
1

High Performance and Scalable GPU Graph Traversal
Technical Report CS-2011-05

Department of Computer Science, University of Virginia
Aug, 2011

Duane Merrill
Department of Computer Science

University of Virginia

Michael Garland
NVIDIA Research

Andrew Grimshaw
Department of Computer Science

University of Virginia

ABSTRACT

Breadth-first search (BFS) is a core primitive for graph

traversal and a basis for many higher-level graph analysis

algorithms. It is also representative of a class of parallel

computations whose memory accesses and work distribution

are both irregular and data-dependent. Recent work has

demonstrated the plausibility of GPU sparse graph traversal,

but has tended to focus on asymptotically inefficient

algorithms that perform poorly on graphs with non-trivial

diameter.

We present a BFS parallelization focused on fine-grained

task management that achieves an asymptotically optimal

O(|V|+|E|) work complexity. Our implementation delivers

excellent performance on diverse graphs, achieving traversal

rates in excess of 3.3 billion and 8.3 billion traversed edges

per second using single and quad-GPU configurations,

respectively. This level of performance is several times faster

than state-of-the-art implementations both CPU and GPU

platforms.

1. INTRODUCTION

Algorithms for analyzing sparse relationships represented as

graphs provide crucial tools in many computational fields

ranging from genomics to electronic design automation to

social network analysis. In this paper, we explore the

parallelization of one fundamental graph algorithm on GPUs:

breadth-first search (BFS). BFS is a common building block

for more sophisticated graph algorithms, yet is simple enough

that we can analyze its behavior in depth. It is also used as a

core computational kernel in a number of benchmark suites,

including Parboil [1], Rodinia [2], and the emerging

Graph500 supercomputer benchmark [3].

Contemporary processor architecture provides increasing

parallelism in order to deliver higher throughput while

maintaining energy efficiency. Modern GPUs are at the

leading edge of this trend, provisioning tens of thousands of

data parallel threads.

Despite their high computational throughput, GPUs might

appear poorly suited for sparse graph computation. In

particular, BFS is representative of a class of algorithms for

which it is hard to obtain significantly better performance

from parallelization. Optimizing memory usage is non-trivial

because memory access patterns are determined by the

structure of the input graph. Parallelization further introduces

concerns of contention, load imbalance, and underutilization

on multithreaded architectures [4–6]. The wide data

parallelism of GPUs can be particularly sensitive to these

performance issues.

Prior work on parallel graph algorithms has relied on two

key architectural features for performance. The first is

multithreading and overlapped computation to hide memory

latency. The second is fine-grained synchronization,

specifically atomic read-modify-write operations. Such

algorithms have incorporated atomic mechanisms for

coordinating the dynamic placement of data into shared data

structures and for arbitrating contended status updates. [5],

[7], [8]

Modern GPU architectures provide both. However,

atomic serialization is particularly expensive for GPUs in

terms of efficiency and performance. In general, mutual

exclusion does not scale to thousands of threads.

Furthermore, the occurrence of fine-grained and dynamic

serialization within the SIMD width is much costlier than

between overlapped SMT threads. For example, all SIMD

lanes are penalized when only a few experience dynamic

serialization.

For machines with wide data parallelism, we argue that

prefix sum is often a more suitable approach to data

placement [9], [10]. Prefix-sum is a bulk-synchronous

algorithmic primitive that can be used to compute scatter

offsets for concurrent threads given their dynamic allocation

requirements. Efficient GPU prefix sums [11] allow us to

reorganize sparse and uneven workloads into dense and

uniform ones in all phases of graph traversal.

Our work as described in this paper makes contributions

in the following areas:

Parallelization strategy. We present a GPU BFS

parallelization that performs an asymptotically optimal linear

amount of work. It is the first to incorporate fine-grained

parallel adjacency list expansion. We also introduce local

duplicate detection techniques for avoiding race conditions

that create redundant work. We demonstrate that our

approach delivers high performance on a broad spectrum of

structurally diverse graphs. To our knowledge, we also

describe the first design for multi-GPU graph traversal.

Empirical performance characterization. We present

detailed analyses that isolate and analyze the expansion and

contraction aspects of BFS throughout the traversal process.

We reveal that serial and warp-centric expansion techniques

described by prior work significantly underutilize the GPU for

important graph genres. We also show that the fusion of

neighbor expansion and inspection within the same kernel

often yields worse performance than performing them

separately.

High performance. We demonstrate that our methods

deliver excellent performance on a diverse body of real-world

graphs. Our implementation achieves traversal rates in excess

of 3.3 billion and 8.3 billion traversed edges per second

(TE/s) for single and quad-GPU configurations, respectively.

To put these numbers in context, recent state-of-the-art

parallel implementations achieve 0.7 billion and 1.3 billion

TE/s for similar datasets on single and quad-socket multicore

processors [5].

2

2. BACKGROUND

Modern NVIDIA GPU processors consist of tens of processor

cores, each of which manages on the order of a thousand

hardware-scheduled threads. Each processor core employs

data parallel SIMD (single instruction, multiple data)

techniques in which a single instruction stream is executed by

a fixed-size grouping of threads called a warp. A cooperative

thread array (or CTA) is a group of threads that will be co-

located on the same multiprocessor and share a local scratch

memory. Parallel threads are used to execute a single

program, or kernel. A sequence of kernel invocations is bulk-

synchronous: each kernel is initially presented with a

consistent view of the results from the previous.

The efficiency of GPU architecture stems from the bulk-

synchronous and SIMD aspects of the machine model. They

facilitate excellent processor utilization on uniform workloads

having regularly-structured computation. When the

computation becomes dynamic and varied, mismatches with

the underlying architecture can result in significant

performance penalties. For example, performance can be

degraded by irregular memory access patterns that cannot be

coalesced or that result in arbitrarily-bad bank conflicts;

control flow divergences between SIMD warp threads that

result in thread serialization; and load imbalances between

barrier synchronization points that result in resource

underutilization [12]. In this work, we make extensive use of

local prefix sum as a foundation for reorganizing sparse and

uneven workloads into dense and uniform ones.

2.1 Breadth First Search

We consider graphs of the form G = (V, E) with a set V of n

vertices and a set E of m directed edges. Given a source

vertex vs, our goal is to traverse the vertices of G in breadth-

first order starting at vs. Each newly-discovered vertex vi will

be labeled by (a) its distance di from vs and/or (b) the

predecessor vertex pi immediately preceding it on the shortest

path to vs.

Fundamental uses of BFS include: identifying all of the

connected components within a graph; finding the diameter of

tree; and testing a graph for bipartiteness [13]. More

sophisticated problems incorporating BFS include: identifying

the reachable set of heap items during garbage collection [14];

belief propagation in statistical inference [15], finding

community structure in networks [16], and computing the

maximum-flow/minimum-cut for a given graph [17].

For simplicity, we identify the vertices v0 .. vn-1 using

integer indices. The pair (vi, vj) indicates a directed edge in

the graph from vi → vj, and the adjacency list Ai = {vj | (vi, vj)

∈ E} is the set of neighboring vertices adjacent from vertex vi.

We treat undirected graphs as symmetric directed graphs

containing both (vi, vj) and (vj, vi) for each undirected edge. In

this paper, all graph sizes and traversal rates are measured in

terms of directed edge counts.

We represent the graph using an adjacency matrix A,

whose rows are the adjacency lists Ai. The number of edges

within sparse graphs is typically only a constant factor larger

than n. We use the well-known compressed sparse row

(CSR) sparse matrix format to store the graph in memory

consisting of two arrays. As illustrated in Fig. 1, the column-

indices array C is formed from the set of the adjacency lists

concatenated into a single array of m integers. The row-

offsets R array contains n + 1 integers, and entry R[i] is the

index in C of the adjacency list Ai.

We store graphs in the order they are defined. We do not

perform any offline preprocessing in order to improve locality

of reference, improve load balance, or eliminate sparse

memory references. Such strategies might include sorting

neighbors within their adjacency lists; sorting vertices into a

space-filling curve and remapping their corresponding vertex

identifiers; splitting up vertices having large adjacency lists;

encoding adjacency row offset and length information into

vertex identifiers; removing duplicate edges, singleton

vertices, and self-loops; etc.

Algorithm 1 describes the standard sequential BFS

method for circulating the vertices of the input graph through

a FIFO queue that is initialized with vs [13]. As vertices are

dequeued, their neighbors are examined. Unvisited

neighbors are labeled with their distance and/or predecessor

and are enqueued for later processing. This algorithm

performs linear O(m+n) work since each vertex is labeled

exactly once and each edge is traversed exactly once.

2.2 Parallel Breadth-First Search

The FIFO ordering of the sequential algorithm forces it to

label vertices in increasing order of depth. Each depth level is

fully explored before the next. Most parallel BFS algorithms

are level-synchronous: each level may be processed in parallel

as long as the sequential ordering of levels is preserved. An

implicit race condition can exist where multiple tasks may

concurrently discover a vertex vj. This is generally

considered benign since all such contending tasks would

apply the same dj and give a valid value of pj.

Structurally different methods may be more suitable for

graphs with very large diameters, e.g., algorithms based on

A = �1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1

�
C = [0,1,1,2,0,2,3,1,3]

R = [0,2,4,7,9]

Fig. 1. Example CSR representation: column-indices array C and row-

offsets array R comprise the adjacency matrix A.

Algorithm 1. The simple sequential breadth-first search algorithm for

marking vertex distances from the source s. Alternatively, a shortest-

paths search tree can be constructed by marking i as j’s predecessor in

line 11.

Input: Vertex set V, row-offsets array R, column-indices array C, source

vertex s

Output: Array dist[0..n-1] with dist[v] holding the distance from s to v

Functions: Enqueue(val) inserts val at the end of the queue instance.

Dequeue() returns the front element of the queue instance.

1 Q := {}

2 for i in V:

3 dist[i] := ∞

4 dist[s] := 0

5 Q.Enqueue(s)

6 while (Q != {}) :

7 i = Q.Dequeue()

8 for offset in R[i] .. R[i+1]-1 :

9 j := C[offset]

10 if (dist[j] == ∞)

11 dist[j] := dist[i] + 1;

12 Q.Enqueue(j)

3

the method of Ullman and Yannakakis [18]. Such alternatives

are beyond the scope of this paper.

Each iteration of a level-synchronous method identifies

both an edge and vertex frontier. The edge-frontier is the set

of all edges to be traversed during that iteration or,

equivalently, the set of all Ai where vi was marked in the

previous iteration. The vertex-frontier is the unique subset of

such neighbors that are unmarked and which will be labeled

and expanded for the next iteration. Each iteration logically

expands vertices into an edge-frontier and then contracts them

to a vertex-frontier.

Quadratic parallelizations. The simplest parallel BFS

algorithms inspect every edge or, at a minimum, every vertex

during every iteration. These methods perform a quadratic

amount of work. A vertex vj is marked when a task discovers

an edge vi → vj where vi has been marked and vj has not. As

Algorithm 2 illustrates, vertex-oriented variants must

subsequently expand and mark the neighbors of vj. Their

work complexity is O(n2+m) as there may n BFS iterations in

the worst case.

Quadratic parallelization strategies have been used by

almost all prior GPU implementations. The static assignment

of tasks to vertices (or edges) trivially maps to the data-

parallel GPU machine model. Each thread’s computation is

completely independent from that of other threads. Harish et

al. [19] and Hussein et al. [17] describe vertex-oriented

versions of this method. Deng et al. present an edge-oriented

implementation [20].

Hong et al. [21] describe a vectorized version of the

vertex-oriented method that is similar to the CSR sparse

matrix-vector (SpMV) multiplication approach by Bell and

Garland [22]. Rather than threads, warps are mapped to

vertices. During neighbor expansion, the SIMD lanes of an

entire warp are used to strip-mine1 the corresponding

adjacency list.

1 Strip mining entails the sequential processing of parallel

batches, where the batch size is typically the number of

hardware SIMD vector lanes.

These quadratic methods are isomorphic to iterative

SpMV in the algebraic semi-ring where the usual (+, ×)

operations are replaced with (min, +), and thus can also be

realized using generic implementations of SpMV [23].

Linear parallelizations. A work-efficient parallel BFS

algorithm should perform O(n+m) work. To achieve this,

each iteration should examine only the edges and vertices in

that iteration’s logical edge and vertex-frontiers, respectively.

Frontiers may be maintained in core or out of core. An

in-core frontier is processed online and never wholly realized.

On the other hand, a frontier that is managed out-of-core is

fully produced in off-chip memory for consumption by the

next BFS iteration after a global synchronization step.

Implementations typically prefer to manage the vertex-

frontier out-of-core. Less global data movement is needed

because the average vertex-frontier is smaller by a factor of �̅

(average out-degree). As described in Algorithm 3, each BFS

iteration maps tasks to unexplored vertices in the input vertex-

frontier queue. Their neighbors are inspected and the

unvisited ones are placed into the output vertex-frontier queue

for the next iteration.

Research has traditionally focused on two aspects of this

scheme: (1) improving hardware utilization via intelligent

task scheduling; and (2) designing shared data structures that

incur minimal overhead from insertion and removal

operations.

The typical approach for improving utilization is to

reduce the task granularity to a homogenous size and then

evenly distribute these smaller tasks among threads. This is

done by expanding and inspecting neighbors in parallel.

Logically, the sequential-for loop in line 10 of Algorithm 3 is

replaced with a parallel-for loop. The implementation can

either: (a) spawn all edge-inspection tasks before processing

any, wholly realizing the edge-frontier out-of-core; or (b)

carefully throttle the parallel expansion and processing of

adjacency lists, producing and consuming these tasks in-core.

In recent BFS research, Leiserson and Schardl [6]

designed an implementation for multi-socket CPU systems

that incorporates a novel multi-set data structure for tracking

the vertex-frontier. They implement concurrent neighbor

Algorithm 2. A simple quadratic-work, vertex-oriented BFS

parallelization

Input: Vertex set V, row-offsets array R, column-indices array C, source

vertex s

Output: Array dist[0..n-1] with dist[v] holding the distance from s to v

1 parallel for (i in V) :

2 dist[i] := ∞

3 dist[s] := 0

4 iteration := 0

5 do :

6 done := true

7 parallel for (i in V) :

8 if (dist[i] == iteration)

9 done := false

10 for (offset in R[i] .. R[i+1]-1) :

11 j := C[offset]

12 dist[j] = iteration + 1

13 iteration++

14 while (!done)

Algorithm 3. A linear-work BFS parallelization constructed using a

global vertex-frontier queue.

Input: Vertex set V, row-offsets array R, column-indices array C, source

vertex s, queues

Output: Array dist[0..n-1] with dist[v] holding the distance from s to v

Functions: LockedEnqueue(val) safely inserts val at the end of the queue

instance

1 parallel for (i in V) :

2 dist[i] := ∞

3 dist[s] := 0

4 iteration := 0

5 inQ := {}

6 inQ.LockedEnqueue(s)

7 while (inQ != {}) :

8 outQ := {}

9 parallel for (i in inQ) :

10 for (offset in R[i] .. R[i+1]-1) :

11 j := C[offset]

12 if (dist[j] == ∞)

13 dist[j] = iteration + 1

14 outQ.LockedEnqueue(j)

15 iteration++

16 inQ := outQ

4

inspection, using the Cilk++ runtime to manage the edge-

processing tasks in-core.

For the Cray MTA-2, Bader and Madduri [7] describe an

implementation using the hardware’s full-empty bits for

efficient queuing into an out-of-core vertex frontier. They

also perform adjacency-list expansion in parallel, relying on

the parallelizing compiler and fine-grained thread-scheduling

hardware to manage edge-processing tasks in-core.

Luo et al. [24] present an implementation for GPUs that

relies upon a hierarchical scheme for producing an out-of-core

vertex-frontier. To our knowledge, theirs is the only prior

attempt at designing a work-efficient BFS algorithm for

GPUs. Their GPU kernels logically correspond to lines 10-13

of Algorithm 3. Threads perform serial adjacency list

expansion and use an upward propagation tree of child-queue

structures in an effort to mitigate the contention overhead on

any given atomically-incremented queue pointer.

Distributed parallelizations. It is often desirable to

partition the graph structure amongst multiple processors,

particularly for datasets too large to fit within the physical

memory of a single machine. Even for shared-memory SMP

platforms, recent research has shown it to be advantageous to

partition the graph amongst the different CPU sockets; a

given socket will have higher throughput to the specific

memory managed by its local DDR channels [5].

The typical partitioning approach is to assign each

processing element a disjoint subset of V and the

corresponding adjacency lists in E. For a given vertex vi, the

inspection and marking of vi as well as the expansion of vi’s

adjacency list must occur on the processor that owns vi.

Distributed, out-of-core edge queues are used for

communicating neighbors to remote processors. Algorithm 4

describes the general method. Incoming neighbors that are

unvisited have their labels marked and their adjacency lists

expanded. As adjacency lists are expanded, neighbors are

enqueued to the processor that owns them. The

synchronization between BFS levels occurs after the

expansion phase.

It is important to note that distributed BFS

implementations that construct predecessor trees will impose

twice the queuing I/O as those that construct depth-rankings.

These variants must forward the full edge pairing (vi, vj) to the

remote processor so that it might properly label vj’s

predecessor as vi.

Yoo et al. [25] present a variation for BlueGene/L that

implements a two-dimensional partitioning strategy for

reducing the number of remote peers each processor must

communicate with. Xia and Prasanna [4] propose a variant

for multi-socket nodes that provisions more out-of-core edge-

frontier queues than active threads, reducing the contention at

any given queue and flexibly lowering barrier overhead.

Agarwal et al. [5] describe a two-phase implementation

for multi-socket systems that implements both out-of-core

vertex and edge-frontier queues for each socket. As a hybrid

of Algorithm 3 and Algorithm 4, only remote edges are

queued out-of-core. Edges that are local are inspected and

filtered in-core. After a global synchronization, a second

phase is performed to filter edges from remote sockets. Their

implementation uses a single, global, atomically-updated

Table 1. Suite of benchmark graphs

Name
Sparsity

Plot
Description

n

(10
6
)

m

(10
6
)

d

Avg.

Search

Depth

europe.osm

European road

network
50.9 108.1 2.1 19314

grid5pt.5000

5-point Poisson

stencil (2D grid

lattice)

25.0 125.0 5.0 7500

hugebubbles-00020

Adaptive numerical

simulation mesh
21.2 63.6 3.0 6151

grid7pt.300

7-point Poisson

stencil (3D grid

lattice)

27.0 188.5 7.0 679

nlpkkt160

3D PDE-constrained

optimization
8.3 221.2 26.5 142

audikw1

Automotive finite

element analysis
0.9 76.7 81.3 62

cage15

Electrophoresis

transition

probabilities

5.2 94.0 18.2 37

kkt_power

Nonlinear

optimization (KKT)
2.1 13.0 6.3 37

coPapersCiteseer

Citation network 0.4 32.1 73.9 26

wikipedia-20070206

Links between

Wikipedia pages
3.6 45.0 12.6 20

kron_g500-logn20

Graph500 RMAT

(A=0.57, B=0.19,

C=0.19)

1.0 100.7 96.0 6

random.2Mv.128Me

G(n, M) uniform

random
2.0 128.0 64.0 6

rmat.2Mv.128Me

RMAT (A=0.45,

B=0.15, C=0.15)
2.0 128.0 64.0 6

Algorithm 4. A linear-work, vertex-oriented BFS parallelization for a

graph that has been partitioned across multiple processors. The scheme

uses a set of distributed edge-frontier queues, one per processor.

Input: Vertex set V, row-offsets array R, column-indices array C, source

vertex s, queues

Output: Array dist[0..n-1] with dist[v] holding the distance from s to v

Functions: LockedEnqueue(val) safely inserts val at the end of the queue

instance

1 parallel for i in V :

2 distproc[i] := ∞

3 iteration := 0

4 parallel for (proc in 0 .. processors-1) :

5 inQproc := {}

6 outQproc := {}

7 if (proc == Owner(s))

8 inQproc.LockedEnqueue(s)

9 distproc[s] := 0

10 do :

11 done := true;

12 parallel for (proc in 0 .. processors-1) :

13 parallel for (i in inQproc) :

14 if (distproc[i] == ∞)

15 done := false

16 distproc[i] := iteration

17 for (offset in R[i] .. R[i+1]-1) :

18 j := C[offset]

19 dest := owner(j)

20 outQdest.LockedEnqueue(j)

21 parallel for (proc in 0 .. processors-1) :

22 inQproc := outQproc

23 iteration++

24 while (!done)

5

bitmask to reduce the overhead of inspecting a given vertex’s

visitation status.

Scarpazza et al. [26] describe a similar hybrid variation

for the Cell BE processor architecture. Instead of separate

contraction phase per iteration, processor cores perform edge

expansion, exchange, and contraction in batches. DMA

engines are used instead of threads to perform parallel

adjacency list expansion. Their implementation requires an

offline preprocessing step that sorts and encodes adjacency

lists into segments packaged by processor core.

Our parallelization strategy. In comparison, our BFS

strategy expands adjacent neighbors in parallel; implements

out-of-core edge and vertex-frontiers; uses local prefix-sum in

place of local atomic operations for determining enqueue

offsets; and uses a best-effort bitmask for efficient neighbor

filtering. We further describe the details in Section 5.

3. BENCHMARK SUITE

3.1 Graph Datasets

Our benchmark suite is composed of the thirteen graphs listed

in Table 1. We generate the square and cubic Poisson lattice

graph datasets ourselves. The random.2Mv.128Me and

rmat.2Mv.128Me datasets are constructed using GTgraph

[27]. The wikipedia-20070206 dataset is from the University

of Florida Sparse Matrix Collection [28]. The remaining

datasets are from the 10th DIMACS Implementation

Challenge [29].

One of our goals is to demonstrate good performance for

large-diameter graphs. The largest components within these

datasets have diameters spreading five orders of magnitude.

Graph diameter is directly proportional to average search

depth, the expected number of BFS iterations for a randomly-

chosen source vertex.

3.2 Logical Frontier Plots

Although our sparsity plots reveal a diversity of locality, they

provide little intuition as to how traversal will unfold. Fig. 2

presents sample frontier plots of logical edge and vertex-

frontier sizes as functions of BFS iteration. Such plots help

visualize workload expansion and contraction, both within

and between iterations. The ideal numbers of neighbors

expanded and vertices labeled per iteration are constant

properties of the given dataset and starting vertex.

Frontier plots reveal the concurrency exposed by each

iteration. For example, the bulk of the work for the

wikipedia-20070206 dataset is performed in only 1-2

iterations. The hardware can easily be saturated during these

iterations. We observe that real-world datasets often have

long sections of light work that incur heavy global

synchronization overhead.

Finally, Fig. 2 also plots the duplicate-free subset of the

edge-frontier. We observe that a simple duplicate-removal

pass can perform much of the contraction work from edge-

frontier down to vertex-frontier. This has important

implications for distributed BFS. The amount of network

traffic can be significantly reduced by first removing

duplicates from the expansion of remote neighbors.

We note the direct application of this technique does not

scale linearly with processors. As p increases, the number of

available duplicates in a given partition correspondingly

decreases. In the extreme where p = m, each processor owns

only one edge and there are no duplicates to be locally culled.

For large p, such decoupled duplicate-removal techniques

should be pushed into the hierarchical interconnect. Yoo et

al. demonstrate a variant of this idea for BlueGene/L using

their MPI set-union collective [25].

(a) wikipedia-20070206

(b) europe.osm

(c) grid7pt.300

(d) nlpkkt60

(e) rmat.2Mv.128Me

(f) audikw1

Fig. 2. Sample frontier plots of logical vertex and edge-frontier sizes during graph traversal.

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18

V
e

rt
ic

e
s

(m
il

li
o

n
s)

BFS Iteration

Edge-frontier

Unique neighbors

Vertex-frontier

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0 4000 8000 12000 16000

V
e

rt
ic

e
s

(m
il

li
o

n
s)

BFS Iteration

Edge-frontier

Unique neighbors

Vertex-frontier

0.0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600 700 800

V
e

rt
ic

e
s

(m
il

li
o

n
s)

BFS Iteration

Edge-frontier

Unique neighbors

Vertex-frontier

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 20 40 60 80 100 120 140 160

V
e

rt
ic

e
s

(m
il

li
o

n
s)

BFS Iteration

Edge-frontier

Unique neighbors

Vertex-frontier

0

20

40

60

80

100

120

140

0 1 2 3 4

V
e

rt
ic

e
s

(m
il

li
o

n
s)

BFS Iteration

Edge-frontier

Unique neighbors

Vertex-frontier

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 5 10 15 20 25 30 35 40 45 50

V
e

rt
ic

e
s

(m
il

li
o

n
s)

BFS Iteration

Edge-frontier

Unique neighbors

Vertex-frontier

6

4. MICRO-BENCHMARK ANALYSES

A linear BFS workload is composed of two components: O(n)

work related to vertex-frontier processing, and O(m) for edge-

frontier processing. Because the edge-frontier is dominant,

we focus our attention on the two fundamental aspects of its

operation: neighbor-gathering and status-lookup. Although

their functions are trivial, the GPU machine model provides

interesting challenges for these workloads. We investigate

these two activities in the following analyses using NVIDIA

Tesla C2050 GPUs.

4.1 Isolated Neighbor Gathering

This analysis investigates serial and parallel strategies for

simply gathering neighbors from adjacency lists. The

enlistment of threads for parallel gathering is a form task

scheduling. We evaluate a spectrum of scheduling granularity

from individual tasks (higher scheduling overhead) to blocks

of tasks (higher underutilization from partial-filling). We

show the serial-expansion and warp-centric techniques

described by prior work underutilize the GPU for entire

genres of sparse graph datasets.

For a given BFS iteration, our test kernels simply read an

array of preprocessed row-ranges that reference the adjacency

lists to be expanded and then load the corresponding

neighbors into local registers.

Serial-gathering. Each thread obtains its preprocessed

row-range bounds and then serially acquires the

corresponding neighbors from the column-indices array C.

Coarse-grained, warp-based gathering. Threads enlist

the entire warp to assist in gathering. As described in

Algorithm 5, each thread attempts to vie for control of its

warp by writing its thread-identifier into a single word shared

by all threads of that warp. Only one write will succeed, thus

determining which is allowed to subsequently enlist the warp

as a whole to read its corresponding neighbors. This process

repeats for every warp until its threads have all had their

adjacent neighbors gathered.

Fine-grained, scan-based gathering. Algorithm 6

illustrates fine-grained gathering using CTA-wide parallel

prefix sum. Threads use the reservation from the prefix sum

to perfectly pack segments of gather offsets for the neighbors

within their adjacency lists into a single buffer that is shared

by the entire CTA. When this buffer is full, the entire CTA

can then gather the referenced neighbors from the column-

indices array C. Perfect packing ensures that no SIMD lanes

are unutilized during global reads from C. This process

repeats until all threads have had their adjacent neighbors

gathered.

Compared to the two previous strategies, the entire CTA

participates in every read. Any workload imbalance between

threads is not magnified by expensive global memory

accesses to C. Instead, workload imbalance can occur in the

form of underutilized cycles during offset-sharing. The worst

case entails a single thread having more neighbors than the

gather buffer can accommodate, resulting in the idling of all

other threads while it alone shares gather offsets.

Scan+warp+CTA gathering. We can mitigate this

imbalance by supplementing fine-grained scan-based

expansion with coarser CTA-based and warp-based

expansion. We first apply a CTA-wide version of warp-based

gathering. This allows threads with very large adjacency lists

Algorithm 5. GPU pseudo-code for a warp-based, strip-mined

neighbor-gathering approach.

Input: Vertex-frontier Qvfront, column-indices array C, and the offset cta_offset

for the current tile within Qvfront

Functions: WarpAny(predi) returns true if any predi is set for any thread ti

within the warp.

1 GatherWarp(cta_offset, Qvfront, C) {

2 volatile shared comm[WARPS][3];

3 {r, r_end} = Qvfront[cta_offset + thread_id];

4 while (WarpAny(r_end – r)) {

5

6 // vie for control of warp

7 if (r_end – r)

8 comm[warp_id][0] = lane_id;

9

10 // winner describes adjlist

11 if (comm[warp_id][0] == lane_id) {

12 comm[warp_id][1] = r;

13 comm[warp_id][2] = r_end;

14 r = r_end;

15 }

16

17 // strip-mine winner’s adjlist

18 r_gather = comm[warp_id][1] + lane_id;

19 r_gather_end = comm[warp_id][2];

20 while (r_gather < r_gather_end) {

21 volatile neighbor = C[r_gather];

22 r_gather += WARP_SIZE;

23 }

24 }

25 }

Algorithm 6. GPU pseudo-code for a fine-grained, scan-based

neighbor-gathering approach.

Input: Vertex-frontier Qvfront, column-indices array C, and the offset

cta_offset for the current tile within Qvfront

Functions: CtaPrefixSum(vali) performs a CTA-wide prefix sum where

each thread ti is returned the pair {∑ ����
���

��� , ∑ ����
��	_�
��	���

���
}.

CtaBarrier() performs a barrier across all threads within the CTA.

1 GatherScan(cta_offset, Qvfront, C) {

2 shared comm[CTA_THREADS];

3 {r, r_end} = Qvfront[cta_offset + thread_id];

4 // reserve gather offsets

5 {rsv_rank, total} = CtaPrefixSum(r_end – r);

6 // process fine-grained batches of adjlists

7 cta_progress = 0;

8 while ((remain = total - cta_progress) > 0) {

9 // share batch of gather offsets

10 while((rsv_rank < cta_progress + CTA_THREADS)

11 && (r < r_end))

12 {

13 comm[rsv_rank – cta_progress] = r;

14 rsv_rank++;

15 r++;

16 }

17 CtaBarrier();

18 // gather batch of adjlist(s)

19 if (thread_id < Min(remain, CTA_THREADS) {

20 volatile neighbor = C[comm[thread_id]];

21 }

22 cta_progress += CTA_THREADS;

23 CtaBarrier();

24 }

25 }

7

to vie for control of the entire CTA, the winner broadcasting

its row-range to all threads. Any large adjacency lists are

strip-mined using the width of the entire CTA. Then we

apply warp-based gathering to acquire portions of adjacency

lists greater than or equal to the warp width. Finally we

perform scan-based gathering to acquire the remaining “loose

ends”.

This hybrid strategy limits all forms of load imbalance

from adjacency list expansion. Fine-grained scan-based

distribution limits imbalance from SIMD lane

underutilization. Warp enlistment limits offset-sharing

imbalance between threads. CTA enlistment limits imbalance

between warps. And finally, any imbalance between CTAs

can be limited by oversubscribing GPU cores with an

abundance of CTAs and/or implementing coarse-grained tile-

stealing mechanisms for CTAs to dequeue tiles2 at their own

rate.

Analysis. We performed 100 randomly-sourced

traversals of each dataset, evaluating these kernels on the

logical vertex-frontier for every iteration. Fig. 4a plots the

2 We term tile to describe a block of input data that a CTA is

designed to process to completion before terminating or

obtaining more work.

average edge-processing throughputs for each strategy in log-

scale. The datasets are ordered from left-to-right by

decreasing average search depth.

The serial approach performs poorly for the majority of

datasets. Fig. 4b reveals it suffers from dramatic over-fetch.

It plots bytes moved through DRAM per edge. The arbitrary

references from each thread within the warp result in terrible

coalescing for SIMD load instructions.

The warp-based approach performs poorly for the graphs

on the left-hand side having �̅ ≤ 10. Fig. 4c reveals that it is

computationally inefficient for these datasets. It plots a log

scale of computational intensity, the ratio of thread-

instructions versus bytes moved through DRAM. The

average adjacency lists for these graphs are much smaller than

the number of threads per warp. As a result, a significant

number of SIMD lanes go unused during any given cycle.

Fig. 4c also reveals that that scan-based gathering can

suffer from extreme workload imbalance when only one

thread is active within the entire CTA. This phenomenon is

reflected in the datasets on the right-hand size having skewed

degree distributions. The load imbalance from expanding

large adjacency lists leads to increased instruction counts and

corresponding performance degradation.

Combining the benefits of bulk-enlistment with fine-

grained utilization, the hybrid scan+warp+cta demonstrates

good gathering rates across the board.

4.2 Coupling of Gathering and Lookup

Status-lookup is the other half to neighbor-gathering; it entails

determining which neighbors within the edge-frontier have

already been visited. This section describes our analyses of

status-lookup workloads, both in isolation and when coupled

with neighbor-gathering. We reveal that coupling within the

same kernel invocation can lead to markedly worse

performance than performing them separately.

(a) Average gather rate (log)

(b) Average DRAM overhead

(c) Average computational intensity (log)

Fig. 4. Neighbor-gathering behavior. Harmonic means are normalized

with respect to serial-gathering.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.125

0.25

0.5

1

2

4

8

16

32

n
o

rm
a

li
ze

d

1
0
9

e
d

g
e

s
/

se
c

(l
o

g
)

Serial Warp Scan Scan+Warp+CTA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

20

40

60

80

100

120

n
o

rm
a

li
ze

d

D
R

A
M

 b
y

te
s

/
e

d
g

e

Serial Warp Scan Scan+Warp+CTA

1

2

4

8

16

32

64

T
h

re
a

d
-i

n
st

ru
ct

io
n

s
/

b
y

te
 (

lo
g

) Serial Warp Scan Scan+Warp+CTA

(a) Average lookup rate

(b) Average DRAM overhead

Fig. 3 Status-lookup behavior. Harmonic means are normalized with

respect to simple label-lookup.

0.9

1.0

1.1

1.2

1.3

0

2

4

6

8

10

12

14

n
o

rm
a

li
ze

d

1
0
9

e
d

g
e

s
/

se
c

Label Lookup Bitmask+Label Lookup

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

10

20

30

40

n
o

rm
a

li
ze

d

b
y

te
s

/
e

d
g

e

Label Lookup Bitmask+Label Lookup

8

Our strategy for status-lookup incorporates a bitmask to

reduce the size of status data from a 32-bit label to a single bit

per vertex. CPU parallelizations have used atomically-

updated bitmask structures to reduce memory traffic via

improved cache coverage [5], [26]. Because we avoid atomic

operations, our bitmask is only a conservative approximation

of visitation status. Bits for visited vertices may appear unset

or may be “clobbered” due to false-sharing within a single

byte. If a status bit is unset, we must then perform a second

read to check the corresponding label to ensure the vertex is

safe for marking. This scheme relies upon capacity and

conflict misses to update stale bitmask data within the read-

only texture caches.

Similar to the neighbor-gathering analysis, we isolate the

status-lookup workload using a test-kernel that consumes the

logical edge-frontier at each BFS iteration. Despite having

much smaller and more transient last-level caches, Fig. 3

confirms the technique can reduce global DRAM overhead

and accelerate status-lookup for GPU architectures as well.

The exceptions are the datasets on the left having a hundred

or more BFS iterations. The bitmask is less effective for these

datasets because texture caches are flushed between kernel

invocations. Without coverage, the inspection often requires

a second label lookup which further adds delay to latency-

bound BFS iterations. As a result, we skip bitmask lookup for

fleeting iterations having edge-frontiers smaller than the

number of resident threads.

Fig. 5 compares the throughputs of lookup versus

gathering workloads. We observe that status-lookup is

generally the more expensive of the two. This is particularly

true for the datasets on the right-hand side having high

average vertex out-degree. The ability for neighbor-gathering

to coalesce accesses to adjacency lists increases with �̅,

whereas accesses for status-lookup have arbitrary locality.

A complete BFS implementation might choose to fuse

these workloads within the same kernel in order to process

one of the frontiers online and in-core. We evaluate this

fusion with a derivation of our scan+warp+cta gathering

kernel that immediately inspects every gathered neighbor

using our bitmap-assisted lookup strategy. The coupled

kernel requires O(m) less overall data movement than the

other two put together (which effectively read all edges

twice).

Fig. 6 compares this fused kernel with the aggregate

throughput of the isolated gathering and lookup workloads

performed separately. Despite the additional data movement,

the separate kernels outperform the fused kernel for the

majority of the benchmarks. Their extra data movement

results in net slowdown, however, for the latency-bound

datasets on the left-hand side having limited bulk

concurrency. The implication is that fused approaches are

preferable for fleeting BFS iterations having edge-frontiers

smaller than the number of resident threads.

The fused kernel likely suffers from TLB misses

experienced by the neighbor-gathering workload. The

column-indices arrays occupy substantial portions of GPU

physical memory. Sparse gathers from them are apt to cause

TLB misses. The fusion of these two workloads inherits the

worst aspects of both: TLB turnover during uncoalesced

status lookups.

4.3 Concurrent Discovery

Duplicate vertex identifiers within the edge-frontier are

representative of different edges incident to the same vertex.

This can pose a problem for implementations that allow the

benign race condition. Adjacency lists will be expanded

multiple times when multiple threads concurrently discover

the same vertices via these duplicates. Without atomic

updates to visitation status, we show the SIMD nature of the

GPU machine model can introduce a significant amount of

redundant work.

Effect on overall workload. Prior CPU parallelizations

have noted the potential for redundant work, but concluded its

manifestation to be negligible [6]. Concurrent discovery on

Fig. 6. Comparison of isolated vs. fused lookup and gathering.

0.0

0.5

1.0

1.5

0

1

2

3

4

5

6

7

n
o

rm
a

li
ze

d

1
0
9

e
d

g
e

s
/

se
c

Isolated Gather+Lookup Fused Gather+Lookup

Fig. 5. Comparison of lookup vs. gathering.

1.0

1.1

1.2

1.3

1.4

1.5

0

5

10

15

20

n
o

rm
a

li
ze

d

1
0
9

e
d

g
e

s
/

se
c

Bitmask+Label Lookup Scan+Warp+CTA Gather

BFS

Iteration

Actual

Vertex-

frontier

Actual

Edge-

frontier

1 0 1,3

2 1,3 2,4,4,6

3 2,4,4,6 5,5,7,5,7,7

4 5,5,7,5,7,7 8,8,8,8,8,8,8

Fig. 7. Example of redundant adjacency list expansion due to concurrent discovery

9

CPU platforms is rare due to a combination of relatively low

parallelism (~8 hardware threads) and coherent L1 caches that

provide only a small window of opportunity around status-

inspections that are immediately followed by status updates.

The GPU machine model, however, is much more

vulnerable. If multiple threads within the same warp are

simultaneously inspecting same vertex identifier, the SIMD

nature of the warp-read ensures that all will obtain the same

status value. If unvisited, the adjacency list for this vertex

will be expanded for every thread.

Fig. 7 demonstrates an acute case of concurrent discovery.

In this example, we traverse a small single-source, single-sink

lattice using fine-grained cooperative expansion (e.g.,

Algorithm 6). For each BFS iteration, the cooperative

behavior ensures that all neighbors are gathered before any

are inspected. No duplicates are culled from the edge frontier

because SIMD lookups reveal every neighbor as being

unvisited. The actual edge and vertex-frontiers diverge from

ideal because no contraction occurs. This is cause for

concern: the excess work grows geometrically, only slowing

when the frontier exceeds the width of the machine or the

graph ceases to expand.

We measure the effects of redundant expansion upon

overall workload using a simplified version of the two-phase

BFS implementation described in Section 5. These expansion

and contraction kernels make no special effort to curtail

concurrent discovery. For several sample traversals, Fig. 8

illustrates compounded redundancy by plotting the actual

numbers of vertex identifiers expanded and contracted for

each BFS iteration alongside the corresponding logical

frontiers. The deltas between these pairs reflect the

generation of unnecessary work.

We define the redundant expansion factor as the ratio of

neighbors actually enqueued versus the number of edges

logically traversed. Fig. 9 plots the redundant expansion

factors measured for our two-phase implementation, both with

and without extra measures to mitigate concurrent discovery.

The problem is severe for spatially-descriptive datasets.

These datasets exhibit nearby duplicates within the edge-

frontier due to their high frequency of convergent exploration.

For example, simple two-phase traversal incurs 4.2x

redundant expansion for the 2D lattice grid5pt.5000 dataset.

Even worse, the implementation altogether fails to traverse

the kron_g500-logn20 dataset which encodes sorted

adjacency lists. The improved locality enables the redundant

expansion of ultra-popular vertices, ultimately exhausting

physical memory when filling the edge queue.

This issue of redundant expansion appears to be unique to

GPU BFS implementations having two properties: (1) a work-

efficient traversal algorithm; and (2) concurrent adjacency list

expansion. Quadratic implementations do not suffer

redundant work because vertices are never expanded by more

than one thread. In our evaluation of linear-work serial-

expansion, we observed negligible concurrent SIMD

discovery during serial inspection due to the independent

nature of thread activity.

(a) grid7pt.300 (b) nlpkkt160 (c) coPapersCiteseer

Fig. 8. Actual expanded and contracted queue sizes without local duplicate culling, superimposed over logical frontier sizes.

0.0

0.5

1.0

1.5

2.0

0 100 200 300 400 500 600 700 800

V
e

rt
ic

e
s

(m
il

li
o

n
s)

BFS Iteraiton

Edge Frontier

Vertex Frontier
Expanded

Contracted

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

V
e

rt
ic

e
s

(m
il

li
o

n
s)

BFS Iteration

Edge Frontier

Vertex Frontier

Expanded

Contracted

0

5

10

15

20

0 4 8 12 16 20 24

V
e

rt
ic

e
s

(m
il

li
o

n
s)

BFS Iteration

Edge Frontier

Vertex Frontier

Expanded

Contracted

Fig. 9 Redundant work expansion incurred by variants of our two-

phase BFS implementation. Unlabeled columns are < 1.05x.

1.1x

4.2x

2.4x 2.6x

1.7x

1.2x 1.1x
1.4x

1.1x

n/a

1.3x

1

10

R
e

d
u

n
d

a
n

t
e

x
p

a
n

si
o

n
 f
a

ct
o

r
(l

o
g

) Simple Local duplicate culling

Algorithm 7. GPU pseudo-code for a localized, warp-based

duplicate-detection heuristic.

Input: Vertex identifier neighbor

Output: True if neighbor is a conclusive duplicate within the warp’s

working set.

1 WarpCull(neighbor) {

2 volatile shared scratch[WARPS][128];

3 hash = neighbor & 127;

4 scratch[warp_id][hash] = neighbor;

5 retrieved = scratch[warp_id][hash];

6 if (retrieved == neighbor) {

7 // vie to be the “unique” item

8 scratch[warp_id][hash] = thread_id;

9 if (scratch[warp_id][hash] != thread_id) {

10 // someone else is unique

11 return true;

12 }

13 }

14 return false;

15 }

10

In general, the issue of concurrent discovery is a result of

false-negatives during status-lookup, i.e., failure to detect

previously-visited and duplicate vertex identifiers within the

edge-frontier. Atomic read-modify-write updates to visitation

status yield zero false-negatives. As alternatives, we

introduce two localized mechanisms for reducing false-

negatives: (1) warp culling and (2) history culling.

Warp culling. Algorithm 7 describes this heuristic for

preventing concurrent SIMD discovery by detecting the

presence of duplicates within the warp’s immediate working

set. Using shared-memory per warp, each thread hashes in

the neighbor it is currently inspecting. If a collision occurs

and a different value is extracted, nothing can be determined

regarding duplicate status. Otherwise threads then write their

thread-identifier into the same hash location. Only one write

will succeed. Threads that subsequently retrieve a different

thread-identifier can safely classify their neighbors as

duplicates to be culled.

History culling. This heuristic complements the

instantaneous coverage of warp culling by maintaining a

cache of recently-inspected vertex identifiers in local shared

memory. If a given thread observes its neighbor to have been

previously recorded, it can classify that neighbor as safe for

culling.

Analysis. We augment our isolated lookup tests to

evaluate these heuristics. Kernels simply read vertex

identifiers from the edge-frontier and determine which should

not be allowed into the vertex-frontier. For each dataset, we

record the average percentage of false negatives with respect

to m – n, the ideal number of culled vertex identifiers.

Fig. 10 illustrates the progressive application of lookup

mechanisms. The bitmask heuristic alone incurs an average

false-negative rate of 6.4% across our benchmark suite. The

addition of label-lookup (which makes status-lookup safe)

improves this to 4.0%. Without further measure, the

compounding nature of redundant expansion allows even

small percentages to accrue sizeable amounts of extra work.

For example, a false-negative rate of 3.5% for traversing

kkt_power results in a 40% redundant expansion overhead.

The addition of warp-based culling induces a tenfold

reduction in false-negatives for spatially descriptive graphs

(left-hand side). The history-based culling heuristic further

reduces culling inefficiency by a factor of five for the

remainder of high-risk datasets (middle-third). The

application of both heuristics allows us to reduce the overall

redundant expansion factor to less than 1.05x for every graph

in our benchmark suite.

5. SINGLE-GPU PARALLELIZATIONS

A complete solution must couple expansion and contraction

activities. In this section, we evaluate the design space of

coupling alternatives:

1. Expand-contract. A single kernel consumes the current

vertex-frontier and produces the vertex-frontier for the

next BFS iteration.

2. Contract-expand. The converse. A single kernel

contracts the current edge-frontier, expanding unvisited

vertices into the edge-frontier for the next iteration.

3. Two-phase. A given BFS iteration is processed by two

kernels that separately implement out-of-core expansion

and contraction.

4. Hybrid. This implementation invokes the contract-

expand kernel for small, fleeting BFS iterations,

otherwise the two-phase kernels.

We describe and evaluate BFS kernels for each strategy. We

show the hybrid approach to be on-par-with or better-than the

other three for every dataset in our benchmark suite.

5.1 Expand-contract (out-of-core vertex queue)

Our expand-contract kernel is loosely based upon the fused

gather-lookup benchmark kernel from Section 4.2. It

consumes the vertex queue for the current BFS iteration and

produces the vertex queue for the next. It performs parallel

expansion and filtering of adjacency lists online and in-core

using local scratch memory.

A CTA performs the following steps when processing a

tile of input from the incoming vertex-frontier queue:

1. Threads perform local warp-culling and history-culling

to determine if their dequeued vertex is a duplicate.

2. If still valid, the corresponding row-range is loaded from

the row-offsets array R.

3. Threads perform coarse-grained, CTA-based neighbor-

gathering. Large adjacency lists are cooperatively strip-

mined from the column-indices array C at the full width

of the CTA. These strips of neighbors are filtered in-

core and the unvisited vertices are enqueued into the

output queue as described below.

4. Threads perform fine-grained, scan-based neighbor-

gathering. These batches of neighbors are filtered and

enqueued into the output queue as described below.

For each strip or batch of gathered neighbors:

i. Threads perform status-lookup to invalidate the vast

majority of previously-visited and duplicate neighbors.

ii. Threads with a valid neighbor ni update the

corresponding label.

iii. Threads then perform a CTA-wide prefix sum where

each contributes a 1 if ni is valid, 0 otherwise. This

provides each thread with the scatter offset for ni and the

total count of all valid neighbors.

iv. Thread0 obtains the base enqueue offset for valid

neighbors by performing an atomic-add operation on a

global queue counter using the total valid count. The

returned value is shared to all other threads in the CTA.

Fig. 10 Percentages of false-negatives incurred by status-lookup

strategies.

0.0001

0.001

0.01

0.1

1

10

100
%

 o
f

fa
ls

e
-n

e
g

a
ti

v
e

s
Bitmask Bitmask+Label Bitmask+Label+WarpCull Bitmask+Label+WarpCull+HistoryCull

11

v. Finally, all valid ni are written to the global output

queue. The enqueue index for ni is the sum of the base

enqueue offset and the scatter offset.

This kernel requires 2n global storage for input and output

vertex queues. The roles of these two arrays are reversed for

alternating BFS iterations. A traversal will generate 5n+2m

explicit data movement through global memory. All m edges

will be streamed into registers once. All n vertices will be

streamed twice: out into global frontier queues and

subsequently back in. The bitmask bits will be inspected m

times and updated n times along with the labels. Each of the

n row-offsets is loaded twice.

Each CTA performs two or more local prefix-sums per

tile. One is used for allocating room for gather offsets during

scan-based gathering. We also need prefix sums to compute

global enqueue offsets for every strip or batch of gathered

neighbors. Although GPU cores can efficiently overlap

concurrent prefix sums from different CTAs, the turnaround

time for each can be relatively long. This can hurt

performance for fleeting, latency-bound BFS iterations.

5.2 Contract-expand (out-of-core edge queue)

Our contract-expand kernel filters previously-visited and

duplicate neighbors from the current edge queue. The

adjacency lists of the surviving vertices are then expanded

and copied out into the edge queue for the next iteration.

A CTA performs the following steps when processing a

tile of input from the incoming edge-frontier queue:

1. Threads progressively test their neighbor vertex

identifier ni for validity using (i) status-lookup; (ii)

warp-based duplicate culling; and (iii) history-based

duplicate culling.

2. Threads update labels for valid ni and obtain the

corresponding row-ranges from R.

3. Threads then perform two concurrent CTA-wide prefix

sums: the first for computing enqueue offsets for coarse-

grained warp and CTA neighbor-gathering, the second

for fine-grained scan-based gathering. |Ai| is contributed

to the first prefix sum if greater than WARP_SIZE,

otherwise to the second.

4. Thread0 obtains a base enqueue offset for valid

neighbors within the entire tile by performing an atomic-

add operation on a global queue counter using the

combined totals of the two prefix sums. The returned

value is shared to all other threads in the CTA.

5. Threads then perform coarse-grained CTA and warp-

based gathering. When a thread commandeers its CTA

or warp, it also communicates the base scatter offset for

ni to its peers. After gathering neighbors from C,

enlisted threads enqueue them to the global output

queue. The enqueue index for each thread is the sum of

the base enqueue offset, the shared scatter offset, and

thread-rank.

6. Finally, threads perform fine-grained scan-based

gathering. This procedure is a variant of Algorithm 6

with the prefix sum being hoisted out and performed

earlier in Step 4. After gathering packed neighbors from

C, threads enqueue them to the global output. The

enqueue index is the sum of the base enqueue offset, the

coarse-grained total, the CTA progress, and thread-rank.

This kernel requires 2m global storage for input and

output edge queues. Variants that label predecessors,

however, require an additional pair of “parent” queues to

track both origin and destination identifiers within the edge-

frontier. A traversal will generate 3n+4m explicit global data

movement. All m edges will be streamed through global

memory three times: into registers from C, out to the edge

queue, and back in again the next iteration. The bitmask,

label, and row-offset traffic remain the same as for expand-

contract.

Despite a much larger queuing workload, the contract-

expand strategy is often better suited for processing small,

fleeting BFS iterations. It incurs lower latency because CTAs

only perform local two prefix sums per block. We overlap

these prefix-sums to further reduce latency. By operating on

the larger edge-frontier, the contract-expand kernel also

enjoys better bulk concurrency in which fewer resident CTAs

sit idle.

5.3 Two-phase (out-of-core vertex and edge queues)

Our two-phase implementation isolates the expansion and

contraction workloads into separate kernels. Our micro-

benchmark analyses suggest this design for better overall bulk

throughput. The expansion kernel employs the

(a) Average traversal throughput

(b) Average DRAM workload

(c) Average computational workload

Fig. 11 BFS traversal performance and workloads. Harmonic means

are normalized with respect to the expand-contract implementation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

n
o

rm
a

li
ze

d

1
0
9

e
d

g
e

s
/

se
c

Expand-Contract Contract-Expand 2-Phase Hybrid

0.0

0.5

1.0

1.5

2.0

0

20

40

60

80

100

120

140

n
o

rm
a

li
ze

d

B
y

te
s

/
e

d
g

e

Expand-Contract Contract-Expand 2-Phase Hybrid

0.0

0.5

1.0

1.5

2.0

0

200

400

600

800

1000

n
o

rm
a

li
ze

d

T
h

re
a

d
-i

n
st

rs
 /

 e
d

g
e

Expand-Contract Contract-Expand 2-Phase Hybrid

12

scan+warp+cta gathering strategy to obtain the neighbors of

vertices from the input vertex queue. As with the contract-

expand implementation above, it performs two overlapped

local prefix-sums to compute scatter offsets for the expanded

neighbors into the global edge queue.

The contraction kernel begins with the edge queue as

input. Threads filter previously-visited and duplicate

neighbors. The remaining valid neighbors are placed into the

outgoing vertex queue using another local prefix-sum to

compute global enqueue offsets.

These kernels require n+m global storage for vertex and

edge queues. A two-phase traversal generates 5n+4m explicit

global data movement. The memory workload builds upon

that of contract-expand, but additionally streams n vertices

into and out of the global vertex queue.

5.4 Hybrid

Our hybrid implementation combines the relative strengths of

the contract-expand and two-phase approaches: low-latency

turnaround for small frontiers and high-efficiency throughput

for large frontiers. If the edge queue for a given BFS iteration

contains more vertex identifiers than resident threads, we

invoke the two-phase implementation for that iteration.

Otherwise we invoke the contract-expand implementation.

The hybrid approach inherits the 2m global storage

requirement from the former and the 5n+4m explicit global

data movement from the latter.

5.5 Evaluation

Our performance analyses are constructed from 100

randomly-sourced traversals of each dataset. Fig. 11 plots

average traversal throughput. As anticipated, the contract-

expand approach excels at traversing the latency-bound

datasets on the left and the two-phase implementation

efficiently leverages the bulk-concurrency exposed by the

datasets on the right. Although the expand-contract approach

is serviceable, the hybrid approach meets or exceeds its

performance for every dataset.

With in-core edge-frontier processing, the expand-

contract implementation is designed for one-third as much

global queue traffic. The actual DRAM savings are

substantially less. We only see a 50% reduction in measured

DRAM workload for datasets with large �̅. Furthermore, the

workload differences are effectively lost in excess over-fetch

traffic for the graphs having small �̅.

The contract-expand implementation performs poorly for

graphs having large �̅. This behavior is related to a lack of

explicit workload compaction before neighbor gathering. Fig.

12 illustrates this using a sample traversal of wikipedia-

20070206. We observe a correlation between large

contraction workloads during iterations 4-6 and significantly

elevated dynamic thread-instruction counts. This is indicative

of SIMD underutilization. The majority of active threads

have their neighbors invalidated by status-lookup and local

duplicate removal. Cooperative neighbor-gathering becomes

much less efficient as a result.

Table 2 compares hybrid traversal performance for

distance and predecessor labeling variants. The performance

difference between variants is largely dependent upon �̅.

Smaller �̅ incurs larger DRAM over-fetch which reduces the

relative significance of added parent queue traffic. For

example, the performance impact of exchanging parent

vertices is negligible for europe.osm, yet is as high as 19% for

rmat.2Mv.128Me.

When contrasting CPU and GPU architectures, we

attempt to hedge in favor of CPU performance. We compare

our GPU traversal performance with the sequential method

and then assume a hypothetical CPU parallelization with

perfect linear scaling per core. We note that the recent single-

socket CPU results by Leiserson et al. and Agarwal et al.

referenced by Table 2 have not quite managed such scaling.

Furthermore, our sequential implementation for a state-of-the-

art 3.4GHz Intel Core i7 2600K (Sandybridge) exceeds their

Graph Dataset

CPU

Sequential
†

CPU

Parallel

NVIDIA Tesla C2050 (hybrid)

Label Distance Label Predecessor

10
9
 TE/s 10

9
TE/s 10

9
TE/s Speedup 10

9
TE/s Speedup

europe.osm 0.029 0.31 11x 0.31 11x

grid5pt.5000 0.081 0.60 7.3x 0.57 7.0x

hugebubbles-00020 0.029 0.43 15x 0.42 15x

grid7pt.300 0.038 0.12
††

 1.1 28x 0.97 26x

nlpkkt160 0.26 0.47
††

 2.5 9.6x 2.1 8.3x

audikw1 0.65 3.0 4.6x 2.5 4.0x

cage15 0.13 0.23
††

 2.2 18x 1.9 15x

kkt_power 0.047 0.11
††

 1.1 23x 1.0 21x

coPapersCiteseer 0.50 3.0 5.9x 2.5 5.0x

wikipedia-20070206 0.065 0.19
††

 1.6 25x 1.4 22x

kron_g500-logn20 0.24 3.1 13x 2.5 11x

random.2Mv.128Me 0.10 0.50
†††

 3.0 29x 2.4 23x

rmat.2Mv.128Me 0.15 0.70
†††

 3.3 22x 2.6 18x

Table 2. Single-socket performance comparison. GPU speedup is in

regard to sequential CPU performance. †3.4GHz Core i7 2600K. †† 2.5

GHz Core i7 4-core, distance-labeling [6]. ††† 2.7 GHz Xeon X5570 8-

core, predecessor labeling [5].

(a) traversal throughput (b) Dynamic instruction workload during BFS

iterations having large cull-sets

Fig. 12. Sample wikipedia-20070206 traversal behavior. Plots are superimposed over the shape of the logical edge and vertex-frontiers.

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1
0
9

e
d

g
e

s
/

se
c

BFS Iteration

Edge Frontier

Vertex Frontier

Two-phase

Contract-Expand

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
h

re
a

d
-i

n
st

ru
ct

io
n

s
/

e
d

g
e

BFS Iteration

Edge Frontier

Vertex Frontier

Two-phase

Contract-Expand

13

single-threaded results despite having fewer memory

channels. [5], [6]

Assuming 4x scaling across all four 2600K CPU cores,

our C2050 traversal rates would outperform the CPU for all

benchmark datasets. In addition, the majority of our graph

traversal rates exceed 12x speedup, the perfect scaling of

three such CPUs. At the extreme, our average wikipedia-

20070206 traversal rates outperform the sequential CPU

version by 25x, eight CPU equivalents. We also note that our

methods perform well for large and small-diameter graphs

alike. Comparing with sequential CPU traversals of

europe.osm and kron_g500-logn20, our hybrid strategy

provides an order-of-magnitude speedup for both.

Fig. 13 further presents C2050 traversal performance for

synthetic uniform-random and RMAT datasets having up to

256 million edges. Each plotted rate is averaged from 100

randomly-sourced traversals. Our maximum traversal rates of

3.5B and 3.6B TE/s occur with �̅ = 256 for uniform-random

and RMAT datasets having 256M edges, respectively. The

minimum rates plotted are 710M and 982M TE/s for uniform-

random and RMAT datasets having �̅ = 8 and 256M edges.

Performance incurs a drop-off at n=8 million vertices when

the bitmask exceeds the 768KB L2 cache size.

We evaluated the quadratic implementation provided by

Hong et al. [21] on our benchmark datasets. At best, it

achieved an average 2.1x slowdown for kron_g500-logn20.

At worst, a 2,300x slowdown for europe.osm. For wikipedia-

20070206, a 4.1x slowdown.

We use a previous-generation NVIDIA GTX280 to

compare our implementation with the results reported by Luo

et al. for their linear parallelization [24]. We achieve 4.1x

and 1.7x harmonic mean speedups for the referenced 6-pt grid

lattices and DIMACS road network datasets, respectively.

6. MULTI-GPU PARALLELIZATION

Communication between GPUs is simplified by a unified

virtual address space in which pointers can transparently

reference data residing within remote GPUs. PCI-express 2.0

provides each GPU with an external bidirectional bandwidth

of 6.6 GB/s. Under the assumption that GPUs send and

receive equal amounts of traffic, the rate at which each GPU

can be fed with remote work is conservatively bound by

825x106 neighbors / sec, where neighbors are 4-byte

identifiers. This rate is halved for predecessor-labeling

variants.

6.1 Design

We implement a simple partitioning of the graph into equally-

sized, disjoint subsets of V. For a system of p GPUs, we

initialize each processor pi with an (m/p)-element Ci and

(n/p)-element Ri and Labelsi arrays. Because the system is

small, we can provision each GPU with its own full-sized

n-bit best-effort bitmask.

We stripe ownership of V across the domain of vertex

identifiers. Striping provides good probability of an even

distribution of adjacency list sizes across GPUs. This is

particularly useful for graph datasets having concentrations of

popular vertices. For example, RMAT datasets encode the

most popular vertices with the largest adjacency lists near the

beginning of R and C. Alternatives that divide such data into

contiguous slabs can be detrimental for small systems: (a) an

equal share of vertices would overburden first GPU with an

abundance of edges; or (b) an equal share of edges leaves the

first GPU underutilized because it owns fewer vertices, most

of which are apt to be filtered remotely. However, this

method of partitioning progressively loses any inherent

locality as the number of GPUs increases.

Graph traversal proceeds in level-synchronous fashion.

The host program orchestrates BFS iterations as follows:

1. Invoke the expansion kernel on each GPUi, transforming

the vertex queue Qvertexi into an edge queue Qedgei.

2. Invoke a fused filter+partition operation for each GPUi

that sorts neighbors within Qedgei by ownership into p

bins. Vertex identifiers undergo opportunistic local

duplicate culling and bitmask filtering during the

partitioning process. This partitioning implementation is

analogous to the three-kernel radix-sorting pass

described by Merrill and Grimshaw [30].

3. Barrier across all GPUs. The sorting must be completed

on all GPUs before any can access their bins on remote

peers. The host program uses this opportunity to

terminate traversal if all bins are empty on all GPUs.

4. Invoke p-1 contraction kernels on each GPUi to stream

and filter the incoming neighbors from its peers. Kernel

invocation simply uses remote pointers that reference the

appropriate peer bins. This assembles each vertex queue

Qvertexi for the next BFS iteration.

The implementation requires (2m+n)/p storage for queue

arrays per GPU: two edge queues for pre and post-sorted

(a) Uniform random (b) RMAT (A=0.45, B=0.15, C=0.15, D=0.25)

Fig. 13. NVIDIA Tesla C2050 traversal throughput.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 4 8 16 32

1
0
9

e
d

g
e

s
/

se
c

|V| (millions)

d = 256

d = 128

d = 64

d = 32

d = 16

d = 8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 4 8 16 32

1
0
9

e
d

g
e

s
/

se
c

|V| (millions)

d = 256

d = 128

d = 64

d = 32

d = 16

d = 8

14

neighbors and a third vertex queue to avoid another global

synchronization after Step 4.

6.2 Evaluation

Fig. 14 presents traversal throughput as we scale up the

number of GPUs. We experience net slowdown for datasets

on the left having average search depth > 100. The cost of

global synchronization between BFS iterations is much higher

across multiple GPUs.

We do yield notable speedups for the three rightmost

datasets. These graphs have small diameters and require little

global synchronization. The large average out-degrees enable

plenty of opportunistic duplicate filtering during partitioning

passes. This allows us to circumvent the PCI-e cap of

825x106 edges/sec per GPU. With four GPUs, we

demonstrate traversal rates of 7.4 and 8.3 billion edges/sec for

the uniform-random and RMAT datasets respectively.

As expected, this strong-scaling is not linear. For

example, we observe 1.5x, 2.1x, and 2.5x speedups when

traversing rmat.2Mv.128Me using two, three, and four GPUs,

respectively. Adding more GPUs reduces the percentage of

duplicates per processor and increases overall PCI-e traffic.

Fig. 15 further illustrates the impact of opportunistic

duplicate culling for uniform random graphs up to 500M

edges and varying out out-degree �̅. Increasing �̅ yields

significantly better performance. Other than a slight

performance drop at n=8 million vertices when the bitmask

exceeds the L2 cache size, graph size has little impact upon

traversal throughput.

To our knowledge, these are the fastest traversal rates

demonstrated by a single-node machine. The work by

Agarwal et al. is representative of the state-of-the-art in CPU

parallelizations, demonstrating up to 1.3 billion edges/sec for

both uniform-random and RMAT datasets using four 8-core

Intel Nehalem-based XEON CPUs [5]. However, we note

that the host memory on such systems can further

accommodate datasets having tens of billions of edges.

7. CONCLUSION

This paper has demonstrated that GPUs are well-suited for

sparse graph traversal and can achieve very high levels of

performance on a broad range of graphs. We have presented

a parallelization of BFS tailored to the GPU’s requirement for

large amounts of fine-grained, bulk-synchronous parallelism.

Furthermore, our implementation performs an

asymptotically optimal amount of work. While quadratic-

work methods might be acceptable in certain very narrow

regimes [21], [31], they suffer from high overhead and did not

prove effective on even the lowest diameter graphs in our

experimental corpus. Our linear-work method compares very

favorably to state-of-the-art multicore implementations across

our entire range of benchmarks, which spans five orders of

magnitude in graph diameter.

Beyond graph search, our work distills several general

themes for implementing sparse and dynamic problems for

the GPU machine model:

• Prefix-sum can serve as an effective alternative to atomic

read-modify-write mechanisms for coordinating the

placement of items within shared data structures by

many parallel threads.

• In contrast to coarse-grained parallelism common on

multicore processors, GPU kernels cannot afford to have

individual threads streaming through unrelated sections

of data. Groups of GPU threads should cooperatively

assist each other for data movement tasks.

• Fusing heterogeneous tasks does not always produce the

best results. Global redistribution and compaction of

fine-grained tasks can significantly improve performance

when the alternative would allow significant load

imbalance or underutilization.

• The relative I/O contribution from global task

redistribution can be less costly than anticipated. The

data movement from reorganization may be insignificant

in comparison to the actual over-fetch traffic from

existing sparse memory accesses.

• It is useful to provide separate implementations for

saturating versus fleeting workloads. Hybrid approaches

can leverage a shorter code-path for retiring

underutilized phases as quickly as possible.

8. ACKNOWLEDGEMENTS

Duane Merrill was supported in part by a NVIDIA Graduate

Fellowship. We would like to thank NVIDIA for supplying

additional GPUs and Sungpack Hong of Stanford University

for providing us with the code for their BFS implementation.

Fig. 14. Average multi-GPU traversal rates. Harmonic means are

normalized with respect to the single GPU configuration.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

1

2

3

4

5

6

7

8

9

n
o

rm
a

li
ze

d

1
0
9

e
d

g
e

s
/

se
c

C2050 x1 C2050 x2 C2050 x3 C2050 x4

Fig. 15. Multi-GPU sensitivity to graph size and average out-degree ��

for uniform random graphs using four C2050 processors. Dashed lines

indicate predecessor labeling variants.

0

1

2

3

4

5

6

7

8

9

2 4 8 16

1
0
9

e
d

g
e

s
/

se
c

|V| (millions)

d = 64

d = 32

d = 16

d = 8

15

9. REFERENCES

[1] “Parboil Benchmark suite.” [Online]. Available:

http://impact.crhc.illinois.edu/parboil.php. [Accessed: 11-Jul-

2011].

[2] S. Che et al., “Rodinia: A benchmark suite for heterogeneous

computing,” in 2009 IEEE International Symposium on

Workload Characterization (IISWC), Austin, TX, USA, 2009,

pp. 44-54.

[3] “The Graph 500 List.” [Online]. Available:

http://www.graph500.org/. [Accessed: 11-Jul-2011].

[4] Y. Xia and V. K. Prasanna, “Topologically Adaptive Parallel

Breadth-first Search on Multicore Processors,” in 21st

International Conference on Parallel and Distributed

Computing and Systems (PDCS’09), 2009.

[5] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable

Graph Exploration on Multicore Processors,” in 2010

ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis, New Orleans,

LA, USA, 2010, pp. 1-11.

[6] C. E. Leiserson and T. B. Schardl, “A work-efficient parallel

breadth-first search algorithm (or how to cope with the

nondeterminism of reducers),” in Proceedings of the 22nd ACM

symposium on Parallelism in algorithms and architectures,

New York, NY, USA, 2010, pp. 303–314.

[7] D. A. Bader and K. Madduri, “Designing Multithreaded

Algorithms for Breadth-First Search and st-connectivity on the

Cray MTA-2,” in 2006 International Conference on Parallel

Processing (ICPP’06), Columbus, OH, USA, pp. 523-530.

[8] D. A. Bader, G. Cong, and J. Feo, “On the Architectural

Requirements for Efficient Execution of Graph Algorithms,” in

2005 International Conference on Parallel Processing

(ICPP’05), Oslo, Norway, pp. 547-556.

[9] W. D. Hillis and G. L. Steele, “Data parallel algorithms,”

Communications of the ACM, vol. 29, no. 12, pp. 1170-1183,

Dec. 1986.

[10] G. E. Blelloch, Prefix Sums and Their Applications. Synthesis

of Parallel Algorithms, 1990.

[11] D. Merrill and A. Grimshaw, Parallel Scan for Stream

Architectures. Department of Computer Science, University of

Virginia, 2009.

[12] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and

J. C. Phillips, “GPU Computing,” Proceedings of the IEEE, vol.

96, no. 5, pp. 879-899, May. 2008.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to Algorithms, Second. Cambridge, MA: MIT

Press, 2001.

[14] C. J. Cheney, “A nonrecursive list compacting algorithm,”

Commun. ACM, vol. 13, pp. 677–678, Nov. 1970.

[15] J. Gonzalez, Y. Low, and C. Guestrin, “Residual Splash for

Optimally Parallelizing Belief Propagation.,” Journal of

Machine Learning Research - Proceedings Track, vol. 5, pp.

177-184, 2009.

[16] M. Newman and M. Girvan, “Finding and evaluating

community structure in networks,” Physical Review E, vol. 69,

no. 2, Feb. 2004.

[17] M. Hussein, A. Varshney, and L. Davis, “On Implementing

Graph Cuts on CUDA,” in First Workshop on General Purpose

Processing on Graphics Processing Units, Boston, MA, 2007.

[18] J. Ullman and M. Yannakakis, “High-probability parallel

transitive closure algorithms,” in Proceedings of the second

annual ACM symposium on Parallel algorithms and

architectures - SPAA ’90, Island of Crete, Greece, 1990, pp.

200-209.

[19] P. Harish and P. J. Narayanan, “Accelerating large graph

algorithms on the GPU using CUDA,” in Proceedings of the

14th international conference on High performance computing,

Berlin, Heidelberg, 2007, pp. 197–208.

[20] Y. (Steve) Deng, B. D. Wang, and S. Mu, “Taming irregular

EDA applications on GPUs,” in Proceedings of the 2009

International Conference on Computer-Aided Design, New

York, NY, USA, 2009, pp. 539–546.

[21] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun,

“Accelerating CUDA graph algorithms at maximum warp,” in

Proceedings of the 16th ACM symposium on Principles and

practice of parallel programming, New York, NY, USA, 2011,

pp. 267–276.

[22] N. Bell and M. Garland, “Implementing sparse matrix-vector

multiplication on throughput-oriented processors,” in

Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis, New York, NY,

USA, 2009, pp. 18:1–18:11.

[23] M. Garland, “Sparse matrix computations on manycore

GPU’s,” in Proceedings of the 45th annual Design Automation

Conference, New York, NY, USA, 2008, pp. 2–6.

[24] L. Luo, M. Wong, and W.-mei Hwu, “An effective GPU

implementation of breadth-first search,” in Proceedings of the

47th Design Automation Conference, New York, NY, USA,

2010, pp. 52–55.

[25] A. Yoo, E. Chow, K. Henderson, W. McLendon, B.

Hendrickson, and U. Catalyurek, “A Scalable Distributed

Parallel Breadth-First Search Algorithm on BlueGene/L,” in

ACM/IEEE SC 2005 Conference (SC’05), Seattle, WA, USA,

pp. 25-25.

[26] D. P. Scarpazza, O. Villa, and F. Petrini, “Efficient Breadth-

First Search on the Cell/BE Processor,” IEEE Transactions on

Parallel and Distributed Systems, vol. 19, no. 10, pp. 1381-

1395, Oct. 2008.

[27] K. Madduri and D. A. Bader, “GTgraph: A suite of synthetic

random graph generators.” [Online]. Available:

https://sdm.lbl.gov/~kamesh/software/GTgraph/. [Accessed: 11-

Jul-2011].

[28] T. Davis and Y. Hu, “University of Florida Sparse Matrix

Collection.” [Online]. Available:

http://www.cise.ufl.edu/research/sparse/matrices/. [Accessed:

11-Jul-2011].

[29] “10th DIMACS Implementation Challenge.” [Online].

Available: http://www.cc.gatech.edu/dimacs10/index.shtml.

[Accessed: 11-Jul-2011].

[30] D. Merrill and A. Grimshaw, “High Performance and Scalable

Radix Sorting: A case study of implementing dynamic

parallelism for GPU computing,” Parallel Processing Letters,

vol. 21, no. 2, pp. 245-272, 2011.

[31] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient Parallel

Graph Exploration for Multi-Core CPU and GPU,” presented at

the Parallel Architectures and Compilation Techniques, New

York, NY, USA, 2011, p. to appear.

