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ABSTRACT

This paper describes a series of experiments to extend the applica-
tion of Context-Dependent (CD) long short-term memory (LSTM)
recurrent neural networks (RNNs) trained with Connectionist Tem-
poral Classification (CTC) and sMBR loss. Our experiments, on a
noisy, reverberant voice search task, include training with alterna-
tive pronunciations and the application to child speech recognition;
combination of multiple models, and convolutional input layers. We
also investigate the latency of CTC models and show that constrain-
ing forward-backward alignment in training can reduce the delay for
a real-time streaming speech recognition system. Finally we inves-
tigate transferring knowledge from one network to another through
alignments.

Index Terms: Long Short Term Memory, Recurrent Neural Net-
works, Connectionist Temporal Classification, sequence discrimina-
tive training, knowledge transfer.

1. INTRODUCTION

In the last few years, most state-of-the-art automatic speech recogni-
tion systems have used neural network acoustic models to estimate
probabilities which are aggregated in a hidden Markov model “de-
coder”. Recently, recurrent neural networks (RNNs), and in partic-
ular deep Long Short Term Memory (LSTM) RNNs [1] have been
shown to outperform deep neural networks (DNNs) [2]. Most re-
cently [3] we have shown that greater accuracy can be obtained with
models with a “blank” symbol that are trained using the connection-
ist temporal classification (CTC [4]) algorithm followed by sequence
discriminative training, and using context dependent whole-phone
models [5].

LSTM RNNs are a variant of recurrent neural networks pro-
posed [6] as a way to circumvent the vanishing gradient problem and
enable the propagation of gradients over long time spans and hence
learn longer-term dependencies than are feasible with conventional
RNNs. An LSTM layer consists of multiple memory cells which
can store a scalar state over time and with three gates that control
whether new information is added to the cell, whether the cell state
should be forgotten and whether the cell state should be passed for-
ward to the next layer in a network. LSTM layers can be stacked
to give deep architectures which allow multiple nonlinear operations
for a single time-step, though because of their recurrent nature, their
effective depth increases with greater time offsets between inputs
and outputs.

Graves et al. proposed CTC as a way to train recurrent networks
on sequences of symbols where no alignment is given. An additional
“blank” output is permitted to enable sequences of input data longer
than the corresponding label sequence, as is often the case in speech
or handwriting recognition. In contrast to conventional alignment
whereby every frame is given a label from the target sequence, and
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the labels indicate the segmentation of the sequence with repeated
labels indicating longer durations, with CTC an output may only be
high for a single frame to indicate the presence of the symbol, with
other frames labelled “blank,” and duration information is discarded.
During training CTC constantly aligns every sequence and trains to
maximize the total probability of all valid label sequences. Because
of the memory of the LSTM model this means that the outputs no
longer need to occur at the same time as the input features to which
they correspond.

In our previous work [2] we have shown that models with a
blank symbol that are initialized with CTC can be improved upon
with sMBR sequence-discriminative training. We then showed [3]
that such models, using long-duration features (95ms of speech rep-
resented as 8 stacked overlapping log-mel filterbank features, gener-
ated with a 25ms window FFT every 10ms), downsampled and pro-
cessed every 30ms, can outperform conventionally-trained LSTM
models when using context dependent phone targets [5]. We use the
term CD-CTC-sMBR LSTM RNN for these models.

In this paper we present a number of extensions and refinements
to our CD phone CTC models. Section 3 describes our task, data
and the baseline model we described previously. Thereafter each
section presents one idea with related research and our experiments
and results. Section 2.3 describes how alternative pronunciations can
be successfully handled within CTC training. Section 2.2 describes
improved performance on noise-corrupted and child speech data.
Sections 3.1 and 3.2 demonstrate improved inference and decod-
ing speed with our low-frame-rate CTC models, and show how con-
straints during training can limit latency in decoding. Section 3.3 de-
scribes the use of convolutional input layers for CTC stacked frames.
Section 3.4 describes experiments in CTC model combination and
section 3.5 shows knowledge transfer between CTC models using
alignments.

2. EXPERIMENTAL SET-UP

We evaluate speech recognition performance with acoustic models
trained with 9287 context dependent phone models with a blank
symbol. The models are initially trained from scratch using the CTC
algorithm to constantly realign with the Baum-Welch algorithm and
trained using a cross-entropy loss. Models are then further trained
sequence-discriminatively using the SMBR loss.

input output
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Fig. 1: Layer connections in unidirectional 5-layer LSTM RNNs.

The principal model that we investigate, shown in Figure 1, is
the one from our most recent work [3] which has 5 LSTM lay-
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Model | Description

Adult WER (%) | Child WER (%)
Clean | Noisy | Clean | Noisy

CTC Train on adult data
CTC
CLDNN | Train on child + adult data

Train on child + adult data (with flatstart) 11.2 12.6 9.9 11.3

11.5 13.0 12.0 14.0

11.9 13.5 9.9 12.6

Table 1: WERs for three different sMBR-trained models on clean & noise-corrupted versions of adult and child test sets.

ers of 600 cells, each with its own gates. The output distribution
was the same 9288 context dependent phone set + blank used previ-
ously, and the inputs are gain 80-dimensional log-mel filterbank en-
ergies computed on 25ms window every 10ms, stacked 8-deep and
downsampled by a factor of 3 (i.e. one stacked-frame every 30ms,
with 65ms of overlap). In this paper we do not investigate context-
independent phone models, since they did not perform as well as
context-dependent phone models. Nor do we investigate bidirec-
tional models which can not be used in a streaming speech recogni-
tion system.

Single-pass decoding is carried out with a conventional WFST-
based decoder using a 100-million 5-gram language model and a
vocabulary larger than 5 million words.

2.1. Google Now task

We carried out experiments on data from the Google Now voice
search speech recognition task in US English. The approximately
2000 hours of training data consists of 3 million anonymized utter-
ances of live 16kHz traffic. These are corrupted using a room sim-
ulator which adds artificial noise (non-speech audio from YouTube
videos) and reverberation. We generate 20 different corrupted ver-
sions of each utterance. The test set consists of 28,000 utterances of
similar traffic, either clean or corrupted with a similar distribution of
reverberation and noise levels, but with a held-out noise data.

2.2. Child speech task

‘We have recently described [7] the development of a speech recogni-
tion system for ““YouTube Kids” an application specifically for chil-
dren with a speech recognition interface which enables search for
children who are too young to read or type. As part of this effort, we
collected a database of 1.9M anonymized “high-pitched” US English
utterances most of which are believed to be from children. We added
this data to our “adult” speech database of 3M utterances, again per-
turbing each with 20 different noise / reverberation combinations.
A similar held out set is used as a test set, with and without noise-
corruption.

2.3. Flat start

In English, there are many homographs — words with alternative
pronunciations for a given written form. When starting from a writ-
ten transcription and training a spoken-form model, it is necessary to
choose which spoken form to use. In conventional training we can
apply Viterbi alignment to a lattice containing alternative pronunci-
ations and allow the model to choose. Hitherto we have trained CTC
models using a unique alignment string which in practice was de-
rived from an alignment with an earlier (DNN) model. For the exper-
iments in this paper, we have found that we can apply the forward-
backward algorithm to the full CD phone lattice and can jointly train
a CTC model and choose the alternative pronunciation.
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3. EXPERIMENTS

Table 1 shows word error rates of sMBR-trained models on clean
and noise-corrupted versions of adult and child test sets. The CTC
LSTM network trained on adult and child speech performs better on
adult test data and significantly better on child data than one trained
only on adult data. In most cases, the CTC LSTM performs better
than a CLDNN [8] trained on the same data.

3.1. Speed

Figure 2 shows a comparison of word error rate (WER) against 90th
percentile real-time factor (time to process an utterance divided by
the duration of the utterance) for a CTC LSTM and a CLDNN model
obtained by changing the beam width while keeping maximum num-
ber of arcs at 8000 in decoding. The CTC model uses the context de-
pendent phones and operates at 33 frames/s rate. The CLDNN model
uses the HMM states (3 states for each context dependent phone) and
operates at 100 frames/sec rate. While the accuracy difference be-
tween these models is relatively small, the decoding speed is about
3 times faster for the CTC model than the conventional CLDNN
model due to significantly reduced frame rates. We also observed
that due to spiky predictions from the CTC model, we can constrain
the search space more than conventional models without hurting the
recognition accuracy by limiting the maximum number of arcs in
decoding.

—— CD-CTC LSTM RNN
13.8f| = HMM CLDNN

12.6f

0.6 0.8 1.0 1.2 1.4 1.6 1.8
RT90 (CPU time / audio time)

Fig. 2: 90th percentile real-time factor vs WER for CTC and con-
ventional models.

3.2. Delay constraints

In training conventional recurrent neural network models, it is com-
mon to derive the labels from a forced alignment, but to choose a



time delay [9] between the acoustic frame presentation and the la-
bel output to give the network future acoustic context on which to
base its predictions, akin to the use of a future context window in the
frame stacking for GMM or DNN models. Such a delay is typically
around 5 frames or 50ms. With CTC, there is no time alignment
supervision since the network is constantly integrating over all pos-
sible alignments. This means that the LSTM can vary the delay be-
tween acoustics and outputs, using an arbitrarily large future context
if that helps optimizing the total sequence probability. In practice, as
shown in Figure 3 (top), the network does delay the outputs consid-
erably with respect to the alignment of a DNN.

This delay induces latency in the decoding of speech. Google
Now’s speech recognition is a live streaming service where interme-
diate results are displayed while the user is still speaking. Additional
latency from CTC self-alignment is undesirable, so we investigated
applying constraints on the CTC alignment to reduce the delay. De-
lay can be limited by restricting the set of search paths used in the
forward-backward algorithm to those in which the delay between
CTC labels and the “ground truth” alignment does not exceed some
threshold. Figure 3 shows a set of alignments with models trained
with different delay constraints. Table 2 shows that tightening the
constraint in CTC training degrades the WER, but after sequence
training the performance with and without the constraint is similar.

Training | CTC WER (%) | sMBR WER (%)
no constraint 14.3 13.0
300ms delay 14.5
200ms delay 14.7
150ms delay 14.6
100ms delay 14.8 13.0
60ms delay 15.0

Table 2: WERs for models trained with different delay constraints,
with and without sMBR training.

3.3. Convolution

Sainath et al. [8] recently described a deep network architecture
which combines convolutional layers followed by LSTM layers fol-
lowed by fully connected layers and finishing with a softmax layer.
They termed this the “CLDNN” (for convolution + LSTM + DNN)
and showed improved results compared to deep LSTM architec-
tures. This naturally leads us to conjecture that a similar architecture
trained with CTC would lead to improved performance compared to
a deep LSTM CTC network.

For all our experiments here, we retain the 5 LSTM layer + soft-
max architecture, and simply precede the LSTM layer with a rec-
tified linear convolution layer followed by max pooling and linear
dimensionality reduction layer. When operating on s stacked frames
of 80-dimensional filterbanks, the N filters we use have a support of
15 X s support, convolved in frequency with a step of 1, with non-
overlapping max-pooling across 6 frequency bands. This results in
22 x N activations which are linearly projected to 256 dimensions
for input to the first LSTM layer. This process is shown in Figure 4.
For our experiments here, we have used N = 96

A variety of other approaches are feasible, in particular perform-
ing 15 X 1 convolutions with shared parameters separately on each
of the stacked frames, but so far results with this approach have not
performed as well. Table 3 shows that convolutions with 3, 5 or 8
stacked features perform similarly, and perform slightly worse than
fully-connected inputs.
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Fig. 3: Label posteriors estimated by CD-CTC LSTM RNN models

trained with different delay constraints plotted against fixed DNN

frame level alignments shown only for labels in the alignment on a

held out utterance ‘museums in Chicago’. <b> refers to the blank
label.
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N filters

s stacked frames

Fig. 4: Convolution of N filters in frequency across s frames, where
the filters are s-frames wide.

Model Description WER (%)
CTC | sMBR
A fully-connected 8 frames | 14.4 12.6
B fully-connected 8 frames | 14.2 12.6
C Convolution on 3 frames 14.6
D Convolution on 5 frames 14.6 129
E Convolution on 8 frames 14.8
A&D Combined CTC models 139 12.6
A&D Combined sMBR models 12.5
A&B Combined CTC models 12.7
A,B & D | Combined CTC models 14.4 12.8
A,B & D | ROVER 12.2

Table 3: WERs for individual models and combinations after CTC
or SMBR training (trained on adult + child data).

3.4. Model combination

It is well-known that multiple classifiers can often be combined to-
gether to create a joint classifier which performs better than any of
the original classifiers. The simplest method is to form a weighted
combination of the classifiers’ posteriors in score fusion. Such score
combination techniques have been used for speech recognition, for
instance we have seen around a 7% relative reduction in WER when
combining 3 conventional LSTM classifiers trained under the same
conditions but for randomization (of both weight initialization and
data-shuffling).

The ROVER [10] technique has long been used to combine the
output hypotheses of speech recognition systems, particularly when
the systems have been developed independently, so share no inter-
mediate representation (such as the CD state inventory) where score
fusion could be carried out. At its simplest, ROVER implements a
voting strategy across systems to combine alternative hypotheses for
time segments. Alternatives have been proposed to use score and
confidence measures for N-best lists or lattices.

Since CTC networks with 30ms features use so little computa-
tion for acoustic model computation and search (Section 3.1), model
combination is an attractive option. If we can get further gains by
combining three models, we can achieve this while still being no
slower than a conventional LSTM acoustic model.

ROVER is directly applicable to CTC networks and can even be
used to combine CTC and conventional systems (e.g. DNN, LSTM,
CLDNN) — we decode separately with each of our candidate net-
works, and use ROVER to combine the hypotheses. The disadvan-
tage of ROVER is that it requires decoding to be carried out for each
network, in addition to computing acoustic model scores for each
network which is all that is required for score combination.

While we can train diverse CTC systems to estimate CD phone
posteriors in a shared output space, with CTC the timing of the out-
put symbols is arbitrary and we find that the timing of the spikes is
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different for different networks. Simple score fusion will not work
with CTC since combining output posteriors by weighted averag-
ing leads to meaningless scores where the strong signals from one
network counteract the strong-but-differently-timed signals from an-
other network. Temporal pooling or using constraints like those of
Section 3.2 may be able to mitigate this disadvantage but we have
not investigated further.

As an alternative we propose using the technique recently pro-
posed for conventional speech recognition by Saon er al. [11]. They
take two independently-trained networks and combine their final
softmax layers by averaging together the contributions from each of
the sub-networks. With further retraining to either cross-entropy or
sequence-discriminative criteria, the joint network can be rebalanced
to give performance superior to any of the component networks.

We argue that this technique has the potential to overcome the
timing issues of score combination, since the joint retraining will
force the networks to synchronize, while still only requiring a single
decoding for the combination.

Experimental results are shown in Table 3. It can be seen that
the combinations of CTC-models constructed in this way can out-
perform the original models, but after sequence training there is no
improvement with respect to the best individual model. Similarly
combining sequence-trained models does not bring significant im-
provement.

It can be seen that ROVER combination of 3 models did bring
some improvement in WER (3% relative), but not as large as we
have previously seen for conventional hybrid LSTMs, even for less-
diversely constructed models.
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Fig. 5: Output timings for two independently CTC-trained networks
and the joint network with a common softmax layer.



Model Noisy set WER
Noisy model 14.5
Noisy model trained with noisy model’s targets 20.9
Noisy model trained with noisy model’s outputs 20.9
Noisy model trained with noisy model’s targets during training 16.1
Clean model 214
Noisy model trained with clean model’s targets 18.8
Noisy model trained with clean model’s targets + retraining 15.4

Table 4: Results from training directly with CTC or with knowledge transfer from one network to another.

3.5. Knowledge transfer

In conventional training of hybrid neural network systems for speech
recognition, it is common to train the network with a cross-entropy
loss with respect to fixed targets which are determined by forced-
alignment of a set of acoustic frames with a written transcript, trans-
formed into the phonetic domain. Forced-alignment is the process
of finding the maximum-likelihood label sequence for the acoustic
frames and gives labels for every frame either in {0, 1} for Viterbi
alignment or in [0, 1] for Baum-Welch alignment.

For GMMs, it is common practice to use the EM algorithm to
iteratively improve a model by using it to align the data (E step) and
then optimizing the parameters (M step). With DNNs, where every
utterance is used in each of many epochs of training, it is common
to store a fixed alignment from a previous “best” model and use it
through many epochs of stochastic gradient descent, though it has
been shown that continuous re-alignment is also feasible [2]

Here we explore the idea of using a variety of alternative align-
ment strategies in conjunction with the CTC algorithm. In the CTC
algorithm, the current model is used to compute a target alignment in
the form of the posteriors of the alignment (equivalent to the Baum-
Welch alignment). These targets are used for a cross-entropy train-
ing, but are naturally recomputed with the latest model throughout
training. We naturally wonder whether it is feasible to train a model
to match fixed alignments computed with a previous “best” CTC
model.

Alternatively, in the process of “distillation”, Hinton et al. [12]
have shown that it is possible to train a model to match the out-
put distribution of an existing model. Here the new model is able
to learn the “dark knowledge” stored in the original model and en-
coded in the distribution of outputs for a given input: where a Viterbi
target would treat one label as correct and all others as incorrect,
the output distribution of a trained network encodes the confusibil-
ity between classes. Thus as an alternative to training a network
to match the targets computed by the Baum-Welch algorithm on its
own outputs or those of another network, it is also feasible to train a
network to match the output distribution of a network directly. The
Baum-Welch algorithm has the advantage of employing the tempo-
ral constraints, but the “distillation” procedure has the advantage of
transferring the “dark knowledge” from one net to another. Natu-
rally all three methods of computing the targets can be employed,
and we can optimize a weighted combination of the three losses.
With the additional hyperparameter of the “temperature” of distilla-
tion, the option of using a conventional alignment cross-entropy loss
from a separate output layer (as was found to improve stability and
speed of convergence in [2]), the space of loss-functions becomes
large, even without variation over time or considering their interac-
tion with sequence-discriminative training. Here we describe some
preliminary experiments to explore this space.

First we use an existing, pre-trained on noisy data to generate
targets for a second network being trained from scratch. Targets
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are either taken directly from the first network’s outputs, with no
softening, or by applying the CTC algorithm to the first networks’
outputs. Table 4 shows that transferring the targets directly with
either method performs about the same, but does not achieve the
same performance as training directly with the CTC algorithm.

Next, we jointly train two networks from scratch, where one is
trained with CTC and for every utterance its targets are used to train
the second network. This network achieves a better WER than train-
ing directly to the targets of a pre-trained network. We argue that this
is because the network is not simply trying to match some optimal
targets by a cross-entropy loss but is “relaxing into” a solution that
has targets consistent with its own alignment. The CTC algorithm
inherently needs to self-align to achieve optimal performance.

Training a new network on noisy data using the targets of a net-
work already trained on aligned clean data allows the noisy-trained
network to outperform the clean network on the noisy data, but even
with further retraining, the network does not achieve the same per-
formance as a network trained with CTC only on noisy data.

While there is a large space of possibilities for exploring knowl-
edge transfer in CTC networks, including “distillation”, and combin-
ing multiple objectives, our initial experiments lead us to believe that
knowledge transfer with CTC is much harder than for conventional
acoustic models.

4. SUMMARY & CONCLUSIONS

We have described a number of experiments with CD-CTC-sMBR
LSTM RNNs. We have shown that these models can be successfully
trained to recognize child and adult noisy speech. We have shown
that these models are considerably faster in inference than CLDNN
models achieving similar accuracy and that the latency in decod-
ing can be reduced by constraining alignments during training. We
have also shown that they can be trained with a convolutional input
layer. We explore two strategies for model combination, showing
improvements by fusing CTC-trained networks at the softmax layer,
but finding improvements after sequence training only by ROVER
combination of multiple models. Finally we have explored knowl-
edge transfer between CTC networks and find that while knowledge
can be transferred, this is not so simple as reusing alignments in con-
ventional speech systems.
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