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Group Coordinated Control of Networked Mobile
Robots with Applications to Object Transportation
Junyan Hu, Member, IEEE, Parijat Bhowmick, Member, IEEE, and Alexander Lanzon, Senior Member, IEEE

Abstract—Inspired by the group activities of natural swarms
(e.g., a flock of birds, a colony of ants, etc.), a fleet of mobile robots
can be collaboratively put into work to accomplish complex
real-world tasks. Depending on the nature and complexity of
a problem, a multi-robot system (MRS) may need to be de-
composed into several subgroups. This paper proposes a unified
group coordinated control scheme for networked MRSs having
multiple targets. A ‘discontinuous’ cooperative control law is
first developed for a networked MRS to achieve individual sub-
formations surrounding the assigned targets. A ‘continuous’
cooperative control protocol is then proposed to overcome the
chattering phenomenon often caused by a discontinuous control
action during hardware implementation. The closed-loop stability
of the overall networked MRS is guaranteed via the Lyapunov
theory and boundary-layer techniques. Finally, two hardware ex-
periments (target-enclosing and object transportation) involving
real mobile robots have been carried out to demonstrate the
usefulness of the proposed scheme.

Index Terms—Swarm robotics, object transportation, target-
enclosing, multi-vehicle systems, group coordination.

I. INTRODUCTION

Distributed cooperative control of multi-robot systems
(MRSs) has established its worth in both theories and practice
over the past two decades [1]. Some potential applications of
MRSs include swarm shepherding [2], connected vehicle pla-
tooning [3], cooperative exploration in unknown environments
[4], etc. As one of the useful techniques of the cooperative con-
trol framework, the formation control of autonomous systems
has received significant attention from robotics, aerospace
and vehicular engineering disciplines. In [5], the formation
control problem for a group of nonholonomic mobile robots
was addressed considering the communication time-delays. [6]
proposed an extended state observer-based distributed model
predictive control approach to deal with the multi-robot forma-
tion control problem in the presence of unknown disturbances.
Recently, in [7], finite-time formation control of multiple
nonholonomic wheeled mobile robots with a leader-following
structure was studied. However, the preceding literature relied
only on the simulation results to show the effectiveness of the
proposed schemes, but no experimental validation involving
real robots was provided.

To verify the feasibility of cooperative control techniques
in real-world scenarios, numerous experiments and testing
have been done involving real mobile robots. A two-layer
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formation-containment control architecture for MRSs with
linear dynamics was proposed in [8]. In [9], a distributed
observer-based formation control framework was developed
to track the centroid of relative formations of a MRS char-
acterised with first-order dynamics. However, these studies
considered only a single group of robots, which appears to be
a limitation in real-world multi-robot applications that need to
split the robot team into multiple subgroups to accomplish the
given task.

In some multi-robot applications (e.g. multi-target pursuit
and target-enclosing mission), a team of robots may need
to be split into several subgroups (also known as ‘clusters’)
surrounding each target, depending on the positions of the
targets and the complexity of the task [10]. In such cases,
the analysis and design of the coordinated control strategies
become more challenging as the inter-group conflicts cause
significant difficulties. [11] and [12] did pioneering research
on cluster consensus control problems. However, there are
still many issues to overcome regarding the design and im-
plementation of the cluster control strategies in real-world
applications, especially when the targets become dynamic.

Drawn by the limitations and challenges mentioned above,
we aim to develop a Group Coordinated Control (GCC)
scheme in this paper for networked multi-robot applications.
The control scheme first divides the participant robots into
several subgroups depending on the targets (may be dynamic).
A ‘continuous’ coordination protocol is then proposed apart
from the ‘discontinuous’ version, which is more common in
the MRS literature, to remove the chattering effect caused by
the latter. Besides, a couple of hardware experiments involving
real mobile robots have been conducted to test the feasibility of
the proposed GCC scheme. It is also explained that the leader-
following consensus-seeking problem, the formation tracking
problem and the cluster control problem can all be considered
as special cases of the proposed GCC framework.

II. PROBLEM FORMULATION

Consider a MRS containing N robots that includes M
followers and N −M targets. Let F = {1, 2, . . . ,M} and
T = {M +1,M +2, . . . , N} be the sets of the followers and
targets respectively. All the robot are connected by a weighted
and directed communication graph G = (V ,E ) having a non-
empty set of nodes V = {1, 2, . . . , N} and a set of edges
E ⊂ V × V . For any i, j ∈ {1, 2, . . . , N}, wij is defined as

wij =


0 when i = j or (j, i) /∈ E ;

bj when j ∈ T and (j, i) ∈ E ;

aij when both i, j ∈ F and (j, i) ∈ E

(1)
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where bj are known positive constants.
Suppose that there are p (p ≥ 1) subgroups in the MRS,

and the node set V can be partitioned into {V1, . . . ,Vp}.
Let ī and Gī denote the subscript of the subgroup to which
follower i belongs and the underlying interaction topology of
the subgroup Vī (∀ī ∈ {1, 2, . . . , p}), respectively. nī and n̂ī
are the number of followers and targets in subgroup Vī.

Assumption 1: For each subgroup there exists at least one
target which provides the reference trajectory to the followers.
Any follower in a given subgroup is assumed to be either well-
informed or uninformed. For each uninformed follower, there
exists at least one well-informed follower that has a directed
path to that uninformed follower.

Assumption 2: {V1,V2, . . . ,Vp} is an acyclic partition of
the node set V .

Then the Laplacian matrix L corresponding to the graph G
can be partitioned as L =

[
L1 L2
0 0

]
where L1 ∈ RM×M and

L2 ∈ RM×(N−M). Owing to Assumption 2, the sub-Laplacian
matrix L1 can be further partitioned [11] as

L1 =


L11 0 · · · 0
L21 L22 · · · 0

...
...

. . .
...

Lp1 Lp2 · · · Lpp

 (2)

where Lī̄i is associated with Gī, and Līj̄ represents the inter-
action from subgroup j̄ to subgroup ī for any ī, j̄ ∈ {1, . . . , p}
and ī 6= j̄.

Assumption 3: Each sub-Laplacian matrix Līj̄ derived from
L1 for all j̄ < ī where ī, j̄ ∈ {1, 2, . . . , p} is a zero-row-sum
matrix.

For the īth subgroup for each ī ∈ {1, 2, . . . , p},
the desired time-varying sub-formation is specified by
the vector h̄ī(t) =

[
h>ςī+1(t), . . . , h>ςī+nī

(t)
]>

where
ς̄i =

∑ī−1
k=0 nk and each element in h̄ī(t) is as-

sumed to be piecewise continuously differentiable. It is
easy to verify that hF (t) =

[
h̄>1 (t), . . . , h̄>p (t)

]>
=[

h>1 (t), . . . , h>M (t)
]>

gives the formation vector for the en-
tire MRS. x̄ī =

[
x>ςī+1(t), . . . , x>ςī+nī

(t)
]>

and x̂ī =[
x>ς̂ī+1(t), . . . , x>ς̂ī+n̂ī

(t)
]>

represent the state vector of the
followers and the targets respectively of the īth subgroup,
where ς̂̄i = M +

∑ī−1
k=0 n̂k.

The MRS is said to achieve group formation tracking with
multiple targets if for any given set of bounded initial states,

lim
t→∞

x̄ī(t)− h̄ī(t)− 1nī

ς̂ī+n̂ī∑
k=ς̂ī+1

αkxk(t)

 = 0 (3)

∀ī ∈ {1, 2, . . . , p} where αk denote the positive constants that
satisfy the constraint

∑ς̂ī+n̂ī

k=ς̂ī+1 αk = 1.
This article mainly solves the following four problems: (i)

under what conditions the group coordination tasks can be
accomplished; (ii) how to construct the control protocol to
form the desired sub-formations around the targets; (iii) how
to design continuous control action to avoid chattering effect
during hardware implementation; (iv) how to implement the
proposed method in real-time hardware experiments.

III. MAIN RESULTS

A. Linearization of the nonlinear robot dynamics

It is assumed that each mobile robot has the same mechan-
ical structure and they are described by the following set of
dynamic equations involving the nonholonomic constraints

ΣR :

{
ṗxi = vi cos θi, ṗyi = vi sin θi, θ̇i = ωi

v̇ = fi/mi, ω̇ = τi/Ji
(4)

where pxi and pyi represent the position of the mass centre of
the ith robot, θi is the orientation, vi and ωi are respectively
the linear and angular velocities, mi is the mass, Ji is the
mass moment of inertia, τi is the torque applied to the robot
and fi is the force generated due to applying the torque τi.

The X-axis and Y-axis components of the head position of
the robot can be expressed by

p̃xi = pxi + l cos θi, p̃yi = pyi + l sin θi (5)

where l is the distance between these two points. Now, being
motivated by [13], we apply the following inverse coordinate
transformation on the nonlinear dynamics ΣR of the robot (4)[
fi
τi

]
=

[ 1
mi

cos (θi) − l
Ji

sin (θi)
1
mi

sin (θi)
l
Ji

cos (θi)

]−1

×[
uxi + viωi sin (θi) + lω2

i cos (θi)
uyi + viωi cos (θi) + lω2

i cos (θi)

] ∀i ∈ {1, 2, . . . , N}
and obtain a fourth-order linearized dynamics

ẋi = Axi +Bui ∀i ∈ {1, 2, . . . , N} (6)

where the matrices A =

[
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]
, B =

[
0 0
1 0
0 0
0 1

]
, xi =[

p̃>xi v>xi p̃>yi v>yi
]>

and ui =
[
u>xi u>yi

]>
. It can

be readily verified that the pair (A,B) is always stabilizable
and B has full column-rank. Hence, there exists a matrix B̄
depending on the left null space of B such that B̄B = 0.

Assumption 4: Let uk(t) for all k ∈ T represent the
exogenous input applied to the kth target which is independent
of all other robots and the network topology. We assume
‖uk(t)‖ ≤ σ for all t ≥ 0 for a given σ ∈ R>0.

B. Group coordinated control protocol design

We define the local group coordinated tracking error ξi
of the ith follower robot for all i ∈ F with respect to the
neighboring robots as ξi =

∑M
j=1 wij

(
(xi−hi)−(xj−hj)

)
+∑N

k=M+1 wik
(
(xi − hi)− xk

)
.

The following theorem proposes a distributed control law
for a MRS to achieve sub-formations by each individual
subgroups along with keep tracking the respective targets.

Theorem 1: If the Assumptions 1–4 hold and the desired
formation configuration hi ∈ Rn be chosen such that

B̄Ahi − B̄ḣi = 0 ∀t ≥ 0. (7)

Then the MRS achieves the group formation tracking objec-
tives by the following distributed control law

ui = cKξi + γi − µf(ξi) ∀i ∈ F (8)
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where c > 0; µ > σ for a given σ ≥ 0; γi = B̃ḣi − B̃Ahi;
K = −R−1B>P where P = P> > 0 be the unique solution
to the algebraic Riccati equation (ARE)

PA+A>P − PBR−1B>P +Q = 0 (9)

for given Q > 0 and R > 0 and the nonlinear smooth function
f(ξi) is defined for all i ∈ F as

f(ξi) =

{
B>Pξi
‖B>Pξi‖ when

∥∥B>Pξi∥∥ 6= 0

0 when
∥∥B>Pξi∥∥ = 0

∀t ≥ 0. (10)

Proof: In this proof, we will use the following no-
tations: xF =

[
x>1 , . . . , x

>
M

]>
, xE =

[
x>M+1, . . . , x

>
N

]>
,

uE =
[
u>M+1, . . . , u

>
N

]>
, γ =

[
γ>1 , γ

>
2 , . . . , γ

>
M

]>
and

F (ξ) =
[
f>(ξ1), f>(ξ2), . . . , f>(ξM )

]>
.

Let the local formation tracking error of each follower be
defined as zi = xi − hi ∀i ∈ F and zF = [z>1 , . . . , z

>
M ]>.

Then ξF = [ξ>1 , . . . , ξ
>
M ]> can be expressed in the Kronecker

product form as

ξF = (L1 ⊗ In)zF + (L2 ⊗ In)xE . (11)

Applying the proposed distributed control law, the expression
for ξ̇F is given by

ξ̇F =(IM ⊗A+ cL1 ⊗BK)ξF + (L1 ⊗A)hF

− (L1 ⊗ In)ḣF + (L1 ⊗B)γ + (L2 ⊗B)uE

− µ(L1 ⊗B)F (ξ).

(12)

We will now establish the asymptotic stability of the formation
tracking error dynamics derived in (12) by applying the
Lyapunov stability approach. Consider the following Lyapunov
function candidate

V1 = ξ>F (∆Ξ⊗ P )ξF , (13)

where ∆Ξ = diag{ϕ1, . . . , ϕM} with ϕi > 0 ∀i ∈ F .
Utilising the formation feasibility condition (7), now the time
derivative of V1 is computed along any trajectory of (12)

V̇1 = ξ>F
[
∆Ξ⊗ (PA+A>P )− c(∆ΞL1 + L>1 ∆Ξ)⊗ Γ

]
ξF

+ 2ξ>F (∆ΞL2 ⊗ PB)uE − 2µξ>F (∆ΞL1 ⊗ PB)F (ξ)
(14)

denoting Γ = PBR−1B>P .
By Cauchy-Schwarz inequality, the term 2µξ>F (∆ΞL1 ⊗

PB)F (ξ) can be simplified as following

− 2µξ>F (∆ΞL1 ⊗ PB)F (ξ)

≤− 2µ

M∑
i=1

ϕi

N∑
k=M+1

wik
∥∥B>Pξi∥∥ (15)

where ϕi is the ith diagonal element of ∆Ξ. Subsequently, the
term 2 ξ>F (∆ΞL2 ⊗ PB)uE can also be simplified as

2 ξ>F (∆ΞL2 ⊗ PB)uE = 2

M∑
i=1

ϕi

N∑
k=M+1

wikξ
>
i PBuk

≤ 2σ

M∑
i=1

ϕi

N∑
k=M+1

wik‖B>Pξi‖ (16)

via exploiting Assumption 4. Now substituting (15) and (16)
into (14), we find

V̇1 ≤ ξ>F
[
∆Ξ⊗ (PA+A>P )− c(∆ΞL1 + L>1 ∆Ξ)⊗ Γ

]
ξF

− 2(µ− σ)

M∑
i=1

ϕi

N∑
k=M+1

wik‖B>Pξi‖. (17)

Upon choosing c ≥ λmax(∆Ξ)

λmin(∆ΞL1+L>1 ∆Ξ)
and µ > σ, the

expression of V̇1 reduces to

V̇1 ≤ ξ>F
(
∆Ξ⊗ (PA+A>P − Γ)

)
ξF . (18)

This implies V̇1 < 0 since (PA+A>P−Γ) = −Q < 0 via (9)
and furthermore, V̇1 = 0 when ξF = 0. Therefore, the group
coordinated tracking error dynamics ξ̇F is asymptotically
stable and hence, we have

lim
t→∞

(
xF − hF − (−L−1

1 L2 ⊗ In)xE
)

= 0 (19)

Now the expression (19) can be rearranged as

lim
t→∞


x̄1 − h̄1 − (e1 ⊗ In)x̂1

...
x̄p − h̄p − (ep ⊗ In)x̂p


 = 0 (20)

where eī = 1nī
[bς̂ī+1, bς̂ī+2, . . . , bς̂ī+n̂ī

]/
∑ς̂ī+n̂ī

k=ς̂ī+1 bk is de-
noted for all ī ∈ {1, 2, . . . , p}. The above expression proves
that the predefined sub-formation is achieved by all the sub-
groups and the follower robots in each subgroup keep tracking
the convex combination of the states of the targets assigned
to the respective subgroup. This completes the proof.

C. Group coordinated control with continuous control action

An inherent drawback of the discontinuous GCC protocol
(8) is that it causes unavoidable ‘chattering effect’ in the
control signal during hardware implementation because of the
imperfections of the switching devices [14]. One possible
approach to minimize the chattering problem is to apply
the ‘boundary layer technique’ [15] to obtain a legitimate
continuous approximation of the discontinuous nonlinear func-
tion f(ξi) used in (8). Exploiting this idea, we modify the
discontinuous GCC protocol as

ui = cKξi + γi − µf(ξi) ∀i ∈ F (21)

where f(ξi) is defined as

f(ξi) =

{
B>Pξi
‖B>Pξi‖ when

∥∥B>Pξi∥∥ > κ,
B>Pξi
κ when

∥∥B>Pξi∥∥ ≤ κ (22)

for a pre-specified κ > 0, while the remaining control
parameters of (21) are the same as declared in Theorem 1. The
constant parameter κ specifies a lower bound of the 2-norm of
the weighted tracking error B>Pξi. Although in this method,
the formation tracking error cannot be made exactly zero but
can be small enough to achieve satisfactory performance.

The next theorem formally described the continuous version
of the GCC protocol developed for a MRS to achieve the group
formation tracking objectives.
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Theorem 2: Let the Assumptions 1–4 hold. Suppose
that the formation feasibility constraint B̄Ahi − B̄ḣi = 0
holds for the desired hi for all i ∈ F . Define β =
−λmax(PA+A>P−PBR−1B>P )

λmax(P ) where P = P> > 0 is the
unique solution to the ARE (9) for given Q > 0 and R > 0.
Then the MRS precisely achieves the GCC objectives under
the application of the distributed control protocol (21) ensuring
the global group formation tracking error ξF (t) to remain
within the bounded set

D =

{
ξF (t) : ‖ξF (t)‖2 ≤

2σκ
∑M
i=1 ϕi

∑N
k=M+1 wik

βλmin(∆Ξ)λmin(P )

}
(23)

for all t ≥ 0.
Proof: The proof proceeds in the similar direction as of

Theorem 1. The group formation tracking error dynamics of
the robots (ξ̇F ) is given by.

ξ̇F =(IM ⊗A+ cL1 ⊗BK)ξF + (L2 ⊗B)uE

− µ(L1 ⊗B)F (ξ)
(24)

Consider the Lyapunov function candidate V2(ξF ) =
ξ>F (∆Ξ⊗ P ) ξF similar to Theorem 1. It is easy to verify
V2(ξF ) > 0 and V2(ξF ) = 0 only when ξF = 0. Then V̇2(ξF )
is derived along the trajectories of (24)

V̇2(ξF ) = ξ>F
(
∆Ξ⊗ (PA+A>P − Γ)

)
ξF + 2ξ>F (∆ΞL2

⊗ PB)uE − 2µξ>F (∆ΞL1 ⊗ PB)F (ξ). (25)

While simplifying the terms ξ>F (∆ΞL2 ⊗ PB)uE and
2µξ>F (∆ΞL1 ⊗ PB)F (ξ), we will eventually encounter the
norm

∥∥B>Pξi(t)∥∥ as found in both (15) and (16). In this
theorem, due to dealing with the nonlinear function f(ξi)
given in (22), the following three cases would appear: Case I.∥∥B>Pξi(t)∥∥ > κ ∀i ∈ F ; Case II.

∥∥B>Pξi(t)∥∥ ≤ κ ∀i ∈
F ; and Case III. other than Cases I and II.
Case I. When

∥∥B>Pξi(t)∥∥ > κ ∀i ∈ F , it follows directly
from (15) that

−2µξ>F (∆ΞL1 ⊗ PB)F (ξ)

≤− 2µ

M∑
i=1

ϕi

N∑
k=M+1

wik
∥∥B>Pξi∥∥ (26)

∀i ∈ F and finally, we will end up with

V̇2(ξF ) ≤ ξ>F
[
∆Ξ⊗ (PA+A>P − Γ)

]
ξF (27)

by choosing c ≥ λmax(∆Ξ)

λmin(∆ΞL1+L>1 ∆Ξ)
and µ > σ.

Case II. When
∥∥B>Pξi(t)∥∥ ≤ κ ∀i ∈ F , following (15) we

derive

−2µξ>F (∆ΞL1 ⊗ PB)F (ξ)

≤− 2
µ

κ

M∑
i=1

ϕi

N∑
k=M+1

wik
∥∥B>Pξi∥∥2 ≤ 0 (28)

by utilizing (22) and furthermore from (16), we obtain

2ξ>F (∆ΞL2 ⊗ PB)uE ≤ (2σκ)

M∑
i=1

ϕi

N∑
k=M+1

wik. (29)

Applying aforementioned simplified results (28) and (29) into
(25), we have

V̇2(ξF ) ≤ ξ>F
[
∆Ξ⊗ (PA+A>P − Γ)

]
ξF

+ (2σκ)

M∑
i=1

ϕi

N∑
k=M+1

wik. (30)

Case III. Here, we deal with those cases where
∥∥B>Pξi(t)∥∥

does not satisfy either of Cases I and II. Without loss of gen-
erality, we assume that

∥∥B>Pξi(t)∥∥ > κ for i ∈ {1, 2, . . . , q}
where 2 ≤ q ≤ M − 1 and

∥∥B>Pξi(t)∥∥ ≤ κ for i ∈
{q, q + 1, . . . ,M}. Now following again (26), we have

−2µξ>F (∆ΞL1 ⊗ PB)F (ξ)

≤− 2µ

q∑
i=1

ϕi

N∑
k=M+1

wik
∥∥B>Pξi∥∥ (31)

∀i ∈ {1, 2, . . . , q} and via following (29), we derive

2ξ>F (∆ΞL2 ⊗ PB)uE ≤ 2σ

q∑
i=1

ϕi

N∑
k=M+1

wik‖B>Pξi‖

+ (2σκ)

M−q∑
i=1

ϕi

N∑
k=M+1

wik. (32)

Applying the results (31) and (32) back into (17), we obtain

V̇2(ξF ) ≤ ξ>F
[
∆Ξ⊗ (PA+A>P − Γ)

]
ξF

+ 2σκ

M−q∑
i=1

ϕi

N∑
k=M+1

wik. (33)

After analysing all three cases (Cases I, II and III) presented
above, it can be inferred that if V̇2(ξF ) satisfies (30), then it
will satisfy both (27) and (33). Hence, in order to guarantee
asymptotic stability of the error dynamics ξ̇F in all three
cases, it needs to be established that (30) implies uniform
boundedness of the Lyapunov function V2(ξF ) and exponential
convergence of the group formation tracking error ξF .

The expression (30) can be rewritten as

V̇2(ξF ) ≤− βV2(ξF ) + 2σκ
M∑
i=1

ϕi

N∑
k=M+1

wik

+ ξ>F
[
∆Ξ⊗ (PA+A>P + βP − Γ)

]
ξF . (34)

Since β = −λmax(PA+A>P−Γ)
λmax(P ) > 0, it follows from (34) that

V̇2(ξF ) ≤− βV2(ξF ) + 2σκ

M∑
i=1

ϕi

N∑
k=M+1

wik. (35)

Now by applying the Comparison Lemma, we can find a
solution (in terms of inequality) of V2(ξF ) from the linear
differential inequality (35) as

V2(ξF ) ≤
(
V2(ξF (0))− (

2

β
σκ)

M∑
i=1

ϕi

N∑
k=M+1

wik

)
e−βt

+ (
2

β
σκ)

M∑
i=1

ϕi

N∑
k=M+1

wik. (36)
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This implies that the function V2(ξF ) exponentially converges
to the set {V2(ξF ) : V2(ξF ) ≤ ( 2

βσκ)
∑M
i=1 ϕi

∑N
k=M+1 wik}

for any bounded initial condition ξF (0) ∈ RnM with a
convergence rate not lesser than e−βt. This confirms that
V2(ξF ) remains uniformly bounded over all t ≥ 0. We may
also find a lower bound of V2(ξF ) = ξ>F (∆Ξ⊗ P ) ξF as
V2(ξF ) ≥ λmin(∆Ξ)λmin(P )‖ξF ‖2 by utilizing the property
λmin[M ]x>x ≤ x>Mx ≤ λmax[M ]x>x for any symmetric
positive definite matrix M . By exploiting the upper and lower
bounds of V2(ξF ), it can be ascertained that the group for-
mation tracking error ξ̇F of the follower robots exponentially
converges to the set D , as defined in (23), with a convergence
rate not lesser than e−βt. The same conclusion can be drawn
for Case I and Case III as well. This completes the proof.

Remark 1: By choosing n̂ī = 1 ∀ī ∈ {1, 2, . . . , p}, the
proposed GCC protocol becomes suitable for dealing with
the cluster control problems, as discussed in [12]. Moreover,
when specialised to p = 1 and M = N − 1, the GCC
scheme captures the common formation control problem [16].
Furthermore, the GCC problem resembles the leader-following
consensus-seeking (or rendezvous) problems such as [17]
when hi = 0 ∀i ∈ F , p = 1 and M = N − 1. �

Remark 2: It is important to implement a reliable collision-
avoidance strategy to ensure a collision-free movement of the
robots while operating in a cluttered environment. In real
applications, each robot can be coordinated by a primary
controller (i.e. the GCC protocol) and a secondary controller,
facilitating collision avoidance. The idea is to re-route the
robots’ navigation paths upon encountering the obstacles by
generating repulsive forces based on the locations of the
obstacles. The formation configuration can be recovered once
the obstacles are bypassed since the robots are still connected
via the network. �

IV. EXPERIMENTAL VALIDATION

In this section, two lab-based hardware experiments have
been conducted to validate the proposed GCC scheme on
small-scale mobile robots [18]. As shown in Fig. 1, the
experimental platform includes a rectangular arena and a
digital camera connected to a laptop that operates the camera
tracking system [19]. The state information is transmitted to
the computer via the ROS communication framework, and then
the relative state information is sent to the corresponding robot
using an RF transceiver module. Since the control law relies
only on the local information, the present experimental setup is
suitable for validating the feasibility of the proposed scheme.
However, in more complex and challenging environments,
advanced robots equipped with onboard sensors to detect
the relative position and bearing information would be more
appropriate. In that scenario, the camera tracking system and
the base station will no longer be required. The video of
the experimental results can be found in the Supplementary
Material.

A. Experiment 1: Multi-target enclosing

Experiment 1 involves six networked mobile robots to
perform the multi-target enclosing task. Three static targets

 

Camera 

Robots 

Host computer 

Fig. 1. The experimental arena includes the overhead camera tracking system,
the base station (i.e. the host PC) and the small-scale mobile robots.
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Fig. 2. Position of the networked mobile robots at the time instants: (a) t = 0
s and (b) t = 60 s.

 

(a)

 

(b)

Fig. 3. (a) Position trajectories of all six robots in the X-Y plane during
the course of achieving multi-target enclosing mission. The symbols ◦ and �
indicate respectively the initial and final positions of a robot while the red
stars indicate the locations of targets. (b) Time-variation of the 2-norm of the
group formation tracking error of the robots.

are considered in this experiment. The robots are clustered
into two subgroups each containing three robots depending on
the relative locations of the given targets on the arena. Fig. 2(a)
describes the directed communication topology among all six
robots and the positions of three given targets (marked by
Black annular disc).

The robots are divided into two subgroups surrounding
the given targets. Subgroup 1 has two targets to track while
Subgroup 2 has a single target. The progress during the
hardware experiment on multi-target enclosing is manifested
by a few real-time snapshots shown in Fig. 2(a)–2(b) and for
better understanding, the position trajectories of the robots
during the experiment are also plotted in the X-Y plane (see
Fig. 3(a)). It can be seen that both the subgroups have formed
circular time-varying sub-formations around the given targets,
that is, the targets have been enclosed by all the robots. Time-
variation of the 2-norm of the group formation tracking error
ξi of all six robots are shown in Fig. 3(b) from which it is clear
that both the subgroups precisely achieve the individual sub-
formations surrounding the targets. Hence, it can be concluded
that the multi-target enclosing mission has been successfully
accomplished under the proposed GCC scheme.
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(a) 

(b) 

(c) 

Fig. 4. (a) Initial orientation of the robots and location of the objects; (b) All
six robots have achieved a hexagonal formation and thereby formed a cage
surrounding the objects; (c) The whole cage along with the objects reaches
the other end of the arena – mission accomplished.

B. Experiment 2: Cooperative object transportation

The strategy of group formation tracking and control has
been exploited here to perform the task of object transportation
by a MRS. Instead of physical targets, in this approach, the
objects to be transported are considered as virtual targets. The
virtual targets are made to move in a direction that leads to
reaching the destination where the objects needs to be carried.
By the GCC principle, the assembly of robots (i.e. the whole
formation) form a cage-like structure surrounding the objects
so that when the cage moves, the objects also moves being
physically pushed by the robots.

In the experiment, six mobile robots are engaged in trans-
porting two light-weight boxes from one end of the arena
to the other end in a cooperative manner. The experimental
observation is shown in Fig. 4(a)–4(c). Each figure contains
also a X-Y graph which shows the position trajectories of
the robots and the virtual targets (marked by the red star).
To achieve the goal, the assembly of robots (i.e. the whole
formation) makes a cage-like structure surrounding the objects
and then pushes it towards the desired location. From all
these figures, it can be concluded that the object transportation
mission can be accomplished under the application of the
proposed distributed GCC strategy.

V. CONCLUSION

This paper proposes a group coordinated control scheme
for MRSs connected via directed communication topology.
Given a cooperative control task, a MRS can be divided into

several subgroups and can be driven to attain the desired sub-
formations around the corresponding targets. To achieve this
goal, both ‘discontinuous’ and ‘continuous’ cooperative con-
trol protocols have been proposed. Two lab-based experiments
involving wheeled mobile robots were conducted to test the
feasibility and usefulness of the proposed framework.
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