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Deep Learning for Monitoring of
Human Gait: A Review

Abdullah S. Alharthi, Syed U. Yunas, and Krikor B. Ozanyan , Senior Member, IEEE

Abstract— The essential human gait parameters are briefly
reviewed, followed by a detailed review of the state of the art
in deep learning for the human gait analysis. The modalities
for capturing the gait data are grouped according to the sensing
technology: video sequences, wearable sensors, and floor sensors,
as well as the publicly available datasets. The established artificial
neural network architectures for deep learning are reviewed for
each group, and their performance are compared with particular
emphasis on the spatiotemporal character of gait data and the
motivation for multi-sensor, multi-modality fusion. It is shown
that by most of the essential metrics, deep learning convolu-
tional neural networks typically outperform shallow learning
models. In the light of the discussed character of gait data,
this is attributed to the possibility to extract the gait features
automatically in deep learning as opposed to the shallow learning
from the handcrafted gait features.

Index Terms— Deep learning, floor sensor, gait, neural net-
work, sensor fusion, video sequence, wearable sensor.

I. INTRODUCTION

GAIT refers to the displacement of the center of gravity
during locomotion. In humans, it is achieved through

the synchronized movement of the lower limbs and the trunk,
resulting in a move from one position to the other [1]. It is
a unique behavior trait for every human being, influenced by
mutually independent factors, such as weight, gender and age.

The rich history of gait analysis is a record of a steady
progression from descriptive studies to more sophisticated
methods. Aristotle (350 BC) was the first to take note of
animals and human gait [2]. However, useful descriptions
of how humans walk were first achieved in the works of
Newton, Galileo and Leonardo da Vinci. Borelli, a student of
Galileo and the father of biomechanics [3], gave a considerable
impetus to scientific approaches to gait analysis by measuring
the center of gravity of the human body and how humans
keep balance while walking [4]. In 1836, the Weber brothers
described gait as a periodic movement and defined the gait
cycle on the basis of the pendulum-like forward leg motion [5].
In 1878, Muybridge used 12 cameras to capture racehorse
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gait to prove that all four horse hooves were off the ground
while trotting. He also used a similar approach to capture
a series of photographs of human movement [6]. The first
substantial quantitative use of gait analysis was in 1895 [4]
when Braune and Fisher used a photographic technique to
determine a human body’s velocity, acceleration, and dimen-
sional trajectory to estimate the forces involved during the
gait cycle. In 1930s, Bernstein studied the dynamic locomotion
of 150 subjects to determine the center of gravity of each limb
segment of the subjects using a photographic technique [7].

Ground Reaction Force (GRF) was introduced in human
gait understanding in 1924 when Cavanagh and Lafortune [8]
designed a force plate to measure the magnitude and the
direction of GRF. The platform was improved by Elftman
in 1938 using a high-speed cinematic camera to capture a
pointer movement resulting from the force applied to the
platform [9]. A substantial amount of knowledge was con-
tributed to the human locomotion analysis in the 1950s, with
the motivation to treat World War II veterans [10].

In the past two decades, the rapid rise in the capabilities of
sensor systems involving analytical computing technologies
has allowed the extraction of richer information from an
increasing number of sensing modalities. In this context,
developments in new gait-sensing instrumentation have under-
pinned the progress in the evaluation of different human
locomotion parameters based on an ever increasing volume
and quality of data. Understandably, this has also raised
awareness of challenges brought forward by the necessity to
achieve multi-source, multi-sensor fusion from big data with
diverse characteristics. Furthermore, it is unclear whether the
complex character of gait maps adequately onto simple and
widely used measurands, typically delivered by systems for
fast and reliable diagnostics, recognition and classification.
However, progress in machine learning technology has resulted
in deep learning models that can be applied with minimal
pre-processing on complex data and are capable of faster,
more accurate results from databases that are constantly grow-
ing in volume and range. It presents new opportunities for
detection, fusion and classification from different multi-source,
multi-sensor data. Among these, gait spatiotemporal parame-
ters are currently attracting attention due to the possibility
of using such information in a variety of applications, e.g.
healthcare [11], [12], sport [13], [14], and identification of
individuals for security [15], [16].

Gait analysis is still on its way to maturity, and there is
no gold standard sensing or data processing method. Further
in this Review, we organize the modalities mostly used to
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study human gait into three groups, based on the sensing
principle as well as the amount and character of the generated
sensor data: video sequence (VS), wearable sensors (WS),
and floor sensors (FS). We show that the sensing principle
used for this grouping also shapes the choice of deep learning
processing methodology: the VS solutions are based on action
recognition using spatiotemporal information; WS systems
typically comprise inertial sensors to acquire human body
velocity, acceleration and orientation during physical human
activity; FS characteristically monitor the GRF induced by
floor contact during the gait cycle. The data captured from
these modalities is analyzed and classified using sophisticated
supervised learning methods, based on appropriate assump-
tions.

This review is underpinned by an extensive literature search
but only the most recent works, combining gait recognition
with deep learning algorithms, are presented in more detail.

II. BACKGROUND

To outline the contribution of deep learning in human gait
analysis, it is necessary to understand how humans walk and
the applications of gait giving rise to the set of methods
utilized for analysis.

A. Gait Parameters

Gait can be perceived as a transformation of a brain activity
to muscle contraction patterns resulting in a walking sequence.
It is a chain of commands generated in the brain and transmit-
ted through the spinal cord to activate the lower neural center,
which will consequently result in muscle contraction patterns
assisted by sensory feedback from joints, muscles and other
receptors to control the movements. This will result in the feet
recurrently contacting the ground surface to move the trunk
and lower limbs in a coordinated way, delivering a change in
the body center-of-mass position.

Gait is a sequence of periodic events characterized as
repetitive cycles for each foot [4]. Each cycle is divided into
two phases (see figure 1):

a) Stance Phase (approximately 60% of the gait cycle, with
the foot in contact with the ground). This phase is subdivided
into four intervals (A, B, C, D).

b) Swing Phase (approximately 40% of the gait cycle with
the foot swinging and not in contact with the ground). This
phase is subdivided into three intervals (E, F, G).

A- Heel strike or Initial contact: It starts the moment the foot
touches the ground, and it is the initial double-limb support
interval. In the case of the right foot leading, the double
support starts with left foot being on the ground when the
right foot heel makes initial contact and finishes when the left
foot leaves the ground with the left toe-off prepared to swing.
At the end of this interval, the body weight is completely
shifted onto the stance (leading) limb.

B- Loading response or Foot flat: This is a single support
interval following the double support interval. The trunk is
at its lowest position, the knee is flexed, and a plantarflexion
occurs at the ankle.

C- Mid-stance: This is a single support interval between
opposite toe-off and heel-off. The trunk is in its highest point

Fig. 1. Important gait events and intervals in a normal gait cycle.

and slowing its forward speed. The body center-of-mass is
aligned with the forefoot (ball of the foot).

D- Terminal stance or Heel-off: The heel rises in preparation
for opposite swing. The trunk is sinking from its highest point,
the knee has extant peak near the time of heel rise and ankle
has dorsiflexion after heel rise.

E- Pre-swing: This is the second double-limb support
interval. The opposite initial contact occurs, and the hip is
beginning to flex, the knee is flexing, and the ankle is at
plantarflexion. The toe is in last contact before the swing,
finishing the push-off started in interval D.

F- Initial swing and Mid-swing: This interval begins with
the toe-off into single support and starting to swing. The body
weight is shifted to the opposite forefoot. In this instant, the
knee joint gets the maximum flexion. The hip is flexing and
the limb advances in preparation for a stride.

G- Terminal swing: This is the last interval of gait cycle
and the end of the swing phase. The interval begins at
maximum knee flexion and ends with maximum extension
of the swinging limb forward. The hip continues flexion and
the knee extends in regard to gravity, the ankle continues
dorsiflexion to end neutral, ready for the heel strike.

With regard to the above gait events, the following parame-
ters of human gait are usually analyzed in clinical settings [17]
for healthcare tasks, using various sensing and data processing
methods:

• Cadence or rhythm (number of steps per unit time)
• Stride length
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• Velocity
• Direction of leg segments
• Step angle
• Swing time for each foot
• Step width
• Support time
• Ground Reaction Force (GRF)
• Electrical activity produced by muscles
• Momentum and forces
• Body posture

It is worth mentioning at this point, that while the listed
parameters have clear observational value, it is difficult to
claim that any of these, or their combination, would represent
the maximum variability of the raw data due to a health
condition. This difficulty has a direct impact on the ability
to detect, with the lowest threshold affordable by the raw data
quality, a meaningful deviations from the norm.

B. Applications of Gait Analysis

The field of research in human gait is broad, with many spe-
cific applications. In medical applications, as gait abnormality
affects a high percentage of the population, gait is studied
to diagnose neurodegenerative diseases such as Parkinson’s
disease (PD), myelopathies, spinal amyotrophy, multiple scle-
rosis, cerebellar ataxia, brain tumors, cranioencephalic trauma,
certain types of dementia, neuromuscular diseases etc. [17].
In fact, the ground reaction force of individuals during the
gait cycle has been used to detect PD in [18]. The study
shows that stance time, swing time, stride time and foot
strike profiles can be used to distinguish PD patients from
healthy controls. In addition, the spatiotemporal parameters of
gait have been studied [19] to assess lower limb prosthesis
users.

In security applications, gait analysis as a biometric has
proven its success to distinguish and identify people, with
minimum cooperation required from the subject. The aim is
to identify individuals from a distant based on their walking
habit. Typically, individuals gait is captured by CCTV cameras
as reported in [20], [21]. In [22], [23], the ground reaction
force has been found to be significant in identifying subjects
based on their footstep signals and stepping behavior.

Injuries commonly occur during sports activity and some
methods to evaluate athletes’ recovery are based on gait,
e.g. by analyzing forces exerted on each muscle through
electromyography in [24]. The kinematic parameters of gait
are used to analyze various indoor and outdoor activities, such
as sports training and clinical rehabilitation of patients using
a wearable sensors [13]. Even different gait characteristics
assessment methods are used to assess athletes’ ability to
return to sport after surgery due to tear in the anterior cruciate
ligament which causes knee instability [25]. Further, the gait
dual-task paradigm for comprehensive athlete evaluation fol-
lowing a sports-related concussion are reviewed in [14].

It is interesting to note that gait analysis is utilized to clas-
sify a person’s gender based on their gait [26]. Furthermore,
attempts to identify a person’s emotional state, such as pride,
happiness, fear and anger, have been based on gait [27].

C. Deep Learning for Gait Analysis
Supervised machine learning is a branch of artificial intelli-

gence (AI) and a specific kind of machine learning. Algorithms
or mathematical models are built and trained with a given
set of inputs and desired outputs. A learning algorithm trains
the model based on two learning styles, shallow learning or
deep learning, to produce a trained “machine” that carries
out the desired task. The models are tested by exploring
the data structure based on the learned mapping function
to assign hypothesis class which is controlled by the user
to evaluate the model performance [28]. Shallow learning
depends on handcrafted features learned in a predefined rela-
tionship between the inputs and the output, such as linear
regression, logistic regression, decision tree, Support Vector
Machine (SVM), random forest, naïve Bayes, and k-nearest
neighbor.

Deep structured learning or hierarchical learning is inspired
by the biological neural networks’ structure and function. It is
based initially on the concept of multi-layer Artificial Neural
Network (ANN) with the aim to learn data representations
automatically; thus, deep learning becomes the method of
choice where the classification features, if known at all,
are complex, with no straight forward quantitative relation
to the raw data. Typically, the term ‘deep’ refers to the
number of layers in the variety of possible networks structures:
Deep Belief Networks (DBN), Feedforward Deep Networks
(FDN), Boltzmann Machine (BM), Generative Adversarial
Networks (GAN), Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN), and Long-Short Term
Memory (LSTM) a special kind of RNN. A comprehensive
presentation of the theory of ANNs and deep learning is not
within the scope of this Review, and the reader is referred to
established sources [29]. Further, we focus on models with
practical significance for gait applications such as CNN and
LSTM [30].

The CNN model is suitable for processing 1D, 2D or 3D
data that has a known grid-like topology [31]. The network
has the ability to learn a high level of abstraction and features
from large datasets by applying a convolution operation to the
input data. Commonly, the network consists of convolution
layers, pooling layers and normalization layers, with a set of
filters and weights shared among these layers.

The convolutional layers output a feature map harvested
automatically from the raw input data. The pooling layers
are utilized to reduce the size of representation and make
the convolution layer output more robust [29], [30]. The
CNN model uses commonly two types of pooling layers:
max pooling and average pooling. All convolution layers and
pooling layers have activation functions (e.g. Sigmoid, Tanh,
ReLU, Leaky ReLU), to calculate the weight of neuron and
add a bias, deciding whether to fire the neuron or not [32].

LSTM networks are favorable for processing time series
data, where the order is of importance, such as gait data
sequences. In essence, they exploit recurrence, by using infor-
mation from a previous forward pass over the network.

The computational complexities of deep learning are not
specific to gait applications. The goal of using ANNs in
gait analysis is to develop a model to extract gait features
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and perform well on unseen real-world gait data with high
prediction accuracy. Commonly, for appropriate training and
testing, the model is trained and validated on 70% of the
data and tested on the remaining 30%. In supervised train-
ing, the procedure is launched by initializing the weights
randomly, processing the inputs and comparing the resultant
output against the desired output. During training, the weights
and biases are adjusted in every iteration, until the error
is minimized, and validation is used to estimate the model
performance during training. Lastly, the model is tested with
unseen data, allowing to identify over-training.

The widely used accuracy measure for ANN gait analysis
is the confusion matrix [33]. It is a table to visualize the
number of predictions classified correctly and wrongly for
each class. The table consists of true positive, true negative,
false positive, and false negative classification occurrences.
One of the advantages of the confusion matrix display is
that it is straightforward to identify the decision confusions,
thus possibly concluding on the quality of the model and data
involved.

III. GAIT MODALITIES

The evolution of research in gait analysis suggests that,
in order to capture the distinctiveness of gait, the various sens-
ing modalities attempt to access biomechanical measures per-
taining to the body’s physical dimensions, body part masses,
or the time-varying muscle-generated forces applied during
the gait cycle. In the past decades, a number of modalities
have proven their ability to capture gait characteristics and
anomalies; however, the historically established methods used
to analyze gait heavily rely on handcrafted features. With such
an approach, salient features of the problem may be lost in the
process of feature engineering, and the classification result
can be data dependent. This can be mitigated by utilizing
deep learning for its capability of automatic feature extraction,
delivering high statistical confidence by learning rich features
of gait patterns from sensor data. Sensing modalities for gait
data capture used in conjunction with deep learning can be
divided into three main groups: video sequence (VS), wearable
sensors (WS), and floor sensors (FS); further, each of these is
described in more detail. In addition, the different types of
algorithms typically applied to analyze gait data are presented
and their ability to adjust to the characteristics of a modality
or and/or scenario is elucidated.

A. Video Sequence

Gait recognition based on VS has been driven by the
advances in general machine learning and image processing
methods. The most common aim is to distinguish the identity
of a person from a distance. A typical VS system consists
of several cameras with optics suitable for capturing the gait
cycle. Common VS data sources are suitably positioned CCTV
cameras. The information gathered in the form of sequential
video frames is subjected to image processing techniques, such
as threshold filtering, edge detection, pixel count, background
segmentation, counting of light and dark pixels, and converting
images to black and white [17]. Gait recognition based on
VS in literature is sub-divided into skeleton model-based

Fig. 2. From right to left: video sequence, silhouette images and EGI
image [20].

and skeleton model-free categories. (The above sub-division
reference is to skeleton models, not machine learning models.)

The model-based approach is in essence fitting video
sequences of gait to multi-segment skeleton models, as pro-
posed in [34], [35]. This method is computationally expensive,
because of fitting skeletal segment models on sensor data,
as well as the need to use the model-derived parameters to
extract features. The extracted features are classified using
shallow learning methods.

The model-free approach is based on extracting gait from
VS using feature engineering, as proposed in [36], [37]. Here,
deep learning is utilized to automatically extract gait features
from VS, which maximizes the use of data variability and
eliminates the dependence on handcrafting. Most of the avail-
able model-free processed data is represented by Gait Energy
Image (GEI), maps of optical flow and silhouettes [38] or
Chrono-Gait Images (CGI) [39], [40]. These representations,
extracted from VS, can capture both spatial and temporal
information. As an example representation, GEI is defined
mathematically as:

G E I (x, y) = 1/s
∑s

t−1
Ft (x, y), (1)

where s is the total number of frames to represent one gait
cycle, and Ft (x, y) is the binary silhouette of the subject at
time t . Figure 2 shows schematically the extraction of GEI
from the video sequence.

1) Video Sequence Databases: Once the VS representation
algorithm is implemented, the machine learning model must
be trained, validated and tested to assess its performance. The
widely used benchmark is to train and test the algorithm with
the following datasets (in chronological order of availability):
CMU Motion of Body (MoBo) [41], USF Gait Based Human
ID Challenge [42], CASIA [43], OU-ISIR treadmill [44],
OU-ISIR [45] and TUM-GAID [46].

The Carnegie Mellon University Robotics Institute Motion
of Body (MoBo) dataset [41] encompasses 25 subjects per-
forming four different walking patterns on a treadmill, namely
slow walk, fast walk, incline walk and walking with a ball.
The subjects’ gait is captured by six high-resolution cameras,
distributed around the treadmill.

The University of South Florida Gait Based Human ID
Challenge dataset [42] captures 122 subjects walking outside
with shoes and clothes variations, as well as under different
carrying load conditions. Gait is captured from a single
viewing angle.

The Chinese Academy of Sciences Institute of Automation
Gait Database CASIA [43] is divided into A, B, C, and
D datasets. The CASIA A dataset contains 20 people; for
each person, it contains 12 image sequences, four sequences
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for each of 3 angles (0, 45 and 90 degrees) to the image
plane. The CASIA B dataset consists of 124 subjects’ gait
sequences captured from 11 views. The subjects performed
normal walking, wearing a coat while walking, and carrying
a bag while walking. The CASIA C dataset was captured by
an infrared (thermal) camera from 153 subjects performing
normal walking, slow walking, fast walking, and normal
walking with a bag. The video sequence was taken from one
angle at night time. The CASIA D dataset contains the video
sequence and footprint images scans of 88 subjects with a
wide age distribution. The video sequence is captured from a
single angle and with no variations in clothing and carrying
conditions.

The Osaka University Institute of Scientific and Industrial
Research treadmill dataset, OU-ISIR treadmill [44], contains
200 subjects’ gait captured on a treadmill by 25 cameras from
different angles, 34 subjects with walking at different speeds
and 68 subjects with 32 clothing variations. The dataset is dis-
tributed in the form of silhouette sequences of subjects while
walking on a treadmill. The same group’s database on normal
surface walking (not involving a treadmill), OU-ISIR [45]
dataset, contains 4,007 (2135 males and 1872 females) with
ages from 1 to 94 years. The dataset consists of silhouette
sequences of the subject’s gait captured by two cameras.

The Technical University of Munich Gait from Audio,
Image and Depth database, TUM-GAID [46], contains
305 subjects’ gait captured by video recording cameras at a
single angle, while subjects walk indoors in both directions.
Six walking conditions are captured for each subject from the
side view namely four normal walks: one with coating, shoes
and one without (left and right), and two normal walks with
carrying a backpack variation (left and right). 32 subjects of
the cohort are recorded in two sessions (January and April),
adding clothes variation.

2) CNN Architectures: Table I summarizes the results
yielded by gait recognition VS models, comparing deep con-
volutional ANNs with automatic feature extraction to shallow
learning algorithms, where features are handcrafted. Deep
learning models can be split into two groups, a single deep
ANN and multiple deep ANNs joined in the last layer. The
network inputs are single or a pair of processed silhouettes
sequences. The latter case is mostly used for verifying individ-
ual’s identity, with a view of ’probe and gallery’ gait features.
The ’probe‘ is an identified or verified subject, and the
’gallery‘ consists of templates as a browsing data set, where
the probe is searched and matched to the closest instance in
the gallery. These are examined in more detail below, for gait
identification or verification.

a) Single deep ANNs: The single ANN input is a video
sequence of images, on which the top softmax layer will
perform classification based on the desired output for the given
input. The softmax score outputs 1 for the true-match subject
and 0 for false-match subjects. During validation, the loss is
computed using cross-entropy between the softmax outputs
and the corresponding desired output (the ground truth). Single
CNN with a single input architecture has been investigated by
a number of groups, with some examples outlined below.

TABLE I

RESULTS FOR GAIT RECOGNITION FROM VS

Yeoh et al. [47] used a CNN model trained on a single
input as GEI. For testing, the softmax classifier in the last layer
based on Euclidean distance is replaced by a Support Vector
Machine (SVM) classifier to compute one-vs-all (probe vs
gallery). The model, evaluated on OU-ISIR Treadmill dataset,
yielded competitive performance in clothing-invariant for the
identification of people.

Yan et al. [20] proposed a CNN model with Multilayer
Perceptron (MLP) classifier. The input is a single GEI for
automatic extraction of gait features. The CASIA-B dataset
is used for evaluating the methods. The model is trained
using multitask learning to predict multiple human attributes.
95.88% accuracy for each task is achieved; however, it was
realized that the changes of scenes or view could be general-
ized better by training on more data.

Shiraga et al. [48] designed GEINet, which is a CNN with
two sequential groups. The network input is a single GEI
image (from OU-ISIR database) in the training stage. In the
testing stage, the dissimilarity between a probe GEI and gallery
GEI pair is computed using the distance between them at the
fully connected layer. The model performs well on cross-view
for gait verification and identification.

Wolf et al. [49] proposed a 3D CNN with a 3D spatio-
temporal tensor as input, consisting of a grey-scale image for
the first channel and optical flow for the second and third
channels. The model is trained and tested using the CASIA-B
dataset, MoBo database and UFS database. The approach was
evaluated on variations in walking speed, clothing and the
view angle. Based on this architecture, Castro et al. [50]
used a spatiotemporal 3D tensor of the optical flow as the
input of the CNN. The network was trained and tested using
the TUM-GAID database with gait scenarios, clothing and
carrying variations for each subject. Although the network
accuracy was significantly improved using the optical flow
rather than using silhouette-based input. However, it is difficult
to generalize on which feature extraction method outperformed



9580 IEEE SENSORS JOURNAL, VOL. 19, NO. 21, NOVEMBER 1, 2019

Fig. 3. [54]: High-level difference architectures for small view-angle differences: a) Siamese CCN with probe and gallery input; b) Triplet CNN with positive
probe, negative probe and gallery; Low-level difference variants of a) and b) for substantial view-angle differences: c) single CNN with probe and gallery;
d) Siamese CCN.

the other, since [49] and [50] are evaluated on different
datasets. Nevertheless, it is clear that the optical flow feature
can present robust gait spatiotemporal information for use in
a CNN architecture.

b) Dual deep ANNs: The input into a dual network
consists of two different images, as probe and gallery under
similar conditions; however, different gait scenarios, viewing
angle, as well as clothes and carrying conditions, may be
involved. This architecture is effective in gait verification
since the networks have the same weight and structure, which
allow the extraction of gait features automatically in the same
manner. The outputs are matched using contrastive loss to
find the Euclidean distance. The latter can be compared to a
threshold to identify matching pairs or to label an imposter if
a match cannot be found. Below is an outline of architectures
applied for CNNs with two inputs. Figure 3 [54] presents some
dual architectures used for verification and identification.

Zhang et al. [55] designed a shared parameters ‘Siamese
twin’ CNN, each twin comprising a convolutional layer, a
max-pooling layer and three fully connected layers to extract
gait features automatically. The two twin outputs are connected
to the contrastive loss layer. A pair of similar or dissimilar
GEI images from the OU-ISIR database are used as an input
to the Siamese network. In the training stage, the weights
are shared simultaneously to optimize the network, and the
model is fine-tuned by back-propagating with a contrastive
loss. The gallery member with the nearest training sample is
identified by testing to allow the feature metric computation of
a discriminative loss function. The latter drives the similarity
metric [56] to be small for pairs representing the same subject,
and large for different subjects. Considering the changes
of cross-view in real-world human identification scenarios,
the model performs well in gait verification.

Wu et al. [57] proposed a CNN to extract gait features
directly from the raw silhouettes’ sequence for cross-view
gait recognition. Gait sequences from the CASIA-B dataset
are used to train and test the network. In the testing stage,
the Euclidean distance is measured for similarity using the
probe and gallery method, achieving an accuracy of 94.1%.
Furthermore, in [58] several CNN that take two inputs as probe
and gallery have been shown to outperform other approaches,
including twin CNNs [55], [57]. Two GEI images are used
for gait verification based on cross-view gait recognition.
The dataset to train and test the proposed networks are the
CASIA-B dataset, OU-ISIR database and USF database. The
proposed methods outperformed the previous state-of-the-art
methods by a significant margin in the three datasets.

For cross-view gait recognition, Takemura et al. [54] consid-
ered different architectures for verification and identification.
This is based on the assumption that the absolute similarity
scores are important for the verification task, while the relative
similarity scores between a probe and the galleries are impor-
tant for the identification task. For verification, a Siamese CNN
with shared parameters is proposed (see figure 3a) to discrimi-
nate whether two inputs originate from the same subject or not,
based on the contrastive loss value. For identification, three
parallel CNNs are deployed as a triplet network (see figure 3b).
The triplet input is three GEIs: a query (the probe subject),
a positive (from the same subject) and a negative (from a
different gallery member). A triplet ranking loss is defined
as the difference between two feature vector distances: the
distance between positive and query and the distance between
negative and query. The parameters of the triplet CNN are
trained so that the dissimilarity between a probe and the
same subject is relatively lower than that between a probe
and different subjects. To accommodate possible substantial
differences in the GEIs by viewing angle, low-level difference
structures are introduced, as they are more directly affected by
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Fig. 4. Gait GEI images at 14 viewing angles [54].

appearance differences due to taking the difference between
a matching pair closer to the input level (see figure 3c)
and figure 3d). Cross-view gait recognition is demonstrated on
OU-ISIR and OU-ISIR Multi-View Large Population datasets,
with 10,307 subjects’ video sequences captured from 14 angles
(see figure 4); however, the existing methods are difficult to
evaluate on this dataset, and OU-ISIR LP is utilized to confirm
the hypothesis regarding the network architecture.

3) Transfer Learning: Transfer learning is a comparatively
new concept in ANNs and is the next strongest driver, after
supervised learning, of the commercial success of machine
learning [59]. Essentially, it is applying knowledge gained
to solve a problem to a multiplicity of related problems.
‘Pre-trained’ models are beneficial as a starting point on
specific ANN solutions, given the vast computing and time
resources required to develop detailed physical models on
these problems. Compared to starting from scratch, Transfer
learning allows a substantial jump in the starting point for the
delivery of a related ANN model [60].

Li et al. [61] used supervised pre-training of a VGG-D CNN
(Visual Geometry Group) model and evaluated the efficacy
of learned features on gait recognition tasks. The network
consists of 16 convolutional layers and 3 fully connected layers
with a nearest neighbor classifier. The silhouette images from
the OU-ISIR dataset are used to train and test the network
without fine tuning to capture gait spatiotemporal aspects.
The probe and gallery method is used to identify people in
a cross-view setting, significantly outperforming prior state-
of-the art methods for both verification and identification.

Alotaibi and Mahmood [15] determined empirically the
appropriate CNN architecture for automatic gait feature
extraction from GEI images using the CASIA-B dataset.
They applied two transfer learning methods to the network

pre-trained with 24 subjects. ‘Fine-tuned CNN’ involved
adding one more subject (new total of 25 subjects) and
dropping the weights of the softmax layer followed by
re-training of the entire model; ‘re-learn softmax only’
involved ‘freezing’ the weights of the convolutional layers
and the weights of the softmax layer were re-learned. While
the computational time for pre-training was 124.82 s, adding
a single subject by fine-tuned CNN took 42.41 s and only
22.12 s by softmax re-learning.

B. Wearable Sensors

WS are an obvious means to acquire human gait due to
their convenience, efficiency and lower price. Unlike other
gait capturing systems, WS impose upon the user to coop-
erate wearing the device in a non-invasive way to provide
gait signals. The advances in electronic devices and signal
processing techniques have extended the applications of WS
sensors to produce a measurement of human body orientation,
position and specific force in space and time. The inertial
measurement unit (IMU) is a type of WS system that has
been extensively used due to its small size, cost, light weight,
and good precision characteristics. A typical IMU provides
the most widely used combination of sensing modalities to
capture human activities, including gait. It comprises of an
accelerometer, a gyroscope and often a magnetometer, which
gives the heading direction. Additional components such as
batteries, microprocessors and communication modules are
arranged to jointly operate an IMU system.

Gyroscope sensors measure the angular velocity as the rate
of change of the sensor’s orientation, while accelerometer
sensors measure the acceleration of the body resulting from
the acting forces in the opposite direction. A combination
of these sensors can create a comprehensive report on the
human body orientation, gravitational forces, velocity and
acceleration [5].

Furthermore, it has been found convenient to use the
gyroscope and accelerometer, usually integrated in a smart-
phone, benefiting from predictable availability and positioning,
as well as eliminating the need for additional hardware.
Mobile users’ authentication is an acceptable approach when
other gait authentication is not deployable. In the health-
care domain, IMU-equipped smartphones allow inexpensive
prediction of falls due to neurological disorders or freezing
of gait in patients [62]. The computing power on-board
of a smartphone can be used as a standalone system to
perform all tasks required for decision making and com-
municating with healthcare providers in any life-threatening
situation.

The analysis of WS signals is a challenging task con-
sidering the large number of observations recorded per unit
time. This is due to the spatiotemporal nature of the gait
cycle and the difficulty to relate in a straightforward manner
WS signals to a known gait characteristic. Manual feature
extraction is the classical way for gait analysis using WS,
and it is time-consuming and depends on knowledge of
the context in which the signals are acquired. Since perfor-
mance is key in real world applications, deep learning has
emerged as a promising data processing method by extracting
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TABLE II

RESULTS FOR GAIT RECOGNITION FROM WS

automatically reliable discriminative features of human gait,
outperforming the approaches based on handcrafted features.
Table II summarizes the results yielded by gait recognition
models based on WS using various deep ANN models.

The sensor position on the body and the number of sen-
sors comprising the system are an essential factor for the
quality of the harvested data. In a systematic review analy-
sis, Panebianco et al. [63] assessed accuracy and repeatability
using 17 algorithms for their ability to monitor temporal
parameters of human gait from 5 IMUs: one on the back, two
pairs on the shanks and two pairs on the feet. For estimates
of stance time, algorithms based on the acceleration of the
shank and foot perform better than those based on the lower
back; however, the sensor position did not affect the step
estimation. For toe-off and heel strike detection, algorithms
estimating angular velocity performed better overall, with
notable dependence on the sensor positioning. Analysis has
concerned mostly with the distinction between normal and
abnormal gait, as follows below.

1) Normal Gait Analysis: Analysis of normal gait para-
meters using WS has immensely attracted the interest of
researchers and clinicians. The following are different methods
and techniques that have been proposed and implemented for
various applications.

Zebin et al. [64] proposed a system comprising 5 IMU
sensors, worn on the lower back, thighs and shanks, for activity
recognition including gait. A CNN based model is used to
extract the features automatically from time-series raw data
and achieve higher accuracy compared to the handcrafted
features with shallow learning. In another work, 7 IMUs posi-
tioned on the chest, arms and legs along with the12 accelerom-
eters close to the limb joints, were used by Ordóñez and
Roggen [65]. A DeepConvLSTM model is trained in a
fully-supervised manner on human activities including gait.
The DeepConvLSTM model outperforms previous results on
the same dataset. However, increasing the number of sensors
exacerbated the extraction of gait features compared to the use
of WS attached to the pelvis and lower limb only [64].

For gait authentication, Gadaleta et al. [66] used a CNN
model (see figure 5) to extract gait features from a single WS
placed on the shank for each subject. Data from 15 subjects’
gait is used in the training stage and 9 in the testing stage.
In the latter, the network weights are frozen, and the CNN
model is used to extract features, further the features are feed
to SVM for classification. Thus, increasing the training dataset
was suggested for improving the model performance. In a later
work by Gadaleta and Rossi [67], the proposed CNN model
is used to extract gait feature vector from a single subject
automatically, the gait feature are used to train a single-class
SVM. The system can distinguish between an impostor and the
user whose gait is used for training. The IMU signals acquired
from smartphones are tested on a user against 14 impostors,
yielding false positive and false negative rates less than 0.15%.

Zhao and Zhou [68] proposed a CNN model for gait
labeling and authentication. The input to the network for
automatic gait features’ extraction is an Angle-Embedded Gait
Dynamic Image (AE-GDI), which is a transformation of a
WS data series. This allowed comparison with the state-of-the-
art performance on VS (OU-ISIR) and WS (MCGILL [69])
datasets.

Similar to [64], Dehzangi et al. [70] placed 5 WS at
various body locations. WS signals obtained from the sensors
at chest, right wrist, knee and ankle, as well as the lower
back of the subject, allows the study of CNN performance on
time-frequency image transformation of raw signals. A total
of 10 subjects’ gait data were used to train and test the
network; accounting for the multi-sensor character of the data,
early and late fusion methods were applied, achieving state-
of-the-art in subject identification. The deep learning approach
to sensor fusion is addressed in more detail in Section VI.

2) Abnormal Gait Recognition: Deviations from normal
gait are extensively studied by WS, the main targets being
to classify neurodegenerative conditions, or to prevent falls in
older adults. While the assumptions underlying various algo-
rithms differ, in practical applications it often appears more
convenient to use a single WS for capturing a discriminative
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Fig. 5. Convolutional neural network to extract and classify gait features from wearable inertial measurement unit with accelerometer and gyroscope
sensors [66].

gait feature. The sensor system embodiments used for abnor-
mal gait analysis can be grouped into dedicated IMU systems
and smartphones. Lorenzi et al. [71] used a single IMU unit
positioned on the head, to collect gait patterns during the gait
cycle, aiming to distinguish normal gait from the freezing
of gait and irregular steps in Parkinson’s disease (PD), using
dynamic time warping to select the input features to the ANN.

Deep learning recommended itself as an improved approach
to recognizing the abnormality in human gait, in terms
of classification accuracy and computational requirements.
Camps et al. [72] used a waist-positioned IMU and an
8-layers CCN to achieve an accuracy of 90.6% to detect
freezing of gait (FOG) detection in PD patients. The optimal
architecture implemented with two convolution layers and
20 convolution filters. The gait of 32 patients was recorded
by a smartphone accelerometer and gyroscope casually placed
in the subject’s trouser pocket. The CNN detected the FOG
events in Fourier space with 91.8% accuracy, which is slightly
higher than the CNNs methods proposed in [72].

In a recent study, Xia et al. [74] proposed a CNN to
extract gait features from three accelerometers positioned
above the hip, knee, and ankle. Against the aim to dis-
tinguish FOG events from normal gait, evaluation on the
Daphnet FOG dataset [75] from 10 subjects yielded an accu-
racy of 90.60%. Several other deep ANNs [76], [77] have
been trained and tested for human activity recognition from
raw spatiotemporal datasets, including the FOG dataset used
in [75]. Rad et al. [76] and Hammerla et al. [78] used a CNN
performing well in human activity recognition; however, the
performance on the FOG dataset was weaker. Murad and
Pyun [79] improved the FOG recognition accuracy to 94.1%
with their proposed deep RNN trained on the Daphnet FOG
dataset. Ravì et al. [77] argued that deep learning models do
not perform well when a small number of activity segments are
available and proposed feature fusion, where shallow features
are fused with features derived by deep learning in the fully

connected and the softmax layers. With Daphnet FOG data,
this method yielded for ‘freeze’ and ‘no freeze’ precision
of 67.89% and 97.40%, as well as recall of 59.52% and
98.15%, respectively.

As an alternative use of deep learning, stride length esti-
mates are derived in clinical settings to indicate, an early or
further progression stage of neurological disorders. In the work
reported by Hannink et al. [80], stride length is estimated
automatically using WS and deep CNNs. The WS set consists
of a 3D-accelerometer and a 3D-gyroscope attached below
each ankle joint. The aim of this approach is to extract
spatiotemporal gait parameters to aid the physician in scor-
ing gait impairment objectively. The CNN performance was
evaluated on the eGAIT dataset [81], using 10-fold cross
validation on three different stride types. It was observed
that the performance was dependent on stride definition and
the better results were achieved for mid-stance to mid-stance
intervals. Importantly, the CNN analysis of WS data was not
affected by the use of a four-wheeled walking aid, where
the data processing became problematic with the GAITRite
walkway sensor system (see Section IV. C.).

Gait analysis using WS has been extensively studied for the
detection of falls in older adults. Most of the reported work
is based on handcrafted features deep learning is appeared
as an improved approach in terms of increased classification
accuracy and reduced computational load. Aicha et al. [82]
reported work on CNN, LSTM, and ConvLSTM models
used to extract gait features from raw accelerometer signals
positioned on the lower back. The model trained and tested on
296 participants’ gait to predict fall risk as the main task and
user identity as an auxiliary task. The models’ performance
with features extracted using deep learning was observed to
be marginally better compared to handcrafted features.

Hu et al. [83] attempted to capture the higher risk of falling
while walking on uneven surfaces as compared to the flat
surfaces walk. Essential here is the ability of subjects, as a
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TABLE III

RESULTS FOR GAIT RECOGNITION FROM FLOOR SENSORS

function of age, to produce the stability required to avoid
a fall. A single IMU unit positioned on the trunk delivered raw
signals from 35 users: 17 older adults (age: 71.5 ± 4.2 years)
and 18 young adults (age: 27.0 ± 4.7 years) used as an input
to the LSTM network. Automatically extracted spatiotemporal
gait parameters are used to classify age-related differences in
walking on a flat or uneven surfaces.

C. Floor Sensors

One of the key points in monitoring human gait is to
capture the forces placed on the ground by the foot during gait
cycle. The interaction of the human body with the walking
surface is the point of contact with the environment, which
cannot be avoided or modified at will. This interaction is
typically described in terms of the GRF. Figure 1 emphasizes
that the details of the GRF dynamics follow the gait cycle,
as the 7 intervals are defined by the contact of one or
both feet with the walking surface. This interaction is highly
individual: in the short term it can vary as a result of a
temporary psychological or physiological condition and longer
term changes can take place as a result of ageing or a long-
term healthcare condition. Gait monitoring with floor sensors
requires minimal, if any, cooperation or attention by the user
and is amenable to embodiments for long period, continuous
data capture. This motivates the advances in sensor technology
for footsteps capturing systems and processing of GRF data
to extract distinctive information on gait events, evolution of
walking habits and reaction to physical and psychological
interventions. Typical applications of FS are in the fields of
biometrics, healthcare, sports, safety and security.

GRF data obtained from force plates has been
successfully used for biometrics in [22], [84], [85].
Vera-Rodriguez et al. [84] have assembled the largest to
date footstep database, SFootBD [86], containing about
9900 single strides from 127 volunteers. In the healthcare
context, GRF sensor data has been used for flat foot
diagnosis in children [87], for falls detection in a smart
home environment [88] and for monitoring performance on
dual cognitive tasks [89], [90]. Discrete switches [89], [91],
[92], a row-column contact wire mesh [90] and pressure
sensors [87], [88], [90], have been most commonly used
as floor GRF sensors to derive stride length, width and
duration; stride variability; cadence; velocity and other spatial

characteristics of gait [89]–[92] as well as time-on-heel to
time-on-toe ratio [93]. While these features are of common
use in healthcare practice, they are not straightforward to
extract and interpret from substantial volumes of raw data.
Consequently, data-mining methods and shallow machine
learning have been introduced in the past couple of decades
to process data from FS. Table III summarizes the results
yielded by gait recognition models based on floor sensor
using deep ANNs compared to shallow learning.

The recently demonstrated success of deep learning in
processing of VS and WS data has induced interest in apply-
ing CNNs on data from FS. Singh et al. [94] proposed a
pre-trained 17 layers CNN and gated recurrent units to extract
gait features automatically from images of footstep GRF. The
images were obtained on a 1 cm pixel grid covering an area
of 80 cm×80 cm, as point measurements of resistance between
the upper and lower surfaces of a conductive polymer fiber
sheet. The raw sensor data is used in image format as an input
to the Inception-v3 model. The model is tested on identifying
13 people and yielded an accuracy of 87.66%. The limited
volume of the training dataset was identified as the main hurdle
towards better performance of the proposed method.

Cantoral-Ceballos et al. [95] used a principally different
approach to floor sensing: instead of point measurements,
they used a distributed Plastic Optical Fiber (POF) sensor
layer sandwiched unobtrusively between the top pile layer of
a commercial carpet and deformable underlay, implementing
Guided-Path Tomography [96] (iMAGiMAT, see figure 6).
With frame rates of 256 Hz and spatial sampling adequate
for inverting the data into footstep image frames, it was
possible to capture in substantial detail the dynamics of
an uninterrupted sequence of at least 4 footfalls at a time.
Costilla-Reyes et al. [97] demonstrated that, in the classifi-
cation of 10 manners of walking from temporal data sub-
sets, deep learning models (Deep Feed Forward ANN with
10 hidden layers and a RNN) outperformed shallow learning,
with some exceptions attributed to the shortage of training
data. This was partially mitigated in a further work [98]
where the UoM-Gat-13 dataset was introduced, as a full set
of spatiotemporal raw signals (1400 frames at 256 Hz from
each of the 116 sensors) from 10 manners of walking and
3 dual tasks. The raw signals were down-sampled, reshaped,
and normalized to form a spatio-temporal input sequence for
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Fig. 6. iMAGiMAT footstep imaging system. a) geometry and number of the
POF sensor elements (after [97]). b) tomography image reconstruction (right
panel) as top view of deformation by a person standing (seen in the image
in the left panel) with weight on the ball of right foot and the left heel [95].
The orientation of a) is at 90 degrees with respect to the two panels in b).

a CNN. The latter consisted of two convolutional layers,
followed by one average pooling and one max pooling layers.
The network, trained and tested on the UoM-Gait-13 dataset
using a spatiotemporal Raw Sensor Matrix (RSM) represen-
tation, achieved classification accuracy of 97.88 ± 1.70%. For
comparison, tomography images were reconstructed from the
raw data and classifications by shallow and deep learning
models were obtained for the three input options: raw spa-
tiotemporal sequences, RSMs and reconstructed images. The
deep learning approach with RSM input outperformed by a
margin all others, on all measures: accuracy, precision, recall
and F-score.

A deep residual ANN based on ResNet architecture was
proposed by Costilla Reyes et al. [99] for footstep biometrics.
The pressure magnitude exerted by footsteps is sampled by
two floor mats, with 88 piezoelectric sensors each, arranged
to capture most of the full gait cycle. Different representations
are adopted for the raw spatial and temporal components
of the data. For the spatial component, each footstep frame
is reshaped into a 2D matrix with the sensors of the two
mats concatenated and pixels re-calculated as accumulated
pressure. The temporal component representation optimizes
the data variability against training time by selecting frames
corresponding to the heel strike, flat foot and heel-off inter-
vals. Correspondingly, the network architecture consists of
spatial and temporal streams; each stream has convolution,
batch normalization, max pooling and fully connected layers.
Features learnt by the model are classified in the final

softmax layer using a one-vs-one linear SVM. Class-score
level fusion, applied on the outputs from the classifiers of
the spatial and temporal streams, were proven to perform
better than lower level feature fusion. Biometric verification
was demonstrated on the SFootBD database [86] for three
benchmarks, driven by common security scenarios: airport
concourse (40 stride footsteps for 40 users and 763 impostors),
office area (200 stride footsteps for 15 users and 2697 impos-
tors) and private dwelling (500 stride footsteps for 5 users and
5603 impostors). In all three benchmarks, the deep residual
ANN outperformed shallow CNNs and FNNs, as well as the
handcrafted feature approach in [86]. In the private dwelling
scenario alone, the models improved the Equal Error Ratio
(EER), more than 3 times in validation and more than twice in
evaluation, over the state-of-the-art. The superior performance
was assigned to combining together the ResNet and SVM
models, as well as the distinct representations for the spatial
and temporal components.

IV. MULTI-MODALITY GAIT SENSOR FUSION

In its narrow sense, multi-sensor data fusion is combining
data captured from multiple information sources, where the
resulting information pool produces a new representation,
distinct from those captured by individual sensors [100]. Gait
feature fusion has been extensively used to study human
gait features and anomalies associated with forces generated
during the gait cycle. Deep learning is called for to com-
bine multi-sensor data from all three modalities reviewed in
Section III. Several WS data are fused in the ANN layers
to deliver body orientation, position and specific force in
space and time. FS are based on sensor fusion since the
proposed methods are based on using a set of switch sensors,
pressure sensors or POF sensors to log the forces associated
with foot ground contact. Further, we focus on the fusion
of gait spatiotemporal sequences captured from at least two
modalities, e.g. lower limb joint angle trajectories captured by
VS or WS, and forces generated by the foot contact captured
by FS or sensors under the foot. Table IV summarizes the
results yielded by gait recognition models based on sensor
fusion using deep ANNs.

In the healthcare context, deep learning has been used for
data fusion to address gait-phase detection. Ding et al. [101]
performed real-time gait-phase detection using one IMU sen-
sor mounted on the shank to measure the absolute heading
and angular velocity, as well as three foot-switches to label
gait activities using deep learning. An LSTM-based gait-phase
recognition algorithm is used to train the labeled data. Results
showed 96.1% accuracy as compared to 89.1% and 91.8%
for shallow learning techniques such as SVM and MLP,
respectively. The reported results shows a strong correlation
between gait phase and the kinematic of the shank.

Deep learning was used to fuse sensors data by
Vu et al. [102] for gait-phase detection to assist in taking
full control of gait for transtibial prostheses users. This
will result in sufficient control of active prosthetic devices
in real-world applications. The proposed algorithms detect
gait-cycle percentages and predict future gait percentages in
the case of a delay in the system. An Exponential Delay Fully
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Fig. 7. 3D CNN+LSTM architectural detail of the proposed multimodal human gait recognition using VS and WS fusion [105].

TABLE IV

RESULTS FOR GAIT RECOGNITION FROM MULTI-MODALITY SENSOR FUSION

connected ANN (ED-FNN) is developed for this purpose.
It is based on short and long delay to predict fast changes
in the gait cycle progression on flat and 15-degree inclined
surfaces. The model was trained and tested to detect gait-phase
from raw IMU signals, positioned on the lower shank. Two
force-sensitive resistors (FSR) were placed under the foot for
accurate heel strike and toe-off detection. Although, strictly
speaking, FSR data was not used in the ED-FNN processing;
however, it contributed to a better quality data input to
the network. The model performs well in an offline setting
as compared to other methods based on handcrafted fea-
tures. Furthermore, this methodology uses less computational
power, which is an essential factor to deploy on autonomous
systems.

Multi-channel redundant fusion for generating bipedal gait
was proposed by Mazumder et al. [103] with the aim to obtain
a robust stride time and gait phase using a Radial Basis ANN.
The stride time is calculated and fused to derive a robust
fail-safe timing information based on which joint trajectory
mappings. The proposed methodology estimates the user’s

intention to start, stop or change a particular gait pattern.
A set of sensors are used for test data, namely an IMU
sensor, foot pressure sensors and a myoelectric sensor for
electromyography (EMG). The four EMG signal channels are
fused with the pressure and IMU sensors signals to estimate
stride time using the ANN. The proposed method is tested
on five subjects walking on a treadmill, yielding classification
accuracy with minimum square error < 0.05.

In a similar approach, Mun et al. [104] used a deep
ANN to estimate and quantify spatiotemporal gait parameters
from foot characteristics. This was achieved with a footstep
feature measurement system that scans the foot while a subject
performs various motion tasks, and a set of IMU sensors
integrated in a commercial motion-capture system (Xsens
MVN, Enschede, The Netherlands), to detect heel strike and
toe-off off events during gait cycle. The sensors data is fused in
the deep layers of the ANN to estimate the gait features during
the gait cycle, namely: stride length, step length, velocity,
stride time, step time, single-limb support time, double-limb
support time, as well as swing time and stance time. The
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proposed methodology yielded an accuracy of 95% in tests
with 42 patients with predicted output of fast, normal and
slow walk.

Gait recognition from two modalities has been proposed in
studies of the lower limb trajectory by fusing VS and WS
features extracted by deep learning network layers. Kumar
et al. [105] proposed evolutionary 3DCNN+LSTM to extract
features captured by VS and WS with IMU and pressure
sensor signals. The system used to capture gait consists of
a video camera, 17 precision IMU nodes and two pressure
insoles included in a Shadow Motion wireless body suit. The
proposed methods were tested on 19 males and 4 females
performing four different walking styles, namely normal-walk,
fast-walk, walking while listening to music and walking while
watching video on mobile. The CNN is utilized to extract
gait spatiotemporal features from VS. Two LSTMs models
were used: one to process the CNN output and the other to
extract gait spatial-temporal features from the WS. In the final
stage, a Grey Wolf Optimizer [106] is used to fuse the LSTMs
outputs. The model achieved an average accuracy of 91.3% on
gait labeling.

It is also worth noting that Vera-Rodriguez et al. [107]
have suggested that their fusion of FS and VS modalities,
implemented on handcrafted features as an input to shallow
learning methods, is amenable to deep learning methods
for automatic extraction of fused features to improve the
accuracy.

V. DISCUSSION

Gait analysis does not benefit from the advantage of deploy-
ing traditional and proven methods, such as harmonic analysis
where functions are represented in a full and orthogonal
base, e.g. as a superposition of sine and cosine functions.
Unfortunately, a full and orthogonal function base for gait is
difficult to define, or in other words, the gait primitives are
largely undefined. The gait features commonly used in practice
(see Section II.A.) neither are fully independent nor do they
exhaust all the possible members of the set. On this backdrop,
the automatic extraction of those gait features which allow to
distinguish a certain target case with the best accuracy, e.g.
in healthcare or biometrics, appears to be a winning strategy.
However, the nature of human gait requires distinct approaches
depending on the character and volume of the recorded sensor
data (sensing modality, availability of datasets, computational
cost, etc.). This causes variations in the optimal choices made:
the modalities for complementary fusion, the data representa-
tions, the optimal deep learning models, as well as the manner
of their overall deployment.

A. Spatiotemporal Character of Gait Data

Because of the ambulatory nature of human gait, events
defining the gait cycle are recurrent in space and time.
Common patterns are manifested in a sequence of spatial
regions and time periods, lending themselves to methods to
suppress noise, e.g. by applying statistics over long data
sequences. As the gait cycle duration is in the order of 1 s,
acquired time sequences are usually abundantly sampled and
require down-sampling to optimize computational resources

and improve signal-to-noise. The approach to spatial sampling,
however, is much less standard and is strongly modality-
dependent (see Section V.B.). Estimating correctly the spatial
resolution limit determined by the data is crucial for the
choice of suitable data representations and for interpreting the
calculated accuracy.

A direct comparison shows that classification with features
automatically extracted from fused spatiotemporal FS data (see
Section III.C.) yielded better accuracy compared to features
from spatially-integrated temporal data or time-integrated foot-
prints reconstructed from the same dataset. Thus the benefits
of spatiotemporal data fusion by deep learning CNNs appear
to be beyond doubt. However, that has been achieved either
at the data representation level or at the classification score
level and not in the deep layers of the CNN. Furthermore,
when trained on reconstructed footprint images only, deep and
shallow models exhibited comparable performance. Arguably,
this is because the spatial reconstructions involve solving an
ill-posed and ill-conditioned inverse problem. This generated
a much larger feature vector of pixel values, compared to the
substantially smaller number of values in a single measure-
ment frame, used for spatiotemporal fusion where deep CNNs
outperform shallow models.

An interesting consequence of the spatiotemporal character
of gait is the drive towards accurate time-stamping. This has
resulted in the combination of modalities, such as IMUs plus
shoe-sole switches, to detect heel-strike and toe-off for correct
labeling of gait phases from WS data.

B. Multi-Sensor Incentives for Deep Learning From Gait
Data

Manual fusion may take place at the data pre-processing
stage when constructing the data presentation, e.g. comple-
mentary fusion in the case of RSMs, or collaborative fusion
to generate a sinogram image of the Radon transformed
FS data [98], which then can be used for data inversion
into ‘center-of-mass” coordinates or footstep images (see
figure 6). In contrast, automatic extraction of fused features
may take place in the convolutional layers of the deep ANNs.
However, the preference has been to fuse the spatial and
temporal components at the classification score level (see
Section III.C.)

Deep learning from gait data is most mature for VS,
due to the ease of borrowing methodology from well pop-
ulated research areas, such as face recognition. Translation of
approaches such as object segmentation and detection, as well
as ‘probe and gallery’ methods in image recognition are a
few examples. Other reasons for the notable progress made
with VS is the relative abundancy of reliable databases with
variations in the viewing angle and scenes – all facilitated
by the variety of ubiquitous sensing technology and fueled
by security and surveillance applications [108]. This also may
explain why the drive to fuse VS with other gait modalities
is comparatively weak; in fact, VS arguably capture already
fused data and gait monitoring uses only some of that data,
as it does not concern with the part used for face recogni-
tion. Since VS for gait is less demanding in terms of pixel
resolution and close-up, it can be speculated that accurate
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identification from gait could result in dis-applying facial
recognition, wherever practical. Nevertheless, the fusion of
VS with other modalities has been successful, mainly in the
context of laboratory work (see Section IV).

WS offers the widest range of sensor and data types, as well
as varying degree of consumer market penetration and level
of collaboration by the user. Sensor fusion within the WS
subset of modalities is systematically researched to deliver
the next generation of health monitoring systems, and to
satisfy the growing interests in activity recognition for com-
mercial ecosystems comprising of smartphones, smartwatches,
activity bands and other health/fitness monitoring devices.
Progress will depend on the technology available, but it is
very likely that such devices will use massively deep learning
for sensor data fusion in order to personalize their owner’s
experience.

FS need to cover substantial areas where floor contact
may be effected, thus they typically employ collaborative
fusion from a large number of identical discrete or distrib-
uted sensors and measurands, deep learning from FS data
is comparatively new and reports of complementary fusion
with other gait modalities have been rare, which should be
judged in view of the scarcity of appropriate datasets. Anyhow,
the information resulting from sensor fusion with FS would be
undoubtedly richer than just by VS and/or WS, thus delivering
even more accurate classifications. Fusing FS with VS for
security application can help to overcome the challenges of
gait recognition in different scenes and limited angular views
in VS; reciprocally, VS data can be invaluable to resolve
the challenge of simultaneous users captured by FS systems.
There is no doubt that fusion of all three gait modalities
reviewed here will be more advantageous; however, this has
to be measured against the practicality or designing, building,
deploying and maintaining such complex systems.

VI. CONCLUSIONS

The character of gait data poses the problem of identifying
features suitable for gait classifications, desirable in a number
of application areas. The three gait-sensing modalities covered
in this Review have produced data which is most amenable to
the use of deep learning, to address the automatic extraction
of such features. Deep learning CNNs typically outperform
shallow learning models in the most essential metrics. Further-
more, multi-sensor and multi-modality fusion results in better
accuracy and robustness. This is achieved by employing the
available flexibility in data representations, ANN architectures
and the choice of model hyper-parameters. Gait analysis ben-
efits from methods introduced and tested in other applications
of deep learning. However, it requires particular attention due
to its spatiotemporal character, the options for ubiquitous gait
sensing and the privacy concerns they raise, as well as the cost
of achieving research, development and commercialization
objectives. Deep learning from multi-sensor, multi-modality
gait data offers new options in the strong drive towards
personalized healthcare, as well as towards more robust and
un-intrusive biometrics for safety and security. These are some
of the challenges of the day, but the state-of-the art indicates

a promising step reaching further into the future, rather than
just the current horizon.
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