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ABSTRACT 

Breadth-first search (BFS) is a core primitive for graph 

traversal and a basis for many higher-level graph analysis 

algorithms.  It is also representative of a class of parallel 

computations whose memory accesses and work distribution 

are both irregular and data-dependent.  Recent work has 

demonstrated the plausibility of GPU sparse graph traversal, 

but has tended to focus on asymptotically inefficient 

algorithms that perform poorly on graphs with non-trivial 

diameter. 

We present a BFS parallelization focused on fine-grained 

task management that achieves an asymptotically optimal 

O(|V|+|E|) work complexity.  Our implementation delivers 

excellent performance on diverse graphs, achieving traversal 

rates in excess of 3.3 billion and 8.3 billion traversed edges 

per second using single and quad-GPU configurations, 

respectively.  This level of performance is several times faster 

than state-of-the-art implementations both CPU and GPU 

platforms. 

 

1. INTRODUCTION 

Algorithms for analyzing sparse relationships represented as 

graphs provide crucial tools in many computational fields 

ranging from genomics to electronic design automation to 

social network analysis.  In this paper, we explore the 

parallelization of one fundamental graph algorithm on GPUs: 

breadth-first search (BFS).  BFS is a common building block 

for more sophisticated graph algorithms, yet is simple enough 

that we can analyze its behavior in depth.  It is also used as a 

core computational kernel in a number of benchmark suites, 

including Parboil [1], Rodinia [2], and the emerging 

Graph500 supercomputer benchmark [3]. 

Contemporary processor architecture provides increasing 

parallelism in order to deliver higher throughput while 

maintaining energy efficiency.  Modern GPUs are at the 

leading edge of this trend, provisioning tens of thousands of 

data parallel threads. 

Despite their high computational throughput, GPUs might 

appear poorly suited for sparse graph computation.  In 

particular, BFS is representative of a class of algorithms for 

which it is hard to obtain significantly better performance 

from parallelization.  Optimizing memory usage is non-trivial 

because memory access patterns are determined by the 

structure of the input graph.  Parallelization further introduces 

concerns of contention, load imbalance, and underutilization 

on multithreaded architectures [4–6].  The wide data 

parallelism of GPUs can be particularly sensitive to these 

performance issues. 

Prior work on parallel graph algorithms has relied on two 

key architectural features for performance.  The first is 

multithreading and overlapped computation to hide memory 

latency.  The second is fine-grained synchronization, 

specifically atomic read-modify-write operations. Such 

algorithms have incorporated atomic mechanisms for 

coordinating the dynamic placement of data into shared data 

structures and for arbitrating contended status updates.  [5], 

[7], [8] 

Modern GPU architectures provide both.  However, 

atomic serialization is particularly expensive for GPUs in 

terms of efficiency and performance.  In general, mutual 

exclusion does not scale to thousands of threads.  

Furthermore, the occurrence of fine-grained and dynamic 

serialization within the SIMD width is much costlier than 

between overlapped SMT threads. For example, all SIMD 

lanes are penalized when only a few experience dynamic 

serialization. 

For machines with wide data parallelism, we argue that 

prefix sum is often a more suitable approach to data 

placement [9], [10].  Prefix-sum is a bulk-synchronous 

algorithmic primitive that can be used to compute scatter 

offsets for concurrent threads given their dynamic allocation 

requirements.  Efficient GPU prefix sums [11] allow us to 

reorganize sparse and uneven workloads into dense and 

uniform ones in all phases of graph traversal.  

Our work as described in this paper makes contributions 

in the following areas: 

Parallelization strategy.  We present a GPU BFS 

parallelization that performs an asymptotically optimal linear 

amount of work. It is the first to incorporate fine-grained 

parallel adjacency list expansion.   We also introduce local 

duplicate detection techniques for avoiding race conditions 

that create redundant work.  We demonstrate that our 

approach delivers high performance on a broad spectrum of 

structurally diverse graphs. To our knowledge, we also 

describe the first design for multi-GPU graph traversal.   

Empirical performance characterization.  We present 

detailed analyses that isolate and analyze the expansion and 

contraction aspects of BFS throughout the traversal process. 

We reveal that serial and warp-centric expansion techniques 

described by prior work significantly underutilize the GPU for 

important graph genres.  We also show that the fusion of 

neighbor expansion and inspection within the same kernel 

often yields worse performance than performing them 

separately. 

High performance.  We demonstrate that our methods 

deliver excellent performance on a diverse body of real-world 

graphs.  Our implementation achieves traversal rates in excess 

of 3.3 billion and 8.3 billion traversed edges per second 

(TE/s) for single and quad-GPU configurations, respectively.  

To put these numbers in context, recent state-of-the-art 

parallel implementations achieve 0.7 billion and 1.3 billion 

TE/s for similar datasets on single and quad-socket multicore 

processors [5].   
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2. BACKGROUND 

Modern NVIDIA GPU processors consist of tens of processor 

cores, each of which manages on the order of a thousand 

hardware-scheduled threads.  Each processor core employs 

data parallel SIMD (single instruction, multiple data) 

techniques in which a single instruction stream is executed by 

a fixed-size grouping of threads called a warp.  A cooperative 

thread array (or CTA) is a group of threads that will be co-

located on the same multiprocessor and share a local scratch 

memory.  Parallel threads are used to execute a single 

program, or kernel.  A sequence of kernel invocations is bulk-

synchronous: each kernel is initially presented with a 

consistent view of the results from the previous. 

The efficiency of GPU architecture stems from the bulk-

synchronous and SIMD aspects of the machine model.  They 

facilitate excellent processor utilization on uniform workloads 

having regularly-structured computation.  When the 

computation becomes dynamic and varied, mismatches with 

the underlying architecture can result in significant 

performance penalties.  For example, performance can be 

degraded by irregular memory access patterns that cannot be 

coalesced or that result in arbitrarily-bad bank conflicts; 

control flow divergences between SIMD warp threads that 

result in thread serialization; and load imbalances between 

barrier synchronization points that result in resource 

underutilization [12].  In this work, we make extensive use of 

local prefix sum as a foundation for reorganizing sparse and 

uneven workloads into dense and uniform ones. 

2.1 Breadth First Search 

We consider graphs of the form G = (V, E) with a set V of n 

vertices and a set E of m directed edges. Given a source 

vertex vs, our goal is to traverse the vertices of G in breadth-

first order starting at vs.   Each newly-discovered vertex vi will 

be labeled by (a) its distance di from vs and/or (b) the 

predecessor vertex pi immediately preceding it on the shortest 

path to vs.    

Fundamental uses of BFS include: identifying all of the 

connected components within a graph; finding the diameter of 

tree; and testing a graph for bipartiteness [13].  More 

sophisticated problems incorporating BFS include: identifying 

the reachable set of heap items during garbage collection [14]; 

belief propagation in statistical inference [15],  finding 

community structure in networks [16], and computing the 

maximum-flow/minimum-cut for a given graph [17]. 

For simplicity, we identify the vertices v0 .. vn-1 using 

integer indices.  The pair (vi, vj) indicates a directed edge in 

the graph from vi → vj, and the adjacency list Ai = {vj | (vi, vj) 

∈ E} is the set of neighboring vertices adjacent from vertex vi.  

We treat undirected graphs as symmetric directed graphs 

containing both (vi, vj) and (vj, vi) for each undirected edge.  In 

this paper, all graph sizes and traversal rates are measured in 

terms of directed edge counts. 

We represent the graph using an adjacency matrix A, 

whose rows are the adjacency lists Ai.  The number of edges 

within sparse graphs is typically only a constant factor larger 

than n.  We use the well-known compressed sparse row 

(CSR) sparse matrix format to store the graph in memory 

consisting of two arrays.  As illustrated in Fig. 1, the column-

indices array C is formed from the set of the adjacency lists 

concatenated into a single array of m integers.  The row-

offsets R array contains n + 1 integers, and entry R[i] is the 

index in C of the adjacency list Ai.   

We store graphs in the order they are defined.  We do not 

perform any offline preprocessing in order to improve locality 

of reference, improve load balance, or eliminate sparse 

memory references.  Such strategies might include sorting 

neighbors within their adjacency lists; sorting vertices into a 

space-filling curve and remapping their corresponding vertex 

identifiers; splitting up vertices having large adjacency lists; 

encoding adjacency row offset and length information into 

vertex identifiers; removing duplicate edges, singleton 

vertices, and self-loops; etc.   

Algorithm 1 describes the standard sequential BFS 

method for circulating the vertices of the input graph through 

a FIFO queue that is initialized with vs [13].   As vertices are 

dequeued, their neighbors are examined.   Unvisited 

neighbors are labeled with their distance and/or predecessor 

and are enqueued for later processing.  This algorithm 

performs linear O(m+n) work since each vertex is labeled 

exactly once and each edge is traversed exactly once. 

2.2 Parallel Breadth-First Search 

The FIFO ordering of the sequential algorithm forces it to 

label vertices in increasing order of depth.  Each depth level is 

fully explored before the next.  Most parallel BFS algorithms 

are level-synchronous: each level may be processed in parallel 

as long as the sequential ordering of levels is preserved.  An 

implicit race condition can exist where multiple tasks may 

concurrently discover a vertex vj.  This is generally 

considered benign since all such contending tasks would 

apply the same dj and give a valid value of pj.   

Structurally different methods may be more suitable for 

graphs with very large diameters, e.g., algorithms based on 

A = �1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1

� 
C = [0,1,1,2,0,2,3,1,3] 

R = [0,2,4,7,9] 

 

 
Fig. 1. Example CSR representation: column-indices array C and row-

offsets array R comprise the adjacency matrix A. 

 

Algorithm 1.  The simple sequential breadth-first search algorithm for 

marking vertex distances from the source s.  Alternatively, a shortest-

paths search tree can be constructed by marking i as j’s predecessor in 

line 11. 

Input: Vertex set V, row-offsets array R, column-indices array C, source 

vertex s 

Output: Array dist[0..n-1] with dist[v] holding the distance from s to v 

Functions: Enqueue(val) inserts val at the end of the queue instance.  

Dequeue() returns the front element of the queue instance. 
 

1 Q := {} 

2 for i in V: 

3   dist[i] := ∞ 

4 dist[s] := 0 

5 Q.Enqueue(s) 

6 while (Q != {}) : 

7   i = Q.Dequeue() 

8   for offset in R[i] .. R[i+1]-1 : 

9     j := C[offset] 

10     if (dist[j] == ∞) 

11       dist[j] := dist[i] + 1; 

12       Q.Enqueue(j) 
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the method of Ullman and Yannakakis [18].  Such alternatives 

are beyond the scope of this paper. 

Each iteration of a level-synchronous method identifies 

both an edge and vertex frontier. The edge-frontier is the set 

of all edges to be traversed during that iteration or, 

equivalently, the set of all Ai where vi was marked in the 

previous iteration.  The vertex-frontier is the unique subset of 

such neighbors that are unmarked and which will be labeled 

and expanded for the next iteration.  Each iteration logically 

expands vertices into an edge-frontier and then contracts them 

to a vertex-frontier. 

Quadratic parallelizations.  The simplest parallel BFS 

algorithms inspect every edge or, at a minimum, every vertex 

during every iteration.  These methods perform a quadratic 

amount of work.  A vertex vj is marked when a task discovers 

an edge vi → vj where vi has been marked and vj has not.   As 

Algorithm 2 illustrates, vertex-oriented variants must 

subsequently expand and mark the neighbors of vj.  Their 

work complexity is O(n2+m) as there may n BFS iterations in 

the worst case. 

Quadratic parallelization strategies have been used by 

almost all prior GPU implementations.  The static assignment 

of tasks to vertices (or edges) trivially maps to the data-

parallel GPU machine model.  Each thread’s computation is 

completely independent from that of other threads.  Harish et 

al. [19] and Hussein et al. [17] describe vertex-oriented 

versions of this method.  Deng et al. present an edge-oriented 

implementation [20].  

Hong et al. [21] describe a vectorized version of the 

vertex-oriented method that is similar to the CSR sparse 

matrix-vector (SpMV) multiplication approach by Bell and 

Garland [22].  Rather than threads, warps are mapped to 

vertices.  During neighbor expansion, the SIMD lanes of an 

entire warp are used to strip-mine1  the corresponding 

adjacency list.   

                                                                 
1 Strip mining entails the sequential processing of parallel 

batches, where the batch size is typically the number of 

hardware SIMD vector lanes. 

These quadratic methods are isomorphic to iterative 

SpMV in the algebraic semi-ring where the usual (+, ×) 

operations are replaced with (min, +), and thus can also be 

realized using generic implementations of SpMV [23]. 

Linear parallelizations.  A work-efficient parallel BFS 

algorithm should perform O(n+m) work.  To achieve this, 

each iteration should examine only the edges and vertices in 

that iteration’s logical edge and vertex-frontiers, respectively.   

Frontiers may be maintained in core or out of core.  An 

in-core frontier is processed online and never wholly realized.  

On the other hand, a frontier that is managed out-of-core is 

fully produced in off-chip memory for consumption by the 

next BFS iteration after a global synchronization step.   

Implementations typically prefer to manage the vertex-

frontier out-of-core.  Less global data movement is needed 

because the average vertex-frontier is smaller by a factor of �̅ 

(average out-degree).  As described in Algorithm 3, each BFS 

iteration maps tasks to unexplored vertices in the input vertex-

frontier queue.  Their neighbors are inspected and the 

unvisited ones are placed into the output vertex-frontier queue 

for the next iteration. 

Research has traditionally focused on two aspects of this 

scheme: (1) improving hardware utilization via intelligent 

task scheduling; and (2) designing shared data structures that 

incur minimal overhead from insertion and removal 

operations.   

The typical approach for improving utilization is to 

reduce the task granularity to a homogenous size and then 

evenly distribute these smaller tasks among threads.  This is 

done by expanding and inspecting neighbors in parallel.  

Logically, the sequential-for loop in line 10 of Algorithm 3 is 

replaced with a parallel-for loop.  The implementation can 

either: (a) spawn all edge-inspection tasks before processing 

any, wholly realizing the edge-frontier out-of-core; or (b) 

carefully throttle the parallel expansion and processing of 

adjacency lists, producing and consuming these tasks in-core.   

In recent BFS research, Leiserson and Schardl [6] 

designed an implementation for multi-socket CPU systems 

that incorporates a novel multi-set data structure for tracking 

the vertex-frontier.  They implement concurrent neighbor 

Algorithm 2.  A simple quadratic-work, vertex-oriented BFS 

parallelization 

Input: Vertex set V, row-offsets array R, column-indices array C, source 

vertex s 

Output: Array dist[0..n-1] with dist[v] holding the distance from s to v 

 

1 parallel for (i in V) : 

2   dist[i] := ∞ 

3 dist[s] := 0 

4 iteration := 0 

5 do : 

6   done := true 

7   parallel for (i in V) : 

8     if (dist[i] == iteration)  

9       done := false 

10       for (offset in R[i] .. R[i+1]-1) : 

11         j := C[offset] 

12         dist[j] = iteration + 1  

13   iteration++ 

14 while (!done) 
 

Algorithm 3.  A linear-work BFS parallelization constructed using a 

global vertex-frontier queue.   

Input: Vertex set V, row-offsets array R, column-indices array C, source 

vertex s, queues  

Output: Array dist[0..n-1] with dist[v] holding the distance from s to v 

Functions: LockedEnqueue(val) safely inserts val at the end of the queue 

instance 

 

1 parallel for (i in V) : 

2   dist[i] := ∞ 

3 dist[s] := 0 

4 iteration := 0 

5 inQ := {} 

6 inQ.LockedEnqueue(s) 

7 while (inQ != {}) : 

8   outQ := {} 

9   parallel for (i in inQ) : 

10      for (offset in R[i] .. R[i+1]-1) : 

11         j := C[offset] 

12         if (dist[j] == ∞)  

13           dist[j] = iteration + 1              

14           outQ.LockedEnqueue(j) 

15   iteration++ 

16   inQ := outQ 
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inspection, using the Cilk++ runtime to manage the edge-

processing tasks in-core.   

For the Cray MTA-2, Bader and Madduri [7] describe an 

implementation using the hardware’s full-empty bits for 

efficient queuing into an out-of-core vertex frontier.  They 

also perform adjacency-list expansion in parallel, relying on 

the parallelizing compiler and fine-grained thread-scheduling 

hardware to manage edge-processing tasks in-core. 

Luo et al. [24] present an implementation for GPUs that 

relies upon a hierarchical scheme for producing an out-of-core 

vertex-frontier. To our knowledge, theirs is the only prior 

attempt at designing a work-efficient BFS algorithm for 

GPUs.  Their GPU kernels logically correspond to lines 10-13 

of Algorithm 3.  Threads perform serial adjacency list 

expansion and use an upward propagation tree of child-queue 

structures in an effort to mitigate the contention overhead on 

any given atomically-incremented queue pointer.     

Distributed parallelizations. It is often desirable to 

partition the graph structure amongst multiple processors, 

particularly for datasets too large to fit within the physical 

memory of a single machine.  Even for shared-memory SMP 

platforms, recent research has shown it to be advantageous to 

partition the graph amongst the different CPU sockets; a 

given socket will have higher throughput to the specific 

memory managed by its local DDR channels [5].   

The typical partitioning approach is to assign each 

processing element a disjoint subset of V and the 

corresponding adjacency lists in E.  For a given vertex vi, the 

inspection and marking of vi as well as the expansion of vi’s 

adjacency list must occur on the processor that owns vi.  

Distributed, out-of-core edge queues are used for 

communicating neighbors to remote processors.  Algorithm 4 

describes the general method.  Incoming neighbors that are 

unvisited have their labels marked and their adjacency lists 

expanded.  As adjacency lists are expanded, neighbors are 

enqueued to the processor that owns them.  The 

synchronization between BFS levels occurs after the 

expansion phase.   

It is important to note that distributed BFS 

implementations that construct predecessor trees will impose 

twice the queuing I/O as those that construct depth-rankings.  

These variants must forward the full edge pairing (vi, vj) to the 

remote processor so that it might properly label vj’s 

predecessor as vi.   

Yoo et al. [25] present a variation for BlueGene/L that 

implements a two-dimensional partitioning strategy for 

reducing the number of remote peers each processor must 

communicate with.  Xia and Prasanna [4] propose a variant 

for multi-socket nodes that provisions more out-of-core edge-

frontier queues than active threads, reducing the contention at 

any given queue and flexibly lowering barrier overhead.  

Agarwal et al. [5] describe a two-phase implementation 

for multi-socket systems that implements both out-of-core 

vertex and edge-frontier queues for each socket. As a hybrid 

of Algorithm 3 and Algorithm 4, only remote edges are 

queued out-of-core.  Edges that are local are inspected and 

filtered in-core.  After a global synchronization, a second 

phase is performed to filter edges from remote sockets.  Their 

implementation uses a single, global, atomically-updated 

Table 1.  Suite of benchmark graphs 

Name 
Sparsity 

Plot 
Description 

n 

(10
6
) 

m 

(10
6
) 

d 

Avg. 

Search 

Depth 

europe.osm 

 

European road 

network 
50.9 108.1 2.1 19314 

grid5pt.5000  

 

5-point Poisson 

stencil (2D grid 

lattice) 

25.0 125.0 5.0 7500 

hugebubbles-00020 

 

Adaptive numerical 

simulation mesh  
21.2 63.6 3.0 6151 

grid7pt.300 

 

7-point Poisson 

stencil (3D grid 

lattice) 

27.0 188.5 7.0 679 

nlpkkt160  

 

3D PDE-constrained 

optimization  
8.3 221.2 26.5 142 

audikw1  

 

Automotive finite 

element analysis 
0.9 76.7 81.3 62 

cage15  

 

Electrophoresis 

transition 

probabilities 

5.2 94.0 18.2 37 

kkt_power  

 

Nonlinear 

optimization (KKT) 
2.1 13.0 6.3 37 

coPapersCiteseer  

 

Citation network 0.4 32.1 73.9 26 

wikipedia-20070206  

 

Links between 

Wikipedia pages 
3.6 45.0 12.6 20 

kron_g500-logn20  

 

Graph500  RMAT 

(A=0.57, B=0.19, 

C=0.19) 

1.0 100.7 96.0 6 

random.2Mv.128Me   

 

G(n, M) uniform 

random  
2.0 128.0 64.0 6 

rmat.2Mv.128Me   

 

RMAT (A=0.45, 

B=0.15, C=0.15) 
2.0 128.0 64.0 6 

 

Algorithm 4.  A linear-work, vertex-oriented BFS parallelization for a 

graph that has been partitioned across multiple processors.  The scheme 

uses a set of distributed edge-frontier queues, one per processor.   

Input: Vertex set V, row-offsets array R, column-indices array C, source 

vertex s, queues  

Output: Array dist[0..n-1] with dist[v] holding the distance from s to v 

Functions: LockedEnqueue(val) safely inserts val at the end of the queue 

instance 

 

1 parallel for i in V : 

2   distproc[i] := ∞ 

3 iteration := 0 

4 parallel for (proc in 0 .. processors-1) : 

5   inQproc := {} 

6   outQproc := {} 

7   if (proc == Owner(s)) 

8     inQproc.LockedEnqueue(s) 

9     distproc[s] := 0 

10 do : 

11   done := true; 

12   parallel for (proc in 0 .. processors-1) : 

13     parallel for (i in inQproc) : 

14       if (distproc[i] == ∞) 

15         done := false  

16         distproc[i] := iteration 

17         for (offset in R[i] .. R[i+1]-1) : 

18           j := C[offset] 

19           dest := owner(j)  

20           outQdest.LockedEnqueue(j) 

21   parallel for (proc in 0 .. processors-1) : 

22     inQproc := outQproc 

23   iteration++ 

24 while (!done) 
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bitmask to reduce the overhead of inspecting a given vertex’s 

visitation status. 

Scarpazza et al. [26] describe a similar hybrid variation 

for the Cell BE processor architecture.  Instead of separate 

contraction phase per iteration, processor cores perform edge 

expansion, exchange, and contraction in batches.  DMA 

engines are used instead of threads to perform parallel 

adjacency list expansion.  Their implementation requires an 

offline preprocessing step that sorts and encodes adjacency 

lists into segments packaged by processor core. 

Our parallelization strategy. In comparison, our BFS 

strategy expands adjacent neighbors in parallel; implements 

out-of-core edge and vertex-frontiers; uses local prefix-sum in 

place of local atomic operations for determining enqueue 

offsets; and uses a best-effort bitmask for efficient neighbor 

filtering.  We further describe the details in Section 5. 

3. BENCHMARK SUITE 

3.1 Graph Datasets 

Our benchmark suite is composed of the thirteen graphs listed 

in Table 1.  We generate the square and cubic Poisson lattice 

graph datasets ourselves.  The random.2Mv.128Me and 

rmat.2Mv.128Me datasets are constructed using GTgraph 

[27].  The wikipedia-20070206 dataset is from the University 

of Florida Sparse Matrix Collection [28].  The remaining 

datasets are from the 10th DIMACS Implementation 

Challenge [29].   

One of our goals is to demonstrate good performance for 

large-diameter graphs.  The largest components within these 

datasets have diameters spreading five orders of magnitude.  

Graph diameter is directly proportional to average search 

depth, the expected number of BFS iterations for a randomly-

chosen source vertex.   

3.2 Logical Frontier Plots 

Although our sparsity plots reveal a diversity of locality, they 

provide little intuition as to how traversal will unfold.  Fig. 2 

presents sample frontier plots of logical edge and vertex-

frontier sizes as functions of BFS iteration.  Such plots help 

visualize workload expansion and contraction, both within 

and between iterations.  The ideal numbers of neighbors 

expanded and vertices labeled per iteration are constant 

properties of the given dataset and starting vertex.   

Frontier plots reveal the concurrency exposed by each 

iteration.  For example, the bulk of the work for the 

wikipedia-20070206 dataset is performed in only 1-2 

iterations.  The hardware can easily be saturated during these 

iterations.  We observe that real-world datasets often have 

long sections of light work that incur heavy global 

synchronization overhead. 

Finally, Fig. 2 also plots the duplicate-free subset of the 

edge-frontier.  We observe that a simple duplicate-removal 

pass can perform much of the contraction work from edge-

frontier down to vertex-frontier.  This has important 

implications for distributed BFS.  The amount of network 

traffic can be significantly reduced by first removing 

duplicates from the expansion of remote neighbors.   

We note the direct application of this technique does not 

scale linearly with processors.  As p increases, the number of 

available duplicates in a given partition correspondingly 

decreases.  In the extreme where p = m, each processor owns 

only one edge and there are no duplicates to be locally culled.  

For large p, such decoupled duplicate-removal techniques 

should be pushed into the hierarchical interconnect.  Yoo et 

al. demonstrate a variant of this idea for BlueGene/L using 

their MPI set-union collective [25].  

   
(a) wikipedia-20070206 

 

(b) europe.osm 

 

(c) grid7pt.300 

 

   
(d) nlpkkt60 

 

(e) rmat.2Mv.128Me 

 

(f) audikw1 

 

Fig. 2.  Sample frontier plots of logical vertex and edge-frontier sizes during graph traversal. 
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4. MICRO-BENCHMARK ANALYSES 

A linear BFS workload is composed of two components: O(n) 

work related to vertex-frontier processing, and O(m) for edge-

frontier processing.  Because the edge-frontier is dominant, 

we focus our attention on the two fundamental aspects of its 

operation: neighbor-gathering and status-lookup.  Although 

their functions are trivial, the GPU machine model provides 

interesting challenges for these workloads.  We investigate 

these two activities in the following analyses using NVIDIA 

Tesla C2050 GPUs.  

4.1 Isolated Neighbor Gathering 

This analysis investigates serial and parallel strategies for 

simply gathering neighbors from adjacency lists.  The 

enlistment of threads for parallel gathering is a form task 

scheduling.  We evaluate a spectrum of scheduling granularity 

from individual tasks (higher scheduling overhead) to blocks 

of tasks (higher underutilization from partial-filling).  We 

show the serial-expansion and warp-centric techniques 

described by prior work underutilize the GPU for entire 

genres of sparse graph datasets.   

For a given BFS iteration, our test kernels simply read an 

array of preprocessed row-ranges that reference the adjacency 

lists to be expanded and then load the corresponding 

neighbors into local registers.   

Serial-gathering.  Each thread obtains its preprocessed 

row-range bounds and then serially acquires the 

corresponding neighbors from the column-indices array C.   

Coarse-grained, warp-based gathering.  Threads enlist 

the entire warp to assist in gathering.  As described in 

Algorithm 5, each thread attempts to vie for control of its 

warp by writing its thread-identifier into a single word shared 

by all threads of that warp.  Only one write will succeed, thus 

determining which is allowed to subsequently enlist the warp 

as a whole to read its corresponding neighbors.  This process 

repeats for every warp until its threads have all had their 

adjacent neighbors gathered.    

Fine-grained, scan-based gathering.  Algorithm 6 

illustrates fine-grained gathering using CTA-wide parallel 

prefix sum.  Threads use the reservation from the prefix sum 

to perfectly pack segments of gather offsets for the neighbors 

within their adjacency lists into a single buffer that is shared 

by the entire CTA.  When this buffer is full, the entire CTA 

can then gather the referenced neighbors from the column-

indices array C.  Perfect packing ensures that no SIMD lanes 

are unutilized during global reads from C.  This process 

repeats until all threads have had their adjacent neighbors 

gathered.   

Compared to the two previous strategies, the entire CTA 

participates in every read.  Any workload imbalance between 

threads is not magnified by expensive global memory 

accesses to C.  Instead, workload imbalance can occur in the 

form of underutilized cycles during offset-sharing.  The worst 

case entails a single thread having more neighbors than the 

gather buffer can accommodate, resulting in the idling of all 

other threads while it alone shares gather offsets.  

Scan+warp+CTA gathering.  We can mitigate this 

imbalance by supplementing fine-grained scan-based 

expansion with coarser CTA-based and warp-based 

expansion.  We first apply a CTA-wide version of warp-based 

gathering.  This allows threads with very large adjacency lists 

Algorithm 5.  GPU pseudo-code for a warp-based, strip-mined 

neighbor-gathering approach. 

Input: Vertex-frontier Qvfront, column-indices array C, and the offset cta_offset 

for the current tile within Qvfront 

Functions:  WarpAny(predi) returns true if any predi is set for any thread ti 

within the warp. 

 

1 GatherWarp(cta_offset, Qvfront, C) { 

2   volatile shared comm[WARPS][3]; 

3   {r, r_end} = Qvfront[cta_offset + thread_id]; 

4   while (WarpAny(r_end – r)) { 

5  

6     // vie for control of warp 

7     if (r_end – r)  

8       comm[warp_id][0] = lane_id; 

9  

10     // winner describes adjlist 

11     if (comm[warp_id][0] == lane_id) { 

12       comm[warp_id][1] = r; 

13       comm[warp_id][2] = r_end; 

14       r = r_end; 

15     } 

16  

17     // strip-mine winner’s adjlist 

18     r_gather = comm[warp_id][1] + lane_id; 

19     r_gather_end = comm[warp_id][2]; 

20     while (r_gather < r_gather_end) { 

21       volatile neighbor = C[r_gather]; 

22       r_gather += WARP_SIZE; 

23     } 

24   } 

25 } 

 
 

Algorithm 6.  GPU pseudo-code for a fine-grained, scan-based 

neighbor-gathering approach.   

Input: Vertex-frontier Qvfront, column-indices array C, and the offset 

cta_offset for the current tile within Qvfront 

Functions:  CtaPrefixSum(vali) performs a CTA-wide prefix sum where 

each thread ti is returned the pair {∑ ����
���

��� , ∑ ����
��	_�
��	���

���
}.

CtaBarrier() performs a barrier across all threads within the CTA. 
 

1 GatherScan(cta_offset, Qvfront, C) { 

2   shared comm[CTA_THREADS]; 

3   {r, r_end} = Qvfront[cta_offset + thread_id]; 

4   // reserve gather offsets 

5   {rsv_rank, total} = CtaPrefixSum(r_end – r); 

6   // process fine-grained batches of adjlists 

7   cta_progress = 0; 

8   while ((remain = total - cta_progress) > 0) { 

9     // share batch of gather offsets 

10     while((rsv_rank < cta_progress + CTA_THREADS)     

11         && (r < r_end))  

12     { 

13         comm[rsv_rank – cta_progress] = r; 

14         rsv_rank++; 

15         r++; 

16     } 

17     CtaBarrier(); 

18     // gather batch of adjlist(s) 

19     if (thread_id < Min(remain, CTA_THREADS) { 

20       volatile neighbor = C[comm[thread_id]]; 

21     } 

22     cta_progress += CTA_THREADS; 

23     CtaBarrier(); 

24   } 

25 } 
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to vie for control of the entire CTA, the winner broadcasting 

its row-range to all threads.  Any large adjacency lists are 

strip-mined using the width of the entire CTA.  Then we 

apply warp-based gathering to acquire portions of adjacency 

lists greater than or equal to the warp width.  Finally we 

perform scan-based gathering to acquire the remaining “loose 

ends”.   

This hybrid strategy limits all forms of load imbalance 

from adjacency list expansion.  Fine-grained scan-based 

distribution limits imbalance from SIMD lane 

underutilization.  Warp enlistment limits offset-sharing 

imbalance between threads.  CTA enlistment limits imbalance 

between warps.  And finally, any imbalance between CTAs 

can be limited by oversubscribing GPU cores with an 

abundance of CTAs and/or implementing coarse-grained tile-

stealing mechanisms for CTAs to dequeue tiles2 at their own 

rate. 

Analysis.  We performed 100 randomly-sourced 

traversals of each dataset, evaluating these kernels on the 

logical vertex-frontier for every iteration.  Fig. 4a plots the 

                                                                 
2 We term tile to describe a block of input data that a CTA is 

designed to process to completion before terminating or 

obtaining more work. 

average edge-processing throughputs for each strategy in log-

scale.  The datasets are ordered from left-to-right by 

decreasing average search depth. 

The serial approach performs poorly for the majority of 

datasets.  Fig. 4b reveals it suffers from dramatic over-fetch.  

It plots bytes moved through DRAM per edge.  The arbitrary 

references from each thread within the warp result in terrible 

coalescing for SIMD load instructions. 

The warp-based approach performs poorly for the graphs 

on the left-hand side having �̅ ≤ 10.  Fig. 4c reveals that it is 

computationally inefficient for these datasets.  It plots a log 

scale of computational intensity, the ratio of thread-

instructions versus bytes moved through DRAM.  The 

average adjacency lists for these graphs are much smaller than 

the number of threads per warp.  As a result, a significant 

number of SIMD lanes go unused during any given cycle.     

Fig. 4c also reveals that that scan-based gathering can 

suffer from extreme workload imbalance when only one 

thread is active within the entire CTA.  This phenomenon is 

reflected in the datasets on the right-hand size having skewed 

degree distributions.  The load imbalance from expanding 

large adjacency lists leads to increased instruction counts and 

corresponding performance degradation. 

Combining the benefits of bulk-enlistment with fine-

grained utilization, the hybrid scan+warp+cta demonstrates 

good gathering rates across the board.  

4.2 Coupling of Gathering and Lookup 

Status-lookup is the other half to neighbor-gathering; it entails 

determining which neighbors within the edge-frontier have 

already been visited.  This section describes our analyses of 

status-lookup workloads, both in isolation and when coupled 

with neighbor-gathering.  We reveal that coupling within the 

same kernel invocation can lead to markedly worse 

performance than performing them separately. 

(a) Average gather rate (log) 

 

(b) Average DRAM overhead 

 

(c) Average computational intensity (log) 

 

Fig. 4.  Neighbor-gathering behavior.  Harmonic means are normalized 

with respect to serial-gathering. 
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(b) Average DRAM overhead 

 

Fig. 3  Status-lookup behavior.  Harmonic means are normalized with 

respect to simple label-lookup. 
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Our strategy for status-lookup incorporates a bitmask to 

reduce the size of status data from a 32-bit label to a single bit 

per vertex.  CPU parallelizations have used atomically-

updated bitmask structures to reduce memory traffic via 

improved cache coverage [5], [26].  Because we avoid atomic 

operations, our bitmask is only a conservative approximation 

of visitation status.  Bits for visited vertices may appear unset 

or may be “clobbered” due to false-sharing within a single 

byte.  If a status bit is unset, we must then perform a second 

read to check the corresponding label to ensure the vertex is 

safe for marking.  This scheme relies upon capacity and 

conflict misses to update stale bitmask data within the read-

only texture caches.   

Similar to the neighbor-gathering analysis, we isolate the 

status-lookup workload using a test-kernel that consumes the 

logical edge-frontier at each BFS iteration.  Despite having 

much smaller and more transient last-level caches, Fig. 3 

confirms the technique can reduce global DRAM overhead 

and accelerate status-lookup for GPU architectures as well.  

The exceptions are the datasets on the left having a hundred 

or more BFS iterations.  The bitmask is less effective for these 

datasets because texture caches are flushed between kernel 

invocations.  Without coverage, the inspection often requires 

a second label lookup which further adds delay to latency-

bound BFS iterations. As a result, we skip bitmask lookup for 

fleeting iterations having edge-frontiers smaller than the 

number of resident threads. 

Fig. 5 compares the throughputs of lookup versus 

gathering workloads.  We observe that status-lookup is 

generally the more expensive of the two.  This is particularly 

true for the datasets on the right-hand side having high 

average vertex out-degree.  The ability for neighbor-gathering 

to coalesce accesses to adjacency lists increases with �̅, 

whereas accesses for status-lookup have arbitrary locality.   

A complete BFS implementation might choose to fuse 

these workloads within the same kernel in order to process 

one of the frontiers online and in-core.  We evaluate this 

fusion with a derivation of our scan+warp+cta gathering 

kernel that immediately inspects every gathered neighbor 

using our bitmap-assisted lookup strategy.  The coupled 

kernel requires O(m) less overall data movement than the 

other two put together (which effectively read all edges 

twice).   

Fig. 6 compares this fused kernel with the aggregate 

throughput of the isolated gathering and lookup workloads 

performed separately.  Despite the additional data movement, 

the separate kernels outperform the fused kernel for the 

majority of the benchmarks.  Their extra data movement 

results in net slowdown, however, for the latency-bound 

datasets on the left-hand side having limited bulk 

concurrency.  The implication is that fused approaches are 

preferable for fleeting BFS iterations having edge-frontiers 

smaller than the number of resident threads. 

The fused kernel likely suffers from TLB misses 

experienced by the neighbor-gathering workload.  The 

column-indices arrays occupy substantial portions of GPU 

physical memory.  Sparse gathers from them are apt to cause 

TLB misses.  The fusion of these two workloads inherits the 

worst aspects of both: TLB turnover during uncoalesced 

status lookups.  

4.3 Concurrent Discovery  

Duplicate vertex identifiers within the edge-frontier are 

representative of different edges incident to the same vertex.  

This can pose a problem for implementations that allow the 

benign race condition.  Adjacency lists will be expanded 

multiple times when multiple threads concurrently discover 

the same vertices via these duplicates.  Without atomic 

updates to visitation status, we show the SIMD nature of the 

GPU machine model can introduce a significant amount of 

redundant work. 

Effect on overall workload.  Prior CPU parallelizations 

have noted the potential for redundant work, but concluded its 

manifestation to be negligible [6].  Concurrent discovery on 

Fig. 6.  Comparison of isolated vs. fused lookup and gathering. 

0.0

0.5

1.0

1.5

0

1

2

3

4

5

6

7

n
o

rm
a

li
ze

d

1
0
9

e
d

g
e

s 
/ 

se
c

Isolated Gather+Lookup Fused Gather+Lookup

Fig. 5.  Comparison of lookup vs. gathering. 

1.0

1.1

1.2

1.3

1.4

1.5

0

5

10

15

20

n
o

rm
a

li
ze

d

1
0
9

e
d

g
e

s 
/ 

se
c

Bitmask+Label Lookup Scan+Warp+CTA Gather

 

BFS 

Iteration 

Actual 

Vertex-

frontier 

Actual 

Edge-

frontier 

1 0 1,3 

2 1,3 2,4,4,6 

3 2,4,4,6 5,5,7,5,7,7 

4 5,5,7,5,7,7 8,8,8,8,8,8,8 
 

Fig. 7.  Example of redundant adjacency list expansion due to concurrent discovery 
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CPU platforms is rare due to a combination of relatively low 

parallelism (~8 hardware threads) and coherent L1 caches that 

provide only a small window of opportunity around status-

inspections that are immediately followed by status updates.   

The GPU machine model, however, is much more 

vulnerable.  If multiple threads within the same warp are 

simultaneously inspecting same vertex identifier, the SIMD 

nature of the warp-read ensures that all will obtain the same 

status value.  If unvisited, the adjacency list for this vertex 

will be expanded for every thread.   

Fig. 7 demonstrates an acute case of concurrent discovery.   

In this example, we traverse a small single-source, single-sink 

lattice using fine-grained cooperative expansion (e.g., 

Algorithm 6).  For each BFS iteration, the cooperative 

behavior ensures that all neighbors are gathered before any 

are inspected.  No duplicates are culled from the edge frontier 

because SIMD lookups reveal every neighbor as being 

unvisited.  The actual edge and vertex-frontiers diverge from 

ideal because no contraction occurs.  This is cause for 

concern: the excess work grows geometrically, only slowing 

when the frontier exceeds the width of the machine or the 

graph ceases to expand. 

We measure the effects of redundant expansion upon 

overall workload using a simplified version of the two-phase 

BFS implementation described in Section 5.  These expansion 

and contraction kernels make no special effort to curtail 

concurrent discovery.  For several sample traversals, Fig. 8 

illustrates compounded redundancy by plotting the actual 

numbers of vertex identifiers expanded and contracted for 

each BFS iteration alongside the corresponding logical 

frontiers.  The deltas between these pairs reflect the 

generation of unnecessary work.   

We define the redundant expansion factor as the ratio of 

neighbors actually enqueued versus the number of edges 

logically traversed.  Fig. 9 plots the redundant expansion 

factors measured for our two-phase implementation, both with 

and without extra measures to mitigate concurrent discovery.  

The problem is severe for spatially-descriptive datasets.  

These datasets exhibit nearby duplicates within the edge-

frontier due to their high frequency of convergent exploration.  

For example, simple two-phase traversal incurs 4.2x 

redundant expansion for the 2D lattice grid5pt.5000 dataset.  

Even worse, the implementation altogether fails to traverse 

the kron_g500-logn20 dataset which encodes sorted 

adjacency lists.  The improved locality enables the redundant 

expansion of ultra-popular vertices, ultimately exhausting 

physical memory when filling the edge queue.   

This issue of redundant expansion appears to be unique to 

GPU BFS implementations having two properties: (1) a work-

efficient traversal algorithm; and (2) concurrent adjacency list 

expansion.  Quadratic implementations do not suffer 

redundant work because vertices are never expanded by more 

than one thread.  In our evaluation of linear-work serial-

expansion, we observed negligible concurrent SIMD 

discovery during serial inspection due to the independent 

nature of thread activity.  

(a) grid7pt.300  (b) nlpkkt160 (c) coPapersCiteseer  

 

Fig. 8.  Actual expanded and contracted queue sizes without local duplicate culling, superimposed over logical frontier sizes. 
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Fig. 9  Redundant work expansion incurred by variants of our two-

phase BFS implementation.  Unlabeled columns are < 1.05x.  
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) Simple Local duplicate culling

Algorithm 7. GPU pseudo-code for a localized, warp-based 

duplicate-detection heuristic.   

Input: Vertex identifier neighbor 

Output: True if neighbor is a conclusive duplicate within the warp’s 

working set. 

 

1 WarpCull(neighbor) { 

2   volatile shared scratch[WARPS][128]; 

3   hash = neighbor & 127; 

4   scratch[warp_id][hash] = neighbor; 

5   retrieved = scratch[warp_id][hash];  

6   if (retrieved == neighbor) { 

7     // vie to be the “unique” item 

8     scratch[warp_id][hash] = thread_id; 

9     if (scratch[warp_id][hash] != thread_id) { 

10       // someone else is unique 

11       return true; 

12     } 

13   } 

14   return false; 

15 } 
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In general, the issue of concurrent discovery is a result of 

false-negatives during status-lookup, i.e., failure to detect 

previously-visited and duplicate vertex identifiers within the 

edge-frontier.  Atomic read-modify-write updates to visitation 

status yield zero false-negatives.  As alternatives, we 

introduce two localized mechanisms for reducing false-

negatives: (1) warp culling and (2) history culling.   

Warp culling.  Algorithm 7 describes this heuristic for 

preventing concurrent SIMD discovery by detecting the 

presence of duplicates within the warp’s immediate working 

set.  Using shared-memory per warp, each thread hashes in 

the neighbor it is currently inspecting.  If a collision occurs 

and a different value is extracted, nothing can be determined 

regarding duplicate status.  Otherwise threads then write their 

thread-identifier into the same hash location.  Only one write 

will succeed.  Threads that subsequently retrieve a different 

thread-identifier can safely classify their neighbors as 

duplicates to be culled. 

History culling.  This heuristic complements the 

instantaneous coverage of warp culling by maintaining a 

cache of recently-inspected vertex identifiers in local shared 

memory.  If a given thread observes its neighbor to have been 

previously recorded, it can classify that neighbor as safe for 

culling.    

Analysis.  We augment our isolated lookup tests to 

evaluate these heuristics.  Kernels simply read vertex 

identifiers from the edge-frontier and determine which should 

not be allowed into the vertex-frontier.  For each dataset, we 

record the average percentage of false negatives with respect 

to m – n, the ideal number of culled vertex identifiers. 

Fig. 10 illustrates the progressive application of lookup 

mechanisms.  The bitmask heuristic alone incurs an average 

false-negative rate of 6.4% across our benchmark suite.  The 

addition of label-lookup (which makes status-lookup safe) 

improves this to 4.0%.  Without further measure, the 

compounding nature of redundant expansion allows even 

small percentages to accrue sizeable amounts of extra work.  

For example, a false-negative rate of 3.5% for traversing 

kkt_power results in a 40% redundant expansion overhead. 

The addition of warp-based culling induces a tenfold 

reduction in false-negatives for spatially descriptive graphs 

(left-hand side).  The history-based culling heuristic further 

reduces culling inefficiency by a factor of five for the 

remainder of high-risk datasets (middle-third). The 

application of both heuristics allows us to reduce the overall 

redundant expansion factor to less than 1.05x for every graph 

in our benchmark suite. 

5. SINGLE-GPU PARALLELIZATIONS 

A complete solution must couple expansion and contraction 

activities.  In this section, we evaluate the design space of 

coupling alternatives: 

1. Expand-contract.  A single kernel consumes the current 

vertex-frontier and produces the vertex-frontier for the 

next BFS iteration.   

2. Contract-expand.  The converse.  A single kernel 

contracts the current edge-frontier, expanding unvisited 

vertices into the edge-frontier for the next iteration. 

3. Two-phase.  A given BFS iteration is processed by two 

kernels that separately implement out-of-core expansion 

and contraction. 

4. Hybrid. This implementation invokes the contract-

expand kernel for small, fleeting BFS iterations, 

otherwise the two-phase kernels.   

We describe and evaluate BFS kernels for each strategy.  We 

show the hybrid approach to be on-par-with or better-than the 

other three for every dataset in our benchmark suite. 

5.1 Expand-contract (out-of-core vertex queue) 

Our expand-contract kernel is loosely based upon the fused 

gather-lookup benchmark kernel from Section 4.2.  It 

consumes the vertex queue for the current BFS iteration and 

produces the vertex queue for the next.  It performs parallel 

expansion and filtering of adjacency lists online and in-core 

using local scratch memory. 

A CTA performs the following steps when processing a 

tile of input from the incoming vertex-frontier queue: 

1. Threads perform local warp-culling and history-culling 

to determine if their dequeued vertex is a duplicate.   

2. If still valid, the corresponding row-range is loaded from 

the row-offsets array R. 

3. Threads perform coarse-grained, CTA-based neighbor-

gathering.  Large adjacency lists are cooperatively strip-

mined from the column-indices array C at the full width 

of the CTA.  These strips of neighbors are filtered in-

core and the unvisited vertices are enqueued into the 

output queue as described below. 

4. Threads perform fine-grained, scan-based neighbor-

gathering.  These batches of neighbors are filtered and 

enqueued into the output queue as described below. 

For each strip or batch of gathered neighbors: 

i. Threads perform status-lookup to invalidate the vast 

majority of previously-visited and duplicate neighbors. 

ii. Threads with a valid neighbor ni update the 

corresponding label.   

iii. Threads then perform a CTA-wide prefix sum where 

each contributes a 1 if ni is valid, 0 otherwise.  This 

provides each thread with the scatter offset for ni and the 

total count of all valid neighbors.  

iv. Thread0 obtains the base enqueue offset for valid 

neighbors by performing an atomic-add operation on a 

global queue counter using the total valid count.  The 

returned value is shared to all other threads in the CTA. 

 
Fig. 10  Percentages of false-negatives incurred by status-lookup 

strategies. 
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v. Finally, all valid ni are written to the global output 

queue.  The enqueue index for ni is the sum of the base 

enqueue offset and the scatter offset. 

This kernel requires 2n global storage for input and output 

vertex queues.  The roles of these two arrays are reversed for 

alternating BFS iterations.  A traversal will generate 5n+2m 

explicit data movement through global memory.  All m edges 

will be streamed into registers once.  All n vertices will be 

streamed twice: out into global frontier queues and 

subsequently back in.  The bitmask bits will be inspected m 

times and updated n times along with the labels.  Each of the 

n row-offsets is loaded twice. 

Each CTA performs two or more local prefix-sums per 

tile.  One is used for allocating room for gather offsets during 

scan-based gathering.  We also need prefix sums to compute 

global enqueue offsets for every strip or batch of gathered 

neighbors.  Although GPU cores can efficiently overlap 

concurrent prefix sums from different CTAs, the turnaround 

time for each can be relatively long.  This can hurt 

performance for fleeting, latency-bound BFS iterations. 

5.2 Contract-expand (out-of-core edge queue) 

Our contract-expand kernel filters previously-visited and 

duplicate neighbors from the current edge queue.  The 

adjacency lists of the surviving vertices are then expanded 

and copied out into the edge queue for the next iteration. 

A CTA performs the following steps when processing a 

tile of input from the incoming edge-frontier queue: 

1. Threads progressively test their neighbor vertex 

identifier  ni for validity using (i) status-lookup; (ii) 

warp-based duplicate culling; and (iii) history-based 

duplicate culling.   

2. Threads update labels for valid ni and obtain the 

corresponding row-ranges from R. 

3. Threads then perform two concurrent CTA-wide prefix 

sums: the first for computing enqueue offsets for coarse-

grained warp and CTA neighbor-gathering, the second 

for fine-grained scan-based gathering.  |Ai| is contributed 

to the first prefix sum if greater than WARP_SIZE, 

otherwise to the second.  

4. Thread0 obtains a base enqueue offset for valid 

neighbors within the entire tile by performing an atomic-

add operation on a global queue counter using the 

combined totals of the two prefix sums.  The returned 

value is shared to all other threads in the CTA.   

5. Threads then perform coarse-grained CTA and warp-

based gathering.  When a thread commandeers its CTA 

or warp, it also communicates the base scatter offset for 

ni to its peers.  After gathering neighbors from C, 

enlisted threads enqueue them to the global output 

queue.  The enqueue index for each thread is the sum of 

the base enqueue offset, the shared scatter offset, and 

thread-rank.   

6. Finally, threads perform fine-grained scan-based 

gathering.  This procedure is a variant of Algorithm 6 

with the prefix sum being hoisted out and performed 

earlier in Step 4.  After gathering packed neighbors from 

C, threads enqueue them to the global output.  The 

enqueue index is the sum of the base enqueue offset, the 

coarse-grained total, the CTA progress, and thread-rank.  

This kernel requires 2m global storage for input and 

output edge queues.  Variants that label predecessors, 

however, require an additional pair of “parent” queues to 

track both origin and destination identifiers within the edge-

frontier.  A traversal will generate 3n+4m explicit global data 

movement.  All m edges will be streamed through global 

memory three times: into registers from C, out to the edge 

queue, and back in again the next iteration.  The bitmask, 

label, and row-offset traffic remain the same as for expand-

contract. 

Despite a much larger queuing workload, the contract-

expand strategy is often better suited for processing small, 

fleeting BFS iterations.  It incurs lower latency because CTAs 

only perform local two prefix sums per block.  We overlap 

these prefix-sums to further reduce latency.  By operating on 

the larger edge-frontier, the contract-expand kernel also 

enjoys better bulk concurrency in which fewer resident CTAs 

sit idle. 

5.3 Two-phase (out-of-core vertex and edge queues) 

Our two-phase implementation isolates the expansion and 

contraction workloads into separate kernels.  Our micro-

benchmark analyses suggest this design for better overall bulk 

throughput.  The expansion kernel employs the 

(a) Average traversal throughput 

 

(b) Average DRAM workload 

 

(c) Average computational workload 

 
Fig. 11  BFS traversal performance and workloads.  Harmonic means 

are normalized with respect to the expand-contract implementation. 
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scan+warp+cta gathering strategy to obtain the neighbors of 

vertices from the input vertex queue.  As with the contract-

expand implementation above, it performs two overlapped 

local prefix-sums to compute scatter offsets for the expanded 

neighbors into the global edge queue. 

The contraction kernel begins with the edge queue as 

input.  Threads filter previously-visited and duplicate 

neighbors.  The remaining valid neighbors are placed into the 

outgoing vertex queue using another local prefix-sum to 

compute global enqueue offsets. 

These kernels require n+m global storage for vertex and 

edge queues.  A two-phase traversal generates 5n+4m explicit 

global data movement.  The memory workload builds upon 

that of contract-expand, but additionally streams n vertices 

into and out of the global vertex queue.  

5.4 Hybrid 

Our hybrid implementation combines the relative strengths of 

the contract-expand and two-phase approaches: low-latency 

turnaround for small frontiers and high-efficiency throughput 

for large frontiers.  If the edge queue for a given BFS iteration 

contains more vertex identifiers than resident threads, we 

invoke the two-phase implementation for that iteration.  

Otherwise we invoke the contract-expand implementation.  

The hybrid approach inherits the 2m global storage 

requirement from the former and the 5n+4m explicit global 

data movement from the latter.   

5.5 Evaluation 

Our performance analyses are constructed from 100 

randomly-sourced traversals of each dataset.  Fig. 11 plots 

average traversal throughput.  As anticipated, the contract-

expand approach excels at traversing the latency-bound 

datasets on the left and the two-phase implementation 

efficiently leverages the bulk-concurrency exposed by the 

datasets on the right.  Although the expand-contract approach 

is serviceable, the hybrid approach meets or exceeds its 

performance for every dataset. 

With in-core edge-frontier processing, the expand-

contract implementation is designed for one-third as much 

global queue traffic.  The actual DRAM savings are 

substantially less.  We only see a 50% reduction in measured 

DRAM workload for datasets with large �̅.  Furthermore, the 

workload differences are effectively lost in excess over-fetch 

traffic for the graphs having small �̅. 

The contract-expand implementation performs poorly for 

graphs having large �̅.  This behavior is related to a lack of 

explicit workload compaction before neighbor gathering.  Fig. 

12 illustrates this using a sample traversal of wikipedia-

20070206.  We observe a correlation between large 

contraction workloads during iterations 4-6 and significantly 

elevated dynamic thread-instruction counts.  This is indicative 

of SIMD underutilization.  The majority of active threads 

have their neighbors invalidated by status-lookup and local 

duplicate removal.  Cooperative neighbor-gathering becomes 

much less efficient as a result.   

Table 2 compares hybrid traversal performance for 

distance and predecessor labeling variants.  The performance 

difference between variants is largely dependent upon �̅.  

Smaller �̅ incurs larger DRAM over-fetch which reduces the 

relative significance of added parent queue traffic.   For 

example, the performance impact of exchanging parent 

vertices is negligible for europe.osm, yet is as high as 19% for 

rmat.2Mv.128Me. 

When contrasting CPU and GPU architectures, we 

attempt to hedge in favor of CPU performance.  We compare 

our GPU traversal performance with the sequential method 

and then assume a hypothetical CPU parallelization with 

perfect linear scaling per core.  We note that the recent single-

socket CPU results by Leiserson et al. and Agarwal et al. 

referenced by Table 2 have not quite managed such scaling.  

Furthermore, our sequential implementation for a state-of-the-

art 3.4GHz Intel Core i7 2600K (Sandybridge) exceeds their 

Graph Dataset 

CPU 

Sequential
†
 

CPU 

Parallel 

NVIDIA Tesla C2050 (hybrid) 

Label Distance Label Predecessor 

10
9
 TE/s 10

9 
TE/s 10

9 
TE/s Speedup 10

9 
TE/s Speedup 

europe.osm 0.029  0.31 11x 0.31 11x 

grid5pt.5000 0.081  0.60 7.3x 0.57 7.0x 

hugebubbles-00020 0.029  0.43 15x 0.42 15x 

grid7pt.300 0.038 0.12
††

 1.1 28x 0.97 26x 

nlpkkt160 0.26 0.47
††

 2.5 9.6x 2.1 8.3x 

audikw1 0.65  3.0 4.6x 2.5 4.0x 

cage15 0.13 0.23
††

 2.2 18x 1.9 15x 

kkt_power 0.047 0.11
††

 1.1 23x 1.0 21x 

coPapersCiteseer 0.50  3.0 5.9x 2.5 5.0x 

wikipedia-20070206 0.065 0.19
††

 1.6 25x 1.4 22x 

kron_g500-logn20 0.24  3.1 13x 2.5 11x 

random.2Mv.128Me 0.10 0.50
†††

 3.0 29x 2.4 23x 

rmat.2Mv.128Me 0.15 0.70
†††

 3.3 22x 2.6 18x 

 
Table 2.  Single-socket performance comparison.  GPU speedup is in 

regard to sequential CPU performance.  †3.4GHz Core i7 2600K.  †† 2.5 

GHz Core i7 4-core, distance-labeling [6].  ††† 2.7 GHz Xeon X5570 8-

core, predecessor labeling [5]. 

 

 

  
(a) traversal throughput (b) Dynamic instruction workload during BFS  

iterations having large cull-sets  

 

Fig. 12.  Sample wikipedia-20070206 traversal behavior.  Plots are superimposed over the shape of the logical edge and vertex-frontiers. 
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single-threaded results despite having fewer memory 

channels. [5], [6] 

Assuming 4x scaling across all four 2600K CPU cores, 

our C2050 traversal rates would outperform the CPU for all 

benchmark datasets.  In addition, the majority of our graph 

traversal rates exceed 12x speedup, the perfect scaling of 

three such CPUs.  At the extreme, our average wikipedia-

20070206 traversal rates outperform the sequential CPU 

version by 25x, eight CPU equivalents.  We also note that our 

methods perform well for large and small-diameter graphs 

alike.  Comparing with sequential CPU traversals of 

europe.osm and kron_g500-logn20, our hybrid strategy 

provides an order-of-magnitude speedup for both. 

Fig. 13 further presents C2050 traversal performance for 

synthetic uniform-random and RMAT datasets having up to 

256 million edges.  Each plotted rate is averaged from 100 

randomly-sourced traversals.  Our maximum traversal rates of 

3.5B and 3.6B TE/s occur with �̅ = 256 for uniform-random 

and RMAT datasets having 256M edges, respectively.  The 

minimum rates plotted are 710M and 982M TE/s for uniform-

random and RMAT datasets having �̅ = 8 and 256M edges.  

Performance incurs a drop-off at n=8 million vertices when 

the bitmask exceeds the 768KB L2 cache size. 

We evaluated the quadratic implementation provided by 

Hong et al. [21] on our benchmark datasets.  At best, it 

achieved an average 2.1x slowdown for kron_g500-logn20.  

At worst, a 2,300x slowdown for europe.osm.  For wikipedia-

20070206, a 4.1x slowdown.   

We use a previous-generation NVIDIA GTX280 to 

compare our implementation with the results reported by Luo 

et al. for their linear parallelization [24].   We achieve 4.1x 

and 1.7x harmonic mean speedups for the referenced 6-pt grid 

lattices and DIMACS road network datasets, respectively. 

6. MULTI-GPU PARALLELIZATION 

Communication between GPUs is simplified by a unified 

virtual address space in which pointers can transparently 

reference data residing within remote GPUs.  PCI-express 2.0 

provides each GPU with an external bidirectional bandwidth 

of 6.6 GB/s.  Under the assumption that GPUs send and 

receive equal amounts of traffic, the rate at which each GPU 

can be fed with remote work is conservatively bound by 

825x106 neighbors / sec, where neighbors are 4-byte 

identifiers.  This rate is halved for predecessor-labeling 

variants.     

6.1 Design 

We implement a simple partitioning of the graph into equally-

sized, disjoint subsets of V.  For a system of p GPUs, we 

initialize each processor pi with an (m/p)-element Ci and 

(n/p)-element Ri and Labelsi arrays.   Because the system is 

small, we can provision each GPU with its own full-sized 

n-bit best-effort bitmask.   

We stripe ownership of V across the domain of vertex 

identifiers.  Striping provides good probability of an even 

distribution of adjacency list sizes across GPUs.  This is 

particularly useful for graph datasets having concentrations of 

popular vertices.  For example, RMAT datasets encode the 

most popular vertices with the largest adjacency lists near the 

beginning of R and C.  Alternatives that divide such data into 

contiguous slabs can be detrimental for small systems: (a) an 

equal share of vertices would overburden first GPU with an 

abundance of edges; or (b) an equal share of edges leaves the 

first GPU underutilized because it owns fewer vertices, most 

of which are apt to be filtered remotely.  However, this 

method of partitioning progressively loses any inherent 

locality as the number of GPUs increases.  

Graph traversal proceeds in level-synchronous fashion.  

The host program orchestrates BFS iterations as follows: 

1. Invoke the expansion kernel on each GPUi, transforming 

the vertex queue Qvertexi into an edge queue Qedgei. 

2. Invoke a fused filter+partition operation for each GPUi 

that sorts neighbors within Qedgei by ownership into p 

bins.  Vertex identifiers undergo opportunistic local 

duplicate culling and bitmask filtering during the 

partitioning process.  This partitioning implementation is 

analogous to the three-kernel radix-sorting pass 

described by Merrill and Grimshaw [30].   

3. Barrier across all GPUs.  The sorting must be completed 

on all GPUs before any can access their bins on remote 

peers.  The host program uses this opportunity to 

terminate traversal if all bins are empty on all GPUs. 

4. Invoke p-1 contraction kernels on each GPUi to stream 

and filter the incoming neighbors from its peers.  Kernel 

invocation simply uses remote pointers that reference the 

appropriate peer bins.  This assembles each vertex queue 

Qvertexi for the next BFS iteration.  

The implementation requires (2m+n)/p storage for queue 

arrays per GPU: two edge queues for pre and post-sorted 

  
(a) Uniform random (b) RMAT (A=0.45, B=0.15, C=0.15, D=0.25) 

 

Fig. 13.  NVIDIA Tesla C2050 traversal throughput. 
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neighbors and a third vertex queue to avoid another global 

synchronization after Step 4. 

6.2 Evaluation 

Fig. 14 presents traversal throughput as we scale up the 

number of GPUs.  We experience net slowdown for datasets 

on the left having average search depth > 100.  The cost of 

global synchronization between BFS iterations is much higher 

across multiple GPUs. 

We do yield notable speedups for the three rightmost 

datasets.  These graphs have small diameters and require little 

global synchronization.  The large average out-degrees enable 

plenty of opportunistic duplicate filtering during partitioning 

passes.  This allows us to circumvent the PCI-e cap of 

825x106 edges/sec per GPU.  With four GPUs, we 

demonstrate traversal rates of 7.4 and 8.3 billion edges/sec for 

the uniform-random and RMAT datasets respectively. 

As expected, this strong-scaling is not linear.  For 

example, we observe 1.5x, 2.1x, and 2.5x speedups when 

traversing rmat.2Mv.128Me using two, three, and four GPUs, 

respectively.    Adding more GPUs reduces the percentage of 

duplicates per processor and increases overall PCI-e traffic.   

Fig. 15 further illustrates the impact of opportunistic 

duplicate culling for uniform random graphs up to 500M 

edges and varying out out-degree �̅.  Increasing �̅ yields 

significantly better performance.  Other than a slight 

performance drop at n=8 million vertices when the bitmask 

exceeds the L2 cache size, graph size has little impact upon 

traversal throughput.   

To our knowledge, these are the fastest traversal rates 

demonstrated by a single-node machine.  The work by 

Agarwal et al. is representative of the state-of-the-art in CPU 

parallelizations, demonstrating up to 1.3 billion edges/sec for 

both uniform-random and RMAT datasets using four 8-core 

Intel Nehalem-based XEON CPUs [5].  However, we note 

that the host memory on such systems can further 

accommodate datasets having tens of billions of edges. 

7. CONCLUSION 

This paper has demonstrated that GPUs are well-suited for 

sparse graph traversal and can achieve very high levels of 

performance on a broad range of graphs.  We have presented 

a parallelization of BFS tailored to the GPU’s requirement for 

large amounts of fine-grained, bulk-synchronous parallelism. 

Furthermore, our implementation performs an 

asymptotically optimal amount of work.  While quadratic-

work methods might be acceptable in certain very narrow 

regimes [21], [31], they suffer from high overhead and did not 

prove effective on even the lowest diameter graphs in our 

experimental corpus.  Our linear-work method compares very 

favorably to state-of-the-art multicore implementations across 

our entire range of benchmarks, which spans five orders of 

magnitude in graph diameter. 

Beyond graph search, our work distills several general 

themes for implementing sparse and dynamic problems for 

the GPU machine model: 

• Prefix-sum can serve as an effective alternative to atomic 

read-modify-write mechanisms for coordinating the 

placement of items within shared data structures by 

many parallel threads. 

• In contrast to coarse-grained parallelism common on 

multicore processors, GPU kernels cannot afford to have 

individual threads streaming through unrelated sections 

of data.  Groups of GPU threads should cooperatively 

assist each other for data movement tasks. 

• Fusing heterogeneous tasks does not always produce the 

best results.  Global redistribution and compaction of 

fine-grained tasks can significantly improve performance 

when the alternative would allow significant load 

imbalance or underutilization. 

• The relative I/O contribution from global task 

redistribution can be less costly than anticipated.  The 

data movement from reorganization may be insignificant 

in comparison to the actual over-fetch traffic from 

existing sparse memory accesses. 

• It is useful to provide separate implementations for 

saturating versus fleeting workloads.  Hybrid approaches 

can leverage a shorter code-path for retiring 

underutilized phases as quickly as possible.  
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Fig. 14.  Average multi-GPU traversal rates.  Harmonic means are 

normalized with respect to the single GPU configuration. 
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Fig. 15.  Multi-GPU sensitivity to graph size and average out-degree �� 

for uniform random graphs using four C2050 processors.  Dashed lines 

indicate predecessor labeling variants. 
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