section 3. Results are stated for
the one-dimensional problem where gt ∈ [−1, 1]; Corollary 5 gives an extension to n dimensions.
The benchmark L is given as a function of G = g1:T . The standard notion of regret corresponds
to the L(G) = minx∈[−1,1] g1:t · x = −|G|. The benchmark functions can alternatively be derived
from a suitable penalty Ψ on comparator points x, so L(G) = minxGx+ Ψ(x).

and Hazan and Kale [2009] consider regret with respect to the best constant-rebalanced portfolio.
Our algorithm in Section 3.2 applies to similar problems, but does not require a “no junk bonds”
assumption, and is in fact minimax optimal for a natural benchmark.

Existing algorithms do offer bounds for unconstrained problems, generally of the form ‖x∗‖/η +
η
∑
t gtxt. However, such bounds can only guarantee no-regret when an upper bound R on ‖x∗‖ is

known in advance and used to tune the parameter η. If one knows such a R, however, the problem
is no longer truly unconstrained. The only algorithms we know that avoid this problem are those of
Streeter and McMahan [2012], and the minimax-optimal algorithm we introduce in Sec 3.2; these
algorithms guarantee guarantee Regret ≤ O

(
R
√
T log((1 +R)T )

)
for any R > 0.

The field has seen a number of minimax approaches to online learning. Abernethy and Warmuth
[2010] and Abernethy et al. [2008b] give the optimal behavior for several zero-sum games against
a budgeted adversary. Section 3.3 studies the online linear game of Abernethy et al. [2008a] under
different assumptions, and we adapt some techniques from Abernethy et al. [2009, 2012]; the latter
work also involves analyzing an unconstrained player. Rakhlin et al. [2012] utilizes powerful tools
for non-constructive analysis of online learning as a technique to design algorithms; our work differs
in that we focus on cases where the exact minimax strategy can be computed.

Notions of Regret The standard notion of regret corresponds to a hard penalty Ψ(x) = I(x ∈
X ). Such a definition makes sense when the player by definition must select a strategy from some
bounded set, for example a probability from the n-dimensional simplex, or a distribution on paths
in a graph. However, in contexts such as machine learning where any x ∈ Rn corresponds to a valid
model, such a hard constraint is difficult to justify; while any x ∈ Rn is technically feasible, in order
to prove regret bounds we compare to a much more restrictive set. As an alternative, in Sections 3.1
and 3.2 we propose soft penalty functions that encode the belief that points near the origin are more
likely to be optimal (we can always re-center the problem to match our beliefs in this regard), but do
not rule out any x ∈ Rn a priori.

Thus, one of our contributions is showing that interesting results can be obtained by choosing L
differently than in Eq. (2). The player cannot do well in terms of the absolute loss

∑
t gt · xt for

all sequences g1, . . . , gT , but she can do better on some sequences at the expense of doing worse on
others. The benchmark Lmakes this notion precise: sequences for which L(g1, . . . , gT ) is large and
negative are those on which the player desires good performance, at the expense of allowing more
loss (in absolute terms) on sequences where L(g1, . . . , gT ) is large and positive. The value of the
game V T tells us to what extent any online algorithm can hope to match the benchmark L.

2 General Unconstrained Linear Optimization

In this section we develop general results on the unconstrained linear optimization problem. We start
by analyzing (4) in greater detail, and give tools for computing the regret value V T in such games.
We show that in certain cases the computation of the minimax value can be greatly simplified.

Throughout we will assume that the function L is concave in each of its arguments (thought not
necessarily jointly concave) and bounded on GT . We also include the following assumptions on the
set G. First, we assume that either G is a polytope or, more generally, that ConvexHull(G) is a full-
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rank polytope in Rn. This is not strictly necessary but is convenient for the analysis; any bounded
convex set in Rn can be approximated to arbitrary precision with a polytope. We also make the
necessary assumption that the ConvexHull(G) contains the origin in its interior. We let G′ be the set
of “corners” of G, that is G′ = {g1, . . . , gm} and hence ConvexHull(G) = ConvexHull(G′).

We are also concerned with the conditional value of the game, Vt, given x1, . . . xt and g1, . . . gt have
already been played. That is, the Regret when we fix the plays on the first t rounds, and then assume
minimax optimal play for rounds t+1 through T . However, following the approach of Rakhlin et al.
[2012], we omit the terms

∑t
s=1 xs · gs from Eq. (4). We can view this as cost that the learner has

already payed, and neither that cost nor the specific previous plays of the learner impact the value of
the remaining terms in Eq. (1). Thus, we define

Vt(g1, . . . , gt) = inf
xt+1∈Rn

sup
gt+1∈G

. . . inf
xT∈Rn

sup
gT∈G

(
T∑

s=t+1

gs · xs − L(g1, . . . , gT )

)
. (5)

Note the conditional value of the game before anything has been played, V0(), is exactly V T .

The martingale characterization of the game The fundamental tool used in the rest of the paper
is the following characterization of the conditional value of the game:

Theorem 1. For every t and every sequence g1, . . . , gt ∈ G, we can write the conditional value of
the game as

Vt(g1, . . . , gt) = max
G∈∆(G′),E[G]=0

E[Vt+1(g1, . . . , gt, G)],

where ∆(G′) is the set of random variables on G′. Moreover, for all t the function Vt is convex in
each of its coordinates and bounded.

All proofs omitted from the body of the paper can be found in the appendix or the extended version
of this paper.

Let MT (G) be the set of T -length martingale difference sequences on G′, that is the set of
all sequences of random variables (G1, . . . , GT ), with Gt taking values in G′, which satisfy
E[Gt|G1, . . . , Gt−1] = 0 for all t = 1, . . . , T . Then, we immediately have the following:

Corollary 2. We can write

V T = max
(G1,...,GT )∈MT (G′)

E[−L(G1, . . . , GT )],

with the analogous expression holding for the conditional value of the game.

Characterization of optimal strategies The result above gives a nice expression for the value
of the game V T but unfortunately it does not lead directly to a strategy for the player. We now
dig a bit deeper and produce a characterization of the optimal player behavior. This is achieved by
analyzing a simple one-round zero-sum game. As before, we assume G is a bounded subset of Rn
whose convex hull is a polytope whose interior contains the the origin 0. Assume we are given some
convex function f defined and bounded on all of ConvexHull(G). We consider the following:

V = inf
x∈Rn

sup
g∈G

x · g + f(g). (6)

Theorem 3. There exists a set of n+ 1 distinct points {g1, . . . , gn+1} ⊂ G whose convex hull is of
full rank, and a distribution ~α ∈ ∆n+1 satisfying

∑n+1
i=1 αig

i = 0, such that V =
∑n+1
i=1 αif(gi).

Moreover, an optimal choice for the infimum in (6) is the gradient of the unique linear interpolation
of the pairs {(g1,−f(g1)), . . . , (gn+1,−f(gn+1))}.

The theorem makes a useful point about determining the player’s optimal strategy for games of this
form. If the player can determine a full-rank set of “best responses” {g1, . . . , gn+1} to his optimal
x∗, each of which should be a corner of the polytope G, then we know that x∗ must be a “discrete
gradient” of the function −f around 0. That is, if the size of G is small relative to the curvature of
f , then an approximation to −∇f(0) is the linear interpolation of −f at a set of points around 0.
An optimal x∗ will be exactly this interpolation.
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This result also tells us how to analyze the general T -round game. We can express (5), the condi-
tional value of the game Vt−1, in recursive form as

Vt−1(g1, . . . , gt−1) = inf
xt∈Rn

sup
gt∈G

gt · xt + Vt(g1, . . . , gt−1, gt). (7)

Hence by setting f(gt) = Vt(g1, . . . , gt−1, gt), noting that the latter is convex in gt by Theorem 1,
we see we have an immediate use of Theorem 3.

3 Minimax Optimal Algorithms for Coordinate-Decomposable Games

In this section, we consider games where G consists of axis-aligned constraints, and L decomposes
so L(g) =

∑n
i=1 Li(gi). In order to solve such games, it is generally sufficient to consider n

independent one-dimensional problems. We study such games first:
Theorem 4. Consider the one-dimensional unconstrained game where the player selects xt ∈ R
and the adversary chooses gt ∈ G = [−1, 1], and L is concave in each of its arguments and bounded
on GT . Then, V T = Egt∼{−1,1}

[
− L(g1, . . . , gT )

]
where the expectation is over each gt chosen

independently and uniformly from {−1, 1} (that is, the gt are Rademacher random variables). Fur-
ther, the conditional value of the game is

Vt(g1, . . . , gt) = E
gt+1,...,gT∼{−1,1}

[
− L(g1, . . . , gt, gt+1, . . . gT )

]
. (8)

The proof is immediate from Corollary 2, since the only possible martingale that both plays from
the corners of G and has expectation 0 on each round is the sequence of independent Rademacher
random variables.1 Given Theorem 4, and the fact that the functions L of interest will generally
depend only on g1:T , it will be useful to define BT to be the distribution of g1:T when each gt is
drawn independently and uniformly from {−1, 1}.
Theorem 4 can immediately be extended to coordinate-decomposable games as follows:
Corollary 5. Consider the game where the player chooses xt ∈ Rn, the adversary chooses gt ∈
[−1, 1]n, and the payoff is

∑T
t=1 gt · xt −

∑n
i=1 L(g1:T,i) for concave L. Then the value V T and

the conditional value Vt(·) can be written as

V T = n E
G∼BT

[
− L(G)

]
and Vt(g1, . . . , gt) =

n∑
i=1

E
Gi∼BT−t

[
− L(g1:t,i +Gi)

]
.

The proof follows by noting the constraints on both players’ strategies and the value of the game
fully decompose on a per-coordinate basis.

A recipe for minimax optimal algorithms in one dimension Since Eq. (5) gives the minimax
value of the game if both players play optimally from round t + 1 forward, a minimax strategy for
the learner on round t + 1 must be xt+1 = arg minx∈R maxg∈{−1,1} g · x + Vt+1(g1, . . . , gt, g).
Now, we can apply Theorem 3, and note that unique strategy for the adversary is to play g = 1
or g = −1 with equal probability. Thus, the player strategy is just the interpolation of the points
(−1,−f(−1)) and (1,−f(1)), where we take f = Vt+1, giving us

xt+1 =
1

2

(
Vt+1(g1, . . . , gt,−1)− Vt+1(g1, . . . , gt,+1)

)
. (9)

Thus, if we can derive a closed form for Vt(g1, . . . , gt), we will have an efficient minimax-optimal
algorithm. Note that for any function L,

E
G∼BT

[L(G)] =
1

2T

T∑
i=0

(
T

i

)
L(2i− T ), (10)

since 2−T
(
T
i

)
is the binomial probability of getting exactly i gradients of +1 over T rounds, which

implies T−i gradients of−1, soG = i−(T−i) = 2i−T . Using Theorem 4, and Eqs (9) and (10), in

1However, is easy to extend this to the case where G = [a, b], which leads to different random variables.
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the following sections we exactly compute the game values and unique minimax optimal strategies
for a variety of interesting coordinate-decomposable games. Even when such exact computations
are not possible, any coordinate-decomposable game where L depends only on G = g1:T can be
solved numerically in polynomial time. If τ = T − t, the number of rounds remaining, then we can
compute Vt exactly by using the appropriate binomial probabilities (following Eq. (8) and Eq. (10)),
requiring only a sum over O(τ) values. If τ is large enough, then using an approximation to the
binomial (e.g., the Gaussian approximation) may be sufficient.

We can also immediately provide a characterization of the potentially optimal player strategies in
terms of the subgradients of −L. For simplicity, we write −∂L(g) instead of ∂(−L(g)).

Theorem 6. Let G = [a, b], with a < 0 < b, and L : R → R is bounded and concave. Then, on
every round, the unique minimax optimal x∗t satisfies −x∗t ∈ L where L = ∪w∈R − ∂L(w).

Proof. Following Theorem 3, we know the minimax xt+1 interpolates (a,−f(a)) and (b,−f(b)),
where we take f(g) = Vt+1(g1, . . . , gt, g). In one dimension, this implies−xt+1 ∈ ∂f(g) for some
g ∈ G. It remains to show ∂f(g) ⊆ L. From Theorem 1 we have f(g) = E[−L(g1:t + g + B)],
where the E is with respect to mean-zero random variable B ∼ Bτ , τ = T − t. For each possible
value b thatB can take on,−∂gL(g1:t+g+bi) ⊆ L by definition, so ∂f(g) is a convex combination
of these sets (e.g., Rockafellar [1997, Thm. 23.8]). The result follows as L is convex.

Note that for standard regret, L(g) = infx∈X gx, we have ∂L(g) ⊆ X , indicating that (in 1 dimen-
sion at least), the player never needs to play outside the comparator set X . We will see additional
consequences of this theorem in the following sections.

3.1 Constant step-size gradient descent can be minimax optimal

Suppose we use a “soft” feasible set for the benchmark via a quadratic penalty,

L(G) = min
x

Gx+
σ

2
x2 = − 1

2σ
G2, (11)

for a constant σ > 0. Does a no-regret algorithm against this comparison class exist? Unfortunately,
the general answer is no, as shown in the next theorem. Recalling gt ∈ [−1, 1],

Theorem 7. The value of this game is V T = EG∼BT
[

1
2σG

2
]

= T
2σ .

Thus, for a fixed σ, we cannot have a no regret algorithm with respect to this L. But this does not
mean the minimax algorithm will be uninteresting. To derive the minimax optimal algorithm, we
compute conditional values (using similar techniques to Theorem 7),

Vt(g1, . . . , gt) = E
G∼BT−t

[ 1

2σ
(g1:t +G)2

]
=

1

2σ

(
(g1:t)

2 + (T − t)
)
,

and so following Eq. (9) the minimax-optimal algorithm must use

xt+1 =
1

4σ

((
(g1:t − 1)2 + (T − t− 1)

)
− ((g1:t + 1)2 + (T − t− 1))

)
=

1

4σ
(−4g1:t) = − 1

σ
g1:t

Thus, a minimax-optimal algorithm is simply constant-learning-rate gradient descent with learning
rate 1

σ . Note that for a fixed σ, this is the optimal algorithm independent of T ; this is atypical, as
usually the minimax optimal algorithm depends on the horizon (as we will see in the next two cases).
Note that the set L = R (from Theorem 6), and indeed the player could eventually play an arbitrary
point in R (given large enough T ).

3.2 Non-stochastic betting with exponential upside and bounded worst-case loss

A major advantage of the regret minimization framework is that the guarantees we can achieve are
typically robust to arbitrary input sequences. But on the downside the model is very pessimistic: we
measure performance in the worst case. One might aim to perform not too badly in the worst case
yet extremely well under certain conditions.
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We now show how the results in the present paper can lead to a very optimistic guarantee, particu-
larly in the case of a sequential betting game. On each round t, the world offers the player a betting
opportunity on a coin toss, i.e. a binary outcome gt ∈ {−1, 1}. The player may take either side of
the bet, and selects a wager amount xt, where xt > 0 implies a bet on tails (gt = −1) and xt < 0 a
bet on heads (gt = 1). The world then announces whether the bet was won or lost, revealing gt. The
player’s wealth changes (additively) by −gtxt (that is, the player strives to minimize loss gtxt). We
assume that the player begins with some initial capital α > 0, and at any time period the wager |xt|
must not exceed α−

∑t−1
s=1 gsxs, the initial capital plus the money earned thus far.

With the benefit of hindsight, the gambler can seeG =
∑T
t=1 gt, the total number of heads minus the

total number of heads. Let us imagine that the number of heads significantly exceeded the number of
tails, or vice versa; that is, |G| was much larger than 0. Without loss of generality let us assume that
G is positive. Let us imagine that the gambler, with the benefit of hindsight, considers what could
have happened had he always bet a constant fraction β of his wealth on heads. A simple exercise
shows that his wealth would become

T∏
t=1

(1 + βgt) = (1 + β)
T+G

2 (1− β)
T−G

2 .

This is optimized at β = G
T , which gives a simple expression in terms of KL-divergence for the

maximum wealth in hindsight, exp
(
T · KL

(
1+G/T

2 | | 1
2

))
, and the former is well-approximated

by exp(O(G2/T )) whenG is not too large relative to T . In other words, with knowledge of the final
G, a naı̈ve betting strategy could have earned the gambler exponentially large winnings starting with
constant capital. Note that this is essentially a Kelly betting scheme [Kelly Jr, 1956], expressed in
terms ofG. We ask: does there exist an adaptive betting strategy that can compete with this hindsight
benchmark, even if the gt are chosen fully adversarially?

Indeed we show we can get reasonably close. Our aim will be to compete with a slightly weaker
benchmark L(G) = − exp(|G|/

√
T ). We present a solution for the one-sided game, without the

absolute value, so the player only aims for exponential wealth growth for large positive G. It is not
hard to develop a two-sided algorithm as a result, which we soon discuss.
Theorem 8. Consider the game where G = [−1, 1] with benchmark L(G) = − exp(G/

√
T ). Then

V T =
(

cosh 1√
T

)T
≤
√
e

with the bound tight as T → ∞. Let τ = T − t and Gt = g1:t, then the conditional value of the

game is Vt(Gt) =
(

cosh 1√
T

)τ
exp

(
Gt√
T

)
and the player’s minimax optimal strategy is:

xt+1 = − exp

(
Gt√
T

)
sinh 1√

T

(
cosh 1√

T

)τ−1

(12)

Recall that the value of the game can be thought of as the largest possible difference between the
payoff of the benchmark function exp(G/

√
T ) and the winnings of the player −

∑
gtxt, when the

player uses an optimal betting strategy. That the value of the game here is of constant order is
critical, since it says that we can always achieve a payoff that is exponential in G√

T
at a cost of no

more than
√
e = O(1). Notice we have said nothing thus far regarding the nature of our betting

strategy; in particular we have not proved that the strategy satisfies the required condition that the
gambler cannot bet more than α plus the earnings thus far. We now give a general result showing
that this condition can be satisfied:
Theorem 9. Consider a one dimensional game with G = [−1, 1] with benchmark function L non-
positive on GT . Then for the optimal betting strategy we have that |xt| ≤ −

∑t
s=1 gsxs + V T , and

further V T ≥
∑t
s=1 gsxs for any t and any sequence g1, . . . , gt.

In other words, the player’s cumulative loss at any time is always bounded from below by V T . This
implies that the starting capital α required to “replicate” the payoff function is exactly the value2 of
the game V T . Indeed, to replicate exp(G/

√
T ) we would require no more than α = $1.65.

2This idea has a long history in finance and was a key tool in Abernethy et al. [2012], DeMarzo et al. [2006],
and other works.
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It is worth noting an alternative characterization of the benchmark function L used here. For a ≥ 0,
minx∈R− (Gx− ax log(−ax) + ax) = − exp

(
G
a

)
. Thus, if we take Ψ(x) = −ax log(ax) +

ax + I(x ≤ 0), we have minx∈R− g1:Tx + Ψ(x) = − exp
(
G
a

)
. Since this algorithm needs large

Reward when G is large and positive, we might expect that the minimax optimal algorithm only
plays xt ≤ 0. Another intuition for this is that the algorithm should not need to play any point x to
which Ψ assigns an infinite penalty. This intuition can be confirmed immediately via Theorem 6.

We now sketch how to derive an algorithm for the “two-sided” game. To do this, we let LC(G) ≡
L(G) + L(−G) ≤ − exp(|G|/

√
T ). We can construct a minimax optimal algorithm for LC(G) by

running two copies of the one-sided minimax algorithm simultaneously, switching the signs of the
gradients and plays of the second copy. We formalize this in Appendix B.

This same benchmark and algorithm can be used in the setting introduced by Streeter and McMa-
han [2012]. In that work, the goal was to prove bounds on standard regret like Regret ≤
O(R
√
T log ((1 +R)T )) simultaneously for any comparator x∗ with |x∗| = R. Stating their The-

orem 1 in terms of losses, this traditional regret bound is achieved by any algorithm that guarantees

Loss =

T∑
t=1

gtxt ≤ − exp

(
|G|√
T

)
+O(1). (13)

The symmetric algorithm (Appendix B) satisfies

Loss ≤ − exp

(
G√
T

)
− exp

(
−G√
T

)
+ 2
√
e ≤ − exp

(
|G|√
T

)
+ 2
√
e,

and so we also achieve a standard regret bound of the form given above.

3.3 Optimal regret against hypercube adversaries

Perhaps the simplest and best studied learning games are those that restrict both the player and
adversary to a norm ball, and use the standard notion of regret. We can derive results for the game
where the adversary has an L∞ constraint, the comparator set is also the L∞ ball, and the player is
unconstrained. Corollary 5 implies it is sufficient to study the one-dimensional case.
Theorem 10. Consider the game between an adversary who chooses losses gt ∈ [−1, 1], and a
player who chooses xt ∈ R. For a given sequence of plays, x1, g1, x2, g2, . . . , xT , gT , the value to
the adversary is

∑T
t=1 gtxt− |g1:T |. Then, when T is even with T = 2M , the minimax value of this

game is given by

VT = 2−T
2M T !

(T −M)!M !
≤
√

2T

π
.

Further, as T →∞, VT →
√

2T
π . LetB be a random variable drawn from BT−t. Then the minimax

optimal strategy for the player given the adversary has played Gt = g1:t is given by

xt+1 = Pr(B < −Gt)− Pr(B > −Gt) = 1− 2 Pr(B > −Gt) ∈ [−1, 1]. (14)

The fact that the limiting value of this game is
√

2T/π was previously known, e.g., see a mention
in Abernethy et al. [2009]; however, we believe this explicit form for the optimal player strategy is
new. This strategy can be efficiently computed numerically, e.g, by using the regularized incomplete
beta function for the CDF of the binomial distribution. It also follows from this expression that even
though we allow the player to select xt+1 ∈ R, the minimax optimal algorithm always selects points
from [−1, 1], so our result applies to the case where the player is constrained to play from X .

Abernethy et al. [2008a] shows that for the linear game with n ≥ 3 where both the learner and
adversary select vectors from the unit sphere, the minimax value is exactly

√
T . Interestingly, in the

n = 1 case (where L2 and L∞ coincide), the value of the game is lower, about 0.8
√
T rather than√

T . This indicates a fundamental difference in the geometry of the n = 1 space and n ≥ 3. We
conjecture the minimax value for the L2 game with n = 2 lies somewhere in between.
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A Proofs

We restate the results proved here for convenience.

A.1 Proof of Theorem 3

Theorem 1. For every t and every sequence g1, . . . , gt ∈ G, we can write the conditional value of
the game as

Vt(g1, . . . , gt) = max
G∈∆(G′),E[G]=0

E[Vt+1(g1, . . . , gt, G)],

where ∆(G′) is the set of random variables on G′. Moreover, for all t the function Vt is convex in
each of its coordinates and bounded.

Proof. We prove both statements simultaneously via induction on t. For the base case, t = T − 1,
we have

VT−1(g1, . . . , gT−1) = inf
xT

sup
gT

gT · xT − L(g1, . . . , gT−1, gT ).

Because the supremum is taken over G whose convex hull is assumed to be a polytope, we can
replace the supgT∈G with maxgT∈G′ . Furthermore, we can replace the maximization over points
from G′ with the maximization of distributions over G′ = {gi}i=1,...,m. That is, we can write

VT−1(g1, . . . , gT−1) = inf
xT

max
~α∈∆m

m∑
i=1

αi(g
i · xT − L(g1, . . . , gT−1, g

i)).

The set ∆m is a compact convex set, and the objective
∑m
i=1 αi(g

i · xT − L(g1, . . . , gT−1, g
i)) is

linear in both x and ~α hence we can apply Sion’s Minimax theorem to obtain

VT−1(g1, . . . , gT−1) = max
~α∈∆m

inf
xT

(∑
i

αig
i

)
· xT −

∑
i

αiL(g1, . . . , gT−1, g
i).

Notice that if
∑
i αig

i 6= 0 then the infimum is−∞ since the player can make the objective arbitrar-
ily small. Hence we can restrict the outer maximization to distributions ~α such that

∑
i αig

i = 0.
This simplifies the expression to

VT−1(g1, . . . , gT−1) = max
~α∈∆m

−
∑
i

αiL(g1, . . . , gT−1, g
i) s.t.

∑
i

αig
i = 0.

Notice that, by assumption, −L is convex in each of its arguments, and hence VT−1(g1, . . . , gT−1)
is also convex in each gt independently, since the maximum of convex functions is convex.

The inductive argument follows identically to the base case, but where we replace−L with Vt, since
we can write

Vt−1(g1, . . . , gt−1) = inf
xt

sup
gt∈G

gt · xt + Vt(g1, . . . , gt−1, gt).

Theorem 3. There exists a set of n+ 1 distinct points {g1, . . . , gn+1} ⊂ G whose convex hull is of
full rank, and a distribution ~α ∈ ∆n+1 satisfying

∑n+1
i=1 αig

i = 0, such that V =
∑n+1
i=1 αif(gi).

Moreover, an optimal choice for the infimum in (6) is the gradient of the unique linear interpolation
of the pairs {(g1,−f(g1)), . . . , (gn+1,−f(gn+1))}.

We prove this theorem via a sequence of lemmas. We begin with the observation that we may
assume, without loss of generality, that G is convex, and hence G = ConvexHull(G). This is because,
for any x, the objective supg∈G x · g + f(g) will always be achieved at the boundary of G since the
objective function x · g + f(g) is the sum of two convex functions and is thus convex.

Lemma 11. The infimum in (6) is achieved in a bounded set.

10



Proof. Let M = supg∈G |f(g)| then clearly we have that infx∈Rn supg∈G x · g + f(g) ≤ M since
x can be chosen as 0. It is sufficient to show any x such that ‖x‖ > 2M/ε achieves a worse value
than 0. Since 0 is in the interior of G, there exists an ε > 0 such that g = εx

‖x‖ ∈ G. Then,
supg∈G x · g + f(g) ≥ x · εx‖x‖ + f(g) > 2M −M = M .

The above lemma is useful since it lets us conclude that we need not necessarily assume x is un-
bounded. Moreover, since the inf is achieved on a compact set, then it has at least one solution
x∗ that we can analyze. Let Φ ⊂ Rn denote the set of points x on which the infimum in (6) is
achieved. For any x, let Γ(x) ⊂ G be the set of corners of the polytope G on which the supremum
supg∈G x · g + f(g) is achieved for fixed x.

Lemma 12. For any x ∈ Φ, the set ConvexHull(Γ(x)) must contain the origin.

Proof. Let us assume that 0 /∈ ConvexHull(Γ(x)), then I will show that this contradicts the as-
sumption that x is optimal. If v is the value of the objective in (6), then define Γε(x) to be the set
of g ∈ G such that g · x + f(x) ≥ v − ε. We claim that we can choose ε > 0 small enough so
that ConvexHull(Γε(x)) also does not contain 0. This implies that there is some δ > 0 such that
‖g‖ > δ for all g ∈ ConvexHull(Γε(x)). Moreover, since ConvexHull(Γε(x)) is a convex set there
must be a separating hyperplane between 0 and ConvexHull(Γε(x)), and hence there is some unit
vector z ∈ Rn (the normal to the hyperplane) such that z · g < −δ for all g ∈ ConvexHull(Γε(x)).

Choose B > 0 such that ‖g‖ ≤ B for all g ∈ G. We claim that the point x′ ≡ x+ ε
2B z has a strictly

smaller objective value that x. Consider any g ∈ ConvexHull(Γε(x)), then we have

g · x′ + f(g) = g · x+ f(g) +
ε

2B
z · g < v − εδ

2B
< v.

On the other hand, for any g ∈ G \ ConvexHull(Γε(x)) we have

g · x′ + f(g) = g · x+ f(g) +
ε

2B
z < v − ε+

ε

2B
z · g ≤ v − ε+

ε

2B
‖g‖ ≤ v − ε

2
< v

where the first inequality follows because by assumption g /∈ Γε(x). It follows from these two
expressions that supg∈G g · x′ + f(g) < supg∈G g · x+ f(g), a contradiction.

Concluding that ConvexHull(H) contains the origin is actually surprisingly useful.
Lemma 13. There is some x ∈ Φ such that ConvexHull(Γ(x)) has a non-empty interior.

Another way to put this is that Γ(x) has at least n + 1 points such that none of these is a convex
combination of the others.

Proof. Notice that Φ is a convex set and, via Lemma 11, is bounded and compact. We claim that
any x on the boundary of Φ satisfies the goal of the lemma. Choose a boundary point x ∈ Φ, and
assume that ConvexHull(Γ(x)) is not of full-rank. Via Lemma 12, this set contains the origin, and
hence we can find some unit vector z such that z · g = 0 for all g ∈ ConvexHull(Γ(x)).

Since G is a polytope, we can describe it as the hull of a finite number of points G′ ≡ {g1, . . . , gm}.
For any gi /∈ Γ(x) we have gi ·x+ f(gi) < v. Choose some ε > 0 so that gi ·x+ f(gi) < v− ε for
every gi ∈ G′ \ Γ(x), which is possible since this is a finite set. Let B > 0 be a bound on the norm
of all points in G. Then we claim that the points x+ ε

2B z and x− ε
2B z are both members of Φ. Of

course, the latter statement contradicts the assumption that x is at the boundary of Φ. To prove the
final claim, notice that by the convexity of f we have

sup
g∈G

g ·
(
x+

ε

2B
z
)

+ f(g) = max
i=1,...,m

gi ·
(
x+

ε

2B
z
)

+ f(gi).

For the last expression, we can check two cases. If gi ∈ Γ(x) then gi · z = 0 in which case
gi ·
(
x+ ε

2B z
)

+ f(gi) = gi · x+ f(gi). On the other hand, for gi /∈ Γ(x) we have

gi ·
(
x+

ε

2B
z
)

+ f(gi) = gi · x+ f(gi) =
ε

2B
g · z < v − ε+ ε/2 < v.

Hence the value of the objective is the same for x and x + ε
2B z. A similar argument follows for

x− ε
2B z.
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Lemma 14. If x ∈ Φ and we pick any full-rank set of points g1, . . . , gn+1 ∈ Γ(x) whose hull
contains the origin, then we may write x as the gradient of the linear interpolation of the points
{(g1,−f(g1), . . . , (gn+1,−f(gn+1))}. Moreover, this implies that x is a subgradient of the function
f restricted to the set G.

Proof. Let us notice that if we were to search for the linear interpolation of the points
{(g1,−f(g1), . . . , (gn+1,−f(gn+1))}, then we would need to find a vector m ∈ Rn and an off-
set b ∈ R such that

m · gi + b = −f(gi) ∀ i = 1, . . . , n+ 1,

and indeed since the set of gi’s is of full rank this has a unique solution. However, the point x also
satisfies a similar set of equations:

x · gi + f(gi) = c ∀ i = 1, . . . , n+ 1,

where c is the value of the objective in (6). Given the uniqueness of the above to systems of equa-
tions, we have that m = x.

Now given the above results we can actually construct the optimal strategy for the adversary.
Lemma 15. For any full-rank set of points g1, . . . , gn+1 ∈ Γ(x) whose hull contains the origin, let
~α ∈ ∆n+1 be a set of weights such that

∑
i αigi = 0 (and indeed ~α is unique). Then the value of the

objective (6) is precisely
∑
i αif(gi). Moreover, one optimal randomized strategy for the adversary

is to choose gi with probability αi.

Proof. Recall that the point x∗ satisfies a system of linear equations

x∗ · gi + f(gi) = c ∀ i = 1, . . . , n+ 1,

where c is the value of the objective. Furthermore, it also satisfies any mixture of these equations.
By taking an ~α mixture of these equations we have

c =
∑
i

αi(gi · x∗ + f(gi)) = 0 · x∗ +
∑
i

αif(gi) =
∑
i

αif(gi).

A.2 Proofs from Section 3

Theorem 7. The value of this game is V T = EG∼BT
[

1
2σG

2
]

= T
2σ .

Proof. Starting from Eq. (10),

E
G∼BT

[G2] =
1

2T

T∑
i=0

(
T

i

)
(2i− T )2 Eq. (10)

=
1

2T

(
4

T∑
i=0

(
T

i

)
i2 − 4T

T∑
i=0

(
T

i

)
i+ T 2

T∑
i=0

(
T

i

))

and since
∑T
t=0

(
T
t

)
= 2T ,

∑T
t=0

(
T
t

)
t = T2T−1,

∑T
t=0

(
T
t

)
t2 = (T + T 2)2T−2,

=
1

2T

(
4(T + T 2)2T−2 − 4T (T2T−1) + T 22T

)
= (T + T 2)− 2T 2 + T 2 = T.

The result then follows from linearity of expectation.

Theorem 8. Consider the game where G = [−1, 1] with benchmark L(G) = − exp(G/
√
T ). Then

V T =
(

cosh 1√
T

)T
≤
√
e
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with the bound tight as T → ∞. Let τ = T − t and Gt = g1:t, then the conditional value of the

game is Vt(Gt) =
(

cosh 1√
T

)τ
exp

(
Gt√
T

)
and the player’s minimax optimal strategy is:

xt+1 = − exp

(
Gt√
T

)
sinh 1√

T

(
cosh 1√

T

)τ−1

(12)

Proof. First, we compute the value of the game:

V T = E
G∼BT

[
− L(G)

]
= 2−T

T∑
i=0

(
T

i

)
exp

(
2i− T√

T

)

= 2−T exp
(
−
√
T
) T∑
i=0

(
T

i

)(
exp

(
2/
√
T
))i

= 2−T exp
(
−
√
T
)(

1 + exp
(
2/
√
T
))T

,

where we have used the ordinary generating function,
∑T
i=0

(
T
i

)
xi = (1 + x)T . Manipulating the

above expression for the value of the game, we arrive at V T = cosh(1/
√
T )T . Using the series

expansion for cosh leads to the upper bound cosh(x) ≤ exp(x2/2),

from which we conclude

VT =
(

cosh
(
1/
√
T
))T
≤ exp

(
1

2T

)T
=
√
e.

Using similar techniques, we can derive the conditional value of the game, letting τ = T − t be the
number of rounds left to be played:

Vt(Gt) = 2−τ
τ∑
i=0

(
τ

i

)
exp

(
Gt + 2i− τ√

T

)
= 2−τ exp

(
Gt − τ√

T

)(
1 + exp

(
2/
√
T
))τ

.

Following Eq. (9) and simplifying leads to the update of Eq. (12). It remains to show limT→∞ VT =√
e. Using the change of variable x = 1/

√
T , equivalently we have limx→0 cosh(x)

1
x2 . Examining

the log of this function,

lim
x→0

log
(

cosh(x)
1
x2

)
= lim
x→0

1

x2
log cosh(x) = lim

x→0

1

x2

(
x2

2
− x4

12
+
x6

45
− 17x8

2520
+ . . .

)
=

1

2
,

where we have taken the Maclaurin series of log cosh(x). Using the continuity of exp, we have
against any adversary,

lim
x→0

(
cosh(x)

1
x2

)
= exp

(
lim
x→0

log
(

cosh(x)
1
x2

))
=
√
e.

Theorem 9. Consider a one dimensional game with G = [−1, 1] with benchmark function L non-
positive on GT . Then for the optimal betting strategy we have that |xt| ≤ −

∑t
s=1 gsxs + V T , and

further V T ≥
∑t
s=1 gsxs for any t and any sequence g1, . . . , gt.

Proof. We need to prove
t∑

s=1

gsxs ≤ V T (15)

and

|xt| ≤ −
t∑

s=1

gsxs + V T . (16)
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The definition of the value of the game and the fact the algorithm is minimax optimal ensures
T∑
t=1

gtxt − L(G) ≤ V T

or, since −L(G) ≥ 0,
T∑
t=1

gtxt ≤ V T . (17)

Now, suppose on some round t we have
∑t
s=1 gsxs > V T . Then, the adversary can simply play

gτ = 0 for rounds t+ 1, . . . , T , which implies
T∑
s=1

gsxs =

t∑
s=1

gsxs > V T ,

contradicting Eq. (17). Hence, Eq. (15) must hold. Further, if the player ever chose a bet so large it
violated Eq. (16), the adversary could choose gt ∈ {−1, 1} in order to violate Eq. (17).

Theorem 10. Consider the game between an adversary who chooses losses gt ∈ [−1, 1], and a
player who chooses xt ∈ R. For a given sequence of plays, x1, g1, x2, g2, . . . , xT , gT , the value to
the adversary is

∑T
t=1 gtxt− |g1:T |. Then, when T is even with T = 2M , the minimax value of this

game is given by

VT = 2−T
2M T !

(T −M)!M !
≤
√

2T

π
.

Further, as T →∞, VT →
√

2T
π . LetB be a random variable drawn from BT−t. Then the minimax

optimal strategy for the player given the adversary has played Gt = g1:t is given by
xt+1 = Pr(B < −Gt)− Pr(B > −Gt) = 1− 2 Pr(B > −Gt) ∈ [−1, 1]. (14)

Proof. Letting T = 2M and working from Eq. (10),

V T = − E
G∼BT

[L(G)] =
2

2T

T∑
i=0

(
T

i

)
|i−M | = 2M

2T

(
2M

M

)
= 2−T

2M T !

(T −M)!M !
, (18)

where we have applied a classic formula of de Moivre [1718] for the mean absolute deviation of the
binomial distribution (see also Diaconis and Zabell [1991]). Using a standard bound on the central
binomial coefficient (based on Stirling’s formula),(

2M

M

)
=

4M√
πM

(
1− cM

M

)
(19)

where 1
9 < cM < 1

8 for all M ≥ 1, we have

V T ≤ 2M
1√
πM

=

√
2T

π
.

As implied by Eq. (19), this inequality quickly becomes tight as T →∞.

In order to compute the minimax algorithm, we would like a closed form for Vt(Gt) =
−EGτ∼Bτ

[
L(Gt + Gτ )

]
, where Gt = g1:t is the sum of the gradients so far, τ = T − t is the

number of rounds to go, and and Gτ = gt+1:T is a random variable giving the sum of the remaining
gradients. Unfortunately, the structure of the binomial coefficients exploited in the proof of Theo-
rem 10 does not apply given an arbitrary offsetGt. Nevertheless, we will be able to derive a formula
for the update that is readily computable. Letting B be a random variable with distribution Bτ , the
update of Eq. (9) becomes

xt+1 =
1

2

τ∑
b=−τ

Pr(B = b)
(
|Gt + b− 1| − |Gt + b+ 1|

)
.

Whenever Gt + b ≥ 1, the difference in absolute values is −2, and whenever Gt + b ≤ 1, the
difference is 2. When Gt + b = 0, the difference is zero. Thus,

xt+1 =
1

2
(Pr(B > −Gt)(−2) + Pr(B < −Gt)(2)) = Pr(B < −Gt)− Pr(B > −Gt).
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B A Symmetric Betting Algorithm

The one-sided algorithm of Theorem 8 has

Loss = V T + L(G) ≤ − exp

(
G√
T

)
+
√
e.

In order to do well when g1:T is large and negative, we can run a copy of the algorithm on
−g1, . . . ,−gT , switching the signs of each xt it suggests. The combined algorithm then satisfies

Loss ≤ − exp

(
G√
T

)
− exp

(
−G√
T

)
+ 2
√
e

≤ − exp

(
|G|√
T

)
+ 2
√
e,

and so following Eq. (13) and Theorem 1 of Streeter and McMahan [2012], we obtain the desired
regret bounds. The following theorem implies the symmetric algorithm is in fact minimax optimal
with respect to the combined benchmark

LC(G) = − exp

(
G√
T

)
− exp

(
−G√
T

)
.

Theorem 16. Consider two 1-D games where the adversary plays from [−1, 1], defined by concave
functions L1 and L2 respectively. Let x1

t and x2
t be minimax-optimal plays for L1 and L2 respec-

tively, given that g1, . . . gt−1 have been played so far in both games. Then x1 + x2 is also minimax
optimal for the combined game that uses the benchmark LC(G) = L1(G) + L2(G).

Proof. First, taking τ = T − t and using Theorem 4 three times, we have

V C(g1, . . . , gt) = − E
Gτ∼Bτ

[
L1(g1:t +Gτ ) + L2(g1:t +Gτ )

]
= − E

Gτ∼Bτ

[
L1(g1:t +Gτ )

]
− E
Gτ∼Bτ

[
L2(g1:t +Gτ )

]
= V 1(g1, . . . , gt) + V 2(g1, . . . , gt),

using linearity of expectation. Then, using Eq. (9) for each of the three games, we have

xCt = arg min
x

max
g

gx+ VC(g1, . . . , gt−1, g)

=
1

2

(
VC(g1, . . . , gt−1,−1)− VC(g1, . . . , gt−1,+1)

)
=

1

2

(
V1(g1, . . . , gt−1,−1) + V2(g1, . . . , gt−1,−1)− V1(g1, . . . , gt−1,1 )− V2(g1, . . . , gt−1,+1)

)
= x1

t + x2
t .
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