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Abstract

In this paper, we propose a privacy-preserving e-health system, which is a fusion

of Internet-of-things (IoT), big data and cloud storage. The medical IoT net-

work monitors patient’s physiological data, which are aggregated to electronic

health record (EHR). The medical big data that contains a large amount of

EHRs are outsourced to cloud platform. In the proposed system, the patien-

t distributes an IoT group key to the medical nodes in an authenticated way

without interaction round. The IoT messages are encrypted using the IoT group

key and transmitted to the patient, which can be batch authenticated by the

patient. The encrypted EHRs are shared among patient and different data users

in a fine-grained access control manner. A novel keyword match based policy

update mechanism is designed to enable flexible access policy updating without

privacy leakage. Extensive comparison and simulation results demonstrate that

the algorithms in the proposed system are efficient. Comprehensive analysis is

provided to prove its security.
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1. Introduction

The rapid development of Internet of Things (IoT) [1, 2] has greatly changed

our daily life, especially in the electronic health (e-health) domain [3]. The

patients with chronic diseases or severe illnesses are equipped with implanted

or on the surface medical sensors to monitor various kinds of physiological data.

These medical nodes are accommodated in the e-health IoT network, and the

collected physiological data are gathered to patient’s gateway device through

Internet, which forms patient’s electronic health record (EHR). As the data

accumulated, the EHRs of the patients become medical big data with high

volume, which faces a lot of challenges, such as the information privacy, search,

updating and sharing. It is emergent to design a privacy-preserving e-health

system for the fusion of IoT and medical big data [4, 5, 6], which handles these

challenges.

In the e-health IoT network, the collected physiological data may leak pa-

tient’s privacy and should to be encrypted to guarantee the confidentiality. The

key distribution in IoT is a major issue to be handled such that the patient’s

gateway device and all the medical nodes share the same IoT symmetric key.

The existing schemes requires interaction between the gateway device and the

medical nodes to negotiate a secret key, which consumes a large number of trans-

mission and computation costs. Considering the low battery supply and weak

computing capability of the tiny medical sensors, it is desirable to generate the

IoT group key (among patient and the medical nodes) without key negotiation

rounds and at the same ensure the security, such as the source authentication.

After the IoT key is distributed, the medical nodes encrypt the health data

using the IoT key and transmit them to the patient. To resist impersonation

attack, the patient authenticates these IoT ciphertexts to make sure that they

are sent by the nodes in his own IoT network. Batch verification method should
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be designed to accelerate the authenticating speed.

The EHRs in the e-health big data system also requires the privacy protec-

tion, and to be shared between patients and the designated data users. Attribute

based encryption (ABE) provides an ideal method to realize fine-grained access

control and can be adopted in the medical big data system. The system users

are assigned with attribute secret key and the patients’ EHRs are encrypted

with access policy such that only the users with proper attributes secret key are

authorized to access to patients’ encrypted EHRs.

The policy updating is a big challenge in health big data environment be-

cause the encrypted EHRs are outsourced to the medical cloud rather than

locally stored. It is not realistic for the patient to download all the EHR cipher-

texts with an old access policy, decrypt and re-encrypt them with a new access

policy, which brings heavy transmission and computation burden to the patien-

t. On the other hand, the patients hope to make the access policy updating in

a finer controlled manner such that only the encrypted EHRs contain certain

keywords are updated to the new access policy. This problem is not considered

and solved in the existing works.

1.1. Our Contributions

To handle the above challenges, a privacy-preserving e-health system with

the fusion of IoT and big data is designed and the main contributions are sum-

marized below.

• Anonymity and traceability of patient and medical node : In the e-

health system, the identities of patient and the medical nodes in patient’s

IoT network are sensitive and may leak the privacy. In this system, anony-

mous identities are assigned for both patient and medical nodes, which is

calculated from their real identities. If an anonymous patient is found dis-

honest or misbehaving, the trusted authority is capable to trace his real

identity. If an anonymous medical node is compromised and utilized to

launch attack in patient’s IoT network, the patient can also recover the

node’s real identity.
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• Authenticated IoT key distribution : In order to guarantee the con-

fidentiality of the messages transmitted in the health IoT network, the

patient generates a symmetric key and sends it to all the medical nodes

(in patient’s IoT network) in a privacy-preserving way. A key extrac-

tion auxiliary message is created by the patient to encapsule the IoT key.

Receiving the message, the medical nodes authenticate that whether the

auxiliary message is indeed sent by the patient to prevent impersonation

attack.

• Authenticated IoT ciphertext transmission : After the IoT key is

extracted by the medical nodes, the generated IoT messages are encrypted

by the key and sends to the patient. To ensure the reliability of the source,

the patient authenticates the IoT ciphertext and then decrypt it. A large

amount of IoT ciphertexts may arrive at the same time period, our system

also provides a batch verification algorithm to improve the efficiency.

• Lightweight fine-grained access control : The e-health big data are

encrypted and stored in a cloud platform. To prevent unauthorized data

access, our system designs an expressive and lightweight fine-grained ac-

cess control mechanism. The patient controls the electronic health record

(EHR) encryption procedure, and defines an access policy such that the

data users with specific attributes can decrypt patient’s medical files. The

algorithms in the access control mechanism are lightweight constructions.

• Flexible subset keyword match based access policy update : We

design a novel access policy update mechanism based on keyword match.

When the patient wants to change the access policy, he does not need

to download all his EHR ciphertexts, decrypt them and re-encrypt them

with a new access policy. In our system, the patient generates a privacy-

preserving policy update query, which is sent to the cloud server. Then,

the cloud server updates the match files without knowing the plaintext. A

highlight is that the policy update process is keyword match based. If the

patient wants to update the access policy of the EHRs that contains certain

4



keywords, the query keywords are embedded in the policy update query.

Only the access policy match files that contains these query keywords as

subset keywords will be updated.

1.2. Related Work

1.2.1. Security of IoT and Big Data

The Internet-of-things (IoT) network contains a lot of security and priva-

cy concerns. Arias et al. [7] analyze the hardware security of the wearable

devices and user privacy in wearable IoT system. The secure storage and for-

ward proxy problem is studied in [8] for the dynamic machine-to-machine IoT

application. Mutual authentication protocol is designed in [9] for smart city

IoT application, which is constructed based on learning with errors complexity

assumption. Zhang et al. [10] suggest a three-factor key agreement protocol for

e-health system, which supports dynamic authentication. Another key agree-

ment protocol for multi-gateway IoT network is proposed in [11]. The public

auditing and verifiable updating issues are investigated in [12]. The big data

security in smart grid system is considered in [13]. Liu et al. [14] design a

merkel hash tree to realize public auditing in the big data storage system. A

secure deduplication scheme [15] is constructed for encrypted big data.

1.2.2. Searchable Encryption

Searchable encryption is a technology to realize keyword search functor over

encrypted data. In 2004, Boneh et al.[16] propose a searchable encryption in the

public key setting. Xu et al. [17] study the fuzzy keyword search and construct

a concrete probable security scheme. The searchable proxy re-encryption is

investigated in [24] to resist post-quantum attack. Wang et al. [19] propose a

ranked keyword search scheme over outsourced cloud data, and Cao et al. [20]

construct a rank scheme supporting multiple keywords. A dynamic searchable

encryption system is suggested by Cash et al. [21] for very-large database. Li

et al. [32] studies the quality of protection (QoP) and quality of experience

(QoE) issues of searchable encryption in the mobile cloud application. Yang et
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al. [23] investigate the flexible conjunctive keyword search and time controlled

authorization problems and construct a concrete searchable encryption system.

Some other research work [24] is proposed to realize flexible keyword search.

1.2.3. Attribute Based Encryption

The concept of attribute-based encryption (ABE) is introduced by Goyal

et al. [25] and has received extensive extension [26, 27, 28] since then. Yang

et al. propose the sharable and traceable ABE scheme in [29] and study the

break-glass access in emergency scenario in [30]. The outsourced policy update

problem is investigated in [31], where different types of access policies are taken

into consideration. To update linear secret sharing scheme (LSSS) based access

policy, the scheme in [31] designs a policy compare algorithm to divide the

update policy into three types and disparate methods to update the old policy

according the different types. The policy updating method in [31] is utilized to

construct other ABE schemes in [32, 33]. The searchable encryption and ABE

are integrated in [34, 35] such that the authorized data user (with attributes

satisfy the access policy) can utilize a keyword based trapdoor to retrieve on

data owner’s encrypted files. The dynamic auditing and attribute revocation

issues are studied in [36].

1.3. Road Map

The rest of this paper is organized as follows. In Section 2, bilinear paring,

hardness assumption and linear secret sharing scheme are introduced. Section

3 describes the system model and security model. In Section 4, we propose

the system to fuse the health IoT network and big data storage platform. In

Section 5 and 6, the security of the proposed system is analyzed. In Section

7, a comprehensive performance analysis and comparison is given. Section 8

concludes this paper.
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2. Preliminary

2.1. Bilinear Pairing and Hardness Assumption

Let G and GT be cyclic groups and g be a generator of G. The bilinear

map e : G × G → GT has the following characteristics: (1) bilinear: ∀u, v ∈ G

and ∀a, b ∈ Zp, e(ua, vb) = e(u, v)ab; (2) non-degenerate: e(g, g) 6= 1; (3)

computable: e can be efficiently calculated.

Decisional Bilinear Diffie-Hellman (DBDH) Assumption. Let a, b, c ∈

Zp be chosen at random, and g be a generator of G. An adversary A is given a

tuple ~y = (g, ga, gb, gs), it is hard for A to distinguish e(g, g)abs from a random

element Z from GT .

2.2. Linear Secret Sharing Scheme

Definition 1 (Linear Secret Sharing Scheme (LSSS) [37]). A secret-sharing

scheme Π over a set of parties P is called linear (over Zp) if

• The shares for each party form a vector over Zp.

• There exists a matrix A with n1 rows and n2 columns called the share-

generating matrix for Π. For all i = 1, · · · , n1, the ith row Ai of the matrix

A is labeled by a party ρ(i) (ρ is a function from {1, · · · , n1} to P). Set the

column vector V ′ = (s, v2, · · · , vn), where s ∈ Zp is the secret to be shared and

v2, · · · , vn ∈ Zp are randomly chosen. A · V ′ is the vector of n1 shares of the

secret s according to Π and the share Ai · V belongs to party ρ(i).

Suppose that Π is an LSSS for the access structure Φ. Let S ∈ Φ be any

authorized set and I ⊂ {1, · · · , n1} be defined as I = {i : ρ(i) ∈ S}. Then,

there exists constants {λi ∈ Zp}i∈I such that, if {si}i∈I are valid shares of

any secret s according to Π, then
∑
i∈I λisi = s and

∑
i∈I λiAi = (1, 0, · · · , 0).

Furthermore, it is shown in [37] that these constants {λi}i∈I can be found in

time polynomial in the size of the share-generating matrix A. For unauthorized

sets, no such constants exist.

7



3. System and Security Model

3.1. System Model

Figure 1: System Model

The system model for the fusion of IoT and big data in this work is depicted

in Figure 1. The following roles are involved in the system.

• Trusted authority (TA): is fully trusted in the system, and responsible to

generate the public parameter and master secret key. TA is also tasked

to create the public/secret key pair for the patients and data users.

• Patient (PA): is monitored by the medical IoT network, and responsible

to generate the public/secret key pair for the medical nodes in the net-

work. PA also generates IoT key to ensure the privacy-preserving message

transmission in its medical IoT network. The collected data from IoT are

aggregated to electronic health record (EHR), which is encrypted by PA

with proper access policy such that only the designated set of users are

authorized to decrypt the EHRs. PA can also utilizes the keyword match

based access policy update mechanism to update the pre-defined access

policy of the encrypted EHRs stored in the cloud server.

• Medical node (MN): in the patient’s medical IoT network is responsible
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to collect the physiological data and encrypts it using the IoT key. Then,

MN sends the encrypted IoT message to patient.

• Data User (U): receives the attribute public/secret key from TA and is

able to decrypt patient’s encrypted EHRs using the attribute secret key if

U ’s attribute set satisfies the EHR’s access policy.

• Cloud platform: is responsible to stored the encrypted EHRs. When

the keyword match based access policy is received from the patient, the

cloud platform runs ciphertext update algorithm to find the match EHRs

ciphertexts and update the access policy.

3.2. Security Model

The privacy-preserving system for the fusion of IoT and big data is indistin-

guishable against chosen plaintext and chosen keyword attach (IND-CPCKA)

if there is no probabilistic polynomial time adversary A can win the following

interactive game (between adversary A and challenger C) with non-negligible

advantage.

• Setup: The global setup algorithm is executed and the public parameter

PP is generated, which is given to A and the master secret key MSK is

kept secret from A.

• Phase 1. The following queries are issued by the adversary A.

– Patient’s secret key query : A queries on the patient PA’s attribute

secret key with attribute set S = (attr1 · · · attrnPA). C constructs

PA’s secret key SKPA, which is sent to A.

– Users’s secret key query : A queries on the user U ’s attribute secret

key with attribute set S = (attr1 · · · attrnU ). C constructs U ’s secret

key SKU , which is sent to A.

– Mobile node’s secret key query : A queries on the mobile node MN ’s

secret key, which belongs to the patient PA’s IoT network. C con-

structs MN ’s secret key SKMN , which is sent to A.
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– Keyword match based policy update query : A queries on the patient

PA, keyword set QW = (wσ1
, · · · , wσl2 ) and access policies (A, ρ),

(A′, ρ′), C constructs the policy update query PUQ, which is sent to

A.

• Challenge: A sends to C a challenge access policy (A∗, ρ∗), a challenge

patient identity PA∗, a challenge EHR M∗, two EHR encryption keys

(Υ∗0,Υ
∗
1), and two challenge keyword sets (KW ∗0 ,KW

∗
1 ), where A∗ ∈

Z
n∗1×n

∗
2

p and ρ∗ maps A∗’s rows to attributes. It is required that the

secret key of the attribute set S that satisfies the challenge access policy

(A∗, ρ∗) is not queried in phase 1. Moreover, the secret key of PA∗ is

not queried. C flips random coins µ1, µ2 ∈ {0, 1} and the challenge EHR

ciphertext CT ∗ of (Υ∗µ1
,KW ∗µ2

) is constructed, which is sent to A.

• Phase 2 : It is the same as in Phase 1 except that the secret key of the

attribute set S that satisfies the challenge access policy (A∗, ρ∗) is not

allowed to be queried. In addition, the secret key of PA∗ is not allowed

to be queried.

• Guess: Finally, A outputs µ′1, µ
′
2 ∈ {0, 1}. If µ′1 = µ1 and µ′2 = µ2, A

wins the game.

3.3. System Requirements

This fusion of IoT and big data system needs to guarantee the following

functional and security requirements.

• Patient anonymity and traceability : Patient’s identity is sensitive in the

e-health system and should be hidden from the other system users. The

privacy-preserving system needs to provide patient anonymity function.

On the other hand, patient anonymous identity should be traceable to

prevent misbehave issues.

• User anonymity and traceability : The data users include the healthcare

staffs, patients’ friends and relatives etc. Their identity may leak patients
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identity and disease related information and needs to be protected by

the anonymous mechanism. On the other hand, the anonymous identity

should be traceable to prevent misbehave issues.

• Medical node anonymity and traceability : The real identity of medical

nodes in IoT network may leak the variety of disease of the patient and

should be protected by the anonymous mechanism. If a medical node is

compromised and utilized to launch attacks, its real identity should be

revealed by the trace mechanism.

• Confidentiality of IoT key : The IoT key is important and utilized to en-

crypt the messages sent in the IoT network. The confidentiality of IoT

key ensures that the key cannot be recovered by the attackers in the key

distribution procedure.

• Authentication of IoT key distribution: In the medical IoT network, the

key used to encrypt the IoT message will be periodically updated. The

key distribution procedure should be authenticated such that the medical

nodes can make sure the key update message is indeed sent by its owner

(the pre-defined patient).

• Confidentiality of IoT message: The medical nodes in IoT network collects

vital physiological data of the patient and the IoT messages sent by the

medical nodes are sensitive. Thus, the confidentiality of the IoT message

should be guaranteed.

• Authentication of IoT message: The patient should authenticate that the

received encrypted IoT message is indeed sent by the claimed medical

node in his own medical IoT network.

• Secure against replay attack : The system should guarantee that it can be

detected if the previous sent message is replayed by the adversary.
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Table 1: Notations

Notation Description

TA trusted authority

PA patient

MN medical Node of IoT

EHR electronic health record

PIDPA the pseudo identity of PA

PIDMN the pseudo identity of MN

ΣMN {PIDMN1 , · · · , P IDMNn}

m message sent in IoT

M EHR in big data system

Cm/CT ciphertext of m/M

PP/MSK public parameter/master secret key of the system

PKPA/SKPA public/secret key of PA

PKMN/SKMN public/secret key of MN

κ security parameter

p a prime number

Z∗p {1, · · · , p− 1}

i ∈ [l] i ∈ {1, · · · , l}

b ∈R B b is randomly chosen from B

SEnc/SDec secure symmetric encryption/decryption

K symmetric key space of SEnc/SDec

attr/S attribute/attribute set

(A, ρ) access policy

k symmetric key for e-health IoT network

KEA IoT key extraction auxiliary messages

PUQ policy update query

H0 secure hash function H0 : {0, 1}∗ → K

H1 secure hash function Hi : {0, 1}∗ → Z∗p

KW = (w1, · · · , wl1) keyword set extracted from the EHR

QW = (w1, · · · , wl2) keyword set in the policy update query, l2 ≤ l1
12



4. The proposed system

In this section, the privacy-preserving fusion of IoT and big data system is

proposed and the notations used are defined in Table 1. The fusion of IoT and

big data system consists of 13 algorithms, which are indicated in Figures 2, 3, 4

and 5. Next, we explain the mechanisms for the fusion of medical IoT and big

data.

Figure 2: Setup and Registration

As shown in Figure 2, the trusted authority (TA) runs global setup algorithm

(Algorithm 1) to generate the public parameter and master secret key for the

system. When a patient (PA) registers to the system, TA runs Algorithm 2

to generation the patient’s public/secret key pair. When a user (U) registers

to the system, TA runs Algorithm 3 to generation the data user’s public/secret

key pair. When a medical node (MN) in patient PA’s healthcare IoT network

registers to the system, PA runs Algorithm 4 to generation the medical node’s

public/secret key pair.

As shown in Figure 3, the patient PA runs e-health IoT key generation

algorithm (Algorithm 5) to realize privacy-preserving IoT key distribution. A

key extraction auxiliary message KEA is generated and disseminated to the

medical nodes in PA’s IoT network. Then, these nodes runs authenticated

e-health IoT key extraction algorithm (Algorithm 6) to recover the IoT key.
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Figure 3: E-health IoT Key Generation and Extraction

Figure 4: Medical IoT and Big Data Encryption
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As shown in Figure 4, the MN runs IoT message encryption algorithm (Al-

gorithm 7), and utilizes the IoT key to encrypt the IoT message. Receiving

the encrypted IoT message, the PA runs e-health IoT message verification and

decryption algorithm (Algorithm 8) to verify and recover the IoT message. To

accelerate the verification, a batch verification algorithm is designed in Algo-

rithm 9. Then, the IoT messages are aggregated to EHR file and encrypted by

PA using EHR encryption algorithm 10, where the keywords are extracted and

encrypted, and patient defined access policy is exerted to the EHR ciphertext.

As the EHRs accumulate, they forms the medical big data system. To save the

local storage cost, the medical big data is stored in the cloud platform. The

data users with proper attribute secret key is able to access the encrypted EHR

data and recover the plaintext using EHR decryption algorithm (Algorithm 11).

Figure 5: Keyword based Access Policy Update

As shown in Figure 5, if PA wants to update the access policy of the encrypt-

ed EHRs, PA runs the keyword match based policy update query algorithm

(Algorithm 12) to generate a policy update query PUQ. Receiving the up-

date query, the cloud platform runs the keyword match based ciphertext policy

update algorithm (Algorithm 13) to update the ciphertext.

4.1. Global Setup

Given the security parameter κ, TA runs global setup algorithm (shown in

Algorithm 1) to generate the public parameter PP and master secret key MSK
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for the system. PP is public in the system and MSK is confidentially stored

by TA. PP is a default input in the following algorithms, which is omitted to

simplify the presentation.

Algorithm 1: Global Setup Algorithm

Input: security parameter κ.

Output: (PP,MSK).

1 TA chooses a κ-bit prime number p;

2 Choose bilinear map parameters (e,G,GT , g), where g is the generator of G;

3 Select hash functions H0 : {0, 1}∗ → K, H1 : {0, 1}∗ → Z∗p ;

4 Select symmetric encryption/decryption pair SEnc/SDec with key space K;

5 Choose α, β, a ∈R Z∗p , g1 ∈ G;

6 Compute g2 = gβ , θ = e(g, g), θα = e(g, g)α;

7 Set PP = (g, g1, g2, θ
α);

8 Set MSK = (α, β, a);

9 Return (PP,MSK).

4.2. Patient Registration

A patient PA with attribute set S = (attr1, · · · , attrnPA) registers to the

system. TA runs patient registration algorithm (shown in Algorithm 2) to

generate PA’s public/secret key pair PKPA/SKPA. TA firstly generates PA’s

pseudonym identity PIDPA using the master secret key MSK and the symmet-

ric encryption algorithm SEnc (Line 1). PA’s public key PKPA is constructed

in Line 2-4 and secret key SKPA is calculated in Line 5-9.

4.3. User Registration

A user U with attribute set S = (attr1, · · · , attrnU ) registers to the system,

who can be the healthcare staffs, patients’ friends and relatives. TA runs user

registration algorithm (shown in Algorithm 3) to generate U ’s public/secret key

pair PKU/SKU , which is similar to patient registration algorithm (shown in

Algorithm 2).
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Algorithm 2: Patient Registration Algorithm

Input: MSK, PA, S = (attr1, · · · , attrnPA).

Output: (PKPA, SKPA).

1 ta computes PIDPA = SEnc(PA,H0(α, β));

2 Select αPA, βPA, γPA, rPA ∈R Z∗p ;

3 Compute wPA,1 = gαPA , wPA,2 = gβPA , wPA,3 = gγPA ;

4 Set PKPA = (wPA,1, wPA,2, wPA,3);

5 Set dPA,1 = αPA, dPA,2 = γPA;

6 Compute dPA,3 = g
β+βPA·H1(PIDPA)
1 , dPA,4 = gα−a·rPA ;

7 for i = 1 to nPA do

8 Calculate dPA,5,i = ga·rPA·[H1(attri)]
−1

;

9 Set SKPA = (dPA,1, dPA,2, dPA,3, dPA,4, {dPA,5,i}i∈[nPA]);

10 Return (PKPA, SKPA).

Algorithm 3: User Registration Algorithm

Input: MSK, U , S = (attr1, · · · , attrnU ).

Output: (PKU , SKU ).

1 TA computes PIDU = SEnc(U,H0(α, β));

2 Select αU , βU , γU , rU ∈R Z∗p ;

3 Compute wU,1 = gαU , wU,2 = gβU , wU,3 = gγU ;

4 Set PKU = (wU,1, wU,2, wU,3);

5 Set dU,1 = αU , dU,2 = γU ;

6 Compute dU,3 = g
β+βU ·H1(PIDU )
1 , dU,4 = gα−a·rU ;

7 for i = 1 to nU do

8 Calculate dU,5,i = ga·rU ·[H1(attri)]
−1

;

9 Set SKU = (dU,1, dU,2, dU,3, dU,4, {dU,5,i}i∈[nU ]);

10 Return (PKU , SKU ).
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4.4. Medical Node in IoT Registration

The medical node MN in patient PA’s healthcare IoT network registers to

the system. PA runs medical node in IoT registration algorithm (shown in Al-

gorithm 4) to generate MN ’s public/secret key pair PKMN/SKMN . PA firstly

generates MN ’s pseudonym identity PIDMN using PA’s secret key SKPA and

the symmetric encryption algorithm SEnc (Line 1). MN ’s public key PKMN

is constructed in Line 2-3 and secret key SKMN is calculated in Line 4-5.

Algorithm 4: Medical Node in IoT Registration Algorithm

Input: SKPA, MN .

Output: (PKMN , SKMN ).

1 PA computes PIDMN = SEnc(MN,H0(SKPA));

2 Select αMN ∈R Z∗p ;

3 Compute PKMN = gαMN ;

4 Compute f1 = g
αPA+αMN ·H1(PIDPA,PIDMN )
1 , f2 = g

1
αPA−H1(PIDMN )

1 ;

5 Set SKMN = (f1, f2);

6 Return (PKMN , SKMN ).

4.5. E-health IoT Key Generation

Suppose ΣMN = {PIDMN1
, · · · , P IDMNn} is the medical node set of pa-

tient PA’s health IoT network. To guarantee the privacy-preserving IoT mes-

sage delivery, PA runs e-health IoT key generation algorithm (shown in Al-

gorithm 5) to generate an e-health IoT key k (Line 2) and the key extraction

auxiliary messages KEA = (b1, b2, b3, b4, TSPA) using PA’s secret key SKPA,

where TSPA is the time stamp to prevent the replay attack. Then, KEA is sent

to the medical nodes in ΣMN . It is required that KEA can be authenticated by

the MNi (1 ≤ i ≤ n) in ΣMN and the adversary cannot recover k from KEA.

4.6. Authenticated E-health IoT Key Extraction

When the medical node MNi ∈ ΣMN (1 ≤ i ≤ n) receives the IoT key ex-

traction auxiliary messages KEA = (b1, b2, b3, b4, TS), MNi runs authenticated

18



Algorithm 5: E-health IoT Key Generation Algorithm

Input: SKPA, ΣMN = {PIDMN1 , · · · , P IDMNn}, TSPA.

Output: KEA.

1 PA selects αk, rk ∈R Z∗p ;

2 Compute e-health IoT key k = H0[e(g, g1)rk ];

3 Compute b1 = (wPA,1)rk , b2 = g
rk

∏n
j=1H1(PIDMNj )

;

4 Compute b3 = gαk , b4 = dPA,3 · gαk·H1(PA,ΣMN ,b1,b2,b3,k,TSPA)
1 ;

5 Set KEA = (b1, b2, b3, b4, TSPA);

6 Return KEA.

e-health IoT key extraction algorithm (shown in Algorithm 6) to extract the

IoT key k. In Line 1, it utilizes its secret key SKMNi = (f1, f2) to extract the

IoT key k by calculating

k = H0[e(b1 · b
1/

∏n
j=1,j 6=iH1(PIDMNj )

2 , f2)].

In Line 2-5, MNi checks whether KEA is sent by PA, and k is a fresh IoT

key generated at time TSPA. MNi verifies whether the following equation holds

e(g, b4) = e(g1, g2 · (wPA,2)H1(PIDPA) · bH1(PA,ΣMN ,b1,b2,b3,k,TSPA)
3 ).

If it holds, it indicates that KEA and k pass the verification. Otherwise,

KEA is rejected and outputs ⊥.

Algorithm 6: Authenticated IoT Key Extraction Algorithm

Input: SKMN , KEA.

Output: k/⊥.

1 MN computes e-health IoT key k = H0[e(b1 · b
1/

∏n
j=1,j 6=iH1(PIDMNj )

2 , f2)];

2 if e(g, b4) = e(g1, g2 · (wPA,2)H1(PIDPA) · bH1(PA,ΣMN ,b1,b2,b3,k,TSPA)
3 ) then

3 output k;

4 else

5 output ⊥;

6 Return k/⊥.
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4.7. E-health IoT Message Encryption

Algorithm 7: IoT Message Encryption Algorithm

Input: m, k, SKMN .

Output: Cm.

1 MN selects rm ∈R Z∗p ;

2 Compute Φm,0 = SEnc(m, k);

3 Compute Φm,1 = grm ,Φm,2 = f1 · g
rm·H1(PIDPA,PIDMN ,Φm,0,TSMN )

1 ;

4 Set Cm = (Φm,0,Φm,1,Φm,2, TSMN );

5 Return Cm.

When the IoT medical node MN collects the physiological message m of

patient PA, MN runs e-health IoT message encryption algorithm (shown in

7) to encrypt m and generate the ciphertext Cm = (Φm,0,Φm,1,Φm,2, TSMN ),

where TSMN is the time stamp to generate Cm and Cm is transmitted to PA.

It is required that Cm can be authenticated by PA and the adversary cannot

recover m from Cm.

4.8. E-health IoT Message Verification and Decryption

The messages in the health IoT network are probably transmitted using the

wireless channel, which are prone to be captured, tampered or forged by the

adversaries. In order to prevent these attackes, it is important for the patient

to verify these encrypted IoT messages. When PA receives the IoT ciphertext

Cm = (Φm,0,Φm,1,Φm,2, TSMN ) from MN , PA runs e-health IoT message

verification and decryption algorithm (shown in Algorithm 8) to authenticate

Cm and decrypt the underlying message m. In Line 1, PA checks whether Cm

is a fresh IoT ciphertext sent by MN , which is generated at time TSMN . PA

verifies whether the following equation holds

e(g,Φm,2)

= e[g1, wPA,1 · (PKMN )H1(PIDPA,PIDMN ) · (Φm,1)H1(PIDPA,PIDMN ,Φm,0,TSMN )].
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If it holds (Line 2), it indicates that Cm passes the verification and the

algorithm outputs m = SDec(Φm,0, k). Otherwise (Line 3-4), Cm is rejected

and outputs ⊥.

Algorithm 8: IoT Message Verification & Decryption Algorith-

m
Input: Cm, k, PKPA, PKMN .

Output: m/⊥.

1 if e(g,Φm,2) =

e[g1, wPA,1 · (PKMN )H1(PIDPA,PIDMN ) · (Φm,1)H1(PIDPA,PIDMN ,Φm,0,TSMN )]

then

2 PA calculates m = SDec(Φm,0, k) and outputs m;

3 else

4 output ⊥;

5 Return m/⊥.

4.9. E-health IoT Message Batch Verification and Decryption

When PA receives the IoT ciphertext Cmi = (Φmi,0,Φmi,1,Φmi,2, TSMNi)

from MNi for 1 ≤ i ≤ τ , PA runs e-health IoT message batch verification and

decryption algorithm (shown in Algorithm 9) to authenticate (Cm1 , · · · , Cmτ )

and decrypt the underlying messages (m1, · · · ,mτ ).

In Line 1, PA selects random numbers δ1, · · · , δτ ∈R Z∗p such that Στi=1δi = 1

mod p. In Line 2, PA checks whether (Cm1 , · · · , Cmτ ) are fresh IoT ciphertexts

sent by (MN1, · · · ,MNτ ), which are generated at time (TSMN1 , · · · , TSMNτ ),

respectively. PA verifies whether the following equation holds

e(g,

τ∏
i=1

(Φmi,2)δi)

= e[g1, wPA,1

τ∏
i=1

((PKMNi)
δiH1(PIDPA,PIDMNi ) ·

(Φmi,1)δiH1(PIDPA,PIDMNi ,Φmi,0,TSMNi ))]
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If it holds (Line 3-5), it indicates that (Cm1 , · · · , Cmτ ) pass the verification

and the algorithm outputs mi = SDec(Φmi,0, k) for 1 ≤ i ≤ τ . Otherwise (Line

6-7), the algorithm outputs ⊥.

Algorithm 9: IoT Message Batch Verification & Decryption Al-

gorithm
Input: (Cm1 , · · · , Cmτ ), k, PKPA, PKMN .

Output: (m1, · · · ,mτ )/⊥.

1 Select δ1, · · · , δτ ∈R Z∗p such that Στi=1δi = 1 mod p;

2 if

e(g,

τ∏
i=1

(Φmi,2)δi)

= e[g1, wPA,1

τ∏
i=1

((PKMNi)
δiH1(PIDPA,PIDMNi ) ·

(Φmi,1)δiH1(PIDPA,PIDMNi ,Φmi,0,TSMNi ))]

then

3 for i = 1 to τ do

4 PA calculates mi = SDec(Φmi,0, k);

5 Output (m1, · · · ,mτ );

6 else

7 Output ⊥;

8 Return (m1, · · · ,mτ )/⊥.

4.10. Patient Controlled EHR Encryption

After the IoT messages (m1, · · · ,mτ ) are received by the patient PA, they

are aggregated to an EHR fileM . PA extracts a keyword setKW = (w1, · · · , wl1)

to describe M and an access policy (A, ρ) to designate the permitted data vis-

itors, where A ∈ Zn1×n2
p is a matrix and the function ρ maps A’s rows to

attributes.

The EHR encryption algorithm (shown in Algorithm 10) is executed by the

patient PA to generate the ciphertext CT of the EHR file M and the keyword
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set KW = (w1, · · · , wl1). In Line 1-2, the randomly element Υ ∈R GT is

selected, H0(Υ) is the symmetric encryption key of the EHR file M and the EHR

ciphertext is CM . Υ is encrypted in C0 = Υ·θαs. In Line 3-6, the attribute policy

(A, ρ) is encrypted in {C2,i}i∈[n1] using the LSSS mechanism. In Line 7-9, the

keywords in KW are encrypted in {C3,j}j∈{0,··· ,l1} such that flexible keyword

match query is enabled in the next subsection. In Line 10, the ciphertext is set

to be CT = ((A, ρ), CM , C0, C1, {C2,i}i∈[n1], {C3,j}j∈{0,··· ,l1}, C4).

Algorithm 10: EHR Encryption Algorithm

Input: M , SKPA, KW = (w1, · · · , wl1), (A, ρ), where A ∈ Zn1×n2
p .

Output: CT .

1 PA selects s, r ∈R Z∗p and Υ ∈R GT ;

2 Calculate CM = SEnc(M,H0(Υ)), C0 = Υ · θαs, C1 = gs, C4 = θr;

3 Select v2, · · · , vn2 ∈R Z∗p and set V = (s, v2, · · · , vn2)>;

4 for i = 1 to n1 do

5 Calculate si = Ai · V ;

6 Calculate C2,i = ρ(i) · si · γ−1
PA;

7 Select a polynomial Γ(x) = al1x
l1 + al1−1x

l1−1 + · · ·+ a1x+ a0 such that

αPAH(w1), · · · , αPAH(wl1) are the l1 roots of the equation Γ(x) = 1;

8 for j = 0 to l1 do

9 Calculate C3,j = r · aj · β−1
PA;

10 Set CT = ((A, ρ), CM , C0, C1, {C2,i}i∈[n1], {C3,j}j∈{0,··· ,l1}, C4);

11 Return CT .

4.11. EHR Decryption

When the data user U with attribute set S queries to decrypt patient PA’s

EHR ciphertext CT with access policy (A, ρ), U runs the EHR decryption algo-

rithm (shown in Algorithm 11) to recover the plaintext M . If S satisfies (A, ρ),

U utilizes his secret key SKU and LSSS scheme to decrypt Υ and recover M .

Otherwise, the algorithm outputs ⊥.

23



Algorithm 11: EHR Decryption Algorithm

Input: PKPA, SKU with attribute set S, CT with access policy (A, ρ).

Output: M/⊥.

1 if S satisfies (A, ρ) then

2 Data user utilizes the LSSS scheme to find {λi ∈ Zp}i∈[n1] such that∑
i∈[n1] λiAi = (1, 0, · · · , 0);

3 Calculate Υ = C0/[e(C1, dU,4) · e(wPA,3,
∏
i∈[n1](dU,5,i)

C2,i·λi)];

4 Calculate M = SDec(CM , H0(Υ));

5 else

6 Output ⊥;

7 Return M/⊥.

4.12. Keyword Match based Policy Update Query

If the patient PA wants to update the access policy of the EHR ciphertext

that are stored in the e-health big data system, he runs the keyword match

based policy update query algorithm (shown in Algorithm 12) to generate a

policy update query PUQ, which is submitted to the cloud platform.

Suppose that the original access policy is (A, ρ) with A ∈ Zn1×n2
p and the

update access policy is (A′, ρ′) with A′ ∈ Zn
′
1×n

′
2

p . In the keyword match based

policy update mechanism, the patient PA designates a query keyword set QW =

(wσ1 , · · · , wσl2 ). Only the ciphertext with keyword set KW = (w1, · · · , wl1)

that satisfies QW ⊆ KW will be updated.

In Line 1-4, the update attribute policy (A′, ρ′) is encrypted in {C ′2,i}i∈[n′1]

using the LSSS mechanism. In Line 5-6, the query keywords in QW are en-

crypted in {qj}j∈{0,··· ,l2}. In Line 7, the policy update query is set to be

PUQ = ((A, ρ), (A′, ρ′), {C ′2,i}i∈[n′1], {qj}j∈{0,··· ,l2}).

4.13. Keyword Match based Ciphertext Policy Update

Receiving the policy update query PUQ from patient PA, the cloud platform

runs the keyword match based ciphertext policy update algorithm (shown in

Algorithm 13) to update the ciphertext.
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Algorithm 12: Keyword Match based Policy Update Query Al-

gorithm
Input: SKPA, QW = (wσ1 , · · · , wσl2 ), (A, ρ), (A′, ρ′), where A ∈ Zn1×n2

p ,

A′ ∈ Zn
′
1×n

′
2

p , l2 ≤ l1.

Output: policy update query PUQ.

1 PA selects v′2, · · · , v′n′2 ∈R Z
∗
p and sets V ′ = (s, v′2, · · · , v′n′2)>;

2 for i = 1 to n′1 do

3 Calculate s′i = A′i · V ′;

4 Calculate C′2,i = ρ′(i) · s′i · γ−1
PA;

5 for j = 0 to l2 do

6 Calculate qj = (l2 · γPA)−1(αPA)j
∑l2
k=1 H(wσk )j ;

7 Set PUQ = ((A, ρ), (A′, ρ′), {C′2,i}i∈[n′1], {qj}j∈{0,··· ,l2});

8 Return PUQ.

Suppose the ciphertext CT has access policy (A, ρ) and keyword set KW =

(w1, · · · , wl1), and PUQ has update access policy (A′, ρ′) and query keyword set

QW = (wσ1
, · · · , wσl2 ). In Line 1-2, the cloud platform tests whether QW ⊆

KW by verifying whether the equation e(wPA,3, wPA,2)
∑l1
j=0(C3,j ·qj) = C4 holds.

If it holds, the updated ciphertext is

CT ′ = ((A, ρ), (A′, ρ′), CM , C0, C1, {C ′2,i}i∈[n′1], {C3,j}j∈{0,··· ,l1}, C4).

Otherwise, CT does not satisfy the update requirement. Cloud platform sets

CT ′ = CT to indicate that the ciphertext is not updated (Line 3-4).

5. Correctness Analysis

The correctness of the algorithms in this system are analyzed below.

5.1. Correctness of Authenticated IoT Key Extraction Algorithm

Since b1 = (wPA,1)rk , b2 = grk
∏n
j=1H1(PIDMNj ), f2 = g

1
αPA−H1(PIDMN )

1 ,

wPA,1 = gαPA and k = H0[e(g, g1)rk ], we can deduce that

H0[e(b1 · b
1/

∏n
j=1,j 6=iH1(PIDMNj )

2 , f2)]
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Algorithm 13: Keyword Match based Ciphertext Policy Update

Algorithm
Input: CT with access policy (A, ρ) & keyword set KW = (w1, · · · , wl1),

PUQ with access policy (A′, ρ′) & query keyword set QW = (wσ1 , · · · , wσl2 ).

Output: CT ′.

1 if e(wPA,3, wPA,2)
∑l1
j=0(C3,j ·qj) = C4 then

2 Cloud sets

CT ′ = ((A, ρ), (A′, ρ′), CM , C0, C1, {C′2,i}i∈[n′1], {C3,j}j∈{0,··· ,l1}, C4);

3 else

4 Cloud sets CT ′ = CT ;

5 Return CT ′.

= H0[e((wPA,1)rk · (grk
∏n
j=1H1(PIDMNj ))1/

∏n
j=1,j 6=iH1(PIDMNj ), g

1
αPA−H1(PIDMN )

1 )]

= H0[e(grk·αPA · grk·H1(PIDMNi ), g
1

αPA−H1(PIDMN )

1 )]

= H0[e(g, g1)rk ] = k.

Since b3 = gαk , b4 = dPA,3 · gαk·H1(PA,ΣMN ,b1,b2,b3,k,TSPA)
1 , wPA,2 = gβPA

and dPA,3 = g
β+βPA·H1(PIDPA)
1 , we can deduce that

e(g, b4)

= e(g, dPA,3 · gαk·H1(PA,ΣMN ,b1,b2,b3,k,TSPA)
1 )

= e(g, g
β+βPA·H1(PIDPA)
1 · gαk·H1(PA,ΣMN ,b1,b2,b3,k,TSPA)

1 )

= e(g1, g
β+βPA·H1(PIDPA) · gαk·H1(PA,ΣMN ,b1,b2,b3,k,TSPA))

= e(g1, g2 · (wPA,2)H1(PIDPA) · bH1(PA,ΣMN ,b1,b2,b3,k,TSPA)
3 ).

5.2. Correctness of IoT Message Verification & Decryption Algorithm

Since Φm,1 = grm , Φm,2 = f1 · g
rm·H1(PIDPA,PIDMN ,Φm,0,TSMN )
1 , wPA,1 =

gαPA , f1 = g
αPA+αMN ·H1(PIDPA,PIDMN )
1 and PKMN = gαMN , we can deduce

that

e(g,Φm,2)
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= e(g, f1 · g
rm·H1(PIDPA,PIDMN ,Φm,0,TSMN )
1 )

= e(g, g
αPA+αMN ·H1(PIDPA,PIDMN )
1 · grm·H1(PIDPA,PIDMN ,Φm,0,TSMN )

1 )

= e(g1, g
αPA+αMN ·H1(PIDPA,PIDMN ) · grm·H1(PIDPA,PIDMN ,Φm,0,TSMN ))

= e[g1, wPA,1 · (PKMN )H1(PIDPA,PIDMN ) · (Φm,1)H1(PIDPA,PIDMN ,Φm,0,TSMN )].

5.3. Correctness of IoT Message Batch Verification and Decryption Algorithm

Since Φmi,2 = f1·g
rmi ·H1(PIDPA,PIDMNi ,Φmi,0,TSMNi )
1 , wPA,1 = gαPA , PKMNi =

gαMNi , f1 = g
αPA+αMNi ·H1(PIDPA,PIDMNi )
1 and Φmi,1 = grmi , we can deduce

that

e(g,

τ∏
i=1

(Φmi,2)δi)

= e[g,

τ∏
i=1

(f1 · g
rmi ·H1(PIDPA,PIDMNi ,Φmi,0,TSMNi )
1 )δi ]

= e[g,

τ∏
i=1

(g
αPA+αMNi ·H1(PIDPA,PIDMNi )
1

·grm·H1(PIDPA,PIDMNi ,Φmi,0,TSMNi )
1 )δi ]

= e[g1,

τ∏
i=1

(gαPA+αMNi ·H1(PIDPA,PIDMNi )

·grmi ·H1(PIDPA,PIDMNi ,Φmi,0,TSMNi ))δi ]

= e[g1, ·
τ∏
i=1

(wδi1 · (PKMNi)
δi·H1(PIDPA,PIDMNi )

·(Φmi,1)δi·H1(PIDPA,PIDMNi ,Φmi,0,TSMNi ))]

= e[g1, wPA,1 ·
τ∏
i=1

((PKMNi)
δi·H1(PIDPA,PIDMNi )

·(Φmi,1)δi·H1(PIDPA,PIDMNi ,Φmi,0,TSMNi ))].

5.4. Correctness of Keyword Match Based Ciphertext Policy Update Algorithm

Since C3,j = r·aj ·β−1
PA, qj = (l2 ·γPA)−1(αPA)j

∑l2
k=1H(wk)j , wPA,2 = gβPA

and wPA,3 = gγPA , we can deduce that

e(wPA,3, wPA,2)
∑l1
j=0(C3,j ·qj)

= e(gγPA , gβPA)
∑l1
j=0(r·aj ·β−1

PA)·(l2·γPA)−1(αPA)j
∑l2
k=1H(wk)j
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= e(g, g)r·l
−1
2 ·

∑l1
j=0 ·aj ·(αPA)j

∑l2
k=1H(wk)j

= e(g, g)r·l
−1
2 ·

∑l2
k=1(

∑l1
j=0 ·aj ·(αPAH(wk))j)

= e(g, g)r·l
−1
2 ·

∑l2
k=1 Γ(αPAH(wk))

= e(g, g)r·l
−1
2 ·

∑l2
k=1 1 = e(g, g)r = C4.

5.5. Correctness of EHR Decryption Algorithm

Since C1 = gs, C2,i = ρ(i) · si · γ−1
PA, wPA,3 = gγPA , dU,4 = gα−a·rU and

dU,5,i = ga·rU ·H1(attri), we can deduce that

e(C1, dU,4) · e(wPA,3,
∏
i∈[n1]

(dU,5,i)
C2,i·λi)

= e(gs, gα−a·rU ) · e(gγPA ,
∏
i∈[n1]

(ga·rU ·[H1(attri)]
−1

)ρ(i)·si·γ
−1
PA·λi)

= e(gs, gα−a·rU ) · e(gγPA , ga·rU ·γ
−1
PA·

∑
i∈[n1]([H1(attri)]

−1·ρ(i)·si·λi))

= e(gs, gα−a·rU ) · e(g, ga·rU ·s) = θαs.

6. Security Proof

Theorem 6.1. This system for the fusion of IoT and big data is indistin-

guishable against chosen plaintext and chosen keyword attack (IND-CPCKA)

assuming that the decisional bilinear Diffie-Hellman (DBDH) assumption is in-

tractable.

Proof. Suppose that the adversary A is given a tuple (g, ga, gb, gs, Z) as an

instance of the DBDH problem, where Z is either e(g, g)abs or a random number

in GT . The interactive game between A and C proceeds as below.

• Setup. C chooses α′, β ∈R Z∗p , g1 ∈R G and implicitly sets α = α′ + ab.

Compute g2 = gβ , θα = e(ga, gb) · e(g, g)α
′

= e(g, g)α. C sends the public

parameter PP = (g, g1, g2, θ
α) to A.

• Phase 1. The following queries are issued by the adversary A.
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– Patient’s secret key query : A queries on the patient PA’s attribute

secret key with attribute set S = (attr1 · · · attrnPA). C computes

PIDPA = SEnc(PA,H0(α, β)), selects αPA, βPA, γPA, r
′
PA ∈R Z∗p

and computes dPA,1 = αPA, dPA,2 = γPA, dPA,3 = g
β+βPA·H1(PIDPA)
1 ,

dPA,5,i = (ga)rPA·H1(attri) for 1 ≤ i ≤ nPA. Implicitly set rPA =

b+ r′PA and calculate

dPA,4 = gα−a·rPA = g(α′+ab)−a·(b+r′PA) = gα
′−ar′PA = gα

′
· (ga)−r

′
PA .

PA’s secret key SKPA = (dPA,1, dPA,2, dPA,3, dPA,4, {dPA,5,i}i∈[nPA])

is sent to A.

– Users’s secret key query : A queries on the user U ’s attribute secret

key with attribute set S = (attr1 · · · attrnU ). C computes PIDU =

SEnc(U,H0(α, β)), selects αU , βU , γU , r
′
U ∈R Z∗p and computes dU,1 =

αU , dU,2 = γU , dU,3 = g
β+βU ·H1(PIDU )
1 , dU,5,i = (ga)rU ·H1(attri) for

1 ≤ i ≤ nU . Implicitly set rU = b+ r′U and calculate

dU,4 = gα−a·rU = g(α′+ab)−a·(b+r′U ) = gα
′−ar′U = gα

′
· (ga)−r

′
U .

U ’s secret key SKU = (dU,1, dU,2, dU,3, dU,4, {dU,5,i}i∈[nU ]) is sent to

A.

– Mobile node’s secret key query : A queries on the mobile node MN ’s

secret key, which belongs to the patient PA’s IoT network. As-

sume that A has queried PA’s secret key SKPA. Then, C com-

putes PIDMN = SEnc(MN,H0(SKPA)), selects αMN ∈R Z∗p and

computes f1 = g
αPA+αMN ·H1(PIDPA,PIDMN )
1 , f2 = g

1
αPA−H1(PIDMN )

1

MN ’s secret key SKMN = (f1, f2) is sent to A.

– Keyword match based policy update query : A queries on the pa-

tient PA, keyword set QW = (wσ1
, · · · , wσl2 ) and access policies

(A, ρ), (A′, ρ′), C firstly constructs PA’s secret key SKPA as in

the “Patient’s secret key query”. Then, C selects s′i ∈R Z∗p for

1 ≤ i ≤ n1, and calculates C ′2,i = ρ′(i) · s′i · γ
−1
PA for 1 ≤ i ≤ n1 and
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qj = (l2·γPA)−1(αPA)j
∑l2
k=1H(wσk)j for 0 ≤ j ≤ n2. Then, the pol-

icy update query PUQ = ((A, ρ), (A′, ρ′), {C ′2,i}i∈[n′1], {qj}j∈{0,··· ,l2})

is returned to A.

• Challenge: A sends to C a challenge access policy (A∗, ρ∗), a challenge

patient identity PA∗, a challenge EHR M∗, two EHR encryption keys

(Υ∗0,Υ
∗
1), and two challenge keyword sets (KW ∗0 ,KW

∗
1 ), where A∗ ∈

Z
n∗1×n

∗
2

p and ρ∗ maps A∗’s rows to attributes. It is required that the

secret key of the attribute set S that satisfies the challenge access policy

(A∗, ρ∗) is not queried in phase 1. Moreover, the secret key of PA∗ is not

queried. The challenge EHR ciphertext is constructed below.

C picks r∗, γPA∗ ∈R Z∗p and s∗i ∈R Z∗p for 1 ≤ i ≤ n∗1. C flips random coins

µ1, µ2 ∈ {0, 1} and constructs

C∗M = SEnc(M∗, H0(Υ∗µ1
)), C∗0 = Υ∗µ1

· Z · e(gα
′
, gs),

C∗1 = gs, C∗4 = θr,

C∗2,i = ρ(i)∗ · s∗i · (γ∗PA)−1, 1 ≤ i ≤ n∗1,

Suppose the challenge keyword set KW ∗µ2
= (w∗1 , · · · , w∗l1). C select-

s a polynomial Γ∗(x) = a∗l1x
l1 + a∗l1−1x

l1−1 + · · · + a∗1x + a∗0 such that

αPA∗H(w∗1), · · · , αPA∗H(w∗l1) are the l1 roots of the equation Γ∗(x) = 1.

C calculates C3,j∗ = r∗ · a∗j · βPA∗ for 0 ≤ i ≤ l1. The challenge EHR

ciphertext CT ∗ = ((A∗, ρ∗), C∗M , C∗0 , C∗1 , {C∗2,i}i∈[n1], {C∗3,j}j∈{0,··· ,l1}, C∗4 )

is sent to A.

It is obvious that if Z = e(g, g)abs, then

C∗0 = Υ∗µ1
· Z · e(gα

′
, gs)

= Υ∗µ1
· e(g, g)abs · e(gα

′
, gs)

= Υ∗µ1
· e(gab+α

′
, gs)

= Υ∗µ1
· e(g, g)αs.

• Phase 2 : It is the same as in Phase 1 except that the secret key of the

attribute set S that satisfies the challenge access policy (A∗, ρ∗) is not
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allowed to be queried. In addition, the secret key of PA∗ is not allowed

to be queried.

• Guess: Finally, A outputs µ′1, µ
′
2 ∈ {0, 1}. If µ′1 = µ1 and µ′2 = µ2, A

wins the game. Then, C could solve the DBDH problem by distinguishing

Z = e(g, g)abs or Z is a random element in GT .

7. Security Requirements Analysis

This IoT and big data fusion system achieves the security requirements de-

fined in Section 3.3.

7.1. Patient anonymity and traceability

When a patient PA registers to the system in Subsection 4.2, an anonymous

identity PIDPA = SEnc(PA,H0(α, β)) is generated by ta, where α, β are the

elements in the master secret key MSK. Since MSK is kept secret by ta, no

adversary can recover patient’s real identity PA from the anonymous identity

PIDPA due to the security of the symmetric encryption SEnc algorithm. If

a patient is found misbehaving, TA can trace his real identity by calculating

PA = SDec(PIDPA, H0(α, β)). Thus, the patient anonymity and traceability

are guaranteed.

7.2. User anonymity and traceability

The analysis of user anonymity and traceability is similar to that in Subsec-

tion 7.1, which is omitted here.

7.3. Medical node anonymity and traceability

When a medical node MN in patient PA’s health IoT network registers

to the system in Subsection 4.4, an anonymous identity PIDMN is generated

by PA through calculating PIDMN = SEnc(MN,H0(SKPA)), where SKPA

is PA’s secret key. Since SKPA is kept secret by PA, no adversary can re-

cover medical nodes’s real identity MN from the anonymous identity PIDMN
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due to the security of the symmetric encryption SEnc algorithm. If a med-

ical node is found misbehaving, PA can trace its real identity by calculating

MN = SDec(PIDMN , H0(SKPA)). Thus, the medical node anonymity and

traceability are guaranteed.

7.4. Confidentiality of IoT key

In the e-health IoT key generation algorithm (shown in Subsection 4.5), the

IoT key is constructed as k = H0[e(g, g1)rk ], where rk ∈R Z∗p . The key extrac-

tion auxiliary message KEA is constructed as KEA = (b1, b2, b3, b4, TSPA),

where TSPA is a time stamp, b1 = wrk1 , b2 = grk
∏n
j=1H1(PIDMNj ), b3 = gαk

and b4 = d3 · gαk·H1(PA,ΣMN ,b1,b2,b3,k,TSPA)
1 . The adversary cannot recover the

random number rk from b1 or b2 due to the intractability of discrete logarithmic

problem (DLP). Then, the adversary cannot deduce the IoT key k from the

key extraction auxiliary message KEA. Thus, the confidentiality of IoT key is

ensured.

7.5. Authentication of IoT key distribution

In the authenticated e-health IoT key extraction algorithm (shown in Sub-

section 4.6), the medical node MN in patient PA’s IoT network utilizes the

element f2 = g
1

αPA−H1(PIDMN )

1 in its secret key SKMN to recover the IoT

key k = H0[e(b1 · b
1/

∏n
j=1,j 6=iH1(PIDMNj )

2 , f2)]. Then, MN authenticates that

whether the received key extraction auxiliary message KEA is sent from PA

by calculating

e(g, b4) = e(g1, g2 · (wPA,2)H1(PIDPA) · bH1(PA,ΣMN ,b1,b2,b3,k,TSPA)
3 ).

KEA is authenticated to be a valid key extraction auxiliary message from PA

when the above equation holds.

Since b4 = dPA,3 ·gαk·H1(PA,ΣMN ,b1,b2,b3,k,TSPA)
1 , dPA,3 = g

β+βPA·H1(PIDPA)
1 ,

we have b4 = g
β+βPA·H1(PIDPA)+αk·H1(PA,ΣMN ,b1,b2,b3,k,TSPA)
1 . A valid element

b4 cannot be constructed without βPA, which is an element in PA’s secret key

SKPA. In the above verification equation, an element wPA,2 of PA’s public
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key PKPA is utilized to verify whether b4 contains the element βPA. Thus,

a valid KEA cannot be generated without PA’s secret key SKPA and the

authentication of IoT key distribution is realized.

7.6. Confidentiality of IoT message

In the IoT message encryption algorithm (shown in Subsection 4.7), the

ciphertext of IoT message is Cm = (Φm,0,Φm,1,Φm,2, TSMN ), where Φm,0 =

SEnc(m, k), Φm,1 = grm , Φm,2 = f1 · g
rm·H1(PIDPA,PIDMN ,Φm,0,TSMN )
1 and

TSMN is a time stamp. Since the IoT message m is encrypted to Φm,0 =

SEnc(m, k), the confidentiality of IoT message is guaranteed by the confiden-

tiality of the IoT key k and the security of SEnc algorithm.

7.7. Authentication of IoT message

In the e-health IoT message verification and decryption algorithm (shown in

Subsection 4.8), the source of IoT ciphertext is authenticated by the equation

e(g,Φm,2)

= e[g1, wPA,1 · (PKMN )H1(PIDPA,PIDMN ) · (Φm,1)H1(PIDPA,PIDMN ,Φm,0,TSMN )].

Since the IoT ciphertext element Φm,2 = f1·g
rm·H1(PIDPA,PIDMN ,Φm,0,TSMN )
1

and f1 = g
αPA+αMN ·H1(PIDPA,PIDMN )
1 is an element inMN ’s secret key SKMN ,

Φm,2 cannot be constructed without f1. In the above verification equation,

MN ’s public key PKMN = gαMN is utilized to verify whether Φm,2 contains

the element αMN . Thus, a valid IoT ciphertext Cm cannot be generated without

MN ’s secret key SKMN and the authentication of IoT message is realized.

7.8. Secure against replay attack

In the e-health IoT key distribution procedure (includes e-health IoT key

generation algorithm and authenticated e-health IoT key extraction algorithm),

a time stamp TSPA is selected by the patient PA to indicate the IoT key gener-

ation time. The time stamp TSPA is embedded in the key extraction auxiliary

message KEA by calculating b4 = dPA,3 · gαk·H1(PA,ΣMN ,b1,b2,b3,k,TSPA)
1 , and
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verified in the authentication equation e(g, b4) = e(g1, g2 · (wPA,2)H1(PIDPA) ·

b
H1(PA,ΣMN ,b1,b2,b3,k,TSPA)
3 ). If the adversary replays the key extraction auxil-

iary message KEA utilizing the original time stamp, the medical node MN will

discover the replay attack by checking the history time stamps. If the adver-

sary replays the key extraction auxiliary message KEA utilizing a forged time

stamp, the authentication equation will not hold and the replay attack will be

discovered too.

In the e-health IoT message encryption algorithm, a time stamp TSMN

is selected by the medical node MN to indicate the encryption time. The

time stamp TSMN is embedded in the IoT ciphertext by calculating Φm,2 =

f1 ·g
rm·H1(PIDPA,PIDMN ,Φm,0,TSMN )
1 , and verified in the authentication equation

e(g,Φm,2)

= e[g1, wPA,1 · (PKMN )H1(PIDPA,PIDMN ) · (Φm,1)H1(PIDPA,PIDMN ,Φm,0,TSMN )].

If the adversary replays the IoT ciphertext Cm utilizing the original time stamp,

the patient PA will discover the replay attack by checking the history time

stamps. If the adversary replays the IoT ciphertext Cm utilizing a forged time

stamp, the authentication equation will not hold and the replay attack will be

discovered too.

Thus, this system is secure against replay attack.

8. Performance Analysis and Comparison

In this section, we firstly compare the proposed fusion of IoT and big data

system with the state-of-the art schemes [31, 32, 33, 34, 35, 36] that support

fine-grained access control mechanism. Then, they are evaluated using the sim-

ulation in terms of communication and computation costs.

8.1. Comparison

The function, communication and computation overheads of the schemes in

[31, 32, 33, 34, 35, 36] and our fusion of IoT and big data system are compared.

The notations in Table 2 are used in the comparison.
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Table 2: The Performance Notations

Notation Description

e1 Exponential operation in G

e2 Exponential operation in GT

ep Elliptic curve bilinear pairing operation

|G| The size of element in group G

|GT | The size of element in group GT

|Zp| The size of element in Zp

|Att| The number of total attributes in the system

|S| The number of attributes in attribute set S

n1 The row number of matrix A

n′1 The row number of matrix A′p

l1 The number of the keywords extracted from the file

l2 The number of the query keywords

τ The number of IoT messages in the batch verification
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8.1.1. Function Comparison

The function of the schemes in [31, 32, 33, 34, 35, 36] and our fusion of

e-health IoT and big data scheme is compared in Table 3.

• Anonymity and traceability : The proposed system realizes the anonymi-

ty and traceability of patient and medical nodes. The other schemes

[31, 32, 33, 34, 35, 36] do not take this important issue into considera-

tion.

• IoT message encryption : The medical data collected by the medical

nodes are encrypted using the IoT key and then transmitted to the patient

in our system, which protects the confidentiality of the patient’s vital signs.

This function is not supported by the other schemes [31, 32, 33, 34, 35, 36].

• IoT message authentication : The source authentication of IoT mes-

sage is realized our system, which effectively prevents the impersonation

attack. The other schemes [31, 32, 33, 34, 35, 36] do not realize this

function.

• Authenticated IoT key distribution : In the IoT key distribution phase,

the medical nodes are capable to authenticate whether the IoT key is sent

by the patient. The scheme in [36] and our system are able to realize

this function, while the other schemes [31, 32, 33, 34, 35] cannot support

authenticated IoT key distribution.

• Policy update : The schemes in [31, 32, 33] and our system realize dy-

namic policy updating for the outsourced stored data, while the other

schemes [35, 36] do not realize this function.

• Keyword match based update : In the medical big data system, the

patients may have a large amount of encrypted EHRs that are encrypted

using the same access policy. This proposed system enables the patient

to update only part of these EHRs using the keyword match mechanism,

while all the other schemes [31, 32, 33, 34, 35] do not consider this problem.
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• Keyword match : The keyword match function is studied in the [34, 35]

to construction searchable encryption schemes. Our system utilizes the

keyword match mechanism to control the dynamic access policy update.

The other schemes [31, 32, 33] do not support keyword match function.

• Flexible subset match : The scheme in [34] only realizes single keyword

search and that in [35] supports conjunctive keyword search. Flexible

subset match function is realized in our system such that the encrypted

EHR is deemed as match file if the query keyword set is a subset of the

pre-defined keyword set in the EHR.

8.1.2. Communication Overhead Comparison

Table 4 shows the communication overhead of our secure fusion system. The

sizes of system public parameter PP and master secret key MSK are constants.

Thus, our scheme is a large universe construction and supports arbitrary num-

ber of attributes. The patient’s (or data user) public key PKPA (or PKU )

consists of three elements in group G and secret key SKPA (or SKU ) has size

linearly grow with the attribute size |S|. The medical node’s public/secret keys

PKMN/SKMN consist of one element and two element in group G, respectively.

The size of IoT key extraction auxiliary message KEA is 4|G| and that of Cm

is 2|G|. The size of CT linearly grow with n1 and l1, and the size of the policy

update query PUQ linearly grow with n′1 and l2.

In Table 5, the sizes of public parameter, user’s (or patient) attribute secret

key and (EHR) file ciphertext are compared. (1) The schemes in [31, 32, 33, 35,

36] and our system all have constant public parameter size. However, |PP | of

the scheme [34] depends on the total attribute size |Attr| in the system. (2) The

sizes of attribute secret key in schemes [31, 32, 33, 34, 35, 36] and our system

increase with |S|. The schemes in [32, 34, 35, 36] has |SK| larger than our

system. (3) The size of (EHR) file ciphertext schemes [31, 32, 33, 34, 35, 36]

and our system increases on the row number n1 of the matrix A in the access

policy. CT in our system has (n1 + l1) elements in Zp, two elements in G and
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Table 3: Function Comparison

Scheme [31] [32] [33] [34] [35] [36] Ours

F1 × × × × × ×
√

F2 × × × × × ×
√

F3 × × × × × ×
√

F4 × × × × × ×
√

F5 × × × × × ×
√

F6 × × × × ×
√ √

F7
√ √ √

× × ×
√

F8 × × × × × ×
√

F9 × × ×
√ √

×
√

F10 × × × × × ×
√

F1: patient anonymity

F2: patient traceability

F3: medical node anonymity and traceability

F4: IoT message encryption

F5: IoT message authentication

F6: authenticated IoT key distribution

F7: policy update

F8: keyword match based update

F9: keyword match

F10: flexible subset match
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Table 4: Communication Overhead of Our System

Parameter Communication Overhead

|PP | 3|G|+ |GT |

|MSK| 3|Zp|

|PKPA| 3|G|

|SKPA| 2|Zp|+ (|S|+ 2)|G|

|PKU | 3|G|

|SKU | 2|Zp|+ (|S|+ 2)|G|

|PKMN | |G|

|SKMN | 2|G|

|KEA| 4|G|

|Cm| 2|G|

|CT | (n1 + l1)|Zp|+ 2|G|+ |GT |

|PUQ| (n′1 + l2 + 1)|Zp|

one elements in GT . CT in scheme [35] linearly grow with l1 and |Attr|, which

is larger than the other schemes [31, 32, 33, 34, 36] and our system.

In Table 6, the size of access policy update query PUQ in our system is

compared that in schemes [31, 32, 33] and the size of keyword index is compared

with that in [34, 35]. (1) The schemes [31, 32, 33] have similar policy update

mechanism, where the new access policy is compared with the previous policy.

The attributes in the new access policy are classified into three types, and the

numbers of the the three types of attributes are denoted as n′11, n
′
12, n

′
13 such

that n′11 +n′12 +n′13 = n′1, where n′1 is the row number of A. In order to simplify

the comparison, we set n′11 = n′12 = n′13 = n′1/3. Since the element bit length in

Zp is less than that in G, the size of access policy update query in our system is

less than that in [31, 32, 33]. (2) The sizes of keyword index in schemes [34, 35]

are (2l1 + 2|S|+ 1)|G| and (l1 + 2|S|+ 2)|G|, respectively. That in in our system

is (l1)|Zp|+ |G|, which is less that the other schemes [34, 35].
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Table 5: Communication Overhead Comparison 1

Scheme Z1 Z2 Z3

KanY [31] |G| (|S|) · |G|
(2n1)|G|

+(n1 + 1)|GT |

Hongwei [32] 2|G|+ 2|GT | (2|S|) · |G|
(2n1 + 1)|G|

+(n1 + 1)|GT |

Ying [33] 2|G| (|S|) · |G|
(2n1 + 1)|G|

+|GT |

Jiguo [34] (|Att|+ 4)|G| (2|S|)|G|
(n1 + 2)|G|

+|GT |

Miao [35] 5|G|+ |GT | (2|S|+ 2)|G| (n1 + 2|Att|+ 2)|G|

Yeh [36] |G|+ |GT | (2|S|+ 1)|G|
(2n1 + 1)|G|

+|GT |

Ours 3|G|+ |GT |
2|Zp|

+(|S|+ 2)|G|

(n1 + l1)|Zp|

+2|G|+ |GT |

Z1: size of public parameter |PP |

Z2: size of user’s (or patient) attribute secret key |SKU | (or |SKPA|)

Z3: size of (EHR) file ciphertext |CT |
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Table 6: Communication Overhead Comparison 2

Scheme Z4 Z5

KanY [31] (2n′1 + n′13)|G| ⊥

Hongwei [32] (2n′1 + n′13)|G| ⊥

Ying [33] (n′1 + n′13)|G| ⊥

Jiguo [34] ⊥ (2l1 + 2|S|+ 1)|G|

Miao [35] ⊥ (l1 + 2|S|+ 2)|G|

Ours (n′1 + l2 + 1)|Zp| (l1)|Zp|+ |G|

Z4: size of access policy update query |PUQ|

Z5: size of keyword index

8.1.3. Computation Overhead Comparison

Table 7 shows the communication overhead of our system. The global setup

algorithm requires one exponentiation operation in G, one exponentiation oper-

ation in GT and one bilinear pairing calculation. The computation overheads of

patient, user and medical node registration algorithms are (|S|+5)e1, (|S|+5)e1

and 3e1, respectively. The IoT key generation algorithm consumes 4 exponenti-

ation operations in G, and IoT key extraction algorithm needs 3 exponentiation

operations in G and 3 bilinear pairing calculation. The computation overheads

of IoT message encryption algorithm, IoT message verification and decryption

algorithm, and IoT message batch verification and decryption algorithm are 2e1,

2e1 + 2ep and (3τ)e1 + 2ep, respectively, where τ is the number of IoT messages

in the batch verification. The EHR file encryption algorithm consumes two

exponentiation operation in G and one exponentiation operation in GT . The

policy update query generation algorithm does not require any exponentiation

or bilinear paring calculation, which is denoted as “≈ 0”. The computation

overheads of ciphertext update algorithm and EHR decryption algorithms are

e2 and (n1)e1 + ep, respectively.

In Table 8, our system is compared with the schemes in [31, 32, 33, 34, 35, 36].
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Table 7: Computation Overhead of Our System

Algorithm Computation Overhead

Alg. 1: Global Setup e1 + e2 + ep

Alg. 2: Patient Reg. (|S|+ 5)e1

Alg. 3: User Reg. (|S|+ 5)e1

Alg. 4: Medical Node Reg. 3e1

Alg. 5: IoT Key Gen. 4e1

Alg. 6: IoT Key Extraction 3e1 + 3ep

Alg. 7: IoT Msg. Enc. 2e1

Alg. 8: IoT Msg. Ver. & Dec 2e1 + 2ep

Alg. 9: IoT Bat. Ver. & Dec (3τ)e1 + 2ep

Alg. 10: EHR Enc. 2e1 + e2

Alg. 12: Policy Update Query ≈ 0

Alg. 12: Ciphertext Update e2

Alg. 11: Dec (n1)e1 + ep
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(1) The computation costs for user (or patient) attribute secret key of these

schemes linearly increase with |S|. Our system requires |S|+ 2 exponentiation

operations in group G to generate an attribute secret key, which is smaller than

that in the other schemes [31, 32, 33, 34, 35, 36]. (2) The computation costs

for (EHR) file encryption in schemes [31, 32, 33, 34, 35, 36] linearly grow with

the parameter n1, which is the row number of matrix A in the access policy.

Our system requires two exponentiation operations in group G and one expo-

nentiation operations in group GT to generate a EHR ciphertext, which is much

smaller than that in the other schemes [31, 32, 33, 34, 35, 36]. (3) The compu-

tation costs for (EHR) file decryption also depends on n1. Our system requires

n1 exponentiation operations in group G and two bilinear pairing operations to

decrypt a EHR ciphertext, which is smaller than that in [31, 32, 33, 35, 36] and

larger than that in [34].

Table 9 shows the computation cost for access policy update query generation

algorithm and ciphertext policy update algorithm. (1) The schemes in [31,

32, 33] require (2n′1 + 3n′13)e1, (2n′1 + 3n′13)e1 and (n′1 + 2n′13)e1 to generate

PUQ, while our system does not need any exponentiation or bilinear pairing

calculation. (2) In the ciphertext policy update phase, our system consumes

one exponentiation operation in group GT , which is much smaller than the

computation costs in other schemes [31, 32, 33].

Table 10 shows the computation cost for keyword index generation and key-

word match test. (1) The schemes in [34, 35] require e1 and (2l2)ep to generate

encrypted keyword index, while the computation cost of that in our system is

one exponentiation operation in group G. (2) In the keyword match test phase,

our system consumes one exponentiation operation in group GT , which is much

smaller than the computation costs in other schemes [34, 35].

8.2. Simulation

The performance of this proposed system and the other schemes in [31, 32,

33, 34, 35, 36] are evaluated by the simulations, which are implemented on

a personal computer running Windows 10 and 64-bit operation system with
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Table 8: Computation Overhead Comparison 1

Scheme T1 T2 T3

KanY [31] (2|S|)e1

(2n1)e1 + ep

+(2n1 + 1)e2

(3n1)e2

+(3n1)ep

Hongwei [32] (3|S|)e1

(3n1 + 1)e1

+(2n1 + 1)e2 + ep

(2n1)e1 + (n1)e2

+(3n1)ep

Ying [33]
(|S|)e1

+(2|S|)ep

(3n1 + 1)e1

+(2n1 + 1)e2 + ep

(n1)e2

+(2n1 + 1)ep

Jiguo [34] (3|S|)e1

(n1 + 2)e1

+e2

2e1 + 3ep

Miao [35] (3|S|+ 2)e1 (4n1)e1 (n1)e2 + (n1)ep

Yeh [36] (3|S|+ 1)e1

(2n1 + 1)e1

+e2

(n1)e1 + (2n1)ep

Ours (|S|+ 2)e1 2e1 + e2 n1 · e1 + 2ep

T1: computation cost for user (or patient) attribute secret key

T2: computation cost for (EHR) file encryption

T3: computation cost for (EHR) file decryption

Table 9: Computation Overhead Comparison 2

Scheme T4 T5

KanY [31] (2n′1 + 3n′13)e1 (n′13)ep

Hongwei [32] (2n′1 + 3n′13)e1 (2n′12)e1 + (n′12)e2 + (n′1)ep

Ying [33] (n′1 + 2n′13)e1 (2n′1 + n′12)e1

Ours ≈ 0 e2

T4: computation cost for access policy update query generation

T5: computation cost for ciphertext policy update
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Table 10: Computation Overhead Comparison 3

Scheme T6 T7

Jiguo [34] e1 (2l2)ep

Miao [35] (3l1 + 2|S|+ 1)e1 (n1)e2 + (2n1 + 3l2)ep

Ours e1 e2

T6: computation cost for keyword index generation

T7: computation cost for keyword match test

Intel(R) Core(TM) i3-2120 CPU @ 3.30 GHz, 4.00 GB RAM. The Type-A

elliptic curve E/Fp : y2 = x3 + x over Fp is selected to conduct experiments,

and the group G has order q, where the bit length of p and q are 160-bit and

512-bit, respectively. Thus, the lengths of the elements in G, GT and Zp are

1024-bit, 1024-bit and 160-bit, respectively.

8.2.1. Transmission Efficiency

Fig. 6 shows the transmission cost of public parameter and the value of x-

axis varies with the number of total attributes. The sizes of public parameter in

schemes [31, 32, 33, 35, 36] and our system are constants, which are 0.512 KB,

0.128 KB, 0.512 KB, 0.256 KB, 0.768 KB and 0.256 KB, respectively. |PP | in

[34] grows with |Att|, which is 3.072 KB when |Att| = 20 and 13.312 KB when

|Att| = 100.

Fig. 7 shows the transmission cost of user’s attribute secret key and the

value of x-axis varies with the number of attributes. When |S| = 20, the sizes

of user’s attribute secret key in schemes [31, 32, 33, 34, 35, 36] and our system

are 2.56 KB, 5.12 KB, 2.56 KB, 5.12 KB, 5.376 KB, 5.248 KB and 2.856 KB ,

respectively. When |S| = 100, the sizes of user’s attribute secret key in schemes

[31, 32, 33, 34, 35, 36] and our system are 12.8 KB, 25.6 KB, 12.8 KB, 25.6 KB,

25.856 KB, 25.728 KB and 13.096 KB , respectively. Thus, our system has good

efficiency in transmitting user’s attribute secret key.

Fig. 8 shows the transmission cost of CT and the value of x-axis varies
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Figure 6: Transmission Cost of Public Parameter
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Figure 7: Transmission Cost of User’s Attribute Secret Key
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with the number of attributes. When |n1| = 20, the sizes of CT in schemes

[31, 32, 33, 34, 35, 36] and our system are 7.808 KB, 7.936 KB, 5.376 KB, 2.944

KB, 28.416 KB, 5.376 KB and 1.012 KB , respectively. When |n1| = 100, the

sizes of user’s attribute secret key in schemes [31, 32, 33, 34, 35, 36] and our

system are 38.528 KB, 38.656 KB, 25.856 KB, 13.184 KB, 38.656 KB, 25.856

KB and 2.612 KB , respectively. It is obvious that our system has the least

|CT | transmission cost.

Figure 8: Transmission Cost of Ciphertext

Fig. 9 shows the transmission cost of PUQ and the value of x-axis varies

with the number of attributes. When |n′1| = 15, the sizes of PUQ in schemes

[31, 32, 33] and our system are 4.48 KB, 4.48 KB, 2.56 KB and 0.42 KB ,

respectively. When |n′1| = 60, the sizes of user’s attribute secret key in schemes

[31, 32, 33] and our system are 17.92 KB, 17.92 KB, 10.24 KB and 1.32 KB ,

respectively. Our system also has the least |PUQ| transmission cost.
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Figure 9: Transmission Cost of Policy Update Query
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Fig. 10 shows the transmission cost of keyword encrypted index and the

value of x-axis varies with the number of extracted keywords from the (EHR)

file. When |l1| = 5, the sizes of keyword encrypted index in schemes [34, 35]

and our system are 6.528 KB, 6.016 KB and 0.228 KB , respectively. When

|l1| = 30, the sizes of keyword encrypted index in schemes [34, 35] and our

system are 12.928 KB, 9.216 KB and 0.728 KB , respectively. Our system has

the least keyword encrypted index transmission cost.

Figure 10: Transmission Cost of Keyword Encrypted Index
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8.2.2. Computation Efficiency

Fig. 11 shows the computation cost of user’s attribute secret key generation

and the value of x-axis varies with the number of user’s attributes. When |S| =

20, the computation cost in schemes [31, 32, 33, 34, 35, 36] and our system are

0.368 s, 0.552 s, 0.905 s, 0.552 s, 0.57 s, 0.561 s and 0.202 s, respectively. When

|S| = 100, the computation cost in schemes [31, 32, 33, 34, 35, 36] and our system

are 1.839 s, 2.759 s, 4.525 s, 2.759 s, 2.777 s, 2.768 s and 0.938 s, respectively.

Our system has the least attribute secret key generation computation cost.

Figure 11: Computation Cost of User’s Attribute Secret Key Generation

Fig. 12 and Table 11 show the computation cost of (EHR) file encryption

and the value of x-axis varies with n1. When |n1| = 20, the computation cost in

schemes [31, 32, 33, 34, 35, 36] and our system are 0.492 s, 0.689 s, 0.685 s, 0.205

s, 0.736 s, 0.380 s and 0.021 s, respectively. When |n1| = 100, the computation

cost in schemes [31, 32, 33, 34, 35, 36] and our system are 2.377 s, 3.299 s, 3.305
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s, 0.941 s, 3.678 s, 1.851 s and 0.022 s, respectively. Our system has the least

(EHR) file encryption computation cost.

Figure 12: Computation Cost of EHR Encryption

Fig. 13 shows the computation cost of (EHR) file decryption and the value

of x-axis varies with n1. When |n1| = 20, the computation cost in schemes

[31, 32, 33, 34, 35, 36] and our system are 1.237 s, 1.501 s, 0.791 s, 0.072 s,

0.412 s, 0.905 s and 0.22 s, respectively. When |n1| = 100, the computation cost

in schemes [31, 32, 33, 34, 35, 36] and our system are 6.183 s, 7.506 s, 3.882 s,

0.072 s, 2.061 s, 4.525 s and 0.956 s, respectively. Our system has (EHR) file

decryption computation cost lower than that in [31, 32, 33, 35, 36] and higher

than that in [34].

Fig. 14 and Table 12 show the computation cost of access policy update

query generation and the value of x-axis varies with n′1. When |n′1| = 15, the

computation cost in schemes [31, 32, 33] and our system are 0.419 s, 0.414 s,
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Table 11: Computation Cost of EHR Encryption

n1 Ours [31] [32] [33] [34] [35] [36]

20 0.021 0.492 0.689 0.685 0.205 0.736 0.380

40 0.029 0.963 1.338 1.340 0.389 1.471 0.747

60 0.025 1.434 1.988 1.995 0.573 2.207 1.115

80 0.019 1.905 2.642 2.650 0.757 2.943 1.483

100 0.022 2.377 3.299 3.305 0.941 3.678 1.851

Figure 13: Computation Cost of EHR Decryption
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0.237 s and 0.0009 s, respectively. When |n′1| = 60, the computation cost in

schemes [31, 32, 33] and our system are 1.658 s, 1.655 s, 0.928 s and 0.0011 s,

respectively. Our system has the least access policy update query generation

computation cost.

Figure 14: Computation Cost of Access Policy Update Query

Fig. 15 and Table 13 show the computation cost of ciphertext access policy

update and the value of x-axis varies with n′1. When |n′1| = 15, the computation

cost in schemes [31, 32, 33] and our system are 0.092 s, 0.375 s, 0.322 s and 0.0029

s, respectively. When |n′1| = 60, the computation cost in schemes [31, 32, 33]

and our system are 0.361 s, 1.501 s, 1.287 s and 0.0039 s, respectively. Our

system has the least ciphertext access policy update computation cost.

Fig. 16 and Table 14 show the computation cost of keyword index generation

and the value of x-axis varies with l1. To simplify the comparison, the attribute

size |S| is set to be 10 in scheme [34]. When |l1| = 5, the computation cost in
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Table 12: Computation Cost of Access Policy Update Query

n′1 Ours [31] [32] [33]

15 0.0009 0.419 0.414 0.237

30 0.0009 0.825 0.828 0.460

45 0.0014 1.232 1.241 0.692

60 0.0011 1.658 1.655 0.928

Figure 15: Computation Cost of Ciphertext Update
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Table 13: Computation Cost of Ciphertext Update

n′1 Ours [31] [32] [33]

15 0.0029 0.092 0.375 0.322

30 0.0032 0.186 0.751 0.644

45 0.0037 0.275 1.126 0.966

60 0.0039 0.361 1.501 1.287

schemes [34, 35] and our system are 0.330 s, 0.0089 s and 0.0091 s, respectively.

When |l1| = 30, the computation cost in schemes [34, 35] and our system are

1.018 s, 0.0092 s and 0.0091 s, respectively. Our system has the least keyword

index generation computation cost. Although the scheme in [35] is also efficient,

it can not realize flexible subset keyword search.

Table 14: Computation Cost of Keyword Index Generation

n′1 Ours [34] [35]

5 0.0091 0.330 0.0089

10 0.0093 0.468 0.0085

15 0.0088 0.605 0.0096

20 0.0096 0.743 0.0091

25 0.0092 0.881 0.0095

30 0.0091 1.018 0.0092

Fig. 17 and Table 15 show the computation cost of keyword match test and

the value of x-axis varies with l1. To simplify the comparison, the matrix row

number n1 is set to be 10 in scheme [35]. When |l1| = 5, the computation cost

in schemes [34, 35] and our system are 0.180 s, 0.657 s and 0.0031 s, respectively.

When |l1| = 30, the computation cost in schemes [34, 35] and our system are

1.082 s, 2.009 s and 0.0034 s, respectively. Our system has the least keyword

match test cost.
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Figure 16: Computation Cost of Keyword Index Generation

Table 15: Computation Cost of Keyword Match Test

l1 Ours [34] [35]

5 0.0031 0.180 0.657

10 0.0029 0.361 0.927

15 0.0033 0.541 1.198

20 0.003 0.721 1.468

25 0.0031 0.901 1.738

30 0.0034 1.082 2.009
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Figure 17: Computation Cost of Keyword Match Test
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Fig. 18 shows the computation cost comparison of the non-batch verifica-

tion algorithm (Algorithm 8) and the batch verification algorithm (Algorithm

9). The value of x-axis in Fig. 18 varies with τ (the number of IoT ciphertexts).

When τ = 20, the computation cost in non-batch and batch verification algo-

rithms are 1.089 s and 0.588 s, respectively. When τ = 100, the computation

cost in non-batch and batch verification algorithms are 5.445 s and 2.795 s, re-

spectively. Compared with the non-batch verification algorithm, it can be seen

that the batch verification algorithm is effective to reduce the computation cost

of the patient device.
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Figure 18: Computation Cost of Batch Verification

9. Conclusion

In this work, we have investigated the privacy-preserving fusion of IoT and

big data in the e-health application scenario, and constructed a system to real-

ize secure IoT communication and confidential medical big data storage. The

system architecture and security model are defined for the proposed system. A
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non-interactive and authenticated key distribution procedure is designed for the

medical IoT network. A batch authenticated verification algorithm is proposed

to verify the source of encrypted IoT messages. Patients’ EHRs are encrypted

using the ABE methodology to realize access control. We also construct a novel

keyword match based access policy updating mechanism to realize fine-grained

policy updating control. We compare this system with other schemes and ex-

periments are conducted to evaluate their performances. The testing results

demonstrate that this system has performance outperforming the others and

applicable in the e-health environment.
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