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ABSTRACT
Power modes can be used to save energy in electronic devices
but a low power level typically degrades performance. This
trade-off is addressed in the so-called EP-queue model, which
is a queue depth dependent M/G/1 queue augmented with
power-down and power-up phases of operation. The ability to
change service times by power settings allows us to leverage
a Markov Decision Process (MDP). We illustrate this approach
by using a simple fully solar-powered case study with finite
states representing levels of battery charge and solar intensity.
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1 INTRODUCTION
We consider an edge device that is fully powered by solar
energy and connected to a cellular data network for communi-
cating with the core services. Although the energy generated
is not under our control and can vary by time of day (and time
of year), the energy consumed can be altered by adjusting
the processor clock rate which in turn impacts the application
response time. This creates a trade-off between the energy
consumed and the response time delivered by the cognitive
system at the edge. We would like to adjust the clock rates
judiciously throughout the day so that acceptable quality of
service is delivered without running out of battery power
given arrival rates and battery charging rates that depend on
the time of day.
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To illustrate one particular type of application operating
on the edge, consider a camera endpoint that sends a video
stream to a compute engine running a deep learning algo-
rithm to identify gender and age of people passing by. The
processing needs to be fast enough to classify the video clip
and display age/gender-appropriate adverts and information.
The inferred output data has some transient value when a per-
son is in the line of sight of the display but that value vanishes
as the person walks away. For example, this happens to Tom
Cruise in the movie “Minority Report” as he is identified by a
retina scan and immediately shown targeted adverts.

An arrival stream of people can often be modeled realis-
tically as a Poisson process, where multiple people walking
together at the same time can be modeled as a batch with
specified batch-size probability distribution at each arrival in-
stant. The service time will depend on the speed of inference
of the learning algorithm, and we assume that the processor
clock frequency can be adjusted downward to save energy. In
this model, the service times have a general probability distri-
bution but also the service rates vary with the queue depth.
The EP-queue provides precisely these features, and more, for
example power-up and power-down periods that have their
own power demands [6]. In this paper, we derive expressions
for the amount of energy consumed as well as standard per-
formance metrics during a non-idle period, and create penalty
metrics to make trade-offs at regular periods during the day.
The objective is to find the policy or power settings for each
period that minimizes the accumulated penalty at the end of
the day.

2 ENERGY CONSUMPTION

2.1 Model definition
We extend the generalized MB/G/1 queue defined in [6],
with Poisson batch-arrivals and service times that are state-
dependent when the queue length i (including the task in
service, if any) at the start of a service period is less than some
threshold n ≥ 1; the service time random variable is denoted
Si when 1 ≤ i < n and Sn when i ≥ n. The Poisson batch-
arrivals have rate λ, the batch size is an integer random vari-
able B with probability generating function G(z) = ∑∞

i=1 bizi

and the service discipline is first come first served (FCFS). In
addition, the server has to be powered-up when an arrival
occurs in its idle state (queue length 0) and powered-down
when a departure leaves the queue empty. Power-up and
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power-down times are independent random variables, de-
noted by U and D respectively. If an arrival occurs during
power-down, the power-down continues unaffected and is
immediately followed by a power-up period, immediately
after which the first task to have arrived commences service.
Thus the non-idle, (partially or fully) powered-up period is
elongated beyond the regular busy period, which is simply a
maximal time period throughout which there is at least one
task in the queue. This queue was called an EPG

n -queue in [6].
It reduces to a standard M/G/1 queue when U = D = 0 with
probability one, G(z) = z, n = 1.

Both power levels and service times are functions of the
clock frequency of a device, which we take to be νi when the
queue length is i > 0 at the start of service of a task, remain-
ing constant until the end of the task’s service period. The
power level, or rate of energy consumption, ωi(νi) at queue
length i > 0 is a function of the clock frequency; to a coarse
approximation, ωi ∝ ν2

i , but more accurate functions can be
found through profiling. The energy ϵi used during a service
time Si that started when the queue length was i > 0 may
then be approximated by ϵi = Siωi(νi), although this too is
an approximation due to the fact that a processor is not neces-
sarily running at full power throughout an instruction cycle.
Similarly, a common approximation is that the rate at which
a task receives service is proportional to the clock frequency,
so we may write Si = ∆/νi, where the random variable ∆ is
the number of clock cycles required by a task. Under these
approximations, the service times and energy units consumed
by a task may be parameterized in terms of the power levels

by Si ∼
√

ωn
ωi

Sn and ϵi ∼ ωiSi, where we use the symbol ∼ to
signify “has the same distribution as”. Like the service times,
the power levels ωi have a threshold at i = n so that ωi = ωn
for all i ≥ n. Thus reducing the power level by a factor of four
results in doubling the service times, which may be reasonable
when queue depths are low.

Of course, if all power levels ωi are now replaced by the
value 1, after first resetting the distributions of Si as above, ϵi is the
same as the service time Si. This is just a mathematical device
that conveniently uses one general expression, rather than
having to work with multiple expressions: one with energy
units and the other, almost identical, with time units. This
observation is used to find the moments of the length of the
non-idle cycle (either busy, powering up or powering down),
required in the next section.

We use the following notation regarding random variables.
The cumulative distribution function of a continuous random
variable X is denoted by X(t) = IP(X ≤ t) and its Laplace-
Stieltjes transform (LST) by X∗(θ) = IE[e−θX ]. The probability
density function (PDF) of X is x(t) = X′(t), the derivative
of the distribution function. The mth moment of X is written
X[m] = IE[Xm] = (−1)mX∗(m)(0), where the parenthesized
superscript denotes differentiation m times with respect to
θ. Correspondingly, the probability generating function (pgf)
of a discrete random variable Y is written GY(z) = IE[zY ] (so
that G(z) is an abbreviation for GB(z)).

2.2 Energy usage in non-idle periods
2.2.1 Underlying recurrence formula. Let the energy used be-

tween the start of service of a task at queue length i and the
first subsequent instant at which the server becomes fully
powered down, or idle, be denoted by the random variable
Wi, for i ≥ 1. Further, let W0 denote the energy used between
an instant at which the queue becomes empty and the end of
the current non-idle period. The time period associated with
W0 is not just the power-down period D since it may be that
new tasks will arrive during this period, starting a busy pe-
riod after the power-down period has been completed1. Then
the energy used in the non-idle period, H = ωUU + WB+NU ,
where B is the number of tasks in the batch that started the non-
idle period and NU is the number of task-arrivals during the
powering-up period U; ND is defined similarly with respect to
the power-down period D. Let the power levels during power-
up and power-down be ωU and ωD, respectively. Then, for
j ≥ 1, we have the recurrence Wj = ωjSj + WNSj+j−1, where

W0 = ωDD +
(
ωUU + WNU+ND

)
IND>0, NSj is the number of

task-arrivals during the service time Sj and I· is the indicator
function. For example, when there are no arrivals during the
service time that started with j tasks in the queue (NSj = 0),
the recurrence is simply the sum of the energies used during
that service time and in the non-idle period that starts with
j − 1 tasks.

2.2.2 Energy PDF in non-idle periods. The LSTs W∗
i (θ) for

i = 1, 2, . . . are given by the following series of lemmas and
propositions, culminating in Theorem 1. The proofs of the
lemmas are generalizations to corresponding results in [6] for
time delay distributions’ LSTs.

LEMMA 1. For i ≥ n − 1,

W∗
i (θ) =

(
V∗(ωnθ)

)i−n+1W∗
n−1(θ) where the function V∗ is the

fixed point of the equation v∗(θ) = S∗
n
(
θ + λ(1− G(v∗(θ)))

)
. For

1 ≤ i < n − 1, omitting the arguments θ from W∗
· for brevity,

W∗
i =

[
S∗

i
(
ωiθ + λ(1 − G(V∗(ωnθ)))

)(
V∗(ωnθ)

)i−n−
n−i−1

∑
j=0

sij(θ)
(
V∗(ωnθ)

)j+i−n
]
W∗

n−1 +
n−i−1

∑
j=0

sij(θ)W∗
j+i−1

where W∗
0 (θ) is to be determined and, for 1 ≤ i ≤ n, 0 ≤ j ≤ n,

sij(θ) =
1
j!

∂jS∗
i (ωiθ+λ(1−G(z)))

∂zj

∣∣∣
z=0

.

1We assume that once started, a power-down period must complete fully before

a new startup period can begin. Other modi operandi are possible, e.g., the

startup period could begin immediately.
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LEMMA 2.

W∗
0 (θ) = D∗(λ + ωDθ)+

n−2

∑
k=1

[
W∗

k (θ)− W∗
n−1(θ)V

∗(ωnθ)k−n+1
] k

∑
j=1

uk−j(θ)dj(θ)+

W∗
n−1(θ)V

∗(ωnθ)−n+1U∗(ωUθ + λ(1 − G(V∗(ωnθ)))
)
×[

D∗(ωDθ + λ(1 − G(V∗(ωnθ))))− D∗(λ + ωDθ)
]

where uj(θ) =
1
j!

∂jU∗(ωU θ+λ(1−G(z)))
∂zj

∣∣∣
z=0

and

dj(θ) =
1
j!

∂j D∗(ωDθ+λ(1−G(z)))
∂zj

∣∣∣
z=0

.

The next result defines an algorithm for the computation of
{W∗

i (θ) | i ≥ 0}.

PROPOSITION 1. For each θ and i ≥ 1,

W∗
i (θ) = W∗

0 (θ)τi(θ)/τ0(θ), where, omitting the arguments (ωUθ +

λ(1−G(V∗(ωnθ)))) from U∗ and (ωDθ +λ(1−G(V∗(ωnθ))))

from D∗,

W∗
0 (θ) = D∗(λ + ωDθ)τ0(θ)

/
[
τ0(θ)− V∗(ωnθ)−n+1U∗ [D∗ − D∗(λ + ωDθ)]−

n−2

∑
k=1

(
τk(θ)− V∗(ωnθ)k−n+1) k

∑
j=1

uk−j(θ)dj(θ)
]

τi(θ) = V∗(ωnθ)i−n+1 for i ≥ n − 1;

τi(θ) =
1

si+1,0(θ)

[
τi+1(θ)−

n−i−2

∑
j=1

si+1,j(θ)τi+j(θ)−(
V∗(ωnθ)i−n+1S∗

i+1(ωi+1θ + λ(1 − G(V∗(ωnθ))))−
n−i−2

∑
j=0

si+1,j(θ)V∗(ωnθ)i+j−n+1
)]

for 0 ≤ i < n − 1.

PROOF. The set of values τ0(θ), τ1(θ), . . . are proportional

to W∗
0 (θ), W∗

1 (θ), . . . and given by Lemma 1 up to a constant

of proportionality, which is chosen to be such that τn−1(θ) = 1

for all θ. Thus, for i > 0, W∗
i (θ) = W∗

0 (θ)τi(θ)/τ0(θ) and the

expression for W∗
0 (θ) is obtained by plugging into Lemma 2.

□

The required LST of the probability distribution of the en-
ergy used in a non-idle period – i.e. a contiguous, partially or
fully powered-up period – is given by the following:

THEOREM 1. The LST of the probability distribution function

of the energy used in a non-idle period, H, is:

H∗(θ) = G(V∗(ωnθ))U∗(ωUθ + λ(1 − G(V∗(ωnθ)))
)

×V∗(ωnθ)−n+1W∗
n−1(θ)

+
n−2

∑
i=1

bi

n−i−2

∑
j=0

uj(θ)
(
W∗

i+j(θ)− V∗(ωnθ)i+j−n+1W∗
n−1(θ)

)
PROOF.

H∗(θ) = IE[IE[e−θ(ωUU+WB+NU ) | U]]

= IE

 ∞

∑
i=1

∞

∑
j=0

bi
1
j!

∂je−λU(1−G(z))

∂zj

∣∣∣∣∣
z=0

e−θ(ωUU+Wi+j)


= IE

 ∞

∑
i=1

∞

∑
j=0

bi
1
j!

∂je−U(ωU θ+λ(1−G(z)))

∂zj

∣∣∣∣∣
z=0

e−θWi+j


since 1

j!
∂je−λU(1−G(z))

∂zj

∣∣∣
z=0

is the probability that there are j task-

arrivals during time U. The rest of the proof is now similar to

that of lemma 2. □

Finally, if energy is consumed during the exponentially
distributed idle periods, at power level ωI , the LST of the
distribution function of the energy used, C say, in a complete
idle-busy cycle is C∗(θ) = λH∗(θ)/(λ + ωIθ).

The moments of C, H and the Wj depend on the moments
of V, which has its Laplace transform defined as a fixed point.
When we know a priori that only a given number p of moments
are required, we only need the function V∗(θ) = 1+ ∑

p
i=1 viθ

i

to order p. The coefficient vi = V∗(i)(0)/i! = (−1)iV[i]/i! in
terms of moments, and it is routine to compute any finite
number of these symbolically, using standard mathematical
software.

2.3 Energy used in a given time interval
Idle-busy delay-cycles are usually short relative to wall clock
times, e.g., energy generation or battery discharge times. We
consider the case where a given time period t is many times
greater than the mean delay-cycle time c. Suppose that there
are n complete cycles that comprise the period t, i.e. n ≃
⌊t/c⌋ to a good approximation at large n. Since cycles are
independent and identically distributed (iid), the probability
distribution of the combined length of a large number, n, of
cycles is well approximated by a Normal distribution with
mean nm and variance nv, where m and v are respectively the
mean and variance of the length of a single cycle, calculable by
the procedure defined in the previous section when all power
levels ωx (x ∈ {U, D, i}) are replaced by the value one.

Now, if the random variable Nt is the number of cycles in a
given length of time t and Tn is the time elapsed until the end
of the nth cycle from the beginning of that time period, then at
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large n,

pn(t)
def
= IP(Nt = n) = IP(Tn ≤ t)− IP(Tn+1 ≤ t)

≃ Φ
(

t − nm√
nv

)
− Φ

(
t − (n + 1)m√

(n + 1)v

)
Thus, the energy used up to time t has distribution function
Ft(x) with Laplace-Stieltjes transform F∗

t (θ) that can be ap-
proximated by (ignoring part-cycles, which are insignificant

at large n) F∗
t (θ) =

∞

∑
n=1

pn(C∗(θ))n, where C∗(θ) is the LST

of the distribution of the energy consumed in a single cy-
cle, as in the previous section. At large n we can also ap-
ply the CLT to the energy used over n cycles, Xn, to obtain

Cn(x) = IP(Xn ≤ x) ≃ Φ
(

x−nme√
nve

)
, where me, ve are the mean

and variance of the energy used in one cycle, simply obtained
from C∗(θ) in the previous section. Thus we arrive at the
approximation:

Ft(x) =
∞

∑
n=1

pn(t) Φ
(

x − nme√
nve

)
(1)

Notice that when t is small and [0, t] contains few cycles, pn
could be computed exactly (up to numerical approximations)
by inverting the Laplace transform T∗(θ)n − T∗(θ)n+1 and
using C∗(θ) directly. We would then also have to be concerned
with part-cycles. However, as already remarked, such small
time periods do not arise in the analysis that follows.

3 ENERGY-LATENCY MANAGEMENT
We seek a control system that sets the device power levels
so as to provide the best performance possible, according
to a given Quality-of-Service (QoS) metric, throughout the
daylight hours, subject to the device remaining powered up
through the night, i.e. giving 24-hour availability. We con-
sider a finite horizon, discrete time Markov Decision Process
(MDP), which samples the prevailing weather conditions ev-
ery 15 minutes and sets the power-mode of the device so as
to maximize a reward (actually, minimize a certain energy-
latency metric) whilst achieving a given minimum battery
charge level at the end of the daylight hours [2]. First, there-
fore, we need to model the charge and discharge rates of the
battery under different conditions.

3.1 Battery charge and discharge rates
A brightness intensity function i(t) gives the power harvested
by the battery from the lumens of the sun (in watts) at time
t (hours) of the day. Observation shows that this function is
roughly parabolic. For example, the function i(t) = max[0, k2(1−
k1(13 − t)2)], where k1, k2 are positive constants, gives a peak
at 1pm, which is appropriate for the summer time. Setting
k1 = 0.025 and k2 = 500 gives a peak output of 500 watts,
which is typical for a one meter square PV panel, over a pro-
ductive day running from about 7am to 7pm. This fits a sunny

climate and simply scaling down the parabolic output rep-
resents hazy or cloudy conditions well. We also use a more
accurate intensity function obtained from empirical data in
section 4.1.2. Changes in the weather may be modeled as a
Markov chain, which can be adjusted before running the MDP
according to the local weather forecast. However for simplic-
ity, we consider a uniform day with approximately parabolic
power input throughout the daylight hours.

Battery discharge rate is determined by the power used by
the device, which is approximated by the probability distribu-
tion Ft(x), neglecting leakage. We assume that the efficiency
of the battery is 100%, so that no more energy is consumed
than that required by the application. Obviously we can adapt
this to cope with any observed lower efficiency if we take this
as constant over output power and charge level. Moreover,
we can extend the model to allow efficiency to be a function of
the state. We use three battery charge-level states: f , or “full”,
which means above a (high) threshold, set a little below 100%
full; h, or “high”, which means below this high threshold but
above a low threshold, set a little above 0%; and ℓ, or “low”,
which means less than the low threshold. Similar to battery
charge boundaries used in [7], our model also sets low and
high thresholds to 25% and 75% respectively.

3.2 Markov Decision Process
An MDP consists of a finite set of states, a set of actions for each
state, transition probabilities for each pair of states dependent
on the action taken, an immediate reward for each transition,
a goal and, possibly, a discount factor (e.g., to handle infinite
time horizons). In our case, we consider the daylight hours of
one day with a finite time-horizon, corresponding to the end
of the day, with 9 states (3 weather-states × 3 battery states).
The state of the system is sampled every 15 minutes to yield a
discrete state, discrete time Markov chain that drives the MDP.
This Markov chain is defined by the state-transition proba-
bilities q(i1,j1),(i2,j2)(t) = qw

i1i2
(t)qb

j1 j2 (t), with i1, i2 ∈ {s, z, c}
(weather states sunny, hazy, or cloudy) and j1, j2 ∈ { f , h, ℓ}
(battery charge states full, high, or low), where (omitting the
argument t for brevity where there is no confusion) qw, qb are
the state-transition probability matrices for the independent
weather and battery charge level Markov chains, respectively.
The former can be parameterized from the weather forecast,
but in our initial model we assume uniform days so the states
{z, c} do not arise. Hence we only need to estimate the pa-
rameters of qb, giving a three-state model. Clearly it would
be straightforward to extend this model to incorporate tran-
sitions in the weather, at greater complexity but consequent
loss of clarity.

Let ys(t) =
∫ t+1/4

t is(u)du denote the energy harvested
from the sun in the quarter-hour interval beginning at time
t hours; in the untruncated parabolic area this would give
y(t) = −3.125t2 + 81.25t − 403.125 watt-hours. Let the “low”,
“high” and “full” battery states have charge-levels in the ranges
[0, b1), [b1, b1 + b2) and [b1 + b2, b1 + b2 + b3] respectively; i.e.
the low band has width b1, the half-full band has width b2
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and the high band has width b3, so that level b1 + b2 + b3
represents 100% full. We assume that at the beginning of a
quarter hour time slot, the battery charge level random vari-
able is uniformly distributed over the band with which its
current state is associated. Then it is straightforward to ob-
tain the parameters listed below, abbreviating the distribution
function F0.25(·) for the energy consumed by the device in a
quarter-hour interval to F(·). For example, the probability that
the state reduces from “full” to “high”, given current charge
level x + b1 + b2 with x ∈ [0, b3], is the probability that the
device consumes more than y(t) + x watt-hours, but less than
y(t) + x + b2, which would result in a transition to state “low”.
Since x is uniformly distributed over [0, b3], we get the first
equation in the following list:

qb
f h(t) =

1
b3

∫ b3

0
[F(y(t) + x + b2)− F(y(t) + x)]dx

qb
f ℓ(t) = 1 − 1

b3

∫ b3

0
F(y(t) + x + b2)dx

qb
h f (t) =

1
b2

∫ b2

0
F(y(t)− x)dx

qb
hℓ(t) = 1 − 1

b2

∫ b2

0
F(y(t) + x)dx

qb
ℓ f (t) =

1
b1

∫ b1

0
F(y(t)− x − b2)dx

qb
ℓh(t) =

1
b1

∫ b1

0
[F(y(t)− x)− F(y(t)− x − b2)]dx

The diagonal entries in the matrix qb are set so as to make the
rows all sum to 1.

4 APPLICATION
The key recurrence, Proposition 1, for computing the LST of
the distribution of the energy used during a powered-up cycle
with fixed power settings has been implemented in Wolfram’s
Mathematica, and this LST can be inverted numerically by
any of several known algorithms. However, the CLT-based
approximations are more applicable for our problem.

4.1 Model Parameters
4.1.1 Foot-traffic arrival rate. In practical applications the

arrival rate often varies with the time of day. For our purposes,
we use Google Maps data of popularity times for a particular
location (Ghirradelli Square in San Francisco), from which
we can create a function that gives the instantaneous arrival
rate at any time of day using interpolation. We use 15 minute
intervals and assume the system has many busy cycles during
that interval and reaches steady-state quickly. This gives 96
arrival rates for the 24 hour period. Figure 1 shows Google’s
“popularity function" over the 24-hour period of December 21,
2016. We normalize this function so that the average rate over
24 hours is one arrival per second, and then use a parameter
to scale up the arrival rate as needed to account for batch
arrivals. This way the time-dependent arrival rate is modeled
by a single parameter λ, the batch-arrival rate of our model.
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Figure 1: Foot traffic arrival rate at Ghirradelli Square over

the 24 hours of the winter solstice, 2016
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Figure 2: Expected solar intensity at Ghirradelli Square
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4.1.2 Solar power harvesting. The amount of solar power har-
vested per square meter depends on many factors. We use
a simple model that captures the parabola-like shape of the
sun’s intensity during a particular day – the winter solstice,
December 21, which has solar declination angle of −23.5 de-
grees (due to the tilt of the earth). Ghirradelli Square at 37.8059
degrees North latitude is our chosen location. The solar con-
stant is about 1000 W per square meter but typical solar cells
are capable of converting only a fraction of this. Using the
equation from [3] the sun insolation at time t hours on a 24
hour clock is the maximum of 0 and 1000(cos(x) cos(y) cos(h(t−
12)) + sin(x) sin(y)), where x is the latitude (in radians), y
is the declination angle (in radians), h is the “hour angle”
(π/12 in radians). Figure 2 shows a chart of the sun insolation
equation for the winter solstice and the summer solstice at
Ghirradelli Square. In the model we consider in section 4.3,
we assume a quarter square meter solar panel.

4.1.3 Device service times. The device may be performing a
variety of tasks and service times should be parameterized by
fitting to the specific applications being run. Somewhat arbi-
trarily, we chose to parameterize all our models with respect
to a storage system from which we have data; see [6]. Accord-
ingly, service times have gamma distributions with means
(9.808, 7.930, 6.053) milliseconds and coefficients of variation
(0.64, 0.401, 0.218) for queue lengths of 1, 2 and 3 or more,
respectively; i.e. the threshold of the EP-queue is 3 – so the
service time distribution is the same for all queue lengths 3
and above. This way the service time is characterized by just 3
service time distributions, each with 2 parameters. Note that
the mean service times and variability decrease as the queue
depth increases, which is a nice property because it implies
the system becomes more efficient with more load.

4.1.4 Penalty function. The goal of the MDP is to identify
a policy that chooses power levels for the device over each
quarter hour interval so as to minimize a certain aggregated
penalty, whilst meeting a goal at the end of a specified finite
period. We define the penalty function Ra,t(s, s′) to be a suitable
energy-performance metric for the 15-minute slot starting at
time t achieved by taking action a when in state s that leads
to next state s′. This metric, which is state-dependent, could
be the expectation of user-response time, r, (if energy is not
a major concern), or the energy used, e, (if this is the only
major concern), or of the product of the two if a trade-off is
required, as in [6] for example. These metrics are normalized
by their values, R and E, obtained at 90% utilization. Our

primary metric is then the vector ( r
R ,
√

re
RE , e

E ) corresponding

to the battery states ( f , h, ℓ). Note we used the geometric mean
of the first and last value to obtain the middle value. Graphs
of these penalty functions are shown in Figure 3 for the model
with base power level of 100 watts. To minimize the possibility
of a temporarily flat battery and so loss of data, we can instead
choose to deter the system from visiting the “low” state. We
create this deterring metric by setting the penalty in the "low"
state to a fixed quantity equal to a multiple of the maximum

power at which the device is run – so that the normalized
metric becomes that constant multiple.

4.2 MDP definition
For a given state, actions a1 or a2 set the device power to 50 or
100 watts, respectively. The power settings can be changed in
the MDP by appropriate choice of action a1, a2 at the beginning
of a time slot, based on the current state of the system and
the predicted energy supply and drain going forward. Once a
policy is chosen, the state transition probabilities are fixed and
the process is Markovian because the next state only depends
on the current state, and not earlier states. Even with binary
actions for each state, the number of policies to enumerate is
large. Our goal is to find the optimum policy at the beginning
of each quarter-hour time slot t πt(s) ∈ {a1, a2}, over states s in
the state-space S = {s,z,c} × {f,h,ℓ}, that yields the minimum
penalty over the remainder of a day such that the battery is
left full (or above a specified charge level) at the end of the
daylight hours: at time T hours, say.

This leads to the following conventional MDP specification:
Determine the value function V(s, t) at discrete time t and pol-
icy π(s, t) for all s ∈ S given by the iteration VT(s) = 0 if
s = f , VT(s) = 1 if s , f and

Vt(s) = min
a∈{a1,a2}

[
∑

s′∈S
Pa,t(s, s′)

(
Ra,t(s, s′) + Vt+1(s′)

)]
,

πt(s) = arg min
a∈{a1,a2}

[
∑

s′∈S
Pa,t(s, s′)

(
Ra,t(s, s′) + Vt+1(s′)

)]

for t = T − 1, T − 2, . . . , 0. The terms Pa,t(s, s′) are the tran-
sition probabilities from state s to state s′ corresponding to
discrete times t and t + 0.25 hours, when action a1 or a2 is
chosen, i.e. when the power mode is set to either ω1 or ω2.
They are computed as the matrix qb(t), parameterized with
the power level defined by the actions a.

4.3 Numerical experiments
In order to reduce the number of parameters and simplify
the results, we assume the weather is fixed at “sunny". This
reduces the unexpected variability in power generation from
occasional cloudy and hazy states but we retain the variability
of the sun intensity during the day. With this simplification
we consider two model parameterizations:

(1) The baseline, or “Parabolic” model, which uses the qua-
dratic sun intensity function given in section 3.1 and
assumes the arrival rate to be constant at 2 batches per
quarter-hour time-slot, with mean batch size 10.

(2) “Ghirradelli” model with arrival rate and sun intensity
functions given in sections 4.1.1 and 4.1.2. Mean batch
size is again 10.

Both models use the same gamma service time distributions,
described in section 4.1.3. For each of these parameterizations,
we use either the primary metric or the deterring metric, which
gives 4 scenarios for numerical comparison. For each scenario,
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Figure 4: Policy choices made in the MDP for the Parabolic

model with the primary (top) and deterring (bottom) met-

rics. The optimal power levels for states {ℓ, h, f } are shown

in dotted green, dashed orange and solid blue, respectively,

at each quarter-hour time point.

we want the MDP policy to select the next operating power
level (50 or 100 watts) for each battery state in {ℓ, h, f } at every
quarter-hour time point.

4.3.1 Parabolic model. Figure 4 shows the optimal policy
under the primary and deterring (higher penalty in state ℓ)
metrics, respectively. In the former case, we see how the high
power mode is used in the full battery state for most of the
day up to a little after 5pm. Similarly the high battery state can
use maximum power until about midday. However, the low
battery state ℓ cannot transit to a higher charge level due to
insufficient net energy coming from the sun. At a lower arrival
rate of work for the device, the sun would supply enough en-
ergy to make transition from the low state possible, especially
near the middle of the day. Then the ultimate penalty of being
in the low state at the end of the day might be avoided.

The situation is similar with the deterring metric under our
model parameterization. Notice that the unexpected visits of
the low state to the high power mode at the beginning and
end of the day are artifacts of equal value functions for each
choice of power level: we choose the maximum in the event
of such a tie.
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Power level
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Figure 5: Policy choices made in the MDP for the

Ghirradelli model with the primary (top) and deterring

(bottom) metrics. The optimal power levels for states

{ℓ, h, f } are shown in dotted green, dashed orange and solid

blue, respectively, at each quarter-hour time point.

4.3.2 Ghirradelli model. Similarly to the parabolic case, Fig-
ure 5 shows the optimal policy under the primary and de-
terring (higher penalty in state ℓ) metrics, respectfully. These
charts are somewhat less interesting since the system is very
underloaded for most of the day. However, as solar intensity
increases during the day, the low battery state is able to use
the high power level and is open to the possibility of transi-
tion to a higher charge state. Further experiments allowing
for alternate parameterizations and other workloads are in
progress.

5 RELATED WORK
The work described in this paper builds on previous research
from modeling energy and performance in queues, optimizing
energy-performance metrics, and applying MDP for specific
domains. Much of the research in energy-performance has
been for wireless sensor networks where energy is a scarce
resource [1]. Typically, device power can be changed and the
focus is about reducing energy consumption so that the bat-
teries last longer. For a survey of energy efficient wireless
communication see [9]. Also in the wireless sensor application
context, [7] uses MDPs to analyze energy-constrained sen-
sors that can be recharged, and suggests optimal policies for
recharging sensors based on battery charge levels and delay
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times. Energy-performance metrics are optimized for server
farms in [4]. MDPs have been used extensively for many appli-
cations in other areas, including road maintenance, scheduling
policies and reinforcement learning. The idea of adjusting a
server’s power, with nonlinear impact on the energy used, to
increase service rate has been used in discrete-event simula-
tion software to model interference or arbitrary blocking [5, 8].
However, we believe there have been few analytical models
in the context of optimizing energy usage to meet some QoS
requirement on performance.

6 CONCLUSION
In this paper we have explicitly incorporated energy consump-
tion into the EP-queue model, facilitating a joint investigation
of energy and performance. The numerical calculations in-
volved are costly and we have introduced efficient approxima-
tions that allow the model’s output to be used effectively in a
real-time optimizer. This sets the power level at regular time
points over the day to achieve optimum aggregated values of a
chosen energy-performance metric such that a battery-charge
level goal is met at the end of the day. By profiling real-world
applications, the task service times at different queue lengths
could be obtained accurately and used for finding optimal
settings. We developed an MDP framework in a simple ex-
ample with three sun states (which we reduced to one) and
three battery charge levels. The two non-controllable factors
are the amount of energy used by arrivals and the amount of
energy supplied by the sun. As it stands, the model is highly
simplified – in terms of the number of states, use of the power-
up and down feature, small number of alternate power levels
and efficiency of the implementation. The output of the model
shows that the methodology is viable and that the best power
setting can be identified and implemented in a timely fashion
for dynamic optimization. A significant factor in model-design
is always the particular metric that one wants to optimize. We
considered two variants of an energy-performance metric –
many more are possible, the “best” depending on what the
application is and who is interested in optimizing it. Indeed
it is often of most benefit to consider families of metrics; for
example, in our case we might consider (in the notation of
section 4.1.4) {(rαeβ)1/(α+β)} for a range of α and β. The geo-
metric mean that we used corresponds to α = β = 1, and if
response time or energy were considered the only relevant
metric, we would have α = 1, β = 0, respectively.
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