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Preface

In 2001 I graduated from the Technische Universiteit Eindhoven within the Formal
Methods Group. My Master’s project concerned modelchecking the CAN bus Stan-
dard. After my graduation I felt I wanted a more practical background in software
engineering. Therefore, I joined the post Master’s program on software technology
OOTI. In 2003 I graduated from this program after a final project on client side
caching of dynamic web pages at TNO Telecom. After this project I started look-
ing for work that would best fit my professional skills, my personal skills, and my
personal interests.

At that time the Tangram project crossed my path. The Tangram project was a
four year research project on model-based test and integration methods for complex
high-tech systems. The carrying partners where ASML and the embedded systems
institute ESI. ASML is the world leading producer of waferstepper machines. The
universities involved where the Technische Universiteit Eindhoven (by the Mechani-
cal Engineering department and the Mathematics & Computer Science department),
Twente University, Delft University of Technology, and the Radboud Universiteit
Nijmegen. The industry partners besides ASML were Science [&] Technology, the
National Aerospace Labratory (NLR) and the Netherlands Organization for Applied
Scientific Research (TNO). The approach of the Tangram project was to use indus-
try as a laboratory. Scientific research should be developed, tested, and applied in
industry directly. Within the Tangram project the focus lay on: better scheduling
of integration and tests, test automation, early integration, creating a uniform (test)
infrastructure, and faster diagnoses.

This was exactly what I was looking for. It allowed me to apply and further de-
velop both my background in theoretical computer science and practical software
engineering. It provided the opportunity to both work with and be in contact with
research at the university and work within an industrial environment. The research
presented in this thesis was part of the test automation focus area. The goal of my
research was to develop a model-based test theory for hybrid systems and to validate
the applicability of this theory in an industrial setting. In this thesis I present the
results of this research.

First of all I thank professor Jos Baeten, Luud Engels and Tom Brugman for provid-
ing me the opportunity to perform this Ph.D. project within the Formal Methods
Group and at ASML. Second, I thank Bas Luttik for his supervision, his many good
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advices and his patience in reviewing the many revisions of my work. Third, I thank
my Tangram team members, especially: Roel Boumen, Niels Braspenning, Henrik
Bohnenkamp, Will Denissen, Ivo de Jong, Jurryt Pietersma, Jan Tretmans, Rene de
Vries, and Tim Willemse for their useful input to my research and creating a fruitful
working atmosphere. Fourth, I thank Frank Stappers who was a very cheerful and
active Master’s student and a good help in my research as well. Fifth, I thank my
fellow F-buckets for their input and a very enjoyable working atmosphere. Sixth, I
thank everybody else who gave input for my research, especially: Ramon Schiffelers,
Albert Hofkamp, professor Koos Rooda, and the members of my defense committee.

A Ph.D. research is not only a professional journey but also a personal journey. I
thank my mother, my father, and my brother for their support throughout my life
and I do not forget to thank my friends as well. Five years ago I started this Ph.D.
research as a bachelor. Now, I have a loving wife and at the time of writing this
preface, a one week old son. Last, but it should be first, I thank my wife Barbara for
her endless patience with me working on this thesis and for her emotional support.
I thank my son Daniel for bringing such joy in my life. I dedicate this thesis to
them:

to Barbara and Daniel.
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1

Introduction

In this thesis we develop a formal theory and prototype tool for automated model-
based testing of hybrid systems. With a case study we also show that this method
of testing is useful for industry.

In this introduction we first explain which systems we consider to be hybrid systems.
Then, we explain how automated model-based testing fits in a set of different testing
approaches. In this thesis a formal approach to model-based testing is taken. There-
fore we explain what is needed for a formal model-based test theory. Specifically, our
theory for hybrid systems is based on three existing input-output conformance test
theories. We give a brief overview of these input-output conformance test theories.
We conclude this chapter with a detailed overview of the remainder of thesis.

1.1 Hybrid Systems

A hybrid system is a system with both discrete-event behavior and continuous be-
havior. By discrete-event behavior we mean (instantaneous) actions. E.g. A hybrid
system can display discrete-event behavior by software but also by its hardware, e.g.
buttons. For a system, by continuous behavior we mean the behavior of physical
quantities. A hybrid system may perform continuous behavior by e.g. actuators and
observe continuous behavior through e.g. sensors.

A thermostat is an example of a hybrid system with continuous input and discrete-
event output. It observes the temperature of a room through a sensor, and it controls
a heating system through signals e.g. turning a heater on or turning it off.

A robot arm is an example of a hybrid system with discrete-event input behavior
and continuous output behavior. It is controlled through discrete-event signals,
controlling e.g. the direction in which to move and it displays continuous behavior,
e.g. speed, distance to its destination, or the angle of the arm.

A waferstepper, depicted in Figure 1.1, is an example of a hybrid system with both
discrete-event behavior and continuous behavior. A wafer stepper is a machine
for manufacturing computer chips. A wafer stepper contains millions of lines of
software for controlling e.g. a wafer stage, a vacuum system and a laser. These
systems display both discrete-event behavior like communication between software
components and continuous behavior like movement of a stage, changing pressure
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2 Chapter 1 Introduction

conditions, and laser light emission.

Figure 1.1: A Waferstepper Machine

1.2 Testing

We distinguish three activities in the software and systems engineering process (not
taking into account maintenance): designing, implementing and testing. Designing
is the activity of making a specification of the system to be implemented. This
specification can be very elaborate e.g. made up by user requirements, system re-
quirements, architecture and a detailed design or it can be very concise e.g. made up
by some white board drawings and the mental model of the engineers. Implemen-
tation is the activity of constructing the system based on the design. Testing is the
activity of providing input to a system and observing the output of the system in
order to validate whether the behavior of the system conforms to the specification.

A test is a description of which input to apply and when to apply it to the imple-
mentation under test, and of which output can be observed from the implementation
under test, in order to decide whether the implementation conforms to its design.
A test typically consists of the following steps:

• apply an input action and continue the test;

• observe an output action from the implementation and

– if an output action is observed that was allowed then continue the test,
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– if an output action is observed that was not allowed then terminate the
test with verdict fail,

– if no output action is observed and no output action is supposed to be
observed then continue the test, and

– if no output action is observed but an output action should be observed
then terminate with the verdict fail; or

• terminate the test with the verdict pass.

We distinguish three kinds of testing that are used today. The first kind of testing
is performing tests without any test description. Examples of this form of testing
are ad-hoc testing [1] and exploratory testing [4]. The test engineer determines on
the spot which input to provide and, based on the behavior of the system, how to
continue. The test engineer thus learns the behavior of the system and based on
that information provide new input. E.g. a test engineer might try to apply input
he thinks can break the system or tries to apply input that is different from what he
already applied before. Based on the mental model of the engineer and the available
descriptions of the system it is decided whether the system conforms to the expected
behavior.

The second kind of testing is scripted testing. In this case the tests are described
by test scripts based on the design of the system. A script can be described in plain
text and executed by a test engineer. It can also be described in a scripting language
so that it can be executed by a software tool. An example of a scripting language
is TTCN-3 [50].

The third kind of testing is model-based testing. In model-based testing a model
of the system is used that is based on the design. From this model, test input is
automatically generated and executed by a test tool. The output of the system is
automatically compared to the output specified by the model of the system. If the
system passes all the generated tests, then the system is considered to be correct.

Model-based testing combines the advantages of both other kinds of testing. The
model clearly prescribes which input may be applied and which output can be
observed It allows exploration of the model in order to generate and execute a
larger variety of tests than an engineer can think of in either scripted testing or
in unscripted testing. Like using scripts, using models also has the advantage that
tests can easily be repeated. If models are already used in other disciplines of model-
based engineering like model-based design, then it may be possible to reuse these
models for model-based testing and for model-based diagnosis.

Over the years several model-based test tools have been implemented that are able
to automatically generate tests for discrete-event systems and timed systems in dif-
ferent ways. Qtronic [14] is a tool that generates TTCN-3 test scrips from UML
statecharts [37]. Gotcha-TCBeans [20] is a tool that generates a JavaBean com-
ponent [27, 36] from a language based on the well known mathematical model of
finite state machines. Tests generated from a specification can be executed in the
tool kit’s runtime testing framework. TorX [55, 6] generates and executes tests at
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runtime from e.g. a PROMELA [44] like specification. In TorX, tests are generated
according to the formally defined test generation algorithm by Tretmans [48].

1.3 Test Formalization

A formal notion of test makes it possible to design and implement a test algorithm
that generates and executes tests according to the definition. This guarantees that
the tests are generated in an unambiguous way and that the verdict is interpreted
in an unambiguous way.

For a formal test theory as described in this thesis we first need a formal repre-
sentation for an implementation and a specification. Second, we need to define a
conformance relation that tells when a formal implementation conforms to a formal
specification. Third, we need to define a notion of test that defines what a test
is. Fourth, we need to prove the correctness of the notion of test with respect to
the conformance relation by proving that the set of tests which can be generated
from a model is sound and exhaustive. The notion of test is sound if only faulty
implementations can fail a test. The notion of test is exhaustive if every faulty
implementation fails at least one test.

1.4 Input-output Conformance Testing

Input-output conformance testing refers to testing whether a system conforms to
a model of the system itself. Input-output conformance testing was first formally
defined by Tretmans [48]. In input-output conformance testing, the model is called
the specification and the system under test is called the implementation. It is
a form of black-box testing. Only the observable input and output behavior of
the implementation are considered. The internal (unobservable) behavior of the
implementation is not considered.

The conformance relation by Tretmans considers discrete-event behavior. According
to Tretmans, an implementation conforms to a specification if after every trace
consisting of inputs and outputs, the implementation is only able to produce output
that is allowed by the specification.

Example 1.1. A specification of a coffee machine could describe that after inserting
fifty cents into the machine, it has to produce a cup of coffee. After a coffee is
produced fifty cents can be inserted again. If an implementation of this machine
always produces a cup of coffee after inserting the fifty cents, then it conforms to
the specification. If the coffee machine produces an empty cup, the coffee machine
does not conform to the specification.

For the coffee machine as described above, a test could be:

1. insert fifty cents,
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2. allow a cup of coffee being produced and conclude fail if only a cup is produced
or nothing is produced, and

3. in case a cup of coffee is produced, continue the test by inserting another fifty
cents.

Tretmans has defined a formal notion of test and has proved that his tests are sound
and exhaustive with respect to his conformance relation [48]. As mentioned in Sec-
tion 1.2, test generation and execution based on this notion of test are implemented
in the TorX test tool [55, 6]. With this tool, tests can be generated from a formal
model and executed on an implementation. A number of case studies have been
performed with TorX [49].

Based on Tretmans’s work, several other input-output conformance theories have
been defined. Heerink and Tretmans [22] have defined input-output conformance
with refusals and multiple input channels. Refusal in this theory means that, un-
like in the original conformance relation by Tretmans, the implementation is al-
lowed to refuse input. An input-output conformance theory for systems with data
has been defined by Frantzen, Willemse, and Tretmans [17]. Brandán-Briones and
Brinksma [12], Krichen and Tripakis [30], Bohnenkamp [10], and Larsen et al. [33]
separately have defined input-output conformance and test generation for timed
systems. The theory of Bohnenkamp turned out to be basically the same as that of
Brandán-Briones and Brinksma. The difference was that Bohnenkamp decided to
take the well known mathematical model of timed automata as formal representa-
tion for the implementation and the specification in stead of timed labeled transition
systems. The theory defined by Krichen and Tripakis turned out to be the same as
theory defined by Larsen et al.

Test generation and execution based on the notion of test by Brandan-Briones and
Brinksma, and Bohnenkamp has been implemented in TorX. Test generation and
execution based on the notion of test by Krichen and Tripakis has been implemented
in the prototype test tool TTG [29]. Krichen and Tripakis performed a case study
on a Mars rover controller [9]. Independently the same notion of test has been
implemented in the test tool TRON [51]. The TRON tool was developed by Larsen
et al. [33] and is based on the Uppaal model checking tool. Larsen et. al. performed
an industrial case study on a temperature controller [33].

Krichen and Tripakis [32], and Larsen and Nielson [33] also defined a slightly differ-
ent conformance relation in which an environment is explicitly used to restrict the
input behavior of the specification. This change in the relation is only cosmetic, but
it presents a more modular view on the specification.

1.5 Overview of this Thesis

The input-output conformance theories discussed in the previous section do not take
the hybrid aspects of an implementation into account. This means that the influence
of continuous input behavior on a hybrid system and the correctness of continuous
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output behavior of a hybrid system cannot be tested. This thesis presents a theory
for input-output conformance testing of hybrid systems and it describes how hybrid
model-based testing can be implemented in practice.

1.5.1 Theory Development

In order to define the input-output conformance relation we need a formal repre-
sentation for the implementation and the specification. Like in the input-output
conformance theory by Tretmans and the timed input-output conformance theories,
we chose to use hybrid transition systems for this purpose. The concepts of labeled
transition systems that are important for this thesis we define in Chapter 2. In
this chapter we formally define labeled transition systems, timed labeled transition
systems, hybrid transition systems, and related concepts.

We will present a hybrid conformance relation based on the already existing discrete-
event and timed input-output conformance relations of Tretmans, Brandán-Briones
and Brinksma, and Krichen and Tripakis. In Chapter 3 we define these discrete-
event and timed conformance theories.

In chapter 4 we will define our hybrid input-output conformance relations. First we
define a conformance for hybrid systems without continuous input behavior. Then,
we define a hybrid input-output conformance relation for hybrid systems that require
continuous input. This is more complex because continuous input and continuous
output take place simultaneously and an input-output conformance relation defines
whether the output allowed by the implementation conforms the the output allowed
by the specification, with respect to input applied by the specification. Subsequently
another hybrid input-output conformance relation is formed in which the specifica-
tion is separated into a system part and an environment part. The system part of
the specification describes the behavior of the implementation under test and the
environment describes the behavior of the environment in which the implementation
is placed.

It is a matter of personal taste to decide which of the above conformance relation is
better. The relation with environment clearly distinguishes the environment of the
implementation from the implementation itself. The relation without environment
makes explicit that the conformance relation only concerns the continuous output
allowed by the implementation with respect to the continuous input applied to the
implementation. Furthermore, a test tool implementation in which the input for the
implementation is derived from a separate and the output of the implementation is
validated with the output allowed by the specification is more complex. The reason
is that with a separate environment, input and output need to be synchronized
between the specification and the implementation and the environment in stead of
a synchronization between the implementation and the specification.

We prove that there is no difference in the two relations considering whether an
implementation conforms to a specification. If an implementation does conform to
a specification with restricted input behavior, then it does also conform to the spec-
ification with a separate environment that specifies the input restriction. And, if an
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implementation does not conform to a specification with restricted input behavior,
then it also does not conform to the specification with a separate environment that
specifies the input restriction.

Also in chapter 4 we define a notion of test for hybrid systems. This notion of test
is also based on the notions of test for discrete-event and timed systems. After that,
we prove that this notion of test is sound and exhaustive with respect to the hybrid
conformance relation.

1.5.2 Tool Development

A prototype version of a hybrid test tool has been implemented [41]. This prototype
tool is capable of generating tests from a hybrid χ model [5] and executes tests in
real-time. The tool architecture was based on that of TorX. In Chapter 5 we present
both the relevant background of the TorX test tool and the hybrid χ language.

In Chapter 6 we describe the design issues and implementation issues involved in
developing a hybrid test tool in general, and the implemented prototype tool in
particular. In practice however, it is often easier or sufficient, or unavoidable, to
apply sampling to the continuous behavior. Therefore, we define a conformance
relation and notion of test with sampled continuous behavior.

Furthermore, in Chapter 6 we describe a test generation and execution algorithm
for testing hybrid systems. This is algorithm for on-the-fly test generation and
execution. While the test is executed it is generated simultaneously. Other issues
regarding the test tool implementation described in this chapter are: how to select
the test input, when to terminate a test, and how to connect the test tool to an
implementation.

1.5.3 Industrial Case Study

This research was conducted in cooperation with the company ASML [3]. ASML
is the world leading manufacturer of waferstepper machines (see Figure 1.1). A
waferstepper is a machine for the manufacturing of computer chips. It is used to
etch an image of the chip layout on a silicon die. This silicon disc is processed into
chips later on in the production process. The width of the lines on the image is
measured in nanometers and usually multiple (more then 20) lines have to etched
on top of each other with nanometer precision.

For the customer losing production time is costly. For the manufacturer selling
one machine less per year is costly because one machine costs millions of Euros.
This makes it all the more important to have a shorter time to market than the
competition but still offer a high quality machine. Therefore a waferstepper needs
be tested as thoroughly as possible and as fast as possible.

In Chapter 7 we describe a case study that has been performed with our prototype
tool. The case study concerned a vacuum control system which can be used in a
waferstepper machine. This is a suitable system to test using hybrid input-output
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conformance testing. It observes pressure flow through a sensor and it controls
pumps and valves by output actions. The kind of waferstepper we consider has
multiple chambers which have to be kept in vacuum by a system of pumps, valves
and gauges. This hardware is controlled by a software controller implemented in
Labview [28]. A hybrid χ model of a part of the controller has been made. To restrict
the input to be applied to the controller, the vacuum hardware (pumps and valves)
have been modeled as well. Tests showed faulty behavior in the implementation.

In Chapter 8 we present the conclusions of our work and we present the research
areas for future work.
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Transition Systems and Automata

In order to formalize a test relation, a formal representation of the implementation
and the specification are needed. The implementation and specification are viewed
as labeled transition systems. This chapter formally defines discrete-event, timed,
and hybrid transition systems, which we need further on in this thesis.

For examples it is often easier to use automata. An automaton gives a finite rep-
resentation of a transition system with infinitely many states and infinitely many
transitions. In this chapter also timed automata and hybrid automata are defined.
A transition system semantics is given for hybrid automata to show how automata
in this thesis actually represent transition systems.

2.1 Transition Systems

A labeled transition system (LTS) is a tuple consisting of a set of states, an initial
state, a set of labels, and a transition relation between states. A timed labeled
transition system (TLTS) is a labeled transition system where the set of labels
contains a set of action labels and a set of time labels. A hybrid transition system
(HTS) is a labeled transition system where the set of labels contains a set of action
labels and a set of trajectories. In this section these three types of transition systems
are defined together with a number of concepts we need later on.

2.1.1 Labeled Transition Systems

In the input-output conformance relation of Tretmans [48] theory both the imple-
mentation and the specification are viewed as labeled transition systems.

Definition 2.1. A labeled transition system (LTS) is a tuple L= (S,s0,L∪{τ},→),
where:

• S is a (possibly infinite) set of states;

• s0 ∈ S is the initial state;

• L is a (possibly infinite) set of labels; and

• → ⊆ S × L ∪ {τ} × S is the transition relation.

9
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A transition with a special label τ represents an internal event. Instead of (s, µ, s′) ∈
→ we usually write s

µ→ s′.

The transition relation defines a set of transitions from one state to another state.
These transitions describe the behavior performed by a system. We say a state
allows a certain transition if there is a transition from that state to another state.

The partial execution of a transition system is described as allowing a sequence of
transitions. We say a transition system can perform transition t after a sequence
α ∈ L ∪ {τ}∗ if, after the execution of α, it allows t.

An input-output conformance relation is a relation on the input-output behavior of
the specification and the implementation. This behavior is also called the observable
behavior of the system. The internal behavior is not taken into account. This is
restricted by means of a generalized transition relation.

Definition 2.2. Let L= (S, s0,L∪{τ},→) be an LTS and let s, s′, s′′ ∈ S be states.
Let ε denote the empty sequence. The generalized transition relation is the least
relation ⇒ ⊆ S × L∗ × S such that:

- s
ε⇒ s;

- if s
τ→ s′, then s

ε⇒ s′;

- for all l ∈ L, if s
l→ s′, then s

l⇒ s′; and

- for all α, β ∈ L∗, if s
α⇒ s′′ and s′′

β⇒ s′ then s
αβ⇒ s′.

From now on, s
l→ denotes that there is a state s′ such that s

l→ s′, and s
α⇒ denotes

that there is a state s′ such that s
α⇒ s′. Furthermore, s

l9 denotes that there is no
state s′ such that s

l→ s′, and s
α; denotes that there is no state s′ ∈ S such that

s
α⇒ s′.

An LTS is deterministic if from a state it allows more than one transition with the
same label leading to different states.

Definition 2.3. An LTS L is deterministic if, for all s, s′, s′′ ∈ S and l ∈ L, if
s

l⇒ s′ and s
l⇒ s′′ , then s′ = s′′.

In this thesis we only consider finite sequences of labels. A sequence of labels formed
by performing a sequence of transitions from the initial state, with the internal
actions removed, is called a trace.

Definition 2.4. A trace is a finite sequence of labels α ∈ L∗ such that s0
α⇒. We

denote by traces(L) the set of all traces of L, i.e. traces(L) = {α|s0
α⇒}.

For the purpose of defining an input-output conformance relation we partition the
set of labels L into a set of input actions AI , a set of output actions AO and the
internal action τ . The set of labels consisting of the set of actions in AI together
with the set of actions in AO is denoted by the set of actions A, i.e. A = AI ] AO.
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Aτ denotes the set A∪ {τ}. Note that ] denotes the union of two disjunct sets, e.i.
AI ]AO denotes the union of the disjunct sets AI and AO.

In input-output conformance testing by Tretmans [48] an implementation is assumed
to be input enabled. An LTS is input enabled if it can accept any input at any
moment in time. In the LTSs considered so far the notion of time is not made
explicit. Therefore, an LTS is input enabled if in every state, every input action is
allowed.

Definition 2.5. An LTS = (S, s0, L ∪ {τ},→) with L = AI ]AO is input enabled
if every input action is possible in every state; that is: for all s ∈ S and i ∈ AI :
s

i→.

It will be convenient to use process algebraic notation for LTSs. This notation will
be useful when we formally define the notion of test. If L is an LTS and l is a label,
then by l;L we denote the LTS that from the initial state allows the transition with
label l only, and after that behaves as L. If LS is a set of LTSs, then by

∑LS
we denote the LTS that in its initial state allows the choice to perform one of the
LTSs in LS. If L1 and L2 are two LTSs then by L1 ‖ L2 we denote the LTS that
can perform an observable action if it can be performed by both LTSs and that can
perform an internal action if it can be performed by either LTS.

Definition 2.6. Let L = (S, s0, L ∪ {τ},→) be an LTS. Let s /∈ S be a fresh state.
The result of prefixing L with a transition with label l, denoted by l;L, is defined by

l;L = (S ∪ {s}, s, L ∪ {τ} ∪ {l},→∪ {(s, l, s0)}).

Definition 2.7. Let LS = {Li|i ∈ I} be a (possibly infinite) set of LTSs of the form
Li = (Si, s0i, Li ∪ {τ},→i). Let s /∈ ⋃

i∈I Si be a fresh state.

• The result of the alternative composition of the set of LTSs LS, denoted by∑LS, is defined by
∑

LS = (
⋃

i∈I

Si ∪ {s}, s,
⋃

i∈I

Li ∪ {τ},
⋃

i∈I

(→i ∪ {(s, l, s′)|s0i
l→i s′})).

Furthermore, L0 + L1 denotes
∑{L0,L1}.

• The synchronous composition of L0 and L1, denoted by L0 ‖ L1 is defined by

L0 ‖ L1 = (S1 × S2, (s00, s01), L0 ∩ L1,→)

with → =

{((s0, s1), l, (s′0, s
′
1))|s0

l→0 s′0 ∧ s1
l→1 s′1 ∧ l ∈ (L0 ∩ L1) \ {τ}} ∪

{((s0, s1), τ, (s0, s
′
1))|s1

τ→1 s′1} ∪ {((s0, s1), τ, (s′0, s1))|s0
τ→0 s′0}.

Note that the definition for alternative composition also works LTSs that are root
cyclic. An LTS is root cyclic if there is a nontrivial path from the initial state to
itself.



12 Chapter 2 Transition Systems and Automata

2.1.2 Timed Labeled Transition Systems

A timed labeled transition system is a labeled transition system with action labels
and time labels. A time label is a nonnegative real number. It denotes an amount
of time that can pass. We also call these labels durations. Time does not pass by
performing actions.

Definition 2.8. A timed labeled transition system (TLTS) T = (S, s0, L∪ {τ},→)
is an LTS with the set of labels partitioned into a set of action labels and a set of

durations in R≥0: L = Aτ ] R≥0. We write s
a(t)→ s′′ if there is an s′ ∈ S such that

s
t→ s′ and s′ a→ s′′.

Three constraints are generally imposed on TLTSs:

• C1 (null delay): for all s, s′ ∈ S, s
0→ s′ if and only if s = s′.

• C2 (time additivity): for all t1, t2 > 0 and s, s′′ ∈ S, s
t1+t2→ s′′ if and only

if there exists an s′ ∈ S such that: s
t1→ s′ and s′ t2→ s′′.

• C3 (time determinism): for all s, s′, s′′ ∈ S and t1 ∈ R≥0, if s
t1→ s′ and

s
t1→ s′′ then s′ = s′′.

Constraint C1 states that the state does not change by 0 delay. Constraint C2
states that waiting some t1 time units and after that waiting t2 time units more is
the same as waiting t1 + t2 time units and waiting time t1 + t2 time units is the
same as waiting first t1 time units and then waiting t2 time units. Constraint C3
states that letting time pass does not make a choice on the state that is reached
after that time has passed.

A TLTS is input enabled if at every moment in time every input action is allowed.
Brandán-Briones and Brinksma [12] use a definition in which every input action is
eventually allowed after some internal activity.

Definition 2.9. A TLTS T is input enabled if, for all s ∈ S and i ∈ AI , s
i⇒.

Again it will be convenient to introduce process algebraic notation for TLTSs. The
definitions of synchronous composition and prefixing an TLTS with an action are
the same as for LTSs. When defining the notion of prefixing an LTS with a duration
and the alternative composition of a set of LTSs we need to take care to maintain
the constraints C1 to C3. If a TLTS T is prefixed by a duration t, then the resulting
TLTS, denoted by t;T , allows all time transitions up to the duration t and after that
behaves like T . If a set of TLTSs T S is alternatively composed, then the resulting
TLTS, denoted by

∑ T S, models the choice to perform one of the TLTSs in TS.
The resulting TLTS may be non-deterministic in the actions but should be time
deterministic. This means that the final choice of which TLTS is executed is only
made at the moment that the first action is performed.

Definition 2.10. Let T = (S, s0, Aτ ∪ R≥0,→) be a TLTS and let t ∈ R≥0 be
a duration, then the result of prefixing T with a time transition with duration t,
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denoted by t; T is defined as:

t; T = (S ] S′, st, Aτ ∪ R≥0,→ ∪ →′),

where
S′ = {st′ |0 < t′ ≤ t},

and
→′ = {(st′ , t

′ − t′′, st′′)|0 ≤ t′′ < t′ ≤ t} ∪
{(st′ , t

′ + t′′, s′)|0 < t′ ≤ t ∧ s0
t′′→ s′}.

Definition 2.11. Let T S = {Ti|i ∈ I} be a (possibly infinite) set of TLTSs of the
form Ti = (Si, s0i, Ai ∪ R≥0 ∪ {τ},→i). Let s /∈ ⋃

i∈I Si be a fresh state. The
alternative composition of T S, described by

∑ T S, is defined by

∑
T S = (

⋃

i∈I

Si ∪ S′ ∪ {s}, s,
⋃

i∈I

Ai ∪ R≥0 ∪ {τ},
⋃

i∈I

(→i ∪→′)).

where
S′ = {st|t is a duration such that s0i

t→ for some i ∈ I},
and

→′ = {(s, a, s′)|∃i∈I : s0i
a→i s′} ∪

{(st, a, s′)|∃i∈I : s0i
a(t)→i s′} ∪

{(s, t, st)|st ∈ S′} ∪
{(st, t

′′, st′)|st, st′ ∈ S′ ∧ t + t′′ = t′}.
It is assumed in the definitions above that (

⋃
i∈I Si) ∩ (S′ ∪ {s}) = ∅ Furthermore,

T0 + T1 denotes
∑{T0, T1}.

2.1.3 Hybrid Transition Systems

The definition of hybrid transition systems presented in this section is based on the
definition given by Cuijpers, Reniers, and Heemels [15] together with the definition of
trajectories given by Lynch, Segala and Vaandrager [34]. A hybrid transition system
is able to describe both the discrete-event behavior and the continuous behavior of
a system. For instance, it allows to describe a heater that, if it is turned on, heats
a room with 0.1 oC/min. In a hybrid transition system, the continuous behavior is
described by trajectories. A trajectory describes the evolution of a set of continuous
variables over an interval of time. Time does not pass by performing actions. The
evolution of continuous variables is also called flow. Trajectories in our theory
are continuous in the sense that for every element in the interval of a trajectory, a
valuation of variables is defined. However they are allowed to have discontinuities in
the sense that jumps in the valuations are allowed, e.i a trajectory is not necessarily
differentiable.
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Definition 2.12. An interval over R is called left-closed if it has a minimum and
it is called right-closed if it has a maximum. It is called closed if it has both a
minimum and a maximum. An interval is called left-open if it has no minimum
and it is called right-open if it has no maximum. It is called open if it has no
minimum and no maximum.

According to Lynch, Segala, and Vaandrager [34], a valuation on a set of variables
V is a function that associates with each variable v ∈ V a value of the type of v. In
this thesis we consider only variables of type real. We write V al(V ) for the set of all
valuations on V . A trajectory is a function that associates a valuation of variables
with each element in a time interval.

Definition 2.13. Let V be a set of variables. A trajectory σ is a function σ : D →
V al(V ) that associates with each element in the interval D a valuation. We write
trajs(V) for the set of all trajectories with respect to V .

Unless otherwise stated, the domain D of a trajectory is a left-open right-closed
interval starting at (but not including) 0. A one side open time interval ensures that
subsequent trajectories do not overlap each other. Contrary to Cuijpers, Reniers,
and Heemels [15] we choose right-closed time intervals in order to reason about the
value of variables after a trajectory.

We need a number of operations and shorthand notations on trajectories.

Definition 2.14.

1. Let f : A → B be a function; for A′ ⊆ A we define f restricted to A′, denoted
by fdA′, as the function fdA′ : A′ → B defined by fdA′(a) = f(a) for a ∈ A′.

2. Let f : A → B with A ⊆ R be a function and let A + t = {a + t|a ∈ A}; for
t ∈ R we define f + t : A + t → B by (f + t)(t′) = f(t′ − t), with t′ ∈ A + t.

3. Let σ be a trajectory. We write dom(σ) for the domain of σ, σ.lval for the
last valuation of σ, and σ.ltime for the maximum of the domain of σ. Note
that σ.lval = σ(σ.ltime).

4. If f is a function on a closed interval, then We write f.fval for the first
valuation of f and we write f.ftime for the minimum of the domain of f .

5. Let σ be a trajectory on variables V ; for V ′ ⊆ V we define σ restricted to V ′,
denoted by σ ↓ V ′, as the function σ ↓ V ′ : D→ V al(V ′) defined by σ ↓ V ′(t) =
σ(t)dV ′ for t ∈ D.

6. Let σ and σ′ be trajectories. The concatenation of σ and σ′ (denoted by σ a σ′)
is defined as:

σ a σ′ = σ ∪ (σ′ + σ.ltime).

7. Let σ be a trajectory defined over an interval (0, t], with t > 0 and let t′ ∈ R>0

with t′ ≤ t; then:
σ E t′ = σd(0, t′];
σ D t′ = (σd(t′, t])− t′.



2.1 Transition Systems 15

8. Let σ and σ′ be two trajectories; then σ is a prefix of σ′, denoted by σ ≤ σ′,
if there exists a t ∈ R>0 such that σ = σ′ E t. We write σ < σ′ if σ ≤ σ′ and
σ 6= σ′.

A hybrid transition system is a labeled transition system with action labels and
trajectory labels.

Definition 2.15. A hybrid transition system (HTS) H= (S,s0,L,→) is an LTS with
the set of labels L partitioned into a set of action labels A and a set of trajectories
Σ: L = Aτ ]Σ. For the set of trajectories Σ we impose that σ1 a σ2 ∈ Σ if and only
if σ1 ∈ Σ and σ2 ∈ Σ.

To make the distinction between discrete-event transitions and continuous transi-
tions clearer, we write s

σ
; s′ for a transition with a trajectory label instead of

s
σ→ s′. In case a label l does not fit syntactically above a continuous transition, we

write s
l∼∼∼; s′ instead of s

l
; s′.

Like for TLTSs, an additivity condition and a determinism condition are imposed
on HTSs. A null delay condition is not needed because trajectories always have a
left-open domain.

• A1 (trajectory additivity): for all σ, σ′ ∈ Σ and s, s′′ ∈ S, s
σ′a σ′′∼∼∼; s′′ if

and only if there exists an s′ ∈ S such that: s
σ′
; s′ and s′ σ′′

; s′′ .

• A2 (trajectory determinism): for all σ ∈ Σ and s, s′, s′′ ∈ S, if s
σ
; s′ and

s
σ
; s′′ then s′ = s′′.

Constraint A1 is necessary for the conformance theory. Otherwise, an implementa-
tion that first performs a trajectory for 2 seconds followed by performing a trajectory
for 3 seconds is not conform a specification that performs the same flow of continuous
variables for 5 seconds.

For a HTS H with the set of trajectories Σ defined on a set of variables V , V is
always partitioned into a set of input variables VI , and a set of output variables VO.
A HTS (with L = Aτ ] Σ) is input enabled if it allows every input action at every
moment in time and every flow of input variables at every moment in time.

Definition 2.16. A HTS H is input enabled if:

• for every s ∈ S and i ∈ AI , s
i⇒; and

• for every s ∈ S:

1. there exists an action a ∈ AO ∪ {τ} such that s
a→ and there does not

exist a σ ∈ Σ such that s
σ
;; or

2. for every u ∈ trajs(VI) there exists a σ ∈ Σ with σ ↓ VI ≤ u and:

(a) σ ↓ VI = u and there exists an s′ ∈ S: s
σ
; s′; or
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(b) σ ↓ VI < u and there exists an action a ∈ AO ∪ {τ} and s′ ∈ S such
that: s

σ
; s′ a→.

This definition is adapted from the definition of input enabledness as it was de-
fined by Lynch, Segala and Vaandrager [34] for hybrid input-output automata. It
states that in every state all input actions have to be allowed, possibly preceded
by internal actions. In addition, in every state either no trajectories are allowed
or it allows every continuous behavior for the input variables, possibly interrupted
by an output action or an internal action. The interruption does not disturb the
input enabledness because after a sequence of interrupts also every continuous input
is accepted, including the suffix of the interrupted continuous input. An interrupt
by output action or internal action does not disturb the input enabledness, since
these actions do not take time and after the interrupt, again all continuous input is
allowed, including the remainder of the interrupted continuous input.

Like for LTSs and TLTSs it will be convenient to introduce process algebraic notation
for HTSs. The definitions of synchronous composition and prefixing an HTS with
an action are the same as for LTSs. The definitions for prefixing a HTS with a
trajectory and the alternative composition of a set of HTSs need to be reconsidered
for HTSs because the constraints A1 and A2 need to be maintained. If a HTS
H is prefixed by a trajectory σ, then the resulting HTS, denoted by σ;H, first
behaves according to the trajectory σ and after that behaves like H. If a set of
HTSs HS is alternatively composed, then the resulting HTS, denoted by

∑HS,
models the choice to perform one of the HTSs in HS. The resulting HTS may be
non-deterministic in the actions but is trajectory deterministic. This means that
the final choice is only made at the moment that the first action is performed.

Definition 2.17. Let σ be a trajectory, let r = σ.ltime, and let H= (S,s0,Aτ ∪Σ,→
∪;) be a HTS. Then σ;H, the HTS that results from prefixing H with the trajectory
σ, is defined by

σ;H = (S ] S′, sr, L
′,→∪; ∪;′) ,

where
S′ = {sr′ | r ≥ r′ > 0},

and
L′ = Aτ ∪ Σ ∪ {σ|(σ D (r − r′)) E (r′ − r′′) ∧ r ≥ r′ > r′′ ≥ 0} ∪

{σ|(σ D (r − r′)) a σ′ ∧ r ≥ r′ > 0}
and

;′ = {(sr′ , (σ D (r − r′)) E (r′ − r′′), sr′′) | r ≥ r′ > r′′ ≥ 0 ∧ sr′ , sr′′ ∈ S′}
∪ {(sr′ , (σ D (r − r′)) a σ′, s′) | r ≥ r′ > 0 ∧ s0

σ′
; s′ ∧ sr′ ∈ S′}.

(It is assumed in the definition that sr′ = sr′′ implies r′ = r′′ for all r ≥ r′, r′′ > 0.)

Definition 2.18. Let HS = {Hi | i ∈ I} with Hi = (Si, s0i, Li ∪ {τ},→i ∪;i) be
a set of hybrid transition systems. We define the summation

∑HS by
∑

HS = (
⋃

i∈I

Si ] S′ ] {s0}, s0,
⋃

i∈I

Li ∪ {τ},
⋃

i∈I

→i ∪→′ ∪
⋃

i∈I

;i ∪;′),
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where
S′ = {sσ | σ a trajectory s.t. s0i

σ
; for some i ∈ I},

→′= {(s0, a, s′) | ∃i ∈ I. s0i
a→i s′} ∪ {(sσ, a, s′) | ∃i ∈ I, s′′. s0i

σ
;i s′′ a→i s′},

and

;′= {(s0, σ, sσ) | sσ ∈ S′} ∪ {(sσ, σ′′, sσ′) | sσ, sσ′ ∈ S′ ∧ σ a σ′′ = σ′}.

Furthermore, we write H0 +H1 instead of
∑{H0,H1}.

2.2 Automata

To illustrate the principles of input-output conformance testing in the case of timed
systems and hybrid systems it is often convenient to use automata instead of tran-
sition systems. The reason is that automata are easier to represent graphically. In
this section we define the syntax and hybrid transition system semantics of hybrid
automata [23]. For us, timed automata [8] are hybrid automata in which all the
variables have constant flow 1.

Definition 2.19. A hybrid automaton HA is a tuple (Loc, (l0, v0), V,Aτ ,→, I, F ) ,
where:

• Loc is a finite set of locations;

• l0 is the initial location and v0 is the initial valuation of variables, together
they form the initial state;

• V is the set of variables; by V̇ we denote the set of dotted variables of V , which
represent the first derivatives during continuous change of the variables in V ;

• Aτ is a set of action labels, including the internal action τ ;

• →⊆ Loc× B(V ∪ V̇ )×A× PV al(V )× Loc is the set of switches where:

– B(V ) is a set of boolean constraints on variables and dotted variables that
serve as guards to the switches; and

– PV al(V ) =
⋃

V ′⊆V V al(V ′) is the set of variable assignments, also called
resets, that assign a value to (a subset of) the variables V ;

• I : Loc→ B(V ) is a function that assigns constraints on variables to locations
that serve as invariants for the locations.

• F : Loc → B(V ∪ V̇ ) is a function that assigns constraints to locations that
describe the continuous behavior in the location.
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We write l
g,a,r−→ l′ for (l, g, a, r, l′) ∈→.

We assume that F does not allow continuous behavior that does not satisfy axioms
A1 and A2 on HTSs. If, for all l ∈Loc, F (l) is a set of ordinary differential equations
and piecewise differential equations, like in the examples in this thesis, this is the
case.

Before we can define the HTS associated with a HA we need to define two operators.
First, we need to denote that a valuation satisfies an invariant in a location or a
guard of a switch. Second, we need to define setting a subset of variables of a
valuation with the variable assignment on a switch.

Definition 2.20. Let HA = (Loc, (l0, v0), V, Aτ ,→, I, F ) be a hybrid automaton.

• Let u ∈ V al(V ) be a valuation on variables V and let l ∈ Loc be a location,
then u ∈ I(l) denotes that the invariant I(l) holds for u and u ∈ g denotes that
the guard g holds for u.

• Let u ∈ V al(V ) be a valuation on variables V and let r ∈ PV al(V ) be a reset
on a set of variables V ′ ⊆ V . Then by u/r we denote the valuation that behaves
as r on V ′ and as u outside V ′, i.e.

u′(v) =
{

r(v) , if v ∈ V ′; and
u(v) , otherwise.

Henzinger [23] defined a timed transition system semantics for hybrid automata.
We define a hybrid transition system semantics for hybrid automata. The difference
with transition system semantics for hybrid automata as defined by Henzinger is
that in his definition, the (continuous) transitions are labeled with the durations of
trajectories while we use trajectories as labels.

A hybrid automaton is defined as a hybrid transition system in which:

• the set of states consists of pairs of locations of the automaton and valuations
of variables;

• the initial state is a pair that consists of the initial location of the automaton
and the initial valuation of the variables;

• the set of trajectories consists of all flows that, for each location of the au-
tomaton, behave according to the flow conditions and the invariants;

• the set of transitions on actions consists of all transitions between states with
a different location, for which the set of valuations of start state satisfy the
guards of a switch in the automaton, and the set of valuations have a new
value in accordance with the reset defined for the switch; and

• the set of transitions on trajectories consists of all flows of each location, from
(but not including) the start valuation to the end valuation.
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Definition 2.21. A hybrid automation HA = (Loc, (l0, v0), V, Aτ ,→, I, F ) defines
the hybrid transition system H = (Loc× V al(V ), (l0, u0), Aτ ∪ ΣF ,→∪;) where:

• Σ is the set of all left-open right-closed trajectories for which there exists an
l∈L such that for all σ ∈Σ, σ satisfies F (l) and, for all t∈ dom(σ), σ(t)∈ I(l).

• → =

{(l, u) a→ (l′, u′)|l g,a,r−→ l′ ∧ u ∈ g ∧ u ∈ I(l) ∧ u′ = u/r ∧ u′ ∈ I(l′)};

and

• ; =

{(l, u) σ
; (l, u′)|l ∈ Loc ∧ ∃f∈ΣF

: u = f.fval ∧ u′ = f.lval∧
dom(σ) = (0, f.ltime] ∧ ∀t∈dom(σ) : σ(t) = f(f.ftime + t)}

where, ΣF is the set of all trajectories on a closed interval such that, for all
f ∈ ΣF , f satisfies F (l) and, for all t ∈ dom(f), f(t) ∈ I(l).

2.3 Example Models

The input-output conformance theories presented in this thesis are illustrated by
labeled transition systems, fragments of hybrid transition systems, timed automata
and hybrid automata. For all of these models we use a graphical notation. In this
section we informally describe how to interpret these examples.
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Figure 2.1: An example LTS, HTS, TA, and HA

The LTS in Figure 2.1 models a coffee machine that can receive coins and returns
coffee or tea. After a coffee or tea is returned a new coin can be inserted. It has
two states s0 and s1. The initial state is s0, which is indicated by the arrow on top.
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The action ?Coin is considered an input action; this is indicated by the question
mark. The action !Coffee and the action !Tea are output actions; this is indicated
by the exclamation mark. The transitions are (s0, ?Coin, s1), (s1, !Coffee, s0), and
(s1, !Tea, s0).

The HTS fragment in Figure 2.1 models two states s0 and s1. This is only a fragment
of an HTS because it does not satisfy the constraints A1 and A2 which we posed
on HTSs. It has one output action and the discrete-event transition (s0, !a1, s1). It
has one trajectory σ1 and the continuous transition (s1, σ1, s1).

The TA in Figure 2.1 also models a coffee machine. It can receive a coin at any
time after which it returns a coffee after a minimum waiting time of 1 second but
within 5 seconds. After that a new coin can be inserted. It has two locations l0
and l1. The location l0 is the initial location, which is indicated by the arrow on
top. The variable T is called a clock variable. Initially, T is set to 0. In a timed
automaton the flow rate of the clock variables are not depicted (because they are
always 1). The location invariant of l0 is T ≥ 0. This means the automaton can stay
forever in this location. The guards of the discrete-event transitions are depicted
within square brackets. If the guard is omitted, then the guard is assumed to be
[true]. The transition (l0, T ≥ 0, ?Coin, T := 0, l′) can be taken at any time and
when this transition is taken the clock T is reset to 0. If the reset is omitted, then
all variables have the same valuation after the transition as before the transition.
The invariant of l1 is 0 ≤ T ≤ 5 which means that the automaton in this example
can stay in this location for a maximum of 5 time units (since the clock variable T
was reset to value 0. The guard on the transition (l0, 1 ≤ T ≤ 5, !Coffee, T := 0, l′)
indicates that this transition has to take place within 5 time units as well. Note
that if both the invariant and the guard of the outgoing transition of a TA are false,
or if the invariant of the location after the transition is false, then time stops and
the automaton deadlocks.

The HA in Figure 2.1 models a thermostat. The variable iTMP models the tem-
perature input of the thermostat. We indicate that a variables models continuous
input by prefixing the the name of the variable by an ‘i’ and we indicate that a
variable models continuous output by prefixing the the name of the variable by an
‘o’ respectively. This thermostat keeps the temperature of a room between 15 oC
and 20 oC. The initial location is l0, which is indicated by the arrow on top of the
location. Initially the room is assumed to have a temperature of 15 oC. In loca-
tion l0 the heater is on and the thermostat accepts temperature increase between
0 oC and 1 oC per unit of time. Note that therefore this automaton is not input
enabled. With a different temperature change it deadlocks. The location invariant
is iTMP≤ 20, which means that the heater needs to be turned off by the time that
the temperature reaches 20 oC. The heater can be turned off by the transition to
l1 which is allowed by the guard if the temperature exceeds 18 oC. If the heater
is off, then the thermostat accepts temperature decrease between −1 oC and 0 oC
per unit of time. If the decreasing temperature goes below 17 oC the heater may
be turned on again by performing the transition with the label !HeaterON.



3

Discrete-event and Timed
Input-output Conformance and

Tests

The hybrid input-output conformance theory described in this thesis is based on
existing conformance theories. It is based on the discrete-event input-output con-
formance theory by Tretmans [48], the timed input-output conformance theory by
Brandán-Briones and Brinksma [12], and the timed input-output conformance the-
ory by Krichen and Tripakis [30]. This chapter explains those theories in order to
give insight in the issues involved in forming an input-output conformance relation
and a notion of tests, and to relate hybrid input-output conformance and tests to
these theories later on.

3.1 Discrete-event Input-output Conformance and Tests

In conformance testing, tests are derived from a specification and if all tests lead
to the verdict pass, then the implementation conforms to the specification. The
implementation is assumed to be input enabled. This is a reasonable assumption
because it should be possible to test the reaction of the implementation on any input
at any moment in time. The specification does not need to be input enabled. This
allows to test the reaction of the implementation for only part of its behavior.

Tretmans [48] has given a formalization of what conformance between a specification
and an implementation means and he has given a formalization of tests. In his
theory, both the implementation and the specification are viewed as LTSs. Tretmans
defines that an input enabled implementation conforms to a specification if after
every trace of input actions and output actions of the specification, the output
actions allowed by the implementation form a subset of the output actions allowed
by the specification. This exactly means that if the implementation can perform an
output action that is not specified, then the implementation does not conform to
the specification.

Example 3.1. Figure 3.1 depicts a specification and two implementations of a coffee
machine in the form of labeled transition systems. These implementations are input

21
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enabled with respect to inserting a coin, since in every state they accept the coin.
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Figure 3.1: An example coffee machine

The specification of the coffee machine repetitively accepts a coin and produces a
coffee or a tea. Implementation 1 repetitively accepts one or more coins and produces
a coffee. Implementation 2 repetitively accepts one or more coins and produces a
coffee or an espresso.

Implementation 1 conforms to the specification. According to the specification it
is allowed that after one coin is inserted, a coffee can be produced. It does not matter
that Implementation 1 cannot produce tea while according to the specification it
is allowed. Implementation 2 does not conform to the specification. According
to the specification it is not allowed that after one coin is inserted, an espresso is
produced.

Example 3.2. Figure 3.2 depicts three more implementations of a coffee machine.

Figure 3.2: Examples where quiescence matters

Implementation 3 is a coffee machine that accepts coins but never produces coffee.
Implementation 4 is a coffee machine that after receiving a coin may produce a
coffee, but it can reach a state in which no coffee can be produced anymore, e.g. be-
cause it ran out of cups. Implementation 5 is a coffee machine that after receiving
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a coin may produce a coffee, but sometimes multiple coins need to be inserted before
a coffee can be produced, e.g. because the first coin got stuck inside the machine.

These three machines clearly should not be considered correct with respect to the
specification. In these implementations a state is reached in which no output is
allowed while according to the specification an output has to be allowed. However,
according to the informal notion of conformance as described above these three
implementations conform to the specification of Figure 3.1.

For this reason, Tretmans introduced the notion of quiescence. A quiescent state is
a state in which no output action or internal action is possible and is never possible
without providing input first.

Definition 3.3. Let L = (S, s0, Aτ ,→) be an LTS, then a state s ∈ S is quiescent,
denoted by δ(s), if for all µ ∈ AO ∪ {τ}: s

µ9.
From now on Aδ denotes a set of actions A including quiescence: Aδ = A ∪ {δ}.
Taking into account quiescence as an output, the three implementations in Figure 3.2
do not conform to the specification of Figure 3.1. In Implementation 3, the state s1 is
a quiescent state. Therefore, after a coin is inserted quiescence is produced, which is
not a subset of coffee and tea as prescribed by the specification. In Implementation
4, the state s2 is a quiescent state. After a coin is inserted either quiescence or
coffee are produced, which is also not a subset of coffee and tea as prescribed by the
specification. In Implementation 5, the state s0 is a quiescent state. After a coin
is inserted either quiescence or coffee are produced, which again is not a subset of
coffee and tea as prescribed by the specification.

Quiescence is viewed as observable output behavior of the implementation and the
specification. Originally, Tretmans explicitly added quiescence to the specification
and the implementation. Alternatively, quiescence can be added in the traces.
Frantzen, Willemse and Tretmans chose this approach in [17].

A trace with quiescence labels added is called a suspension trace. In order to define
the set of suspension traces, a new generalized transition relation is defined.

Definition 3.4. Let L = (S, s0, L ∪ {τ},→) be an LTS and let s, s′, s′′ ∈ S be
states. The generalized transition relation with quiescence is the least relation ⇒δ⊆
S × (L ∪ {δ})∗ × S such that:

• for all α ∈ L∗, if s
α⇒ s′, then s

α⇒δ s′;

• if δ(s), then s
δ⇒δ s; and

• for all α, β ∈ (L ∪ {δ})∗,if s
α⇒δ s′ and s′

β⇒δ s′′, then s
αβ⇒δ s′′.

From now on, s
α⇒δ denotes that there is a state s′ such that s

α⇒δ s′.

Definition 3.5. Let L = (S, s0, Aτ ,→) be an LTS. The set of suspension traces
including quiescence, denoted by Straces(L) is defined by: Straces(L) = {α|s0

α⇒δ}
For the conformance relation, we can now define the set of output actions allowed
after a sequence of labels, including quiescence as an output.
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Definition 3.6. Let L = (S, s0, Aτ ,→) be an LTS and let s ∈ S be a state. Then,
the set of states that is reachable by a sequence of labels α ∈ A ∪ ∪{δ}∗, denoted by
s after α, is defined as:

s after α = {s′|s α⇒δ s′}.
For C ⊆ S, we write C after α for

⋃
s∈C s after α.

Definition 3.7. Let L = (S, s0, Aτ ,→) be an LTS and let s ∈ S be a state. Then,
the set of output actions including quiescence allowed by s, denoted by out(s), is
defined as:

out(s) =
{{δ} if δ(s); and
{o ∈ AO|s o→} otherwise.

For C ⊆ S, we write out(C) for
⋃

s∈C out(s).

These definitions make it possible to formalize the notion of conformance between
an implementation and a specification.

Definition 3.8. Let I = (I, i0, Aτ ,→i) be an input-enabled LTS and let S =
(S,s0,Aτ ,→s) be an LTS. Then, I is input output conform S, denoted by I ioco S,
iff for all α ∈ Straces(S):

out(I after α) ⊆ out(S after α).

A test describes which input actions should be applied to the implementation and
which output actions may be observed from the implementation. An output action
leads to a verdict fail if the output action was not allowed according to the specifi-
cation. If no output action is observed, while according to the specification it should
be observed, then observing quiescence δ leads to the verdict fail. As long as the
verdict fail is not given, a test can terminate with the verdict pass.

According to Tretmans, a test T C = (T ∪ {pass, fail}, t0, Aδ,→T C) is a labeled
transition system with a tree-like structure and pass or fail verdicts as leaves. A
test is deterministic. A test has finite behavior, which means it does not allow
infinite sequences of transitions. The states pass and fail are also called terminal
states. These are states with no outgoing transitions. That is, for all µ ∈ Aδ,
pass

µ9T C and fail
µ9T C .

Example 3.9. Figure 3.3 shows two tests derived from the specification of Figure
3.1. Test 1 consists of inserting a coin and concluding the verdict pass if a coffee
or a tea is produced. If no coffee or tea is produced, which means that quiescence is
observed, then the tests leads to the verdict fail. Test 2 is a longer test that shows
that if after inserting a coin an acceptable output is observed, then the test can
continue. In this test, after a coffee is produced the test continues. Since according
to the specification, before a new coin is inserted no coffee or tea should be produced,
the only output allowed before inserting a coin is quiescence. After quiescence is
observed, a new coin can be inserted and if coffee or tea is produced Test 2 concludes
the verdict pass.
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Figure 3.3: Example Test-cases

The set of all tests that can be derived from a specification is defined inductively.
Note that in Definition 3.10 pass denotes the LTS ({pass}, pass, ∅, ∅) and fail
denotes the LTS ({fail}, fail, ∅, ∅).
Definition 3.10. Let S = (S, s0, Aτ ,→) be a specification. Let C ⊆ S be a non-
empty set of states of S; then the largest set of tests that can be derived from the
specification S starting from the set of states C, denoted by Tests(C), is inductively
defined as:

1. pass is an element of Tests(C);

2. if i ∈ AI and C after i 6= ∅ and T C′ ∈ Tests(C after i), then i; T C′ is an
element of Tests(C); and

3. if, for all µ ∈ out(C), T Cµ ∈ Tests(C after µ), then
∑{µ; T Cµ|µ ∈ out(C)} +∑{µ; fail|µ ∈ (AO ∪ {δ}) \ out(C)}
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is an element of Tests(C).

From now on Tests(S) denotes the set of all tests that can be derived from S starting
from the initial state: Tests(S) = Tests({s0 after ε}).
Test execution is defined by the synchronous composition of an implementation
and a test. In our definition of tests, a test contains quiescence transitions. An
implementation does not contain quiescence transitions. Therefore, we need a new
definition of the synchronous composition of a test including quiescence transitions,
and an implementation without quiescence transitions.

Definition 3.11. Let T C = (T, t0, Aδ,→T C) be a test case and I = (S, s0, Aτ ,→)
be an implementation, then the synchronous composition of T C and I, denoted by
T C ‖δ I, is defined by:

T C ‖δ I = (T × S, (t0, s0), Aτδ,→′),

where

→′ = {(t, s), µ, (t′, s′))|∃µ∈A,t,t′∈T,s,s′∈S : t
µ→T C t′ ∧ s

µ→ s′} ∪
{((t, s), τ, (t, s′))|∃t∈T,s,s′∈S : s

τ→ s′} ∪
{((t, s), δ, (t′, s))|∃t,t′∈T,s∈S : t

δ→T C t′ ∧ δ(s)}.

We call a suspension trace of T C ‖δ I leading to a verdict pass or fail a test run
of T C ‖δ I. An implementation I passes a test T C if all test runs lead to a verdict
pass. An implementation passes all tests of a specification S if all test runs of all
tests Tests(S) lead to the verdict pass.

Definition 3.12. Let T C = (T, t0, Aδ,→t) be a test and let I = (S, s0, Aτ ,→) be
an implementation. Then,

• the set of all test runs of T C ‖δ I, denoted by testruns(T C ‖δ I), is defined
as:

testruns(T C ‖δ I) = {α|∃s′∈S : (t0, s0)
α⇒δ (pass, s′) ∨ (t0, s0)

α⇒δ (fail, s′)}

• I passes T C, denoted by I passes T C iff, for all α ∈ testruns(T C ‖δ I), there
exists an s′ ∈ S such that:

(t0, s0)
α⇒δ (pass, s′).

• I passes all tests of a specification S, denoted by I passes Tests(S) iff, for
all T C ∈ Tests(S): I passes T C.

This notion of test is sound in the sense that a correct implementation passes all
tests Tests(S) that can be derived from the specification S. The notion of tests is
exhaustive in the sense that for an implementation I that does not conform to a
specification S, denoted by I ioco/ S there exists a test in T C ∈ Tests(S) that may
lead to the verdict fail, denoted by I passes/ T C.
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Theorem 3.13. If I ioco S then for all T C ∈ Tests(S): I passes T C (soundness
of ioco).

Sketch of proof. The proof is by contraposition. Let I = (S, s0, Aτ ,→) be an im-
plementation and let S be a specification. Theorem 3.13 can be reformulated as: if
I ioco S then there does not exist a T C ∈ Tests(S) such that there exists a suspen-
sion trace α ∈ testruns(T C ‖δ I) that leads to the verdict fail. Then, we suppose
that T C = (T ∪ {pass, fail}, t0,Aδ,→T C) is a test generated from S for which there
is a test run α ∈ testruns(T C ‖δ I) and an s′ ∈ S such that (t0, s0)

α⇒ (fail, s′).
According to the definition of a test, a suspension trace can only lead to the ver-
dict fail if there is a µ ∈ Ao ∪ {δ} and a suspension trace α′ such that α = α′µ
and µ ∈ out(I after α′) and µ /∈ out(S after α′). Immediately it follows that
out(I after α′) * out(S after α′) and therefore I does not conform to S which
disproves the contraposition.

Theorem 3.14. If I ioco/ S then there is a T C ∈ Tests(S): I passes/ T C (exhaus-
tiveness of ioco).

Sketch of proof. Let I = (S, s0, Aτ ,→) be an implementation and let S be a spec-
ification such that I ioco/ T C. Let αµ be a test run such that µ ∈ AO ∪ {δ} and
µ /∈ out(S after α) and µ ∈ out(I after α). We inductively define a test that leads
to the verdict fail for suspension trace αµ.

• Suppose α = ε then the test
∑{µ;pass|µ ∈ out(C)} +∑{µ′; fail|µ′ /∈ (AO ∪ {δ}) \ out(C)}} .

leads to the verdict fail for suspension trace α = µ.

• Suppose α = να′, with ν ∈ Aδ and α′ 6= ε. Suppose there exists a test T C ∈
Tests(CS after ν) that leads to verdict fail for α′ (the induction hypothesis).

– Suppose α = iα′ then the test i;T C leads to the verdict fail for suspension
trace α;

– Suppose α = oα′, then the test

o; T C +∑{µ;pass|µ ∈ out(C) \ {o}} +∑{µ′; fail|µ′ /∈ (AO ∪ {δ}) \ out(C)}} ;

leads to the verdict fail for suspension trace α.
– Suppose α = δα′ then the test

δ; T C +∑{o;pass|o ∈ out(C) \ {δ}} +∑{o′; fail|o′ /∈ AO \ out(C)}} ; and

leads to the verdict fail for suspension trace α.
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3.2 Timed Input-output Conformance and Tests

Besides input actions and output actions, a system may also have timing require-
ments that are to be tested. E.g. a coffee machine may have to produce a coffee
within 5 seconds after a coin has been inserted. Tretmans did not define when a
timed implementation is conform a timed specification and what are timed tests.

Therefore, based on Tretmans’s discrete-event input-output conformance relation
and notion of test, Brandán-Briones and Brinksma [12], and Krichen and Tri-
pakis [30], and Larsen et al. [33] each developed a timed input-output conformance
relation and notion of test. The relation of Larsen turned out to be the same as
the relation of Krichen and Tripakis. In this section we discuss both distinctive
input-output conformance relations and notions of tests are discussed. Krichen and
Tripakis did not formalize their theory in the style used by Tretmans and the style
used in this thesis. To show the difference between both timed notions of tests
and for comparison with hybrid tests later on, we define a timed input-output con-
formance relation and tests in our style, closely related to the theory defined by
Krichen and Tripakis.

Brandán-Briones and Brinksma [12] have defined a conformance relation and tests
with a quiescence action. A state in a timed labeled transition system is quiescent
if from that state no output is possible within a limited amount of time. A timed
implementation is timed input-output conform a timed specification if for all reach-
able states, the set of output actions allowed by the implementation is a subset of
all the output actions allowed by the specification. Quiescence is included in the set
of outputs.

Krichen and Tripakis [30] defined a conformance relation without quiescence. In
their relation, time is viewed as output of the implementation. An implementation
is input-output conform a specification if, in every reachable state, the set of output
actions allowed by the implementation is a subset of the output actions allowed
by the specification and, in every reachable state, the time allowed to pass in the
implementation is a subset of the time allowed to pass in the specification.
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Figure 3.4: Examples of Timed Input-output Conformance
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Example 3.15. Figure 3.4 depicts two timed automata. In Model 1 repeatedly a
coin can be inserted after which a coffee is produced within 5 seconds. In Model 2
repeatedly a coin can be inserted after which a coffee is produced within 6 seconds.
Both models are considered input enabled. After a coin has been inserted another
coin can be inserted, without any effect. Model 1 does conform to Model 2 accord-
ing to both timed conformance relations. At any time that a coffee can be produced
in Model 1, it can be produced in Model 2 as well. However, Model 2 does not
conform to Model 1 according to both timed conformance relations. After inserting
a coin, in Model 2, a coffee can be produced after more than 5 seconds while in
Model 1 a coffee cannot be produced after more than 5 seconds.

3.2.1 Timed Conformance with Quiescence

Brandán-Briones and Brinksma [12] view both the implementation and the specifi-
cation as timed labeled transition systems.

In practice, quiescence cannot be observed because it cannot be observed whether
an output action will never occur. Therefore, Brandán-Briones and Brinksma use a
parameter M that defines the time after which quiescence can be concluded. They
prove that if this M is chosen such that it is bigger than any delays before any
output action of the specification has to happen, then indeed quiescence may be
concluded after delay M . A state in a TLTS is M-quiescent if from that state no
output actions are allowed after time M has passed.

Definition 3.16. Let T = (S, s0, A ∪ {R≥0},→) be an TLTS, then a state s ∈ S
is M-quiescent, denoted by δM (s), if for all s′ ∈ (s after M), o ∈ AO and t ∈ R≥0:

s′
o(t); , in which o(t) denotes the sequence t o.

From now on, for an action µ ∈ A and a delay t ∈ R≥0 we always use the notation
µ(t) for the sequence tµ.

For the definition of timed conformance Brandán-Briones and Brinksma only con-
sider normalized timed suspension traces. These are suspension traces without con-
secutive delays. They prove that this set of traces characterizes the set of all traces
in a TLTS and therefore this suffices to conclude conformance. In order to define
the set of normalized timed suspension traces we need to redefine the generalized
transition relation with quiescence of Tretmans [17]. (see Definition 3.4).

Definition 3.17. Let T = (S, s0, Aτ ∪ R≥0,→) be a TLTS and let s, s′, s′′ ∈ S be
states. The generalized transition relation with M-quiescence is the least relation
⇒δM

⊆ S × (Aτ ∪ R≥0 ∪ {δ})∗ × S such that:

• for all α ∈ (A ∪ R≥0)∗, if s
α⇒ s′, then s

α⇒δM
s′;

• if δM (s), then s
δ(M)⇒ δM

s; and

• for all α, β ∈ (A ∪ R≥0 ∪ {δ})∗,if s
α⇒δM s′ and s′

β⇒δM s′′, then s
αβ⇒δM s′′.



30 Chapter 3 Discrete-event and Timed Input-output Conf. and Tests

The set of normalized timed suspension traces with M-quiescence is then defined as
the set of traces consisting of an alternating sequence of time labels and actions,
ending with either an action label or a time label, with an action label only after
a time label smaller than M and a quiescence label only after time label M . Note
that in a normalized trace, a sequence of two consecutive actions a1 and a2 (without
delay in between) is the sequence a10a2.

Definition 3.18. Let T = (S, s0,Aτ ∪R≥0,→) be a TLTS and let s ∈ S be a state.
Let D denote the left-closed right open interval [0, M); then the set of normalized
suspension traces, with quiescence only after delay M denoted by ntStracesM (T ),
is defined as:

ntStracesM (T ) = {α ∈ (D A + M δ)∗.(ε + D)|s0
α⇒δM

}

.

In order to define the timed conformance relation we redefine the set of reach-
able states after a trace α, using the timed generalized transition relation with
M-quiescence and we define the set of allowed output actions with M-quiescence.

Definition 3.19. Let T = (S, s0,Aτ ∪R≥0,→) be a TLTS and let s ∈ S be a state;
then

• s after α = {s′|s α⇒δM
s′} is the set of states that are reachable by trace α,

from state s;

• C after α =
⋃

s∈C s after α, with C ⊆ S.

• outM (s) = {µ(t)|µ ∈ AO ∧ 0 ≤ t < M ∧ s
µ(t)⇒} ∪ {δ(M)|δM (s)} is the set of

output actions from a state s; and

• outM (C) =
⋃

s∈C outM (s) with C ⊆ S.

Brandán-Briones and Brinksma [12] pose some additional restrictions on the specifi-
cation and the implementation. The implementation and specification are supposed
to be time divergent and strongly convergent. A TLTS is time divergent if for every
state there exists a trace with infinite cumulative delay. A TLTS is strongly con-
vergent if it does not have infinite traces of internal actions. These constraints are
posed to describe more realistic systems. Brandán-Briones and Brinksma also pose
that the implementation has no forced inputs. A TLTS has no forced inputs if for
every state there exists a trace without input actions and infinite cumulative delay.
I.e. time is always allowed to pass without requiring an input action first.

Time divergence and strong convergence are posed to describe more realistic sys-
tems. The constraint that an implementation has no force inputs is also necessary
for the correctness of the conformance relation. Otherwise, an implementation that
deadlocks on an input action incorrectly conforms to a specification that does not
provide this input action (but expects an output action or quiescence instead).
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Definition 3.20. Let I be an input-enabled TLTS. Let S be a TLTS. Then I is
timed input-output conform S (denoted by I tiocoM S) if and only if:

for all α ∈ ntStracesM (S): outM (I after α) ⊆ outM (S after α).

Similar to the notion of test by Tretmans, a test according to Brand’an-Briones
and Brinksma is a deterministic timed labeled transition system with a tree-like
structure and pass or fail verdicts as leaves. A timed test consists of input actions
to be applied at a specific time, and the output actions that can be observed at
every moment in time. Because in a timed test the input is selected to be applied
at a selected time (in the future) it can be the case that before the input is applied,
an output is observed. This has to be taken into account in a timed test. To
properly take care of M-quiescence, the delay before applying an input action is
chosen smaller than M and a test waits to observe an output action or quiescence
for at most delay M . If after time M no output is observed, a test can wait again
for time M to observe output or to conclude quiescence.

Definition 3.21. Let S = (S, s0, Aτ ∪ R≥0,→) be a specification and let C ⊆ S be
a non-empty set of states of S; then the set of tests that can be derived from the
specification S starting from the set of states C, denoted by tTests(C), is inductively
defined as:

1. pass is an element of tTests(C);

2. if i ∈AI , 0 < t < M , and C after i(t) 6= ∅ and T C′ ∈ Tests(C after i(t)) and,
for all o ∈ AO and t′ ≤ t and o(t′) ∈ outM (C), T Co(t′) ∈ Tests(C after o(t′)),
then

t; i; T C′ +∑{t′; o; T Co(t′)|o ∈ AO ∧ t′ ≤ t ∧ o(t′) ∈ outM (C)} +∑{t′; o′; fail|o′ ∈ AO ∧ t′ ≤ t ∧ o(t′) /∈ outM (C)}
is an element of tTests(C);

3. if, for all o ∈ AO and t′ < M and o(t′) ∈ outM (C), T Co(t′) ∈ Tests(C after
o(t′)), then

(a) if δ(M) /∈ outM (C), then
∑{t′; o; T Co(t′)|o ∈ AO ∧ t′ < M ∧ o(t′) ∈ outM (C)} +∑{t′; o′; fail|o′ ∈ AO ∧ t′ < M ∧ o(t′) /∈ outM (C)} +
M ; δ; fail

is an element of tTests(C); and
(b) if δ(M) ∈ outM (C) and T C′ ∈ tTests(C after Mδ), then

∑{t′; o; T Co(t′)|o ∈ AO ∧ t′ < M ∧ o(t′) ∈ outM (C)} +∑{t′; o′; fail|o′ ∈ AO ∧ t′ < M ∧ o(t′) /∈ outM (C)} +
M ; δ; T C′

is an element of tTests(C).
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The set of timed tests that can be derived from a specification S from its initial
state is then defined by: tTests(S) = tTests({s0}).
Brandán-Briones and Brinksma have proven that this notion of test is sound and
exhaustive with respect to the their timed input-output conformance relation. The
proofs are very similar to that of soundness and exhaustiveness in the theory of
Tretmans. Again, contraposition is used to prove soundness and a test is constructed
from a trace that leads to verdict fail to prove exhaustiveness. For simplicity reasons,
in both proofs normalized traces are used.

3.2.2 Timed Conformance without Quiescence

Krichen and Tripakis [30], and simultaneously Larsen et al. have define a timed
input-output conformance relation without the notion of quiescence. Instead, they
take the time that may elapse from the reachable states into account. If after a
trace, the time that may elapse in the implementation is larger than the the time
that may elapse in the specification, then the implementation is not conform the
specification. If the implementation is not conform the specification for this reason,
it means that the implementation could delay performing any output action while
according to the specification an output action must have occurred. In this way,
time is viewed as output of the implementation.

For this relation, we define the set of normalized timed traces. A normalized trace
is a trace without consecutive delays. E.g. for t1, t2 ∈ R≥0 and a1, a2 ∈ A, the traces
t1a1t2a2, t1a1a2t2 and a1t1a2t2 are normalized traces. Because of the constraints
C1, C2, and C3, which we posed on TLTSs, the set of normalized traces charac-
terizes all traces. Krichen and Tripakis do not use normalized traces. We do this to
simplify the soundness and exhaustivemess proofs for our formal notion of test based
on the test generation procedure algorithm of Krichen and Tripakis. First, we define
a generalized transition relation for normalized timed traces. In this definition, a
long arrow is simply used to fit the label above the generalized transition.

Definition 3.22. Let T = (S, s0, Aτ ∪ R≥0,→) be a TLTS. Let s, s′, s′′ ∈ S be
states. The generalized transition relation for normalized timed traces, denoted by
⇒nt ⊆ S × (A ∪ R≥0)∗ × S, is defined as:

• if s
ε⇒ s, then s

ε⇒nt s′;

• for all a ∈ A, if s
a⇒ s′, then s

a⇒nt s′;

• for all t ∈ R≥0, if s
t⇒ s′, then s

t⇒nt s′;

• for all α,β ∈ (A∪R≥0)∗ and µ ∈A , if s
αµ⇒nt s′ and s′

β⇒nt s′′, then s
αµβ⇒ nt s′′;

• for all α,β ∈ (A∪R≥0)∗ and µ ∈A , if s
α⇒nt s′ and s′

µβ⇒nt s′′, then s
αµβ⇒ nt s′′;

and

• for all α, β ∈ (A ∪ R≥0)∗ and t1, t2 ∈ R≥0, if s
αt1⇒nt s′ and s′

t2β⇒nt s′′, then

s
α t1+t2 β
===⇒ nt s′′.
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Definition 3.23. Let T = (S, s0,Aτ ∪R≥0,→) be a TLTS; then the set of normal-
ized timed traces denoted by nttraces(T ), is defined as:

nttraces(T ) = {α|s0
α⇒nt}

.

In order to define timed conformance according to Krichen and Tripakis, the set of
reachable states after a trace α and the set of allowed output actions is defined as
follows. Note that in Definition 3.24 we use the generalized transition relation of
Definition 2.2.

Definition 3.24. Let T = (S, s0,Aτ ∪R≥0,→) be a timed transition system and let
s ∈ S be a state. Let α ∈ (A ∪ R≥0)∗. Then:

• s after α = {s′|s α⇒ s′} is the set of states that are reachable by α, from state
s;

• C after α =
⋃

s∈C s after α, with C ⊆ S;

• elapse(s) = {t > 0|s t⇒} denotes the time that is allowed to pass from state s

• out(s) = {o|o ∈ AO ∧ s
o⇒}∪ elapse(s) denotes the set of all possible outputs

from state s; and

• out(C) =
⋃

s∈C out(s) with C ⊆ S.

Now the set of output contains only the set of output actions that are allowed
without delay, and the set of all possible delays.

Definition 3.25. Let I be an input-enabled TLTS. Let S be a TLTS. Then I is
timed input-output conform S (denoted by I tioco S) iff

for all α ∈ nttraces(S): out(I after α) ⊆ out(S after α).

Krichen and Tripakis only give an informal description of their tests. According
to their test generation algorithm, a test is either selecting an input action (to be
applied immediately), or waiting for an output action for a selected amount of time.
If during the waiting period an output action is observed and the output action is
allowed according to the specification, the test may continue. If during the waiting
period an output action is observed that is not allowed according to the specification,
then the verdict fail is given and testing stops. If the waiting period ends without
observing any output, but the specification allows more delay, testing may continue.
If according to the specification no more waiting is allowed and an output action
must occur, but the implementation does not produce this output, then the verdict
fail is given.
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Definition 3.26. Let S = (S, s0, Aτ ∪ R≥0,→) be a specification and let C ⊆ S be
a non-empty set of states; then the set of timed tests that can be derived from the
specification S from the set of states C, denoted by tTests(C), is inductively defined
as follows:

1. pass is an element of tTests(C);

2. if i ∈ AI and C after i 6= ∅ and T C′ ∈ Tests(C after i), then i; T C′ is an
element of tTests(C);

3. let t ∈ R>0, and for all o ∈ out(C), T Co ∈ tTests(C after o); and for all
0 < t′ < t and o ∈ out(C after t′),
T Co(t′) ∈ tTests(C after t′ o); and T Ct ∈ tTests(C after t), then

(a) if t ∈ out(C) then
∑{o; T Co|o ∈ AO ∩ out(C after o)} +∑{o; fail|o ∈ AO ∧ o /∈ out(C after o) }+∑{t′; o; T Ct′o|0 < t′ ≤ t ∧ o ∈ AO ∩ out(C after t′)} +∑{t′; o; fail|0 < t′ ≤ t ∧ o ∈ AO ∧ o /∈ out(C after t′) }+
t; T Ct

; and

(b) if t /∈ out(C) then
∑{o; T Co|o ∈ AO ∩ out(C after o)} +∑{o; fail|o ∈ AO ∧ o /∈ out(C after o) }+∑{t′; o; T Ct′o|t′ ∈ out(C) ∧ o ∈ AO ∩ out(C after t′)} +∑{t′; o; fail|t′ /∈ out(C) ∨ o ∈ AO ∧ o /∈ out(C after t′)}+
t; fail

is an element of tTests(C).

The set of timed tests that can be derived from a specification S from its initial
state is then defined by tTests(S) = tTests({s0}).
This notion of test is sound and exhaustive with respect to the tioco relation. Be-
cause we have formalized the definition of tests according to Krichen and Tripakis,
we can give proofs here. The proofs are very similar to the proofs of soundness
and exhaustiveness for the conformance relation by Tretmans. Like for timed tests
according to Brandán and Brinksma it is sufficient to prove soundness and exhaus-
tiveness with test runs of normalized traces.

First we define when a timed implementation passes all timed tests that can be
derived from a specification S. Note that in Definition 3.27 we use the synchronous
composition of Definition 2.7.

Definition 3.27. Let T C = (T, t0,A∪R≥0,→t) be a timed test and let I = (S,s0,Aτ

∪R≥0,→) be an implementation.
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• the set of all test runs of T C ‖ I, denoted by testruns(T C ‖ I), is defined as:

testruns(T C ‖ I) = {α|∃s′∈S : (t0, s0)
α⇒nt (pass, s′) ∨ (t0, s0)

α⇒nt (fail, s′)}

• I passes T C, denoted by I passes T C iff, for all α ∈ testruns(T C ‖ I), there
exists an s′ ∈ S such that:

(t0, s0)
α⇒ (pass, s′).

• I passes all tests of a specification S, denoted by I passes tTests(S) iff, for
all T C ∈ tTests(S): I passes T C.

Theorem 3.28. Let I = (SI , s0I ,Aτ ∪R≥0,→I) be an implementation and let S be
a specification. If I tioco S then for all T C ∈ tTests(S): I passes T C (soundness
of tioco).

Sketch of proof. The proof is by contraposition. Suppose that there is a T C gener-
ated from S that is not sound. Then there is a test run α and state s ∈ SI such that
(t0, s0)

α⇒ (fail, s). According to the definition of a test, a test run leads to the verdict
fail if there is a µ ∈ Ao ∪R>0 and a α′ such that α = α′µ and µ ∈ out(I after α′)
and µ /∈ out(S after α′). However. out(I after α′) ⊆ out(S after α′) because
I ioco S, and therefore µ ∈ out(I after α′) =⇒ µ ∈ out(S after α′).

Theorem 3.29. If I ioco/ S then there is a T C ∈ tTests(S): I passes/ T C (ex-
haustiveness of tioco).

Sketch of proof. The proof is given by constructing a T C from S that may lead to
the verdict fail. Let αµ be a normalized timed trace such that µ /∈ out(S after α′)
and µ ∈ out(I after α′). Because I ioco/ S we know such trace α exists. We
inductively define a test that leads to the verdict fail for trace α = α′µ.

• Suppose that α′ = ε.

– Suppose µ = o, then, for all t ∈ R>0 and 0 < t′ < t,
∗ if t ∈ out(C) then the test

∑{o;pass|o ∈ AO ∩ out(C after o)} +∑{o; fail|o ∈ AO ∧ o /∈ out(C after o) }+∑{t′; o;pass|0 < t′ ≤ t ∧ o ∈ AO ∩ out(C after t′)} +∑{t′; o; fail|0 < t′ ≤ t ∧ o ∈ AO ∧ o /∈ out(C after t′) }+
t;pass

; or
∗ if t /∈ out(C) then the test

∑{o;pass|o ∈ AO ∩ out(C after o)} +∑{o; fail|o ∈ AO ∧ o /∈ out(C after o) }+∑{t′; o;pass|t′ ∈ out(C) ∧ o ∈ AO ∩ out(C after t′)} +∑{t′; o; fail|t′ /∈ out(C) ∨ o ∈ AO ∧ o /∈ out(C after t′)}+
t; fail
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leads to the verdict fail for trace α.

– Suppose µ = t then, for all 0 < t′ < t the test
∑{o;pass|o ∈ AO ∩ out(C after o)} +∑{o; fail|o ∈ AO ∧ o /∈ out(C after o) }+∑{t′; o;pass|t′ ∈ out(C) ∧ o ∈ AO ∩ out(C after t′)} +∑{t′; o; fail|t′ /∈ out(C) ∨ o ∈ AO ∧ o /∈ out(C after t′)}+
t; fail

leads to the verdict fail for trace α.

• Suppose α = να′′, with ν ∈ A ∪ R≥0 and α′′ 6= ε. Suppose there exists a test
T C ∈ tTests(CS after ν) that leads to the verdict fail for α′′ (the induction
hypothesis).

– Suppose α = iα′′ then the test i;T C leads to the verdict fail for trace α.

– Suppose α = oα′′, then for all t ∈ R>0 and 0 < t′ < t,

∗ if t ∈ out(C) then the test

o; T C+∑{o′;pass|o′ ∈ (AO ∩ out(C after o)) \ {o}} +∑{o′; fail|o′ ∈ AO ∧ o′ /∈ out(C after o) }+∑{t′; o′;pass|0 < t′ ≤ t ∧ o′ ∈ AO ∩ out(C after t′)} +∑{t′; o′; fail|0 < t′ ≤ t ∧ o′ ∈ AO ∧ o′ /∈ out(C after t′) }+
t;pass

; or
∗ if t /∈ out(C) then the test

o; T C+∑{o′;pass|o′ ∈ (AO ∩ out(C after o)) \ o} +∑{o′; fail|o′ ∈ AO ∧ o /∈ out(C after o)}+∑{t′; o′;pass|t′ ∈ out(C) ∧ o′ ∈ AO ∩ out(C after t′)} +∑{t′; o′; fail|t′ /∈ out(C) ∨ o′ ∈ AO ∧ o′ /∈ out(C after t′)}+
t; fail

leads to the verdict fail for trace α.

– Suppose α = tα′′, then the test

∑{o;pass|o ∈ (AO ∩ out(C after o)) \ {o}} +∑{o; fail|o ∈ AO ∧ o /∈ out(C after o) }+∑{t′; o;pass|0 < t′ ≤ t ∧ o ∈ AO ∩ out(C after t′)} +∑{t′; o; fail|0 < t′ ≤ t ∧ o ∈ AO ∧ o /∈ out(C after t′) }+
t; T C

leads to the verdict fail for trace α.
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3.2.3 Comparison

It is possible that an implementation conforms to a specification according to the
conformance relation by Krichen and Tripakis, but that the same implementation
does not conform to the same specification according to the conformance realation
by Brandán-Briones and Brinksma.
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Figure 3.5: Difference between timed conformance relations

Example 3.30. The implementation in Figure 3.5 accepts a coin, after which no
output actions can occur. However, it can still delay and receive input actions.
The specification repetitively accepts a coin and after that may produce a coffee.
In this case the implementation does not conform to the specification according to
Brandán-Briones and Brinksma because in location s1 the system is quiescent, while
it is not quiescent in the specification and therefore: outM ({s0} after ?Coin) *
outM ({ t1} after ?Coin) because {δ(M)} * {!Coffee}. However, the implemen-
tation does conform to the specification according to Krichen and Tripakis. In
this case out({s0} after ?Coin) ⊆ out({t0} after ?Coin) because {t|t ∈ R≥0} ⊆
{!Coffee} ∪ {t|t ∈ R≥0}.
Conversely, Krichen and Tripakis [32] have proven that if an implementation con-
forms to a specification according to Brandán-Briones and Brinksma, then the im-
plementation also conforms to the specification according to Krichen and Tripakis.
Schmaltz and Tretmans [43] have proven that if the implementation does not contain
quiescent states, then the two timed conformance relations are the same.

3.3 Concluding Remarks

In this section we described several input-output conformance relations and their
notions of tests. This chapter shows that different choices can be made in defining a
conformance relation and a notion of test. The use of quiescence is convenient, be-
cause it allows for a stricter conformance in the sense that more implementations can
be distinguished from each other. However, in practice it cannot be implemented.
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The reason is that in practice it is impossible to conclude whether no output action
will ever take place. Therefore, both timed input-output conformance relations and
notions of test have validity.

In the next chapter we define a hybrid input-output conformance relation that takes
into account both discrete-event and continuous behavior of an implementation. We
will see that the conformance relation becomes more complex compared to the other
conformance relations because continuous input and continuous output take place
synchronously.

Like with the other conformance theories we have to decide whether we use a similar
notion to quiescence. Continuous output always takes place. Quiescence, meaning
no output will ever take place without providing input first, does not apply. We
will see that for hybrid systems we need a notion of agile state, indicating that the
output actions do not have to take place immediately.



4

Hybrid Input-output Conformance
and Tests

This chapter describes a hybrid conformance relation and a notion of hybrid tests. In
order to get some feeling on how tests should be derived from a hybrid specification
we start with an example. After that, we formally define hybrid conformance and
the notion of hybrid test, and we prove that our notion of hybrid test is sound and
exhaustive with respect to the conformance relation.

The hybrid conformance relation and notion of hybrid test presented in this chap-
ter were first published as [39]. An extended version of that paper, including the
soundness and exhaustiveness proofs was published as [40].

4.1 An Informal Introduction to Hybrid Testing

We illustrate testing of a hybrid system with continuous input by means of an
example. We consider a thermostat plus its environment.
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Figure 4.1: Thermostat Example

Example 4.1. Figure 4.1 shows the hybrid automaton of the thermostat plus the
temperature input and an input action it may receive from a chamber. The thermo-

39
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stat in this example receives continuous input, namely temperature iT , it receives
input actions, namely !Reset, and it produces output actions, namely !HeaterOn and
!HeaterOFF. MinT , MaxT , MinON , and MinOFF are constant values. We as-
sume that MinT < MinON < MinOFF < MaxT . The thermostat maintains the
temperature of a room between and including the temperatures MinT and MaxT .
It does this by switching on a heater if the temperature drops below MinON and it
switches off a heater if the temperature rises above MinOFF .

Initially the chamber temperature iT satisfies MinT ≤ T ≤ MaxT and the thermo-
stat is in the mode Not Heating. The rate of change of iT is not positive (the
temperature stays the same or decreases). The thermostat can turn on a heater if the
temperature is below the specified temperature MinON. The thermostat in this case
switches to the mode Heating in which the chamber is being heated with a maxi-
mum rate between and including 0 and 1. After the temperature MinOFF is reached
the thermostat returns to the mode Heater OFF with the message !HeaterOFF and
the temperature in the chamber starts to decrease (e.g. because the chamber is not
perfectly isolated and the temperature is colder outside the chamber). If the temper-
ature iT reaches MaxT , then the thermostat switches to the mode Over Heating.
This is accompanied by an internal action τ . In mode Over Heating the temper-
ature still increases, but before the temperature increases with more than 1 oC the
thermostat switches to mode OFF and produces the message !Error. After the error
occurred, the thermostat can only be reset by a discrete input action ?Reset (e.g. a
button being pressed by an operator).

Note that this specification does not accept every possible input because the temper-
ature always increases or decreases with a maximum of 1 oC/min. Tests generated
from this specification will not contain the input behavior of increasing or decreasing
temperature with more than 1 oC/min.

Following the line of the notions of test presented in Chapter 3, a test for a hybrid
system will consist of steps of the following types:

• select an input action from the set of input actions possible according to the
specification and apply it;

• try to observe an output action from the implementation; if an output action
is observed which is not allowed according to the specification, then terminate
with a verdict fail; if no output action is observed when it is supposed to be
observed, then terminate with a verdict fail as well; or

• select continuous input for a specific duration and apply it; simultaneously
observe continuous output for the selected duration or until an output action
is observed; if the observed output is not allowed according to the specification,
then the terminate with a verdict fail.

As long as the verdict fail is not concluded, the test continues with another step or
terminates with a verdict pass.

Example 4.2. Let in the above example MinT = 5 oC, let MinOn = 10 oC, let
MinOFF = 15 oC, and let MaxT = 20 oC. Let the initial temperature be T =
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MinOn. Then, the following sequence of steps describes a test scenario for the
thermostat.

step 1: Decrease the temperature with 0.5 oC/min for one minute. If a !HeaterON
output or no output is observed, then continue testing with step 2, otherwise (if
e.g. a !heaterOFF output or an error output is observed which is not allowed
according to the specification) or if no output is observed stop testing and
conclude with verdict fail.

The implementation can either have produced no output, the !heaterON output, the
!HeaterOFF output, or the !Error output. Suppose that the implementation produced
the !heaterON output after one minute, then immediately after the output is observed
and validated a new step has to be performed.

step 2: Select a temperature increase with 1 oC/min for ten minutes.

At the start of step 2 the temperature iT is 9.5 oC. Therefore, at the end of step 2
the temperature iT is 19.5 oC. The test can continue as follows.

step 3: Select a temperature increase of 0.5 oC/min for three minutes. . Dur-
ing this temperature increase, the thermostat went to mode Over Heating
and the end temperature is 21 oC. Therefore, if the output action !Error is
observed, then the test can continue with a new step or stop with the verdict
pass, otherwise (if no output !Error is observed, or an output action !HeaterON
or !HeaterOFF is observed) stop testing with the verdict fail.

Suppose that the output !Error was observed from the implementation. Then it is
possible to continue the test by applying a decreasing temperature at most until the
temperature reaches 5 oC and applying an input action ?Reset. It is also possible to
stop testing at this point with verdict pass, because in this case the test did not fail.

It is also possible to define tests for hybrid systems with continuous output. In this
case, we need to compare the continuous output of the implementation with the
specified continuous output. An example of such a system is a robot arm which is
required to move according to a specific speed. It is also possible to define tests
for hybrid systems with both continuous input and continuous output. In this
case, we need to compare the continuous output of the implementation with the
specified continuous output synchronously with applying continuous input to the
specification. An example of such a system is a brake control system of a car that,
besides displaying discrete event behavior, brakes in accordance with the pressure
applied to the brake pedal. It is also possible to describe tests for hybrid systems
with multiple continuous input and multiple continuous output. An example of a
system with multiple continuous input is a vacuum system controller which observers
both the pressure in the chamber and the pressure in a pipe connected to a pump
(see Chapter 7). For all these kinds of hybrid systems we define a conformance
relation and a notion of test.
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4.2 Specification and Implementation

Before we define hybrid input-output conformance we first have to make some deci-
sions on how we interpret a specification and implementation. E.g. we have to decide
in case both a trajectory is allowed and an output action is allowed, whether, if no
continuous input is applied to the implementation, whether the implementation is
considered to perform the output action or not.

We distinguish actions that must happen from actions that may happen as follows.
Consider the HTS fragments in Figure 4.2.

Figure 4.2: HTS Interpretation

H1 models that the action a1 has to be performed. H2 models that either input
action i1 has to be performed or output action o1 has to be performed without delay.
H2 could be a fragment of an implementation and models that if an input action
is not applied, then the output action is performed without delay. H3 models that
an output action is allowed, but it does not have to take place. This fragment may
occur in both the specification and in the implementation (if the state s0 besides
these transitions allows any input behavior).

Furthermore, we have to decide whether we need additional constraints on our spec-
ification. Zeno behavior is the behavior of an infinite sequence of transitions whose
accumulative duration is finite. We do do not specifically disallow such behavior.
However, in practice, an implementation never displays Zeno behavior because time
will always progresses. In our theory, Zeno behavior is not an issue because we
consider finite traces only.

Brandán-Briones and Brinksma imposed three additional constraints on their TLTS
(see Section 3.2.1): time divergence, strong convergence, and no forced input. This
raises the question whether we need time divergence, strong convergence, and no
forced input (for both input actions and continuous input). Since time divergence
is only a practical issue, i.e. in practice an implementation is always time divergent
because time will always progress, we do not impose it on the implementation or
the specification. Since we only consider finite traces, strong convergence is not an
issue either. No forced inputs, for us, is also only a practical issue since it makes the
progress of time stop, and therefore an implementation cannot have forced input.
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4.3 Hybrid Input-output Conformance

In this section we define the conformance relation for hybrid systems. We first define
the conformance relation for hybrid systems without continuous input behavior. The
definition of this notion is fairly straightforward. We present it for didactical reasons;
it allows us to emphasize the complications introduced by continuous input. Then,
we define a conformance relation that includes continuous input behavior. This
notion is more complex because continuous input and continuous output take place
synchronously. This second conformance relation also decides conformance between
HTSs without continuous input or HTSs without continuous output.

We also define a conformance relation in which the specification consists of a model
of the implementation and a model of the environment. The environment specifies
the surroundings of the implementation. The environment describes the input for
the implementation with respect to the output performed by the implementation.
It specifies the surroundings of the implementation under test, e.g. if the imple-
mentation (and specification) is a thermostat, then the environment specifies the
room with heater in which it is placed. Using an explicit environment simplifies
the definition of the conformance relation. We prove that the various notions of
conformance coincide.

4.3.1 Hybrid Conformance with Continuous Output Only

For systems with input actions, output actions, and with continuous output only,
we consider a hybrid implementation conform to a hybrid specification if, in every
reachable state, the output trajectories and output actions allowed by the imple-
mentation form a subset of the output trajectories and output actions allowed by
the specification. This relation is based on the discrete-event conformance relation
by Tretmans [48] with continuous output behavior. Unlike Tretmans’s relation qui-
escence does not need to be taken into account since continuous output always takes
place. This relation for hybrid systems is similar to the timed relation of Krichen
and Tripakis [30]. If we view time as continuous output of the implementation, then
instead of taking the time that is allowed to elapse into account in the conformance
relation, we now take all continuous output that is allowed to take place into account
in the conformance relation.

First, we define the set of states reachable from a state or from a set of states, and
we define the set of output actions allowed in a state or in a set of states, without
quiescence.

Definition 4.3. Let H = (S, s0, Aτ ∪ Σ,→ ∪ ;) be a HTS and let α ∈ (A ∪ Σ)∗.
For a state s ∈ S we define:

s after α = {s′|s α⇒ s′}.
For a set of states C ⊆ S we define:

C after α =
⋃

s∈C

s after α.
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Definition 4.4. Let H = (S, s0, Aτ ∪ Σ,→ ∪ ;) be a HTS. For a state s ∈ S we
define:

out(s) = {o ∈ AO|s o⇒}.
For states C ⊆ S we define:

out(C) =
⋃

s∈C

out(s).

Note that we use the generalized transition relation of Definition 2.2.

Then, we define the set of trajectories allowed in a state and the set of trajectories
allowed in a set of states.

Definition 4.5. Let H = (S, s0, Aτ ∪Σ,→ ∪ ;) be a HTS and let s ∈ S be a state
of H; then:

traj(s) = {σ ∈ Σ|s σ⇒}.
For a set of states C ⊆ S we define:

traj(C) =
⋃

c∈C

traj(c).

Let I be an input-enabled hybrid implementation and let S be a hybrid specification,
both with a set of trajectories Σ on a set of output variables. Then I conforms to
S if and only if for al traces α ∈ traces(S):

out(I after α) ⊆ out(S after α) ∧

traj(I after α) ⊆ traj(S after α).

Example 4.6. Consider the fragments of two hybrid transition systems shown in
Figure 4.3.

Figure 4.3: Two Model Fragments
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The fragment of Model 1 shows the state s0 of Model 1, which allows the output
action o1 and the trajectory σ1. The fragment of Model 2 shows the state t0
of Model 2, which allows the output action o1 and the trajectories σ1 and σ2

(with σ1 6= σ2). For state s0 of Model 1 and state t0 of Model 2 it holds that
out(t0) = out(s0) and traj(s0) ⊆ traj(t0). Therefore, the fragment of Model 1
conforms to the fragment of Model 2. However, Model 2 does not conform to
Model 1 because in state t0 {σ1, σ2} * {σ1}.

4.3.2 Conformance with Continuous Input and Continuous Output

We now consider hybrid systems with input actions, output actions, continuous out-
put and continuous input. Still, the conformance relations described in this section
also apply for hybrid systems without continuous input as well. Like for discrete-
event conformance and timed conformance, we assume that the implementation is
input enabled. This means that at every moment in time, every possible continuous
input is allowed. The specification on the other hand is not required to be input
enabled; thus it is possible to test an implementation with respect to the input pro-
vided by the specification. As a result, the conformance relation explained in the
previous section is not useful anymore because (in general), if continuous input is
involved, the set of trajectories allowed by the implementation is not a subset of the
set of trajectories allowed by the specification, after any trace. For the previously
explained conformance relation, an input enabled implementation never conforms
to a specification that is not input enabled.

Example 4.7. Let, in Figure 4.3, σ1 and σ2 be trajectories on a non-empty set
of output variables VO and a a non empty set of variables VI . Let the fragment
of Model 2 be input enabled. If σ1 ↓ VI 6= σ2 ↓ VI then traj(t0) * traj(s0) and
therefore the fragment of Model 2 does not conform to the fragment of Model 1.
However, we want to take into account that if the fragment of Model 1 is part of
the specification and the input of σ1 is applied to the fragment of Model 2, then σ2

is never performed and therefore the fragment of Model 2 should conform to the
fragment of Model 1.

A conformance relation should only take into consideration the output of the im-
plementation that may arise if input is applied according to the specification. To
achieve this, we filter the set of trajectories allowed by the implementation after a
trace, with respect to the continuous input allowed by the specification after that
trace.

Definition 4.8. Let ΣI and ΣS be two sets of trajectories on a set of variables V
with input variables VI ⊆ V ; then:

infilter(ΣI , ΣS) = {σ ∈ ΣI |∃σ′∈ΣS : σ ↓ VI = σ′ ↓ VI}.

Let us consider the conformance relation that is obtained by adapting the confor-
mance relation of Section 4.3.1 using the notion of filtering: an input-enabled hybrid
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implementation I conforms to a hybrid specification S if and only if for all traces
α ∈ traces(S):

out(I after α) ⊆ out(S after α) ∧

infilter(traj(I after α), traj(S after α)) ⊆ traj(S after α).

Example 4.9. Let, in Figure 4.3, σ1 and σ2 be trajectories on a non-empty set of
output variables VO and a a non empty set of variables VI . If σ1 ↓ VI 6= σ2 ↓ VI then

infilter(traj(t0), traj(s0)) = infilter({σ1, σ2}, {σ1}) = {σ1}.
This means that, since out(t0) ⊆ out(s0), the fragment of Model 2 conforms to
the fragment of Model 1. If σ1 ↓ VI = σ2 ↓ VI , then Model 2 does not con-
form to Model 1 because then infilter({σ1, σ2}, {σ1}) = {σ1, σ2} and therefore
infilter(traj(t0), traj(s0)) * traj(s0).

Using the filter introduces a problem. Because the progress of time is specified in
the trajectories, a state of a HTS where only actions are allowed specifies that an
action has to be performed without delay. A state of a HTS that allows a trajectories
specifies that the actions allowed in that state do not have to take place immediately.
Consider the fragments of HTSs in Figure 4.4.

Figure 4.4: Two More Model Fragments

Example 4.10. In the fragment of Model 3 only o1 is allowed in state s0. In
the fragment of Model 4 the trajectory σ1 is allowed in state t0. Clearly, Model
4 is not supposed to be conform to Model 3, because if an implementation is not
able to perform an output action while according to the specification it is supposed
to perform that action, then the implementation should not be considered conform
the specification. However, if VI 6= ∅ then infilter({σ1}, {}) = ∅. This makes the
fragment of Model 4 conform the fragment of Model 3, according to the above
definition.

Note that this problem does not occur when besides actions, only continuous output
is involved, nor in the timed input-output conformance relation by Krichen and
Tripakis [30] described in Chapter 3. The reason is that in those relations we did
not need the filter, which could filter out all continuous input behavior allowed by
the implementation.
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To solve this problem, we introduce a special symbol ξ which indicates that a state
is agile, meaning that the state does allow time to pass by continuous behavior.

Definition 4.11. Let H = (S, s0, Aτ ∪Σ,→ ∪ ;) be an LTS, then a state s ∈ S is
agile, denoted by ξ(s), if there exists a σ ∈ Σ: s

σ
;.

Similar to quiescence in Tretmans’s conformance relation we add ξ to the set of
allowed output actions.

Definition 4.12. Let H = (S, s0, Aτ ∪ Σ,→ ∪ ;) be a HTS. For a state s ∈ S we
define:

out(s) =
{{o ∈ AO|s o⇒} ∪ {ξ} , if ξ(s);
{o ∈ AO|s o⇒} , otherwise.

For a set of states C ⊆ S we define:

out(C) =
⋃

s∈C

out(s).

Finally, the conformance relation for hybrid systems hioco is defined using Defini-
tions 4.3, 4.5, 4.8, and 4.12.

Definition 4.13. Let S be a HTS and let I be an input enabled HTS. We say that
I is hybrid input-output conform S, denoted by I hioco S, if and only if for all
traces α ∈ traces(S):

out(I after α) ⊆ out(S after α) ∧

infilter(traj(I after α), traj(S after α)) ⊆ traj(S after α).

According to this definition, Model 4 is not conform to Model 3, for out(t0) *
out(s0), because {ξ} * {o1}.

4.4 Hybrid Tests

In this section we formalize the notion of test as described in Section 4.1. We define
a notion of hybrid test in similar fashion to the notions of test described in Chapter
3.

A hybrid test is a transition system T C= (T ∪{pass, fail}, t0,A∪ΣT C ,→T C ∪;T C).
It has a tree-like structure (i.e., a test is acyclic), and it has two terminal states pass
or fail as leaves. Hybrid tests are deterministic for actions and deterministic with
respect to trajectories. A hybrid test has the following properties.

• The states pass and fail are terminal states of the test. That is, there does
not exist a µ ∈ A ∪ ΣT C such that pass

µ→ or fail
µ→.
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• A test is deterministic with respect to actions. That is, for all t, t′, t′′ ∈ T and
a ∈ A, if t

a→T C t′ and t
a→T C t′′, then t′ = t′′.

• A test is deterministic for trajectories in accordance with condition A2 on
HTSs.

• A test maintains trajectory additivity in accordance with condition A1 on
HTSs as well.

Note that a test also allows Zeno behavior. In testing real time systems this behavior
is not considered because time always has to progress eventually. This is solved by
the test execution algorithm; it has to be implemented such that continuous input
is selected such that always time is eventually able to progress.

A test is associated to a specification as follows. If according to the specification
some input actions are allowed, the test can allow one of these input actions. If
according to the specification some output actions are allowed but no trajectories,
which means that the state is not agile, then the allowed output actions may lead
to the verdict pass or to continuation of the test; the other output actions and
all trajectories lead to the verdict fail. Therefore if, for a nonempty set of states,
the implementation is agile but the specification is not, then the test may lead
to the verdict fail. If according to the specification trajectories are allowed, a
particular input trajectory is chosen. If the complete trajectory (including the value
of output variables) is allowed according to the specification, then the test may lead
to the verdict pass or testing may be continued. All other trajectories lead to the
verdict fail. It may be that applying the selected input trajectory and observing the
output trajectory is interrupted by an output action. If this interruption is allowed
according to the specification, then the test may be continued or the verdict pass
may be given. If the output action was not allowed the verdict fail is given.

Definition 4.14. Let S = (S, s0,Aτ ∪Σ,→∪;) be a specification with continuous
variables V = VI ] VO and let C ⊆ S be a non-empty set of states; then the set of
tests, denoted by hTests(C), is inductively defined as follows:

1. pass is an element of hTests(C).

2. Let i ∈ AI ; if C after i 6= ∅ and T C′ ∈ hTests(C after i), then i; T C′ is an
element of hTests(C).

3. Suppose traj(C) = ∅ and let, for all o ∈ AO with o ∈ out(C),
T Co ∈ hTests(C after o); then

∑{o; T Co|o ∈ AO ∩ out(C)}+∑{o; fail|o ∈ AO\out(C)}+∑{σ; fail|σ ∈ Σ}

is an element of hTests(C).

4. Let u ∈ {σ ↓ VI |σ ∈ traj(C)} be a trajectory on input variables.
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• Denote by traju(C) = {σ|σ ↓ VI = u∧σ ∈ traj(C)} the set of trajectories
with input trajectory u, and

• denote by subtraju(C) = {σ|∃σ′∈traju(C) : σ ≤ σ′} the set of prefixes of
the set of trajectories in traju(C).

Furthermore, let j = u.ltime, let, for all σ ∈ traju(C), T Cσ ∈ hTests(C after
σ) and let, for all σ′ ∈ subtraju(C) and o ∈ out(C after σ′),
T Cσ′o ∈ hTests(C after σ′o). Then

∑{σ;TCσ|σ ∈ traju(C)} +∑{σ; fail|σ /∈ subtraju(C)} +∑{o; T Co|o ∈ AO ∩ out(C)} +∑{o; fail|o ∈ AO\out(C)} +∑{σ′; o; fail|σ′ ∈ subtraju(C) ∧ σ′.ltime < j ∧ o /∈ out(C after σ′)} +∑{σ′; o; T Cσ′o|σ′ ∈ subtraju(C) ∧ σ′.ltime < j ∧ o ∈ out(C after σ′)}

is an element of hTests(C).

Note that if VI = ∅, then u is a trajectory over an empty set of variables, but it
is still a trajectory. Therefore, traju(C) contains all trajectories allowed in the set
of states C with duration u.ltime. Thus, this notion of test also defines tests for
hybrid specifications with only continuous output variables, besides actions.

From now on hTests(S) denotes the set of all tests that can be derived from S
starting from the initial state: hTests(S) = hTests({s0}).
Note that agility ξ is not part of the test. It is tested through case three of the
notion of test by selecting any input trajectory and if time is allowed to pass (and
the implementation produces output), then the test leads to the verdict fail.

Figure 4.5: Example Hybrid Test
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Example 4.15. Figure 4.5 depicts an illustrative (but incomplete) test T C generated
from a hybrid system H. In our displayed system the transition with output action
!a2 means that trajectory σ1 can be interrupted.

The example test T C says to first apply the input action ?i to the implementation,
and then immediately observe the output action !a1. If an implementation behaves
according to σ1 initially, but behaves according to σ2 after a while, then the test leads
to the verdict fail since σ2 is not allowed by the specification. At this point σ1 and
σ0 lead to the verdict fail as well. After !a1, either the complete trajectory σ1 or the
prefix of this trajectory followed by output action !a2 is correct behavior and leads to
a verdict pass. All other behavior leads to the verdict fail.

The execution of a hybrid test is defined by the synchronous composition (from
Definition 2.7) of the test and the implementation. We do not need to redefine this
synchronous composition to include agility, because ξ is not part of implementation
or the test.

Definition 4.16. Let T C = (T, t0, A ∪ Σ,→T C ∪ ;T C) be a test and let I =
(S, s0, Aτ ∪ Σ,→ ∪ ;) be an implementation. The set of test runs, denoted by
testruns(T C ‖ I), is the set of all traces that lead to a state pass or fail:

testruns(T C ‖ I) =

{α ∈ traces(T C ‖ I)|∃s∈S : (t0, s0)
α⇒ (pass, s) ∨ (t0, s0)

α⇒ (fail, s)}

We say a hybrid implementation passes a hybrid test if only the verdict pass is
reachable in the run of the test.

Definition 4.17. Let T C = (T, t0, A ∪ Σ,→T C ∪ ;T C) be a test and let I =
(S, s0, Aτ ∪ Σ,→ ∪ ;) be an implementation, then I passes T C is defined as

I passes T C ⇐⇒ ∀α∈testruns(T C‖I) : ∃s′∈S : (t0, s0)
α⇒ (pass, s′).

Let S be a specification, then

I passes hTests(S) ⇐⇒ ∀T C∈hTests(S) : I passes T C.

4.5 Hybrid Input-output Conformance and Tests with an En-
vironment

For the hybrid conformance relation, the specification does not need to be input en-
abled. This allows us to restrict the specification and only test the implementation
for specific input. The input is part of the specification. However, intuitively, the
input for the specification is not part of the specification. E.g. the specification of
a thermostat in Example 4.1 defined the behavior of the controller, namely !Error
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and !HeaterON messages, plus the behavior of the environment, namely the tem-
perature flow and the ?Reset action. It is more intuitive to specify these behaviors
separately, namely in a specification of the controller, which is being tested, and a
specification of the environment, which provides the input for the implementation
(and the controller specification).

Like Krichen and Tripakis [32], and Larsen et al. [33] have done for their timed
conformance relation, it is an option to separate the environment behavior from the
specification of the system under test. The idea is to separately specify the environ-
ment as a hybrid transition system. The hybrid conformance relation is adapted by
replacing the specification in Definition 4.13 by the synchronous composition of an
input enabled specification and an environment.

In this case, we want the environment to restrict the input to be applied to the
implementation instead of the specification. Therefore, the specification has to be
input complete with respect to the environment. I.e. after every trace α, all input
allowed by the environment after trace α, is also allowed by the specification after
trace α. Or, in other words, the input allowed by the environment after trace α is
a subset of the input allowed by the specification after trace α.

Definition 4.18. Let S = (S, s0, Aτ ∪ Σ,→ ∪ ;) be a specification and let E =
(E, e0, Aτ ∪Σ,→′ ∪ ;′) be an environment. S is input complete with respect to E
if, for all αintraces(S ‖ E) holds that

{i ∈ AI |∃e∈(E after α) : e
i⇒} ⊆ {i ∈ AI |∃s∈(S after α) : s

i⇒} ∧

{σ ↓ VI |σ ∈ Σ ∧ ∃e∈(E after α) : e
σ⇒} ⊆ {σ ↓ VI |σ ∈ Σ ∧ ∃s∈(S after α) : s

σ⇒}.

Furthermore, the environment should not prevent the specification (and later on the
implementation) from performing output. Therefore, we need to demand that the
environment is output enabled. At any moment in time, the environment allows
any output action and, for any input trajectory allowed by a state, the environment
allows any output trajectory.

Definition 4.19. A HTS H is output enabled if:

• for every s ∈ S and o ∈ AO: s
o⇒;and

• for every s ∈ S:

1. there exists an action a ∈AI ∪{τ} such that s
a→ and there does not exist

a σ ∈ Σ such that s
σ
;; or

2. for all σ ∈ Σ, if s
σ
; and σ ↓ VI = u, then for all v ∈ trajs(VO) such that

v.ltime = σ.ltime, there exists a σ′ ∈ Σ such that s
σ′
; and σ′ ↓ VO = v.

Note that this is a different notion of enabledness compared to the notion of input
enabledness.
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Now, if the environment E is output enabled and the specification S is input complete
with respect to E , then an implementation I conforms to S ‖ E if and only if, for
all α ∈ traces(S ‖ E),

out(I after α) ⊆ out(S ‖ E after α) ∧

infilter(traj(I after α), traj(S ‖ E after α)) ⊆ traj(S ‖ E after α).

The environment specifies which input is considered in the conformance between
the specification and the implementation. Moreover, the environment is output
enabled. Therefore, we can also define the conformance between a specification and
an implementation as the conformance between a specification with environment
and an implementation with the same environment. This has the advantage that in
the conformance relation the infilter is no longer needed because the environment
ensures that in both the specification and the implementation the same input is
considered.

Definition 4.20. Let S and I be a specification and an implementation respectively.
Let E be an environment. Let S be input complete with respect to E, let I be input
enabled and let E be output enabled. I is input-output conform S with respect to
environment E, denoted by I hiocoE S, if and only if for all α ∈ traces(S ‖ E):

out(I after α) ⊆ out(S ‖ E after α) ∧

traj(I ‖ E after α) ⊆ traj(S ‖ E after α).

Theorem 4.21. : Let S be a specification and let I be an implementation and let
E be an environment. Let E be not blocking for S and I; then I hioco S ‖ E if and
only if I hiocoE S.

Sketch of proof. We prove this theorem by showing that infilter(traj(I after α),
traj(S ‖ E after α)) and traj(I ‖ E after α) are the same sets of trajectories.

• The set of trajectories traj(I ‖ E after α) is the set {σ ∈ ΣI‖E |I ‖ E ασ⇒}. By
the definition of synchronous composition this is the set:

{σ ∈ ΣI |I ασ⇒ ∧E ασ⇒}

• The set of trajectories infilter(traj(I after α), traj(S ‖ E after α)) is the
set

infilter({σ ∈ ΣI |I ασ⇒}, {σ ∈ ΣS‖E |S ‖ E ασ⇒}).
By the definition of infilter this is the set

{σ ∈ ΣI |I ασ⇒ ∧∃σ′∈ΣS‖E : σ ↓ VI = σ′ ↓ VI ∧ S ‖ E ασ′⇒},
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which can be rewritten as

{σ ∈ ΣI |I ασ⇒ ∧∃σ′∈ΣS‖E : σ ↓ VI = σ′ ↓ VI ∧ S ασ′⇒ ∧E ασ′⇒}.
Because S is input complete with respect to E it holds that if σ′ ↓ VI is an
input trajectory of S after trace α then σ′ ↓ VI is an input trajectory of a E
after trace α. Therefore:

{σ ∈ ΣI |I ασ⇒ ∧∃σ′∈ΣE : σ ↓ VI = σ′ ↓ VI ∧ E ασ′⇒}.
Finally, because E is output enabled, it contains all output trajectories in ΣI
and thus:

{σ ∈ ΣI |I ασ⇒ ∧E ασ⇒}.

Then, it follows that, for all α ∈ traces(S ‖ E):

out(I after α) ⊆ out(S ‖ E after α) ∧

infilter(traj(I after α), traj(S ‖ E after α)) ⊆ traj(S ‖ E after α)

if and only if
out(I after α) ⊆ out(S ‖ E after α) ∧

traj(I ‖ E after α) ⊆ traj(S ‖ E after α).

Using a separate environment does not change the definition of a hybrid test. The
set of tests that can be generated from a specification S with environment E is
defined by hTests(S ‖ E).

4.6 Soundness and Exhaustiveness Proofs

In this section we prove the soundness and exhaustiveness of our hybrid tests.
Throughout this section the HTS S is defined by the tuple (SS , s0,Aτ ∪Σ,→S ∪;S)
and the HTS I is defined by the tuple (SI , i0, Aτ ∪ Σ,→I ∪ ;I).

Even though the complete proof comprises over six pages, the proof ideas are the
same as for the soundness and exhaustive proofs by Tretmans (see Chapter 3).
Soundness is proven by contraposition: we suppose that there is a test that leads
to the verdict fail for an implementation, and we prove that such a test can only
exist if the implementation does not conform to the specification. First we prove
that for every test run that leads to the verdict fail, there is a normalized trace
and a subtest such that by executing one trajectory, one output action, or one
trajectory followed by an output action, the verdict fail can be reached. Using the
structure of the subtest we then prove that this implies that if a test run leads to
fail, then this is because of an output action or a trajectory that is not allowed
by the specification. However, since the test run leads to fail, this means that
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this output action or trajectory was allowed by the implementation. Therefore,
the implementation does not conform to the specification, which contradicts the
assumption that the implementation does conform to the specification.

Exhaustiveness is proven by constructing a test from a trace that has to lead to the
verdict fail for an implementation that does not conform to the specification.

First we define the notion of subtest. A subtest is (the rest of) a test after a trace
in the shape of a test.

Definition 4.22. Let S be a specification, and let S be the set of states of S.
Let C ⊆ S be a set of states. Let T C = (T, t0, A ∪ Σ,→ ∪ ;) be a test, with
T C ∈ hTests(C). Let t ∈ T be state of T C. Let α ∈ traces(T C) and let t0

α⇒ t.
Then, the subtest T C′ ∈ hTests(C after α) is the test T C′ = (T ′, t,A∪Σ,→′ ∪;′),
with

• T ′ = {t′|t′ ∈ T ∧ ∃β∈(A∪Σ)∗ : t
β⇒ t′}

• →′= {(t′, a, t′′)|t′, t′′ ∈ T ∧ a ∈ A ∧ ∃β∈(A∪Σ)∗ : t
β⇒ t′ ∧ t′ a→ t′′}; and

• ;′= {(t′, σ, t′′)|t′, t′′ ∈ T ∧ σ ∈ Σ ∧ ∃β∈(A∪Σ)∗ : t
β⇒ t′ ∧ t′ σ→ t′′}.

Let T C be a test. Let t0 ∈ T be the initial state of T C. Then we write T C a→ fail
if t0

a→ fail, and T C σ
; fail if t0

σ
; fail, and T C α⇒ fail if t0

α⇒ fail. Let T C′ be a
subtest of T C and let t′0 ∈ T be the initial state of T C′. Then we write T C a→ T C′ if
t0

a→ t′0 in T C, T C σ
; T C′ if t0

σ
; t′0 in T C, and T C α⇒ T C′ if t0

α⇒ t′0. From now on,
if a trace α does not fit on a generalized transition, then we also write s

α===⇒ s′ if
s

α⇒ s′.

A normalized trace is a trace with all sequences of consecutive trajectories concate-
nated into one trajectory.

Definition 4.23. Let α ∈ (A∪Σ)∗ be sequence of labels. Then a normalized trace,
denoted by ntrace(α), is defined as:

• if α = ε then ntrace(α) = ε

• if α = a, for some action a, then ntrace(α) = a;

• if α = σ then ntrace(α) = σ;

• if α = aα′ then ntrace(α) = a ntrace(α′);

• if α = σα′ and ntrace(α′) = aα′′ then ntrace(α) = σ a ntrace(α′); and

• if α = σα′ and ntrace(α′) = σα′′ then ntrace(α) = σ a σ′ ntrace(α′′).

Because we posed trajectory additivity on HTSs, we know that for every trace α in
an HTS there exists a normalized trace as well, leading to the same state.



4.6 Soundness and Exhaustiveness Proofs 55

Lemma 4.24. Let α be a trace and let H be a hybrid transition system. If s0
α⇒ s,

then s0
ntrace(α)
===⇒ s.

This lemma holds because of trajectory additivity, which we posed on HTSs (see
condition A1 in Section 2.1.3.

Lemma 4.25. If T C ∈ hTests(C) and α ∈ testruns(T C ‖ I) such that T C α⇒ fail,
then there exists a trace α′ ∈ traces(C), a subtest T C′, and an output action o ∈ AO

and a trajectory σ such that T C′ ∈ hTests(C after α′), T C α′⇒ T C′, and either:

1. ntrace(α) = α′o and T C′ o→ fail;

2. ntrace(α) = α′σ and T C′ σ
; fail; or

3. ntrace(α) = α′σo and T C′ σo⇒ fail.

Proof. We prove this lemma by induction on the structure of T C.

1. Suppose that T C = pass. Then T C α⇒ fail is not possible, so the lemma
vacuously holds.

2. Suppose that T C = i; T C′, with i ∈ AI and T C′ ∈ hTests(C after i), then
α = iα′. By the inducation hypothesis Lemma 4.25 holds for T C′andα′. So,
T C i→ T C′ and since, by the induction hypothesis, Lemma 4.25 holds for T C′
and α′, it follows that Lemma 4.25 holds for T C and α.

3. Suppose that
T C =

∑{o; T Co|o ∈ AO ∩ out(C)}+∑{o; fail|o ∈ AO\out(C)}+∑{σ; fail|σ ∈ Σ},
with o ∈ AO and, for all o ∈ out(C), T Co ∈ hTests(C after o). Suppose that
Lemma 4.25 holds for all T Co and every α′ ∈ testruns(T Co ‖ I) for which

T C′ α′⇒ fail (the induction hypothesis). T Co is a subtest of T C. From the
shape of T C it follows that we can distinguish three cases:

(a) suppose α = o α′, with o ∈ AO ∩ out(C), and α′ ∈ testruns(T Co ‖ I);
then T C o→ T Co and since, by the induction hypothesis, Lemma 4.25
holds for T Co and α′, it follows that Lemma 4.25 holds for T C and α;

(b) suppose α = o, with o ∈ AO\out(C), then, T C ε⇒ T C and T C o→ fail,
and it follows that case 1 of Lemma 4.25 holds for T C and α; or

(c) suppose α = σ, then, T C ε⇒ T C and T C σ
; fail, and it follows that case

2 of Lemma 4.25 holds for T C and α.
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4. Suppose that

T C =
∑{σ; T Cσ|σ ∈ traju(C)} +

∑{σ; fail|σ /∈ subtraju(C)} +∑{o; T Co|o ∈ AO ∩ out(C)}+
∑{o; fail|o ∈ AO\out(C)}+∑{σ′; o; T Cσ′o|σ′ ∈ subtraju(C) ∧ σ′.ltime < j ∧

o ∈ out(C after σ′)} +∑{σ′; o; fail|σ′ ∈ subtraju(C) ∧ σ′.ltime < j ∧
o /∈ out(C after σ′)}.

. Here T Co, T Cσ, and T Cσ′o are subtests of T C. Suppose that Lemma 4.25
holds for every T Cσ, T Co, and T Cσo and every α′ ∈ testruns(T Cσ ‖ I) ∪
testruns(T Co ‖ I)∪ testruns(T Cσo ‖ I) (the induction hypothesis). From the
shape of T C it follows that we can distinguish six cases:

(a) if α = σ α′, with σ ∈ subtraju(C) and α′ ∈ testruns(T Cσ ‖ I), then:

i. suppose ntrace(α′) = σ′′ and σ a σ′′ /∈ traju(C) then T C ε⇒T C and

T C σaσ′′
; fail, and it follows that case 2 of Lemma 4.25 holds for T C

and α;

ii. if ntrace(α′) = σ′′o, then T C ε⇒T C and T C σaσ′′o
===⇒ fail, and it follows

that case 3 of Lemma 4.25 holds for T C and α; and
iii. in any other case (i.e. ntrace(α′) = oα′′, or ntrace(α′) = σ′′α′′ and

α′′ 6= ε) then T C σ
; T Cσ and, by the induction hypothesis, since

Lemma 4.25 holds for T Cσ and α′, it follows that Lemma 4.25 holds
for T C and α;

(b) suppose α = σ, with σ /∈ subtraju(C), then T C ε⇒ T C and T C σ
; fail,

and it follows that case 2 of Lemma 4.25 holds for T C and α;
(c) suppose α = o α′, with o ∈ AO ∩ out(C) and α′ ∈ testruns(T Co ‖ I),

then T C o→ T Co and since, by the induction hypothesis), Lemma 4.25
holds for T Co and α′, it follows that Lemma 4.25 holds for T C and α;

(d) suppose α = o, with o ∈ AO\out(C), then T C ε⇒ T C and T C o→ fail, and
it follows that case 1 of Lemma 4.25 holds for T C and α;

(e) suppose α = σ′o α) with σ′ ∈ subtraju(C), o ∈ out(C after σ′) and α′ ∈
testruns(T Cσ′o ‖ I), then T C σ′o⇒ T Cσ′o and, by the induction hypothesis,
since Lemma 4.25 holds for T Cσ′o and α′, it follows that Lemma 4.25
holds for T C and α; and

(f) suppose α = σ′o, with σ′ ∈ subtraju(C) and o /∈ out(C after σ′), then

T C ε⇒ T C and T C σ′o⇒ T Cσ′o, and it follows that case 2 of Lemma 4.25
holds for T C and α.

If a normalized trace leads to the verdict fail, then that is either because it ends
with an output that was not allowed by the specification or it ends with a trajectory
that was not allowed by the specification.

Lemma 4.26. If T C ∈ hTests(S) and α ∈ testruns(T C ‖ I) such that T C α⇒ fail,
then:
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• if ntrace(α) = α′o, then o /∈ out(S after α′); and

• if ntrace(α) = α′σ, then σ /∈ traj(S after α′).

Proof. We separately prove the two cases.

• Suppose that ntrace(α) = α′o. According to Lemma 4.25 there are two cases
to distinguish.

1. Suppose ntrace(α) = α′o, and there exists a subtest T C′ ∈hTests(Safter

α′) such that T C α′⇒T C′ and T C′ o→ fail. By definition of hTests(S after
α′), we know that T C′ is described by either case 3 or case 4 of our notion
of test . By this notion T C′ o→ fail, only if o /∈ out(S after α′).

2. Suppose ntrace(α) = α′′σo, and there exists a subtest T C′′ ∈ hTests(S
after α′′) such that T C α′′⇒ T C′′ and T C′′ σo⇒ fail. Suppose T C′′ is the last
subtest of T C for trace α. That is, there does not exist a subtest T C′′′ such
that, with σ = σ1 a σ2, and T C′′ σ1⇒T C′′′ and T C′′′ σ2o⇒ fail. We know that
there exists such T C′′ because of Lemma 2. In this case we know that T C′′
is described by case 4 of our notion of test and σ ∈ subtraju(S after α′′)
and o /∈ out(S after α′′σ). Because α′ = ntrace(α′′σ) we conclude that
o /∈ out(S after α′).

• Suppose that ntrace(α) = α′σ. Suppose that T C′′ ∈ hTests(S after α′′) is the
last subtest of T C for trace α. That is, supposing ntrace(α) = ntrace(α′′σ′′),

T C α′′⇒ T C′′ and T C′′ σ′′
; fail and there does not exist a subtest T C′′′ such

that σ′′ = σ′′1 a σ′′2 and T C′′ σ′′1⇒ T C′′′ and T C′′′ σ′′2
; fail. Again, we know that

there exists such T C′′ (since, according to Lemma 4.25, T C′ could be this
last subtest). In this case T C′′ is described by case 3 or case 4 of our test
definition and either σ′′ /∈ Σ or σ′′ /∈ subtraju(S after α′′), which means
σ′′ /∈ traj(S after α′′). By condition A2 on our hybrid transition systems we
conclude that in this case also σ /∈ traj(S after α′).

The following theorem states that if an implementation conforms to a specification,
all test runs of all tests (associated to the specification by our inductive definition)
lead to verdict pass. In line with other conformance theories we call this soundness
of our tests.

Theorem 4.27. If S is a specification and I is an implementation, then:

I hioco S =⇒ ∀T C∈hTests({s0}) : I passes T C.

Proof. We prove the theorem by contraposition. Suppose that T C ∈ hTests({s0})
and α ∈ testruns(T C ‖ I) and s′ ∈ SI and (t0, s0)

α⇒ (fail, s′). We show that this
α can only exist if I hioco/ S.

From Lemma 4.24 we know that if T C α⇒ fail then T C ntrace(α)
===⇒ fail.
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• Suppose that ntrace(α) = α′o. Then from Lemma 4.26 we know that o /∈
out(S after α′). Because ntrace(α) ∈ testruns(T C ‖ I) we also know that
o ∈ (I after α′) (by definition of synchronous composition). Therefore,

out(I after α′) * out(S after α′).

• Suppose that ntrace(α) = α′σ. Then from Lemma 4.26 we know that σ /∈
traj(S after α′). Because ntrace(α) ∈ testruns(T C ‖ I) we also know that
σ ∈ (I after α′) (by definition of synchronous composition). From Lemma 4.25

we know there exists a subtest T C′ ∈ hTests(S after α′) such that T C α′⇒ T C′
and T C σ

; fail. By the structure of α, we know that T C′ is either described
by case 3 or case 4 of the hybrid notion of test (see Definition 4.14).

– Suppose that T C′ is a test described by case 3 of Definition 4.14. Then
traj(S after α′) = ∅ which means ξ /∈ out(S after α′). However, since
traj(I after α′) 6= ∅, ξ ∈ out(I after α′). Therefore,

out(I after α′) * out(S after α′).

– Suppose that T C′ is a test described by case 4 of the Definition 4.14.
Because, by the definition of tests, the input behavior is always selected
from the specification:

σ ∈ infilter(traj(I after α′), traj(S after α′)).

Therefore,

infilter(traj(I after α), traj(S after α′)) * traj(S after α′).

We conclude that, if α ∈ testruns(T C ‖ I) and T C α⇒ fail, then I hioco/ S. This
contradicts the assumption that I hioco S.

The following theorem states that if an implementation is not conform a specification
(I hioco/ S), then there is a test T C which leads to verdict fail (I passes/ T C). In
line with the ioco theory we call this exhaustiveness of our tests.

Theorem 4.28. If S is a specification and I is an implementation, then:

I hioco/ S =⇒ ∃T C∈hTests(S) : I passes/ T C.

Proof. Let CI ⊆ SI and CS ⊆ SS . We prove that if

out(CI after α) * out(CS after α) ∨

infilter(traj(CI after α), traj(CS after α)) * traj(CS after α).

then there exists a T C ∈ hTests(CS) with initial state t0 and αµ ∈ testruns(T C ‖ I)
and, with c ∈ CI and c′ ∈ C after αµ, (t0, c)

αµ⇒ (fail, c′). Then, the theorem follows
for CI = {s0I} and CS = {s0S}. We proceed by induction on the length of α.
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• Suppose that α = ε. Then,

out(CI) * out(CS) ∨ infilter(traj(CI), traj(CS)) * traj(CS) .

– Suppose that there exists an o ∈ out(CI)\out(CS) ∩ AO.

∗ Suppose that traj(CS) = ∅ Then, for instance, T C =
∑{o;pass|o ∈ AO ∩ out(CS)}+∑{o; fail|o ∈ AO\out(CS)}+∑{σ; fail|σ ∈ Σ}

leads to verdict fail (since o /∈ out(CS)), and therefore T C o→ fail.
∗ Suppose that traj(CS) 6= ∅. Then, for instance, with some

u ∈ {σ ↓ VI |σ ∈ traj(CS)} and j = u.ltime, T C =
∑{σ;pass|σ ∈ traju(CS)} +

∑{σ; fail|σ /∈ subtraju(CS)} +∑{o;pass|o ∈ AO ∩ out(CS)}+
∑{o; fail|o ∈ AO\out(CS)}+∑{σ′; o;pass|σ′ ∈ subtraju(CS) ∧ σ′.ltime < j ∧

o ∈ out(CS after σ′)} +∑{σ′; o; fail|σ′ ∈ subtraju(CS) ∧ σ′.ltime < j ∧
o /∈ out(CS after σ′)}

leads to verdict fail (since o /∈ out(CS)), and therefore T C o→ fail.

In both cases, since o ∈ out(CI), (t′0, c)
o⇒ (fail, c′).

– Suppose that there exists a σ ∈ infilter(traj(CI), traj(CS))\traj(CS).
Then, for instance, with u = σ ↓ VI and j = u.ltime, T C =

∑{σ;pass|σ ∈ traju(CS)} +
∑{σ; fail|σ /∈ subtraju(CS)} +∑{o;pass|o ∈ AO ∩ out(CS)}+

∑{o; fail|o ∈ AO\out(CS)}+∑{σ′; o;pass|σ′ ∈ subtraju(CS) ∧ σ′.ltime < j ∧
o ∈ out(CS after σ′)} +∑{σ′; o; fail|σ′ ∈ subtraju(CS) ∧ σ′.ltime < j ∧
o /∈ out(CS after σ′)}

leads to verdict fail (since σ /∈ traju(CS)). Hence, since σ ∈ traj(CI),
(t′0, c)

σ⇒ (fail, c′).

– Suppose that ξ ∈ out(CI)\out(CS). In this case we know that

traj(CS) = ∅ and traj(CI) 6= ∅.
Then, for instance, T C =

∑{o;pass|o ∈ AO ∩ out(CS)}+∑{o; fail|o ∈ AO\out(CS)}+∑{σ; fail|σ ∈ Σ}

leads to verdict fail for any σ ∈ Σ. Hence, for any σ ∈ traj(CI), (t′0, c)
σ⇒

(fail, c′).
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• Suppose that α = να′, with α′ 6= ε and (the induction hypothesis): there exists
a T C ∈ hTests(CS after ν) with initial state t0 and αµ ∈ testruns(T C ‖ I)
and, with c ∈ CI and c′ ∈ CI after αµ, (t0, c)

αµ⇒ (fail, c′).

We construct a test T C′ with να′ ∈ testruns(T C′ ‖ I) and α′ 6= ε. Note that by
definition of our notion of test we know that either ν ∈ AI , ν ∈ out(CS)∩AO,
or ν ∈ traj(CS). Otherwise, να′ would not be a testrun because after the
verdict fail, the test terminates.

– Suppose that ν = i, with i ∈ AI . Then, the test i; T C will also lead to
verdict fail for trace α.

– Suppose ν = o, with o ∈ AO ∩ out(CS), and traj(S) = ∅. Then, for
instance, the test

∑{o′; T Co′ |o′ ∈ AO ∩ out(CS)}+∑{o′; fail|o′ ∈ AO\out(CS)}+∑{σ; fail|σ ∈ Σ}

with T Co = T C and, for o′ ∈ (AO ∩ out(CS))\{o}, T Co′ = pass will also
lead to verdict fail for trace α.

– Suppose that ν = o, with o ∈ AO ∩ out(CS), and traj(S) 6= ∅. Then, for
instance, the test

∑{σ′;pass|σ′ ∈ traju(CS)} +
∑{σ′; fail|σ′ /∈ subtraju(CS)} +∑{o′; T Co′ |o′ ∈ AO ∩ out(CS)}+

∑{o′; fail|o′ ∈ AO\out(CS)}+∑{σ′; o;pass|σ′ ∈ subtraju(CS) ∧ σ′.ltime < j ∧
o ∈ out(CS after σ′)} +∑{σ′; o;pass|σ′ ∈ subtraju(CS) ∧ σ′.ltime < j ∧
o /∈ out(CS after σ′)}

with, for some σ′ ∈ traj(CS), u = σ′ ↓ VI and j = u.ltime and T Co = T C
and, for o′ ∈ (AO ∩ out(CS))\{o}, T Co′ = pass will also lead to verdict
fail for trace α.

– Suppose that ν = σ, with σ ∈ traj(CS). Then, for instance, the test

∑{σ′; T Cσ′ |σ′ ∈ traju(CS)} +
∑{σ′; fail|σ /∈ subtraju(CS)} +∑{o;pass|o ∈ AO ∩ out(CS)}+
∑{o; fail|o ∈ AO\out(CS)}+∑{σ′; o;pass|σ′ ∈ subtraju(CS) ∧ σ′.ltime < j ∧

o ∈ out(CS after σ′)} +∑{σ′; o; fail|σ′ ∈ subtraju(CS) ∧ σ′.ltime < j ∧
o /∈ out(CS after σ′)}

with u = σ ↓ VI and j = σ.ltime and T Cσ = T C and, for σ′ ∈ traj(CS)\
{σ}, T Cσ′ = pass will also lead to verdict fail for trace α.
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4.7 Concluding Remarks

In this chapter we have defined an input-output conformance relation for hybrid
systems. This relation defines in which cases we consider an hybrid implementation
correct with respect to a hybrid specification. We have defined an inductive notion
of test. We have proven that this notion of test is sound and exhaustive with respect
to the hybrid input-output conformance relation.

The hybrid conformance relation and notion of test in this chapter have been defined
in line with the input-output conformance theory by Tretmans [48] and the timed
input-output conformance theories by Brandán-Briones and Brinksma [12], and by
of Krichen and Tripakis [30], which we have described in Chapter 3. If we make a
mapping between HTSs and TLTs, e.g. we define a TLTs as a HTSs with one output
variable time, then if a timed implementation conforms to a timed specification
according to Krichen and Tripakis, the hybrid equivalent of this implementation
also conforms to the hybrid equivalent of the same specification and vice versa. For
the same reasons as given by Krichen ant Tripakis [32] the previous statement does
not hold for the relation between the conformance relation by Brandán-Briones and
Brinksma and the hybrid conformance relation.

To stay in line with those conformance theories, we chose to let the test decides
which continuous input to provide to the implementation. This makes our notion of
test not suitable for testing implementations in which the continuous input depends
on the observed output. E.g. systems that contain feedback loops. For a notion of
test for these kind of systems the test has allow all trajectories from every state.
The test execution mechanism has to adapt continuously and instantaneously to the
observed input. We believe that this is practically infeasible.

Because in continuous systems the input behavior takes place in synchrony with
the output behavior, we needed to explicitly define the restriction of the set of
trajectories allowed by the implementation in the conformance relation. This filter
on input trajectories made it necessary to introduce the notion of agile states. In
a similar fashion to the quiescent action used by Tretmans, and Brandán-Briones
and Brinksma, the agility symbol ξ allows us to conclude conformance between an
implementation and a specification according to our intuition. However, in contrast
to quiescence, we do not consider agility as an observable output. The reason is
that in contrast to quiescence, agility can be observed from the implementation by
means of applying and observing continuous output.

In order to test the applicability and the limitations of the notion of hybrid test
in practice, we have developed a prototype test tool. In the next chapter, we first
explain the test tools on which we have based our prototype tool and the language
we use to make specifications for our hybrid test tool.
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Hybrid χ and TorX

For our prototype hybrid test tool that we describe in Chapter 6, we use the same
architecture and same way of operation as used in the discrete-event test tool
TorX [7, 6]. For our prototype tool we use the χ language [5, 35] as specifica-
tion language and the χ simulator tool set [25] to compute the set of transitions
allowed by the specification after a trace.

We explain the discrete-event behavior of χ and the TorX tool by an example of test-
ing a discrete-event χ simulation of the alternating bit protocol with TorX against
a specification of the alternating bit protocol described in a dialect of PROMELA
called TROJKA [55]. This research was published in [38].

At the end of this chapter we also discuss some other test tools and languages that we
considered to use for our prototype test tool, namely: TTG [31, 29], timed-TorX [10],
and Uppaal-TRON [33, 51], and the hybrid test tool Charon-tester [47, 46].

5.1 The Hybrid χ Language

The χ language [5, 35] is a hybrid process algebra with a hybrid transition system
semantics (defined by SOS rules). In this section we give an overview of the language
constructs relevant for this thesis.

A χ model has at the top level variable declarations, the parallel composition of
continuous behavior described by (partial) differential equations and a number of χ
processes. Variables are typed, e.g. as real numbers or strings. The χ language allows
communication between processes through channels and shared variables. A process
contains variable declarations, may contain continuous behavior described by (par-
tial) differential equations, and may contain discrete-event behavior described by
process terms. We describe these concepts more thoroughly by example in Section
5.2 and Section 5.3.

The following language constructs are relevant for this thesis:

• |[ . . . ]| denotes a scope;

• skip denotes internal activity;

• p; q denotes the alternative composition of process terms p and q;

63



64 Chapter 5 Hybrid χ and TorX

• v := e denotes the assignment of the value e to the variable v;

• p [] q denotes the alternative composition of process terms p and q;

• g → p denotes the process that executes p provided that the guard g evaluates
to true;

• p ‖ q denotes the parallel composition of process terms p and q;

• ∗( . . . ) denotes an unguarded repetition;

• g
∗→ p denotes the guarded repetition of process term p with guard g, which

means process term p is executed as long as guard g evaluates to true;

• h!e denotes a delayable send action of the value e over channel h;

• h!!e denotes an undelayable send action of the value e over channel h;

• h?e denotes a delayable receive action of the value e over channel h; and

• h??e denotes an undelayable receive action of the value e over channel h.

Note that we use the more “user friendly” notation as described by Man and Schif-
felers [35].

5.2 Modeling Discrete-event Behavior in χ

We use the well known alternating bit protocol as an example to illustrate how to
model a system in χ. We deliberately introduce a mistake in the model presented in
this section. In the next section we will explain how to test this model using TorX,
and discuss how to fix the mistake in the model.

Figure 5.1: The Alternating Bit Protocol

The alternating bit protocol allows communication over lossy communication medi-
ums. Lossy means a message might get corrupted or lost while inside the medium.
A transmitter sends a message over a lossy medium to a receiver. If the message
arrives uncorrupted, the receiver sends an acknowledgement over a second lossy
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medium. If the message arrives corrupted the receiver sends an error message over
the second medium. The acknowledgement or error message might get corrupted
also. If the transmitter does not receive the proper acknowledgment, the original
message is sent over the first medium again. This process is repeated until the
transmitter receives the correct acknowledgment. After that, a new message is sent.

The protocol is depicted in Figure 5.1. The transmitter, mediums, and receiver are
modeled as processes; process Sender, two instantiations of the process Medium,
and process Receiver, respectively. The process G generates the messages and waits
for the acknowledgements of successful transmission.

The Process Sender receives a message from G and as long as it does not receive
an acknowledgement it keeps on transmitting it. Information is exchanged between
processes via synchronous channels, in this case via input channel inp? and output
channel outp!. After the declaration of local variables msg and a, the body of this
process is enclosed in an infinite repetition. A guarded repetition is used to keep on
transmitting message as long as no acknowledgement ack0 or ack1 is received.

proc Sender( chan !sout, ?sin , ?inp, !outp : string ) =
|[ var msg : string = “ ”, a : string = “ ”
:: ∗( inp?msg

; ( a /∈ {“ack0”, “ack1”} ∗→ sout!msg; sin?a )
; outp!a
)

]|

The Process Receiver receives a message uncorrupted (msg0 and msg1) or corrupted
(c). This process uses a selection statement in which depending on the message, a
particular acknowledgement (ack0, ack1 or nack) is selected.

proc Receiver( chan ?rin, !rout : string ) =
|[ var msg : string = “ ”
:: ∗( rin?msg;

( msg = “c” → rout!“nack”
[] msg = “msg0” → rout!“ack0”
[] msg = “msg1” → rout!“ack1”
)

)
]|

Note that process Receiver does not forwards messages to the environment after
they are successfully received, which is common in the description of the alternating
bit protocol.

The Process Medium is the communication medium between Sender and Receiver.
Messages in the Medium may get corrupted, because the medium specifies a non-
deterministic choice between sending the message msg or sending the corrupted
message c.
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proc Medium( chan ?cin, cout : string ) =
|[ var msg : string = “ ”
:: ∗( cin?msg; ( cout!msg [] cout!“c” ))
]|

The Process G is used to generate messages to be sent by the process Sender to the
process Medium. After the acknowledgement is received from the process Sender it
generates another message (msg1 ). After the second acknowledgement the loop is
repeated.

proc G( chan ?inp, !outp : string ) =
|[ var a : string
:: ∗( inp!“msg0”; outp?a; inp!“msg1”; outp?a )
]|

The processes need to be instantiated in a model. In this model the connections
between processes are specified. All processes are executed in parallel.

model abp( )
|[ chan sm, ms, mr, rm, inpt, outpt : string
:: G(inpt, outpt) ‖ Sender(sm,ms, inpt, outpt) ‖ Medium(sm,mr)
‖ Medium(rm, ms) ‖ Receiver(mr, rm)
]|

After the processes have been instantiated, the χ-model can be compiled and ex-
ecuted. For this model, the χ compiler does not find an error and an executable
simulation is created. However, that does not mean the model correctly implements
the alternating bit protocol.

5.3 Modeling Continuous Behavior in χ

Hybrid χ is an extension of the discrete-event part of χ (explained in the previous
section) (or, more accurately, a discrete-event χ model is a hybrid χ model without
continuous behavior).

In χ, continuous behavior is modeled by continuous variables. The language χ
leaves open in what form the continuous behavior is defined. However, in practice,
the continuous behavior is usually defined by equations on variables and differential
equations. At the time of writing of this thesis, the χ simulator tool set only allows
equations and standard differential equations to specify continuous behavior.

Figure 5.2 depicts a system with continuous behavior. Each block with rounded
corners depicts a χ process. The arrows depict the communication channels be-
tween processes and their direction. In this system, the thermostat observes the
temperature of a room and sends messages to a heater over a medium to either turn
the heater on or turn the heater off. The thermostat and the room share continuous
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Figure 5.2: A Hybrid Thermostat Model

variable T and the heater and the room share the discrete variable n. The heater
sends back an acknowledgement if it has correctly received a message to turn on or
to turn off, after which the thermostat continues to observe the temperature of the
room. If the heater is turned on, then the room temperature increases and if the
heater is turned off the room temperature decreases.

The process Thermostat is similar to the process Sender in the previous section. It
shares the continuous variable T , which is defined as a parameter of the process,
with the process Room. In χ, the flow of continuous variables is specified in one
process or inside the model. The process Thermostat does not influence the room
temperature. Hence, the thermostat does not define the flow of T . The thermostat
waits until the temperate T drops either below 15 oC or exceeds 20 oC after which
it turns on or turns off the heater respectively. This message is sent to the heater via
the medium until an acknowledgement from the heater is received over the medium.
After an acknowledgement is received, the whole process is repeated.

proc Thermostat( cont : T : real, chan !sout, ?sin : string ) =
|[ var msg : string = “ ”, a : string = “ ”
:: ∗( ( T ≤ 15.0 → msg := “turn heater on”

[] T ≥ 20.0 → msg := “turn heater off ”
)
; sout!msg; sin?a
; ( a /∈ {“ack0”, “ack1”} ∗→ sout!msg; sin?a )

)
]|

The process Room only models the temperature flow of the room. This is modeled by
T ′ which models the first derivative of variable T . If the shared variable n is set to 1.0
by the heater, then the room temperature increases with 0.3∗1.0−0.1 = 0.2 oC/sec.
If the shared variable n is set to 0.0 by the heater, then the room temperature
decreases with 0.3 ∗ 0.0− 0.1 = −0.1 oC/sec.
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proc Room( cont T : real, var n : real ) =
|[ T ′ = 0.3 ∗ n− 0.1
]|

The process Heater is similar to the process Receiver in the previous section. If it
receives a message to turn on, it sets the shared discrete variable n to 1.0, which
causes the room temperature T to increase (as described below). If it receives a
message to turn off, it sets the shared discrete variable n to 0.0, which causes the
room temperature T to decrease.

proc Heater( var n : real, chan ?rin, !rout : string ) =
|[ var msg : string = “ ”
:: ∗( rin?msg;

( msg = “c” → rout!“nack”
[] msg = “turn heater on” → rout!“ack0”; n := 1.0
[] msg = “turn heater off” → rout!“ack1”; n := 0.0
)

)
]|

The processes Thermostat, Room and Heater are composed together with two in-
stantiations of the process Medium as described in the previous section, into one
model. The model also initializes the variables T and n.

model RoomThermos( )
|[ cont T : real = 17.5, var n : real = 0.0

chan sm, ms, mr, rm : string
:: Thermostat(T, sm, ms) ‖ Medium(sm,mr) ‖

Medium(rm, ms) ‖ Heater(n,mr, rm) ‖ Room(T, n)
]|

5.4 The Hybrid χ Simulator

The hybrid χ tool set [25] allows simulation of discrete-event, timed, as well as
hybrid χ models. A simulation run starts with selecting, non deterministically or
by the user, an action or a duration. The simulator computes the trajectories of
continuous variables and one new state that is reached by performing an action or
that is reached by waiting for the selected duration. From the set of actions and
durations allowed by this state a new action or duration is selected, after which a
new reachable state is computed. This process continuous until the user terminates
the test or until the χ simulator reaches a deadlock. During a simulation run, the
continuous behavior of the simulation run is plotted and the actions are displayed
on screen.
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Underneath the χ simulator lies a class library that makes it possible to compute the
actions allowed in a state, to synchronize processes through channel communications,
to compute the trajectories allowed in a state, and to compute the reachable states
after performing an action or trajectory. Differential equations are can be either
solved by using a symbolic equation solver or a numerical equation solver. This
set of classes is called the stepper. It contains all the methods we would require to
implement a test generation and execution algorithm for hybrid tests.

5.5 TorX

The TorX test tool was developed within the Côte-de-Resyste project [16], a collab-
oration between the University of Twente, Eindhoven University, Philips Research
Laboratories and Lucent Technologies. It can be used for testing hardware and
software.

Several case-studies have been performed with TorX (e.g. a highway tolling system
[54] and a communication protocol [21]). The version of TorX that we discuss below
implements the notion of test of Tretmans as defined in Chapter 3.

The TorX tool supports testing of discrete event systems according to this confor-
mance relation. An input generated from a specification is applied to the system
under test, and the output from this system is compared to the specified output.
When it is possible to perform the observed output transition in the specification,
the test is passed. The architecture is depicted in Figure 5.3.

Figure 5.3: Torx Architecture

SPEC: The formal model, from which the test-cases are generated. TorX is able
to extract test cases from several specification languages, e.g. TROJKA [55]
(a dialect of the PROMELA language) and LOTOS. It is also possible to
implement an automaton or labeled transition system in C and generate test
cases from these models.

Explorer: This component offers functionality to explore the transition graph of a
specification. It is language specific. For a given state it provides the set of
transitions (input and output) from that state. E.g. an explorer is available
that is based on the OPEN/CAESAR [19] interface, and one that is based on
the SPIN [26] interface.
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Primer: This component implements the test derivation algorithm. It also provides
functionality to offer input stimuli to the implementation under test and to
check output observations from the implementation under test. Test selection
is currently done at random (with random seeds) or using test purposes [53].

Driver: This component controls the progress of the testing process. It decides
whether to do an input action or to observe possible output from the imple-
mentation. It uses the primer to select an input action from the specification
and the adapter to observe the actual output from the implementation.

Adapter: This component is the connection between the test tool and the system
under test. It is responsible for translating input transitions from the specifi-
cation to readable inputs for the implementation, and for translating outputs
received from the implementation back to output actions. These output ac-
tions are then matched to the output transitions in the specification.

SUT: The System Under Test (SUT) consists of the actual implementation under
test (IUT), together with the test environment (e.g. drivers, stubs, hardware
and operating system). An input from the adapter is passed on to the imple-
mentation under test. The output from the SUT is communicated back to the
adapter.

The initial purpose of the tool was to test real implementations automatically. In
the rest of this paper we show it can also be used to test models. This can be useful
if we want to validate different versions of a model or if we want to validate parts
of a complex model.

5.6 Testing Discrete χ models with TorX

The simulation model presented in the previous section contains a mistake that
might not be spotted immediately. Usually, only when the simulation model appears
to run incorrectly a designer starts debugging the model. He might add extra debug
code to output additional information on the state of the simulation at particular
points. He might study the code itself, which is time consuming and does not
guarantee success either.

We propose to use TorX for automated model-based testing of this model. To be
able to test a simulation model, four steps have to be taken:

1. The model for generating test-cases needs to be built if this model does not
exist already. Once this model has been made it can be re-used or adapted
for any simulation model with similar behavior.

2. Both models, the simulation model and the model used for test generation
need to be open, i.e. external channels need to be observable for the test tool.
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3. The connection between the test tool and the simulator needs to be built. An
adapter needs to be implemented which can be used in testing χ models. We
have adapted an existing adapter, written in Python, for this purpose.

4. Within the adapter a translation scheme needs to be made for syntactic dif-
ferences between the model under test and the model that serves as the spec-
ification.

TorX is able to derive test-cases from a dialect of the PROMELA language called
TROJKA. The only difference between PROMELA and TROJKA is that in the
TROJKA-language a channel can be defined as observable. This means that the
communication over this channel is visible (e.g. for TorX to use as test-input or
output). The messages over channels that are not declared observable are not used
for test-case generation.

The correct behavior of the alternating bit protocol is that for every message sent,
eventually the corresponding acknowledgement should be received. Only after an
acknowledgment has been received the next message can be sent. The behavior of
the system can be specified in TROJKA as follows:

mtype = {call, result, send, m0, m1, a0, a1};

chan TDRV__channel = [0] of { mtype,mtype,mtype } OBSERVABLE;

active proctype Sender() {
do
:: TDRV__channel?call,send,m0;

TDRV__channel!result,send,a0;
TDRV__channel?call,send,m1;
TDRV__channel!result,send,a1

od
}

In this model input message m0 is sent first, then output message a0 is received.
Then m1 is sent after which a1 is received. After that, m0 is sent again and a0 is
received and so on. A simulation model is normally closed. There is no interaction
between the simulation (processes) and “the outside world” (e.g. other tools or a
user) to guide the simulation. In order to test the χ-model of the alternating bit
protocol interaction with the TorX tool is needed. The TROJKA-model is open
by means of the observable channel. The χ model can be made open by replacing
process G (see Section 3) with a new process IO. Replacing process G does not
affect the behavior of the alternating bit protocol itself (which is implemented by
the processes Sender, Medium, and Receiver).

Instead of alternating between msg0 and msg1 inside a process, the message to be
sent is received from a special purpose channel. In the χ-language this is a channel
without a name and it is normally used for receiving input from a unix-terminal



72 Chapter 5 Hybrid χ and TorX

proc io( chan inp : string, outp : string ) =
|[ var m : string
| ∗( ?m; inp!m; outp?m; !m )
]|

command line, or for printing output to the command line. For our purpose we
need TorX to communicate with this special channel.

We have built an adapter to establish the connection between TorX and the simu-
lation through this channel. It consists of a generic part and a model specific part.
The generic part can be re-used; it implements a connection between TorX and χ
by means of pipes. Because a pipe mechanism is used every data type used in the
TROJKA-model needs to be translated to a string. The model-specific part is the
translation of input and output messages between the TROJKA-model and the χ-
model. PROMELA, and therefore TROJKA, allows data types name, bit, and byte.
The χ language also allows data types string, boolean, and natural. To make testing
possible, we need to define a mapping of messages defined in the TROJKA-model to
the messages defined in the χ model, and the other way around. In our alternating
bit protocol example the message m0 in the TROJKA-model is the message msg0 in
the χ model. The same holds for the other message m1 and the acknowledgments.
In the adapter we define a mapping between these messages.

Our adapter presupposes that the TROJKA-model meets some mild syntactic con-
ventions (that were already used in the TROJKA model earlier in this section):

• The channel names have to start with TDRV__ in order to use the correct
Python class in which the adapter has been implemented.

• The first part of the message has to be call or result to indicate an input
to the simulation or an output from the simulation respectively.

• The second part of the message has to be the function call in the adapter
(send) which sends the input to the simulation and returns the output from
the simulation.

Using the adapter we can now test the χ-simulation of the alternating bit pro-
tocol with TorX. During test execution TorX generates a message sequence chart
(MSC) [13]. The MSC shows the components (e.g. processes) involved and the
interaction between those components. In this case the components are the test
driver tdrv, the implementation iut and the outside world (out). The interaction
between components is indicated by arrows. The order in which the messages take
place is from top to bottom. The top message takes place first. The distance be-
tween two messages is not an indication for the amount of time that passed between
those messages.

The result of testing our alternating bit protocol is depicted in Figure 5.4.

First, the message m0 is provided to the implementation and correctly acknowledged
by the implementation. Then, the implementation cannot produce an acknowledge



5.6 Testing Discrete χ models with TorX 73

TDRV iut

TDRV__channel ! call ! sendbit ! m0

TDRV__channel!result!sendbit!a0

(out)

(Quiescence)

TDRV__channel ! call ! sendbit ! m1

TDRV__channel!result!sendbit!a0

Expected: TDRV__channel ! result ! sendbit ! a1

Figure 5.4: Error Found in Model-based Testing the Alternating Bit Protocol

output without an input message and therefore it produces a quiescence message.
After providing message m1 as input, acknowledgement a0 is received. However,
acknowledgement a1 was expected as output. This was the acknowledgement to
follow message m1 in the TROJKA-model. Repeating this test with m1 as first input
shows that upon message m0, a1 is received. In this case acknowledgement a0 was
the expected output from the simulation.

These observations lead to the conclusion a mistake could have been made in
process Sender : When the first acknowledgement is received the variable a is as-
signed that value; after sending the second message a still has this value; therefore
a ∈ {”ack0”,”ack1”} and value a is returned as output. This leads to the conclusion
that the second time the message is never sent over the medium. The solution for
this problem is to read the first response on the current message before evaluating
the guard of the repetition for the first time:

proc Sender( chan !sout, ?sin , ?inp, !outp : string ) =
|[ var msg : string = “ ”, a : string = “ ”
:: ∗( inp?msg; sout!msg; sin?a

; ( a /∈ {“ack0”, “ack1”} ∗→ sout!msg; sin?a )
; outp!a
)

]|

Although this was a small example, it contained a mistake. By examining the model
it can be hard to spot the mistake. With the help of model-based testing the mistake
was found and the model used for validating the simulation model only contained
ten lines of code.
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5.7 Other Test Tools

A timed version of TorX was implemented by Bohnenkamp and Belinfante [10] .
Timed TorX was developed as part of the Tangram project. They also redefined
timed input-output conformance with quiescence for timed automata (instead of
timed transition system). The two theories are the same except they do not lay a
time bound M on when to conclude quiescence. They leave that up to the imple-
mentation. Timed-TorX is an extension of TorX. An input can be selected together
with the time it has to be applied to the implementation. If an output action is ob-
served from the implementation it is validated against the test whether this output
was allowed. If the output was not allowed, the verdict fail is concluded. Test gen-
eration and execution is performed on-the-fly, like in TorX. Some case studies were
performed with timed-TorX. First, some timed automata implementations (imple-
mented in C) were tested against some timed automata specifications. In this case,
tests were not executed in real-time. The automaton produced the output together
with the ”virtual” time they were performed. Second, an experiment was conducted
with testing timed properties of a software controller of a waferstepper machine. As
a result some timing mistakes were found in that component.

Krichen and Tripakis implemented the prototype timed test tool TTG [29]. It was
built upon the IF environment [11, 52]. They performed some toy example case
studies and they performed a case study on the K9 rover [31].

Larsen [33] et al. also implemented a timed test tool named UPPAAL-TRON [51].
This test tool is based upon the UPPAAL model-checking toolkit. They did not
define their own conformance relation (and formal test generation procedure). Their
works seems to be based on Krichen and Tripakis’s theory, or they have been influ-
encing eachother. UPPAAL-TRON does not use a quiescence action either. In [33],
Larsen et al. describe a case study in which they have used UPPAAL-TRON in an
industrial case-study on testing a controller for industrial cooling devices.

The only hybrid model-based test tool to our knowledge is the Charon tester [47, 46].
This is a prototype tool implemented in the Charon framework [2]. The Charon
tester takes a different approach than those of the other test tools mentioned above.
The Charon language is a hierarchical graphical modeling language based on the
theory of hybrid input-output automata. The Charon tool-set is used for hybrid
simulation and runtime verification. In runtime verification a small program is
generated from a property that is executed together with the implementation. If the
property is violated this is reported. With the Charon tester, besides properties, also
an environment (of the implementation) is modeled. A test generator is implemented
that is also executed together with the implementation and that selects input for
the implementation from the environment model. If a property is violated the test
fails. The advantage of this approach is that inaccuracy in observations is not an
issue, e.g. there is no clock skew because both test and implementation run on the
same platform. The disadvantage of this approach is that it is not flexible. For every
different environment, different test generator, and different execution platform, new
code needs to written and generated, and embedded in the system under test.
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Besides hybrid χ we also considered other hybrid languages as potential specification
language and other tools as basis for a prototype tool, namely haron [2], PHAver [18],
and HyTech [24]. In the end we have chosen χ. The first reason is that χ has been
developed at the Technische Universiteit Eindhoven at the Mechanical Engineering
Department, and therefore developers are close by for assistance. The second reason
is that the χ simulator has been built such that it is possible to implement a test
tool application reusing underlying class libraries, without needing to adapt them.
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Test tool Implementation

This chapter describes the issues involved in developing a test tool that is based
on the theory for hybrid testing introduced in Chapter 4. This chapter explains a
number of design issues and implementation issues considering the development of
a hybrid conformance test tool in general. Design issues we call those issues that
are related to the design of the test algorithm. Implementation issues we call those
issues that are related to practical circumstances. For instance, how to select input
is a design issue while how to execute the tests in real-time is an implementation
issue.

We have implemented a prototype version of a test tool for hybrid systems. The
remainder of this chapter describes two examples that show that the prototype tool
works and is able to find mistakes in an implementation. In Chapter 7 we present
an industrial case study that we have performed with this tool.

6.1 Tool Architecture

All conformance test tools discussed in Chapter 5 (TorX [7], TTG [29], and Uppaal-
TRON [33]) use the same basic architecture. Since our notion of test is based on the
test definitions that are behind these tools, we choose the same architecture when
implementing a hybrid test tool.

Figure 6.1: Test Tool Architecture

The test engine implements the test generation procedure. It steps through the
specification and computes the sets of allowed input actions, output actions, and

77
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trajectories. It selects an input action or trajectory on input variables to be applied
to the implementation. If an output action or continuous output is observed, then
it evaluates whether this output is allowed by the specification. If some output is
observed that is not allowed according to the specification, then the test is termi-
nated with the verdict fail. As long as the verdict fail is not given, the test can be
terminated by some stop criterion. In this case the test terminates with the verdict
pass.

The adapter transforms input to a format that is suitable to be sent through the
communication medium to the implementation (through the test environment). It
also transforms output received over the communication medium from the imple-
mentation back to a format suitable for comparison with the specified output.

In the architecture, medium refers to all hardware and software for the communi-
cation between the test tool and the implementation. The medium can for instance
be an ordinary TCP/IP network but also dedicated busses, or wires. Due to the
presence of the medium, the test tool and implementation do not need to be on the
same execution platform. The platform on which the test engine and adapter are
executed is usually called the specification side of the test setup and the platform
on which the implementation and test environment are executed is usually called
the implementation side of the test setup.

The test environment handles the communication over the medium from the imple-
mentation side. This can for instance be packing and unpacking data packages sent
over the medium. It is also used for instance to add time-stamps to the output.

Before we can build a test tool we need to design a test generation and execution
algorithm. There are two major decisions to take. First we need to decide whether
to generate the test before the execution or to generate the test at runtime on-the-
fly. Second, we need to decide whether we apply real continuous input and observe
real continuous output, or only use samples of continuous input and observe samples
of continuous output.

6.2 Test Generation and Execution

Recall that a test is viewed as a tree shaped HTS with transitions labeled with input
actions, output actions, and trajectories, and with leaf states labeled with verdicts
pass or fail. The notion of test in Chapter 4, does not define when to select and
apply input actions, when to observe output actions, when to select continuous
input, when to apply continuous input to the implementation and when to observe
continuous output from the implementation.

In order to implement hybrid model-based testing we need to decide whether to
generate a test from the specification before the execution or to generate the test
from the specification during the execution. Test generation at runtime is called
on-the-fly test generation and execution. The advantage of generating a test before
the execution is that less computation time is needed at runtime than in the case
the tests are generated at runtime. The advantage of generating test during the
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execution is that as a whole it is faster compared to test generation before execution.
If we generate tests on-the-fly then we only need to step through the specification,
while if we generate the test before the execution, then we first need to step through
the specification for generating the test and then we need to step through the test
in order to execute it. We discuss the options and make a choice.

A recursive algorithm for generating tests before execution is derived directly from
the notion of test described in Chapter 4. This algorithm is shown in Figure 6.2.

algorithm tcg(C) =
select either

1. return pass
2. compute I = {a|a ∈ AI ∧ C after a 6= ∅}

if I 6= ∅ then select an i ∈ I
return i; tcg(C after i)

3. if traj(C) = ∅ then
return

∑{o; tcg(C after o)|o ∈ Ao ∩ out(C)} +∑{o; fail|o ∈ Ao\out(C)} +∑{σ; fail|σ ∈ ΣS}
4. if traj(C) 6= ∅ then

select an u ∈ {σ ↓ VI |σ ∈ traj(C)}
compute traju(C) = {σ|σ ↓ VI = u ∧ σ ∈ traj(C)}
compute subtraju(C) = {σ|∃σ′∈traju(C) : σ ≤ σ′}
return

∑{σ; tcg(C after σ)|σ ∈ traju(C)} +∑{σ; fail|σ /∈ subtraju(C)} +∑{o; tcg(C after o)|o ∈ AO ∩ out(C)}+∑{o; fail|o ∈ AO\out(C)}+∑{σ′; o; tcg(C after σ′o)|σ′ ∈ subtraju(C) ∧
σ′.ltime < u.ltime ∧ o ∈ AO ∩ out(C after σ′)} +∑{σ′; o; fail|σ′ ∈ subtraju(C) ∧
σ′.ltime < u.ltime ∧ o ∈ AO \ out(C after σ′)}

Figure 6.2: A Recursive Hybrid Test Algorithm

For this algorithm to terminate we eventually need to select the verdict pass for
every leaf state that is not the verdict fail.

However, the resulting test tree becomes infinite as soon as step 3 or step 4 is
applied. Therefore in order to make test generation before execution implementable
and usable in practice, we need a higher level representation for tests. In essence, a
test is a partial specification with verdicts added. It might be possible to describe a
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test as a hybrid automaton with failure states added. In such automaton number of
trajectories is grouped into one mode. However, a test automaton may grow to the
size of the specification. Furthermore, a new test needs to be generated for every
test with (at least one) different input action or trajectory compared to the tests
generated previously. Therefore, test generation before execution is not considered
a viable option.

The solution is to simultaneously generate and execute a test directly from the
specification. In this case every step of the recursive test generation algorithm is
performed on the implementation, before the next recursive step is taken or the test
is terminated. Note that in the algorithm described below we still use mathematical
notion and possibly infinite sets. In practice we can only handle finite representations
of sets of actions and sets of trajectories. We describe this issue in further detail in
Section 6.4.1.

Let S be a specification and let C ⊆ S be a set of states of S. On-the-fly test gen-
eration and execution is implemented by the recursive algorithm otftcg(C) which
repeatedly selects one of the following 4 steps:

1. terminate testing with verdict pass.

2. select an input action i, such that C after i 6= ∅, and apply i to the imple-
mentation and continue testing with otftcg(C after i)

3. if traj(C) = ∅ then select an arbitrary σ ∈ Σ with arbitrary duration and start
applying σ ↓ VI to the implementation:

(a) if an output action o is observed immediately from the implementation
and o ∈ AO ∩ out(C) then continue testing with otftcg(C after o);

(b) if an output action o is observed immediately from the implementation
but o ∈ AO \ out(C) then terminate testing with verdict fail; and

(c) if no output action is observed from the implementation then terminate
testing with the verdict fail;

4. if traj(C) 6= ∅ then select a σ ∈ traj(C) with a duration t, apply σ ↓ VI to
the implementation and observe the continuous output of the implementation,
denoted by a trajectory σVO

on variables VO:

(a) if an output action o is observed immediately from the implementation
and o ∈ AO ∩ out(C), then continue testing with otftcg(C after o);

(b) if an output action o is observed immediately from the implementation
but o ∈ AO \ out(C), then terminate testing with verdict fail;

(c) if at time t′ < t, the trajectory σVI
≤ σ ↓ VI with σVI

.ltime = t′ has
been applied to the implementation and σVO

has been observed from
the implementation but there does not exist a σ ∈ traj(C) such that
σ ↓ VI = σVI and σ ↓ VO = σVO , then terminate testing with verdict fail;
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(d) if at time t′ < t an output action o is observed and the trajectory σVI
≤

σ ↓ VI with σVI
.ltime = t′ has been applied to the implementation and

the trajectory σVO has been observed from the implementation and there
does exist a σ ∈ traj(C) such that σ ↓ VI = σVI

and σ ↓ VO = σVO
,

denoted by σVI∪VO
, then

i. if o ∈ out(C after AO ∩ σVI∪VO ), then continue testing with otftcg(
C after o);

ii. if o ∈AO \out(C after σVI∪VO
), then terminate testing with verdict

fail;
(e) if at time t the trajectory σVO

is observed from the implementation and
there exists a σ′ ∈ traj(C) such that σ′ ↓ VI = σ ↓ VI and σ′ ↓ VO = σVO

then continue testing with otftcg(C after σ′);

Then, otftcg({so}) performs the on-the-fly test generation and execution.

In on-the-fly test generation, the test tree does not need to be generated any further
for the output that is not observed at runtime. Even more, once a test step has
been generated and executed, that part of the test tree does not need to be stored.
Furthermore, with test generation before execution we first need to step through
the specification to generate the test and then we need to step through the test to
execute the test on the implementation, while with on-the-fly test generation and
execution we only need to step through the specification once and a smaller part of
it.

6.3 Sampling

To test with continuous behavior we need to solve two problems. The first problem
is how to accurately stimulate a hybrid system with continuous input and how to
accurately observe continuous output from a hybrid system. An actuator, e.g. a
heater, as part of the medium to stimulate a sensor of an implementation cannot be
controlled accurately enough to exactly produce the input as prescribed by the test.
A sensor as part of the medium to observe physical behavior of the implementation
cannot observe accurately enough because influences from the environment of the
implementation cannot be controlled. The second problem is that, even if the con-
tinuous behavior can be accurately controlled, e.g. with electronic signals, time is
needed to select and apply continuous input and to observe and validate continuous
output. Therefore, selecting input and validating output has to take place while
new input is applied and new output is observed.

By using sampled behavior instead of real continuous behavior the sample rate can
be adjusted such that there is time to compute new input samples and evaluate
output samples in between sending and receiving samples.

Sampling often suffices for the purpose of the test engineer e.g. in the case that:

• a controller is tested the controller might already sample the continuous be-
havior observed through a sensor; or
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• the test engineer has enough confidence that a well chosen sample rate suffi-
ciently characterizes the continuous behavior of the implementation.

What is the best sample rate depends on the purpose of the test and on the im-
plementation. Sometimes a static sample rate suffices. E.g. if we test a software
controller with a sample rate of 1 second, then a static sample rate of 1 second is
sufficient. Sometimes a dynamic sample rate might be advantageous. In this case
the sample rate is dynamically changed during the test execution. E.g. the test tool
generates more samples depending on the slope of the trajectory.

6.3.1 Sampled Hybrid Input-output Conformance

We will formalize the use of sampled continuous behavior in a new hybrid confor-
mance relation and notion of test. In this relation the implementation and specifi-
cation remain hybrid entities. The difference with the conformance relation defined
in the previous chapter is that sampled trajectories are used.

With a fixed sampling rate, the first sample point of a trajectory can only be de-
termined based on the duration of the preceding trace. E.g. if a trajectory lasts 3.5
seconds and if the sample rate is 1 second, starting from time 0, then the last sample
of this trajectory is taken at 3 seconds and the first sample of the next trajectory has
to be taken at 0.5 seconds. Recall that every trajectory is defined over a left-open
interval starting at 0.

In order to define sampling, we first need to define the duration of a sequence of
actions and trajectories.

Definition 6.1. Let α, α′ ∈ (A ∪ Σ). Let a ∈ A and let σ ∈ Σ. Then the duration
of α, denoted by α.ltime is defined as:

• if α = ε then α.ltime = 0;

• if α = aα′ then α.ltime = α′.ltime; and

• if α = σα′ then α.ltime = σ.ltime + α′.ltime.

The first sample point of a trajectories is computed as follows. Let sr be the sample
rate. Let α.ltime be the duration of sequence α and let mod be the standard
mathematical modulo function, recursively defined for positive numbers a and b
(including 0) by:

mod(a, b) =
{

a , if a < b
mod(a− b, b) , otherwise.

Then the first sample point for trajectory σ in the trace ασ is sr−mod(α.ltime,sr).
With this first sample point we define the samples of a trajectory.

Definition 6.2. Let sr be the sample rate. Let σ be a trajectory. Let 0 < p ≤ sr
be the first sample point of the trajectory and let ⊥ denote a special value not in
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R. Then, the sampled trajectory of σ, denoted by sampledsr(σ, p), is a trajectory
with, for all t ∈ (0, σ.ltime]:

sampledsr(σ, p)(t) =
{

σ(t) , if mod(sr + t− p, sr) = 0
⊥ , otherwise.

For a set of trajectories Σ we define:

sampledsr(Σ, p) =
⋃

σ∈Σ

sampledsr(σ, p).

For a trace α ∈ (A ∪ Σ)∗ we define:

• if α = ε, then
sampledsr(α, p) = ε;

• if α = aα′, with a ∈ A and α′ ∈ (A ∪ Σ)∗, then

sampledsr(α, p) = a sampledsr(α, p); and

• if α = σα′, with σ ∈ Σ and α′ ∈ (A∪Σ)∗, and np = sr−mod(sr + σ.ltime−
p, sr) then

sampledsr(α, p) = sampledsr(σ, p) sampledsr(α, np).

When sampling is applied to the trajectories, the following may happen. Consider
the two trajectories σ1 and σ2 depicted in Figure 6.3.

Figure 6.3: Two Trajectories with the same Sample Points

With a certain sample rate, both σ1 and σ2 have the same value. It is clear that
the samples do not characterize a unique trajectory. Upon receiving these samples
as input, an implementation may therefore react as if it received σ1 as input or as
if it received σ2 as input. The specification and implementation may also contain
different traces which have the same valuations when sampling is applied.

Definition 6.3. For a set of traces Ω ⊆ (A ∪ Σ)∗ we define:

C after Ω =
⋃

α∈Ω

C after α.
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Using Definitions 4.3, 4.5, 4.8, 4.12, and 6.3 we redefine the hybrid conformance
relation for sampled continuous behavior.

Definition 6.4. Let S be a specification and let I be an input-enabled imple-
mentation. Let sr be the sample rate. Let, for all traces α ∈ traces(S), pα =
sr −mod(α.ltime, sr) be the next sample point after the trace α. Let Ωα = {ω ∈
traces(S)|sampledsr(ω, 0) = sampledsr(α, 0)} be the set of all traces with after
sampling the same valuations as the sampled trace α. We say that I is sampled hy-
brid input-output conform S, denoted by I hiocosr S, iff for all traces α∈ traces(S):

out(I after Ωα) ⊆ out(S after Ωα) ∧

infilter(sampledsr(traj(I after Ωα), pα), sampledsr(traj(S after Ωα), pα)) ⊆

sampledsr(traj(S after Ωα), pα).

6.3.2 Sampled Hybrid Tests

For the notion of test without sampling we needed the set of all trajectories with
the same trajectory on input variables. For a notion of test with sampling we need
the set of all trajectories, with the same sampled trajectory on input variables.

Definition 6.5. Let S = (S, s0, Aτ ∪ Σ,→ ∪ ;) be a specification with continuous
variables V = VI ∪ VO and let C ⊆ S be a non-empty set of states. Let sr be the
sample rate and let 0 < p ≤ sr be the first sample point of the next trajectory; then
the set of hybrid tests with sample rate sr, denoted by hTestssr(C, p) is inductively
defined as follows:

1. pass is an element of hTestssr(C, p).

2. Suppose i ∈ AI and C after i 6= ∅ and let T C′ ∈ hTestssr(C after i, p), then
i; T C′ is an element of hTestssr(C, p).

3. Suppose traj(C) = ∅ and let, for all o ∈ AO ∩ out(C),
T Co ∈ hTestssr(C after o, p), then

∑{o; T Co|o ∈ AO ∩ out(C)}+∑{o; fail|o ∈ AO\out(C)}+∑{σ; fail|σ ∈ sampledsr(Σ, p)}

is an element of hTestssr(C, p).

4. Denote by Σσ = {σ′|sampledsr(σ′, p) = σ} the set of trajectories with after
sampling the same valuations as the sampled trajectory σ. Denote by u ∈ {σ ↓
VI |σ ∈ sampledsr(traj(C), p)} the sampled trajectory on input variables.
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• Denote by straju(C) = {σ|σ ∈ sampledsr(traj(C), p) ∧ σ ↓ VI = u} the
set of trajectories with sampled input trajectory u.

• Denote by ssubtraju(C) = {σ|∃σ′∈straju(C) : σ ≤ σ′} the set of prefixes
of the set of trajectories in straju(C).

Suppose j = u.ltime. Let, for all σ ∈ straju(C), T Cσ ∈ hTestssr(C after Σσ′ ,
sr − mod(sr + σ.ltime − p, sr)), and let, for all σ′ ∈ ssubtraju(C) and
o ∈ AO ∩ out(C after Σσ′), T Cσ′o ∈ hTestssr((C after Σσ′) after o, sr −
mod(sr + σ.ltime −p, sr)), then

∑{σ; T Cσ|σ ∈ straju(C)} +∑{σ; fail|σ ↓ VI = u ∧ σ /∈ ssubtraju(C)} +∑{o; T Co|o ∈ AO ∩ out(C)}+∑{o; fail|o ∈ AO\out(C)}+∑{σ′; o; T Cσ′o|
σ′ ∈ ssubtraju(C) ∧ σ′.ltime < j ∧ o ∈ AO ∩ out(C after Σσ′)} +∑{σ′; o; fail|
σ′ ∈ ssubtraju(C) ∧ σ′.ltime < j ∧ o ∈ AO \ out(C after Σσ′)}

is an element of hTestssr(C, p).

The set of tests from a specification S is defined as hTestssr(S, 0).

This notion of test allows to apply input actions in between samples and to observe
output actions between samples. At the moment in time the actions occur, the sam-
pled continuous variables do not have a real value (since the variables have value
⊥). Normally this is not a problem except in case an output action is triggered by a
specific input sample. For instance, a thermostat might be implemented such that
the heater should switch on at exactly 15 degrees Celcius. If the initial tempera-
ture of the specified room is 20 degrees Celcius, the (specified) room temperature
decreases with 0.3 degrees per minute, and the sample rate is 1 minute, then the
implementation will be stimulated with a room temperature of 15.1 degrees Celcius
followed by a temperature of 14.8 degrees Celcius. The room temperature that trig-
gers the output action is not applied and therefore not observed. If the specifications
correctly models that behavior that at exactly 15 degrees Celcius the output action
has to occur, the test leads to the verdict fail because the output action was not
observed while it should have been observed. The solution for this problem is to
use dynamic sampling which, in case of urgent output actions, generates and sends
a sample to the implementation in order to try to trigger the urgent output action.

Definition 6.6. The synchronous composition of a sampled test T C = (T, t0, A ∪
Σsr,→ ∪ ;) and an implementation I = (S, s0, Aτ ∪ Σ,→I ∪ ;S), denoted by
T C ‖sr I is defined by

T C ‖sr I = (T × S, (t0, s0), A ∪ Σsr,→′ ∪ ;′)

with →′ =
{((t, s), a, (t′, s′))|t l→ t′ ∧ s

a→I s′ ∧ a ∈ A \ {τ}} ∪
{((t, s), τ, (t, s′))|s τ→I s′}
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and ;′ =

{((t, s), σ, (t′, s′))|σ ∈ Σsr ∧ t
σ
; t′

∃p∈R>0,σ′∈Σ : 0 < p ≤ sr ∧ sampledsr(σ′, p) = σ}.

Definition 6.7. Let T C = (T, t0, A ∪ Σsr,→ ∪ ;) be a sampled test and let I =
(S, s0, Aτ ∪ Σ,→I ∪ ;S) be an implementation. The set of test runs, denoted by
testruns(T C ‖sr I), is the set of all traces that lead to a state pass or fail:

testruns(T C ‖sr I) =

{α ∈ traces(T C ‖sr I)|∃s∈S : (t0, s0)
α⇒ (pass, s) ∨ (t0, s0)

α⇒ (fail, s)}

We say a hybrid implementation passes a hybrid test if only the verdict pass is
reachable in the execution of the test.

Definition 6.8. Let T C = (T, t0, A ∪ Σsr,→ ∪ ;) be a sampled test and let I =
(S, s0, Aτ ∪ Σ,→I ∪ ;S) be an implementation, then I passes T C is defined as

I passes T C ⇐⇒ ∀α∈testruns(T C‖srI) : ∃s∈S : (t0, s0)
α⇒ (pass, s).

Let S be a specification, then

I passes hTestssr(S, 0) ⇐⇒ ∀T C∈hTestssr(S,0) : I passes T C.

6.3.3 Soundness and Exhaustiveness Proofs for Hybrid Tests

The notion of sampled test is sound and exhaustive with respect to the sampled
conformance relation.

Theorem 6.9. (soundness) Let I be an implementation and let S be a specification,
then:

I hiocosr S =⇒ ∀T C∈hTestssr(S,0) : I passes T C.

We will sketch a proof for this theorem in the line of the soundness proof for hybrid
tests as described in Section 4.6. We assume that there is a test run that leads to
the verdict fail for an implementation, and we prove that this can only be the case
if the implementation does not conform to the specification from which the test is
derived. This contradicts the assumption that the implementation conforms to the
specification.

In order to prove this we first need to prove that if there is a test run that leads to
the verdict fail there is a subtest, which by either an output action, a trajectory, or a
trajectory followed by an action leads to fail. Then, we prove that if a sampled trace
leads to the verdict fail, this is either because of an output action that is not allowed
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by the specification or by a sampled trajectory that is not allowed by the specifi-
cation. Because the trace leads to the verdict fail for the implementation we know
that this output action or sampled trajectory was allowed by the implementation
and therefore the implementation does not conform to the specification.

Sketch of proof. Soundness of sampled conformance is proven by contraposition. Let
S = (SS , s0,Aτ ∪Σsr,→S ∪;S) be a specification, and let I = (SI , i0,Aτ ∪Σ,→I
∪ ;I) be an implementation. Let T C = (T, t0, A ∪ Σ,→ ∪ ;) be a test, with
T C ∈ hTestssr(S, 0) and suppose that, for some α ∈ testruns(T C ‖sr I), t0

α⇒ fail.
We show that this α can only exist if I hiocosr/ S.

Similar to Lemma 4.25 in Section 4.6 it holds that if T C ∈ hTestssr(S, 0) and
α ∈ testruns(T C ‖sr I) such that T C α⇒ fail, then there exists a sampled trace α′, a
subtest T C′, a set of continuous traces Ω = {ω|ω ∈ traces(S) ∧ sampledsr(ω, p) =
α′} and an output action o ∈ AO or a trajectory sampled σ such that T C′ ∈
hTestssr(S after Ω, 0) and T C α′⇒ T C′ and either:

1. ntrace(α) = α′o and T C′ o→ fail;

2. ntrace(α) = α′σ and T C′ σ
; fail; or

3. ntrace(α) = α′σo and T C′ σo⇒ fail.

This can be proven by induction the structure of T C and α.

For α ∈ testruns(T C ‖sr I) and T C α⇒ fail we can then prove the following.

• Suppose ntrace(α) = α′o, Ω = {ω|sampledsr(ω, 0) = α′}, T C α′⇒ T C′, and
T C′ o→ fail. Then, because T C′ ∈ hTestssr(S after Ω) it follows that o /∈
out(S after Ω). Because α ∈ testruns(T C ‖sr I) we know that

o ∈ out(I after Ω).

Therefore, I does not conform to S.

• Suppose ntrace(α) = α′σo, T C α′⇒ T C′ and T C′ is the last subtest (as de-
scribed in Section 4.6) of T C and T C′ σo⇒ fail, Ω = {ω|sampledsr(ω, 0) =
α′}, and Σσ = {σ′|sampledsr(σ′, mod(α′.ltime, sr)) = σ}. Then, because
T C′ ∈ hTestssr(S after Ω) and T C′ is described by case for of our notion
of sampled test, we know that o /∈ out((S after Ω) after Σσ). Because
α ∈ testruns(T C ‖sr I) we know that o ∈ out((I after Ω) after Σσ). There-
fore, I does not conform to S.

• Suppose ntrace(α) = α′σ and Ω = {ω|sampledsr(ω,0) = α′}, T C α′⇒T C′, and
T C′ σ

; fail. Then T C′ is defined by either case 3 or case 4 of our notion of
sampled test.
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– If traj(S after Ω) = ∅ then ξ /∈ out(S after Ω). Because

α ∈ testruns(T C ‖sr I)

we know that traj(I after Ω) 6= ∅ and thus ξ ∈ out(I after Ω). There-
fore, I does not conform to S.

– If traj(S after Ω) 6= ∅ then, with

Σσ = {σ′|sampledsr(σ
′, sr −mod(α′.ltime, sr)) = σ′},

Σσ ∩ sampledsr(traj(S after Ω)) = ∅. Because α ∈ testruns(T C ‖sr I)
we know that Σσ ∩ sampledsr(
traj(I after Ω)) 6= ∅. Therefore, I does not conform to S.

Theorem 6.10. (exhaustiveness) Let I be an implementation and let S be a spec-
ification, then:

I hiocosr/ S =⇒ ∃T C∈hTestssr(S) : I passes/ T C.

Sketch of proof. This theorem is proven in line with the proof of exhaustiveness for
hybrid conformance in Chapter 4. Namely, suppose that CI ⊆ SI and CS ⊆ SS and,
for α ∈ traces(S), Ω = {α′|α′ = sampledsr(α, 0)} and suppose that 0 < p ≤ sr is
the first sample point after trace α. If

out(CI after Ω) * out(CS after Ω) ∨

infilter(sampledsr(traj(CI after Ω), p), sampledsr(traj(CS after Ω), p)) *

sampledsr(traj(CS after Ω), p).

then there exists a test such that the trace sampledsr(αµ, p) leads to the verdict
fail. The theorem follows for CI = {i0} and CS = {s0} and p = 0.

• Suppose that α = ε.

– Suppose that there exists an o ∈ out(CI) \ out(CS) ∩ AO.
∗ If traj(CS) = ∅, then a test defined by case 3 of our notion of sampled

test leads to the verdict fail for output action o.
∗ If traj(CS) 6= ∅, then a test defined by case 4 of our notion of sampled

test leads to the verdict fail for output action o.
– Suppose that there exists a σ in

infilter(sampledsr(traj(CI), p), sampledsr(traj(CS), p)) \

sampledsr(traj(CS), p).

Then, with u = σ ↓ VI and j = u.ltime, case 4 of our notion of sampled
test leads to the verdict fail.
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• Suppose that α = να′ and suppose there exists a T C with initial state t0,
and µ ∈ (AO ∪ Σ) and β = sampledsr(α′µ, mod(β.ltime + p, sr)) and β ∈
testruns(T C ‖sr I) and c, c′ ∈ CI such that (t0, c)

β⇒ (fail, c′).

– Suppose that ν = i then a test defined by case 2 of our notion of sampled
test with T Ci = T C leads to the verdict fail for trace iβ.

– Suppose that ν = o and traj(S) = ∅, then a test defined by case 3 of our
notion of sampled test with T Co = T C leads to the verdict fail for trace
oβ.

– Suppose that ν = σ then a test defined by case 4 of our notion of sampled
test with u = σ ↓ VI and j = u.ltime and T Cσ = T C leads to the verdict
fail for trace sampledsr(σ,mod(σ.ltime + β.ltime + p, sr)) β.

6.3.4 Comparison with Hybrid Input-Output Conformance

Let I be an hybrid implementation and let S be a hybrid specification. Then:

I hiocosr S does not imply I hioco S.

We show this by an example.

Example 6.11. Consider the HTS fragments depicted in Figure 6.4.

Figure 6.4: HTS Fragments for which Sampling Matters

Let Model 1 be a fragment of a specification and let Model 2 be a fragment
of an implementation. Suppose σ1 ↓ VI = σ2 ↓ VI and σ1 ↓ VO 6= σ2 ↓ VO while
sampled(σ1, p) = sampled(σ2, p) for some sample point 0 < p ≤ sr. I hiocosr S
because {sampledsr(σ2, p)} ⊆ {sampledsr(σ1, p)}. However, I hioco/ S because
{σ2} * {σ1}.
By sampling we always lose observations on the implementation, namely valuations.
However (obviously), how higher the sample rate, how closer we get. In practice
this can be seen as just an extra limitation of testing since it is already impossi-
ble to execute all tests that can be derived from a specification. We leave it as
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an open problem to determine the conditions under which sampled input-output
conformance implies hybrid input-output conformance.

Let I be an hybrid implementation and let S be a hybrid specification. Then:

I hioco S does not imply I hiocosr S.

We show this again by an example.

Example 6.12. Consider the HTS fragments depicted in Figure 6.4. Let Model 1
be a fragment of a specification and let Model 3 be a fragment of an implementation.
Suppose σ1 ↓ VI 6= σ2 ↓ VI while sampled(σ1, p) = sampled(σ2, p) for some initial
sample point 0 < p ≤ sr. Then I hioco S because

out(I after σ1) ⊆ out(S after σ1).

However, I hiocosr/ S because out(I after {σ1, σ2}) * out(S after σ1).

In general, hybrid input-output conformance does not imply sampled input-output
conformance because the sampled input can correspond with more than one trajec-
tory in the implementation. However, with certain constraints on the specification
hybrid input-output conformance does imply sampled input-output conformance.
We formalize these constraints (as weak as possible) after which, we prove this
theorem.

We impose two constraints on the specification:

1. whenever a state allows an input trajectory σ then that state allows all input
trajectories that are similar to σ modulo sampling with sample rate sr and
initial sample point p;

2. all trajectories that are similar modulo sampling with sample rate sr and
initial sample point p, lead to the same state.

Definition 6.13. Let sr be a sample rate. Two trajectories σ, σ′ ∈ Σ are similar
modulo sampling with sample rate sr and with initial sample point 0 < p ≤ sr.
denoted by σ ∼sr,p σ′, if sampledsr(σ, p) = sampledsr(σ′, p). Two traces α and
α′ are similar modulo sampling with sample rate sr and with initial sample point
0 < p ≤ sr, denoted by α ∼sr,p α′ if sampledsr(α, p) = sampledsr(α′, p) .

Definition 6.14. We define an input trajectory as a trajectory on input variables
only. That is, an input trajectory is a function (0, d]→ V al(VI). Let H= (S,s0,Aτ ∪
Σ,→∪;) be a HTS. The set of all input trajectories allowed by state s ∈ S, denoted
by IT (s) we define as:

IT (s) = {σ ↓ VI |s σ
;}

For a set of states C ⊆ S, we define:

IT (C) =
⋃

s∈C

IT (s)



6.3 Sampling 91

Definition 6.15. Let σ be an input trajectory. We denote by [σ]sr the set of all input
trajectories similar to σ modulo sampling with sample rate sr and initial sample point
0 < p ≤ sr:

[σ]sr = {σ′|σ ∼sr,p σ′}.

Definition 6.16. A state s is input consistent up to sample rate sr if, for all
σ ∈ IT (s), [σ]sr ⊆ IT (s). A HTS H = (S, s0, A ∪Σ,→ ∪ ;) is input consistent up
to sr if for all s ∈ S, s is input consistent.

Definition 6.17. Let sr be a sample rate. A HTS H = (S, s0, A ∪ Σ,→ ∪ ;) is
trajectory deterministic up to sr if for all s, s′, s′′ ∈ S and σ, σ′ ∈ Σ, and for all

0 < p ≤ sr holds that if σ ∼sr,p σ′ and s
σ
; s′ and s

σ′
; s′′ then s′ = s′′.

Lemma 6.18. Let sr be a sample rate. Let H = (S, s0, A ∪ Σ,→ ∪ ;) be sampled
trajectory deterministic up to sr. Then for all α, α′ ∈ traces(H), if α ∼sr,0 α′ then
H after α = H after α′.

Proof. This lemma is proven by induction on α and α′.

• Suppose α = ε and α′ = ε then H after α = H after α′.

• Suppose a ∈ A and α = βa and α′ = β′a with β ∼sr β′. By the induc-
tion hypothesis H after β = H after β′. H after α = H after βa means
that H after α = (H after β) after a. Because of the induction hypothesis
H after α = (H after β′) after a, which means H after α = H after α′.

• Suppose α ∼sr α′ and α = βσ and α′ = β′σ′ and (the induction hypothesis)
H after β = H after β′. H after α = H after βσ means that H after α =
(H after β) after σ. Because of the induction hypothesis H after α =
(H after β′) after σ. Since H is sampled trajectory deterministic (and σ ∼sr

σ) we know that, for all s∈S, if s
σ
; s′ then s

σ′
; s′. This means, for C ⊆S, that

C after σ = C after σ′. Therefore (H after β′) after σ = (H after β′) after σ
and thus H after α = H after α′.

Theorem 6.19. Let I be an hybrid implementation and let S be a hybrid specifica-
tion. Let S be input consistent up to sample rate sr and let S be sampled trajectory
deterministic. Then:

I hioco S implies I hiocosr S.

Proof. Suppose that I hioco S. We need to prove that I hiocosr S. That is, for
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all α ∈ traces(S):

out(I after Ωα) ⊆ out(S after Ωα) ∧

infilter(sampledsr(traj(I after Ωα), pα), sampledsr(traj(S after Ωα), pα)) ⊆

sampledsr(traj(S after Ωα), pα)

with Ωα = {ω|ω ∼sr,0 α} and 0 < pα ≤ sr is the first sample point after trace α, e.i.
pα = sr −mod(α.ltime, sr).

1. First we prove that

out(I after Ωα) ⊆ out(S after Ωα)

Suppose µ ∈ out(I after Ωα). Note that µ can be either an output action or
ξ. Then there is a trace α′ ∈ Ωα such that α ∼sr α′ and µ ∈ out(I after α′).
Since I hioco S this means µ ∈ out(S after α′). It follows that

µ ∈ out(S after Ωα).

2. Second we prove that

infilter(sampledsr(traj(I after Ωα), pα), sampledsr(traj(S after Ωα), pα)

⊆
sampledsr(traj(S after Ωα, pα))

Suppose σ ∈

infilter(sampledsr(traj(I after Ωα), pα),sampledsr(traj(S after Ωα), pα).

Then

(a) σ ∈ sampledsr(traj(I after Ωα), pα) and

(b) there exists a σ′ ∈ sampledsr(traj(S after Ωα), pα) such that σ ↓ VI =
σ′ ↓ VI .

Because σ ∈ sampledsr(traj(I after Ωα), pα), there exists a σ∗ ∈ Σ and an
α∗ ∈ Ωα such that

σ∗ ∈ traj(I after α∗) and sampledsr(σ
∗, pα) = σ.

We now prove that σ∗ ∈ infilter(traj(I after α∗), traj(S after α∗)). In
order to prove this we need to prove that there exists a σ† ∈ traj(S after α∗)
such that σ† ↓ VI = σ∗ ↓ VI . Since S is trajectory deterministic modulo sr, by
Lemma 6.18, for all α′ ∈Ωα it holds that S after α′ = S after α and therefore

S after Ωα = S after α∗.
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So according to (b), there exists a σ′ ∈ sampledsr(traj(S after α∗), pα) such
that

σ ↓ VI = σ′ ↓ VI .

Then there exists a σ∗∗ ∈ traj(S after α∗) such that

sampled(σ∗∗, pα) ↓ VI = σ′ ↓ VI .

Hence

sampledsr(σ
∗∗, pα) ↓ VI = traj′ ↓ VI = σ ↓ VI = sampledsr(σ

∗, pα) ↓ VI .

So
σ∗∗ ↓ VI ∼sr,pα σ∗ ↓ VI .

Because S is input consistent it holds that

[σ∗∗ ↓ VI ] ⊆ IT (S after α∗).

Hence, in particular, σ∗ ↓ VI ∈ IT (S after α∗) and this means that there
exists a σ† ∈ traj(S after α) such that σ† ↓ VI = σ∗ ↓ VI and thus σ∗ ∈
infilter(traj(I after α∗),traj(S after α∗)). Now, since I hioco S this means
that σ∗ ∈ traj(S after α∗). Because sampledsr(σ∗, pα) = σ and S after α∗ =
traj(S after Ωα) we conclude that σ ∈ sampledsr(traj(S after Ωα, pα)).

6.4 Implementation Issues and Decisions

Besides the issues described above we also need to resolve four major practical
implementation issues. First we need find a finite representation for the sets of
allowed input, allowed output, and reachable states of the specification. Otherwise,
these sets cannot be computed. Second we need to deal with real time aspects.
In practice it takes time to apply, observe and validate the input and output, and
there may be delays on the communication medium. Third, we still need to deal
with inaccuracies in the application of input (samples) and the observation of output
(samples) e.g. caused by rounding off in the adapter. Fourth, we need ways to select
input and trajectories and we need to determine when to stop a test. These two
issues are related because the same set of criteria can be applied for both. Fifth,
we need to connect the test tool to the implementation through the adapter, the
medium and the test environment.

6.4.1 Infinite Sets

A hybrid specification has uncountably many transitions, trajectories, and states.
The set of trajectories allowed from one state is already uncountable because of
trajectory additivity. For a test tool we need finite sets or finite, symbolic, repre-
sentations of these sets. For instance:
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• use differential equations as finite representations of an infinite set of trajec-
tories;

• use 0 ≤ ẋ ≤ 3 as a finite representation for an infinite set of flow rates for
variable x; or

• use the data type of a input message or output message as a finite represen-
tation for an infinite set of input actions or output messages.

For our prototype tool we make use of the χ language and hybrid χ simulation
tool-set. The χ language allows us to specify differential equations on continuous
variables. Together with an initial valuation on the variables and a (possibly in-
finite) duration of the continuous behavior (after which e.g. a discrete-event takes
place), this is finite representation of an infinite set of trajectories; namely the set of
all trajectories up to the duration. The χ language also allows to send and receive
real values via channels. The variable which is assigned the value that is received,
together with the type of the variable form a finite representation of a (mathemati-
cally) infinite set; namely the set of real values.

6.4.2 Real Time

With a well chosen sample rate and a fast enough platform on which the test tool
is executed, it is possible to generate and execute a test in real time. A well chosen
sample rate in this case means a sample rate that leaves sufficient time to execute
these operations.

Clock skew is the phenomenon that the system clock of the implementation side
runs slightly faster or slower than the system clock of the execution platform of the
test tool. An issue is that the samples and actions are applied and observed with a
delay both because of the communication and clock skew between the specification
side and the implementation side of the test setup in case the implementation and
test tool are not executed on the same platform. If the implementation and test tool
are executed on the same platform the issue of clock skew because both test tool
and implementation use the same system clock and the delays over the medium is
reduced compared to using a separate platform for the test tool.

In case the tool and the implementation are not on the same platform, a solution
is to add time stamps to the input and output actions and samples. The time
stamp attached to the input allows the test environment on the implementation
side to handle the application of the input at the time indicated by the time stamp.
The time stamp attached to the output indicates the actual time the output was
performed by the implementation according to the system clock of the implementa-
tion platform. The test tool validates whether the output was allowed at the time
indicated by the time stamp.

Unfortunately, there is a problem with this solution. It can be the case that after the
test tool sends a scheduled input to the test environment, the test tool observes an
output that was actually performed before the input is performed. Because of this
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output, the already scheduled input is not applied in accordance with the test. This
can even occur with relatively large sample rates, because it can be for instance that
an output action has to be followed soon after by an input sample. The problem
can be reduced, but it cannot be solved, by minimizing the possible delay over the
network.

Krichen and Tripakis [31] demand that communication delays and skewed clocks are
added to the specification. This results in a more lenient specification, or viewed
differently: the causes of the inaccuracy are considered part of the behavior of
the implementation. This solution requires explicit knowledge about the maximum
delays and measures of inaccuracy (on which the modeler could be wrong) and
weakens the strength of the test verdict. Bohnenkamp [10] proposes to embed
timing inaccuracy in the conformance relation and notion of test. However, he does
not describe how this can be done. We discuss this possibility for hybrid testing in
the next section.

6.4.3 Inaccuracy in the Observations

Besides the inaccuracy in testing caused by time delays there are other causes for
inaccuracy. We already have discussed that we cannot accurately test with physical
behavior. And, with sampling, there is inaccuracy in the observations caused by
rounding. All causes for inaccuracy, both when using samples and if we want to use
physical behavior itself, require a more lenient specification, or a new conformance
relation that takes these inaccuracies into account.

In the hybrid case, we see three kinds of inaccuracy (depicted in Figure 6.5).

Figure 6.5: Inaccuracy

The first kind of inaccuracy is not cumulative. The bounds of inaccuracy always stay
the same and there is no inaccuracy in time. This is the kind of inaccuracy caused
by rounding of the observed behavior or caused by limited accuracy of the sensors
that observe the continuous behavior. The second kind of inaccuracy is cumulative.
When a certain small amount of inaccuracy is observed, this inaccuracy progresses
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to the rest of the observations. The third kind of inaccuracy is also cumulative.
However, it has the additional problem that it effects the duration of the trajectory.
This is the kind of inaccuracy that occurs because of clock drift or delays in the
communication over the communication medium.

The problem with a formal conformance relation that takes inaccuracy into account
is that inaccuracies influence the behavior of an implementation more radically than
sampling. E.g. with sampling we needed to take into account that more trajectories
may be characterized by one particular trajectory. Still it can be determined which
trajectories these are and it can be determined output behavior has to be considered
correct behavior of the implementation. If we take into account inaccuracy we
cannot determine anymore how the specification is influenced. Inaccuracy may have
the effect that an output action occurs earlier or later than specified (see Figure 6.6).

Figure 6.6: Inaccuracy with Output

If the output action was triggered by the value of the continuous input, e.g. if a
thermostat turns a heater on at 15 degrees, then this output occurs earlier if due to
inaccuracy in the observations the flow rate of the input is higher than specified.

However, an output action may also be triggered by time (e.g. if a thermostat gives
a warning after 5 hours of heating a room). In this case, the inaccuracy in the
continuous behavior should not influence when the output action occurs. A HTS
does not contain the information to distinguish whether the output was triggered
by the flow or by time. This makes it impossible to include inaccuracy in a similar
way as sampling in our theory.

The solution may be to lift the implementation and specification to a higher level
formalism like hybrid automata with guards on the transitions that tell why an
output action took place. This remains an interesting challenge for future research.
For now the only solution is to demand that the specification is lenient enough to
take into account the possible inaccuracies that are caused by the communication
between the test engine and the implementation.
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6.4.4 Test Selection and Stop Criteria

The test generation algorithm does not prescribe how to select input and when
to terminate a test with the verdict pass. These issues are left to the test tool
implementation.

In TorX the input can be selected either manually (by the user) or automatically by
the test tool.In manual input selection mode the user can select which input action
to apply to the implementation. For real time hybrid testing, manual test selection
is not a viable option. Obviously, if we test with continuous behavior in real time,
there is no time to select new input manually. Even if the test tool uses sampled
continuous behavior manual test selection is not a viable option since the sample
rate would need to be high enough for the test engineer to select input in between
two samples.

Input can be selected automatically, as prescribed by the test generation algorithm.
However, in selecting we need to take into account that always eventually (sampled)
continuous behavior needs to be selected in order to be able to progress in time. It
is possible to select input at random. The selection domain can be big, even infinite,
and generate many tests that are not of interest to the user. This domain can be
narrowed by specifying a set of values from which the test tool selects the input and
a distribution of probabilities that an input occurs. It is also possible to implement
test selection according to a test purpose [53]. A test purpose is sequence of actions
accordance to which the test is guided. E.g. If the test purpose states that repeatedly
after an ”ON” signal always an ”OFF” signal is applied to the implementation, then
during test generation input is selected according to this purpose.

Testing can be terminated either manually or automatically. Manually means that
the test engineer that uses the tool is in control to stop the test and automatically
means that the tests stops when some criterion is met or when some test purpose is
fulfilled. E.g. a stop criterion can be a specified duration for the test or a specified
amount of coverage of the specification.

6.4.5 Connecting to the Implementation

The connection between the test tool and the implementation consists of three parts:
the software adapter on the test tool side, and the communication medium and the
test environment on the implementation side. The connection between the test tool
and the implementation needs to be customized for the implementation under test.

In general, the way in which input and output is modeled by the specification
differs from the actual input and output of the implementation. E.g. an analog
electronic signal of the implementation may have been specified as a trigonometric
function. The adapter transforms the specified input to a format suitable for the
implementation and it transforms output from the implementation to the format
used in the specification. It also deals with converting variable names, channel
names, and data to interfaces specific to the implementation and the other way
around. E.g. an action specified as an on signal or off signal may be implemented
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as a boolean value in the implementation. The adapter implements this conversion.
The adapter also implements the communication protocols for the medium.

Recall that by the medium we understand all electronics and cables connecting the
test tool with the implementation. This includes (specific) hardware that might be
needed to transform actions or continuous behavior to electronic signals. Which
medium to choose and how to implement it depends highly on the implementation
under test.

Sometimes it is desirable that the implementation side of the test setup also needs
a customized interface with the medium. The test environment forms the interface
between the medium and the implementation. The test environment can also take
care of time stamps. It can also implement a filter to test the implementation on
part of the output behavior. For instance, if we are interested in testing a thermostat
on whether it correctly switches on or switches off a heating device, then we can
filter the output of the implementation and only send these outputs to the test tool
and not send the (output) messages meant for the user display.

6.5 Prototype Tool

We have implemented a prototype test tool with sampled continuous behavior [41].
This prototype is implemented in Python [42] for the Linux operating system. We
implemented our prototype test tool based on the TorX architecture and using the
hybrid χ simulation tool set.

Regarding the issues discussed earlier in this chapter we made the following choices.

• We have implemented the on-thy-fly test generation algorithm.

• We have implemented a static sampling strategy. The sample rate can be
easily adapted and dynamic sampling strategies can still be implemented.

• A set of trajectories up to a specific duration is represented symbolically by
ordinary differential equations with a maximum duration.

• In TorX, the input is restricted by the type of the receive action. Input is
selected manually or automatically from the elements of e.g. a message type
in PROMELA. We have implemented the same way of input restriction and
selection in our prototype tool. The set of input actions of the specification
is restricted by the type of the receive channel. Because this set is possibly
infinite (e.g. the set of all strings), additionally a list of allowed input actions,
(e.g. {on,off}) can be included as a parameter of the test-engine. Then, the
input messages are selected from this list.

• The test tool implementation can handle time stamps for actions and samples.

• It is assumed that the specification takes into account inaccuracies e.g. caused
by the rounding of values.
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• Input actions can be selected manually (for non real-time tests) or automati-
cally, either at random from a subset of input actions, or a simple test purpose
can be implemented.

• A test can be terminated at any time by the user of the tool or by specifying
a maximum duration of the test.

• An adapter has been made that allows client-server communication over a
TCP/IP network using sockets.

6.6 Testing Two Toy Examples

As initial experiments with the prototype test tool we have performed two toy
example case studies. In the first case study we tested a water-tank controller
simulator and three mutants of that controller against a hybrid specification of the
water-tank controller. In Chapter 7 we test a similar (but more complex) industrial
controller against a hybrid χ specification. In the second case study we tested a
moving robot arm simulator and three mutants of that robot arm against a hybrid
specification of the robot arm.

The χ language was chosen as the implementation language of the toy examples
as well because the χ tool set provides the possibility to perform distributed sim-
ulation of χ processes, possibly together with other pieces of software over a soft-
ware bus. This made it possible to also connect our test tool to the distributed
χ simulator. Because the distributed χ simulator only works for discrete-event χ
models, the water-tank controller and robot implementations had to be modeled
as discrete-event systems which accepted sampled continuous input behavior and
display sampled continuous output behavior.

Because these case studies were about testing the test tool, our approach was that
we first made the hybrid χ specifications and based on the specifications we made the
implementations. From the implementations, the mutants were created by making
small changes to the models.

6.6.1 The Water-tank Controller

The toy example water-tank controller is a controller that observes the temperature
behavior of water inside a water tank and turns on or turns off a heater to control
the water temperature (see Figure 6.7). This example is a prototypical example of
a (software) controller that can be validated with hybrid model-based testing. The
temperature flow is continuous input for the controller and the on and off actions
are discrete-event output. If the temperature drops below 2.0 oC, then the heater
is turned on, after which, if the temperature exceeds 10.0 oC, the heater is turned
off.

The hybrid χ specification of the water-tank controller is shown in Figure 6.9. The
process Controller specifies the behavior of the controller. The controller receives
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Figure 6.7: Water Tank and Controller

continuous input through the variable T . It represents temperature input that an
embedded system controller would receive through a sensor. The action h!!“ON”
specifies an urgent output action of value ON over channel h. This specifies a
message or signal that turns on or turns off a heater. The controller repeatedly
waits until the water temperature drops below 2 oC and then turns the heater on,
and waits until the temperature exceeds 10 oC before it turns the heater off.

proc Controller( cont T : real, chan !h : string ) =
|[
:: ∗( T ≤ 2.0 → h!!“ON” [] T ≥ 10.0 → h!!“OFF” )
]|

Figure 6.8: Specification for the Water-tank Controller

For simulation, as described in 3, we normally specify the behavior of the Water tank
as another process and compose these two processes into a model using the parallel
composition. For testing, we test an implementation of the controller against the
specification of the controller, without the water tank. However, we still want to
specify the continuous input for the test, namely the temperature behavior specified
by variable T . Therefore, we compose the process Controller together with our
desired input behavior into one model.

The temperature input for the controller is modeled by the ordinary linear differ-
ential equation Ṫ = 3.0 ∗ n − 1.0. Initially, the discrete variable n has value 0.0.
This means that initially Ṫ = −1.0. If T = 2.0, then the value 1.0 is assigned to n
and therefore Ṫ = 2.0. If T = 2.0 then Ṫ = −1.0 again. Note that define channel
h as a parameter of the model in order to make the output actions h!!“ON” and
h!!“OFF” observable actions for the prototype test tool.

Next, we made a discrete-event water-tank controller so that we can use the distrib-
uted χ simulator. For the experiment, we model this controller such that it waits
for input samples instead of requiring input samples according to some sample rate.
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model TC( chan !h : string ) =
|[ cont T : real = 10.0, var n : real = 0.0
// input restriction
:: Ṫ = 3.0 ∗ n− 1.0
‖ ∗( T ≤ 2 → n := 1.0; T ≥ 10 → n := 0.0 )
// controller specification
‖ Controller(T, h)
]|

Figure 6.9: Model Composition for the Water-tank Controller

The controller waits for samples of continuous input, which can be given at any
sample rate. This allows us to test the controller simulation non real-time, which
allows to observe better what happens during the tests. This process is shown in
Figure 6.10.

proc Controller( chan ?t : real, !h : string ) =
|[ var w : real = 0.0
:: ∗( t?w; ( w ≤ 2.0 → h!!“ON”

[] w > 2.0 ∧ w < 10.0 → skip
[] w ≥ 10.0 → h!!“OFF”
)

)
]|

Figure 6.10: Implementation for the Water-tank Controller

This water-tank controller repeatedly waits to receive a temperature input, after
which it immediately evaluates whether the temperature it received is below 2 oC
or above 10 oC. If the temperature is below 2 oC , then it sends an on message as
output. if the temperature is above 10 oC, then it sends an off message as output.
After that, the implementation waits for new temperature input again.

This controller behaves differently then the hybrid χ model. Every time this con-
troller receives a temperature below 2.0 oC it produces the output action ON . The
hybrid controller is modeled such that after it receives a temperature below 2.0 oC
it produces the output action ON after which it only waits for the temperature
to increases to 10.0 oC. However, for the input behavior specified in the hybrid
χ model, the output behavior of both models is the same. After producing the
action ON when 2.0 oC is reached, the temperature always increases to 10.0 oC
again. Additionally, after producing the action OFF when 10.0 oC is reached, the
temperature always decreases to 2.0 oC again.

We created three mutants of this water-tank controller. These mutants are:

mutant 1: the output action h!!“ON” was changed to h!!“OFF”,

mutant 2: the guard w ≤ 2.0 was changed to w ≤ 3.0, and
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mutant 3: w ≤ 2.0 was changed to w ≤ 1.0.

For testing these water-tank controllers, an adapter needed to be implemented that
established the connection between the test tool and the software bus of the distrib-
uted χ simulator. This adapter implemented a socket connection with the software
bus used for the distributed χ model simulator. It also ensures that the samples of
input from variable T are correctly received by the implementation via channel t.

From the hybrid specification, the prototype test tool generates tests with sampled
continuous behavior and constant sample rate of 1.0 second. The prototype test tool
generates and executes tests for the water tank controller according to the on-the-fly
test algorithm described in Section 6.2.

Example 6.20. For the correct water-tank controller implementation, the following
test is generated.

step 1: Select a temperature decrease of −1.0 oC/sec and apply this trajectory to the
implementation for 8 seconds (after which the temperature T equals 2.0 oC).
As long as no output action is observed, the test continues. If an output action
is observed stop testing with verdict fail.

step 2 Observe an output action from the implementation: if h!!“ON” or no output
is observed, then continue; if h!!“OFF” is observed then conclude verdict fail.

For the correct water-tank controller implementation, the output action h!!“ON” is
observed and testing continues.

step 3: Select a temperature increase of 2.0 oC/sec and apply this trajectory to the
implementation for 4 seconds (after which the temperature T equals 10.0 oC).

step 4: Stop testing with the verdict pass.

Testing the correct water-tank controller simulator did not lead to finding any mis-
take. Because the test captured all possible behavior, this shows that with this
particular input our test tool does not return a false negative test verdict. In mu-
tant 1 an incorrect output action was observed. The test tool received the output
ON while the output OFF was specified. In mutant 2 an unexpected output action
was observed. The test tool received the output ON when variable TS had value 3
and no output action was expected yet. In mutant 3 an output action was expected
but it was not observed. The specification expected an output when T had the value
2 but no output was observed.

6.6.2 The Robot Arm

The second example is a robot arm moving on a track (see Figure 6.11). This is a
prototypical example of an embedded system device, e.g. a robot arm in an assembly
line, or a stage of a waferstepper machine.
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Figure 6.11: A Robot Arm moving on a Track

The robot arm receives the message Accelerate or the message Brake as discrete-
event input, e.g. by remote control, and it moves on the track with some speed,
which is the continuous output. Depending on which message it receives it either
accelerates to its maximum speed and keeps moving at that speed, or it brakes to
speed 0.

The hybrid χ specification of the robot arm is shown in Figure 6.12.

proc Robot( cont S : real, chan ?c : string ) =
|[ cont T : real = 0.0, var n : real = 0.0, m : string = “STOP”
:: Ṡ = −n ∗ 0.2 ∗ (T − 10.0) ‖ Ṫ = 1.0
‖ ∗( c?m; T := 0.0

; ( m = “ACC” → n := 1.0; T ≥ 10.0 → n := 0.0
[] m = “BRK” → n := −1.0; T ≤ 0.0 → n := 0.0
[] m 6= “ACC” ∧m 6= “BRK” → skip
)

)
]|

model R(chan c : real) =
|[ cont S : real = 0.0
:: Robot(S, c)
]|

Figure 6.12: Specification of the Robot Arm

The process Robot models a robot that moves according to a specified speed. Initially
its speed is 0.0. If the robot receives an accelerate message ACC, then the robot
starts accelerating. The speed is modeled by the variable S. An additional (clock)
variable T is needed to model the acceleration curve. This variable is reset to 0.0
every time the robot starts accelerating or braking. Initially, after the message ACC
is received, the robot arm starts accelerating with Ṡ =−1.0∗0.2∗−10 = 2.0 m/sec2.
After ten seconds of acceleration, the acceleration is explicitly set to 0.0 otherwise
in this model the speed would decrease. Only after that, a new input message may
be received. The acceleration curve or braking curve cannot be interrupted by a
new message. Furthermore, if e.g. this robot receives an input action BRK but its
speed is already 0.0 then its speed will remain 0.0.
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Again, we create a discrete-event χ process for the distributed χ simulator to serve
as (correct) implementation for our case study. Because the goal of this case study
is to test the test tool we wanted to control the input applied to the implementation,
and not have it selected for instance at random. Therefore, we use variable T as
continuous input for the robot arm. This allows us, like for the water tank, to test
the robot arm non real-time. The value of this variable is received over channel
c but does not influence the output behavior. The speed of the robot arm is now
modeled by variable p and, after a sample of input is received, it is sent over channel
s, to the test tool. If an input message is received over channel c, then the robot
arm starts either accelerating or braking.

proc Robot( chan !s, ?t : real, ?c : string ) =
|[ var n : real = 0.0, i : real = 0.0, u : real = 0.0, m : string = “STOP”
:: ∗( t?i; p := q + (−n ∗ 0.2 ∗ (u− 10.0)); s!!p ; u := u + 1.0 )
‖ ∗( c?m; u := 0.0

; ( m = “ACC” → n := 1.0; u ≥ 10.0 → n := 0.0
[] m = “BRK” → n := −1.0; u ≤ 0.0 → n := 0.0
[] m 6= “ACC” ∧m 6= “BRK” → skip
)

)
]|

Figure 6.13: Discrete-event χ Specification of the Robot Arm

For the robot we created three mutants as well. These mutants were:

mutant 1: the assignment to variable p was changed,

mutant 2: the discrete variable n was initialized with value 1.0, and

mutant 3: in the alternative choice statement where the message BRK is received
as input action but u ≥ 10, the variable n was set to 1.0.

The adapter still establishes and maintains the connection to the software bus used
by the distributed χ simulator. It also maps the continuous input from variable
T and the messages of channel c to the channels t and c of the implementation
respectively. The adapter also ensures that the values sent via channel s of the
implementation are validated against samples of variable S of the specification,
that samples of variable T of the specification are received via channel t by the
implementation, and that input actions specified by channel c from the specification
are received by the implementation.

From the hybrid specification, the prototype test tool generates tests with sampled
continuous behavior and constant sample rate of 1.0 second. The prototype test
tool generates and executes tests for the robot arm according to the on-the-fly test
algorithm described in Section 6.2.

Example 6.21. For the correct robot arm, the following test is generated.



6.7 Concluding Remarks 105

step 1: The input action c?m is selected. Manually, we select the message ACC.
This message is applied to the implementation.

step 2: For the duration of 10 seconds, the speed of the robot arm implementation
is observed. Every second a sample of output is observed and validated against
the specified speed: if the observed speed corresponds to the specified speed
increase, at the sample points, then the test continues; if the observed speed
does not correspond to the specified speed increase at the sample points, then
the test terminates with verdict fail.

For the correct implementation, the observed output corresponds to the specified
speed. Therefore, testing continues.

step 3: The input action c?m is selected. Manually, we select the message BRK.
This message is applied to the implementation.

step 4: For the duration of 10 seconds, the speed of the robot arm implementation
is observed. Every second a sample of output is observed and validated against
the specified speed: if the observed speed corresponds to the specified speed
decrease, at the sample points, then the test continues; if the observed speed
does not correspond to the specified speed decrease at the sample points, then
the test terminates with verdict fail.

For the correct implementation, the observed output corresponds to the specified
speed. We terminate the Terminate the test with verdict pass.

For the correct implementation these tests did not lead to finding any mistake. This
showed that also in this case our test tool does not return a false negative test
verdict. Testing the mutants led to finding the following mistakes. In mutant 1
of the robot acceleration went faster than expected. The test tool observed value
5.5 for variable S when it expected the value 3.6 for variable S after 2 seconds.
In mutant 2 the robot accelerated unexpectedly. The test tool observed value 1.9
for variable S after two time units when it expected the value 0 for variable S. In
mutant 3 the robot accelerated when braking was expected. The test tool observed
that after first accelerating fully and applying an input action BRK, that the robot
arm accelerated again.

6.7 Concluding Remarks

In this chapter we discussed the possibilities for implementing a hybrid model-based
test tool. An on-the-fly test generation and execution algorithm was presented to
implement (hybrid) model-based test generation and execution.

The use of samples was also formalized in a new conformance relation and notion of
test. For clarity of the definition of a sampled trajectory we only defined sampling
with a fixed sample rate. To define complex sampling strategies, only the definition
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of a sampled trajectory needs to be adapted to define sampled trajectories according
to the strategy.

In practice we have to deal with computation time, delays in communication between
test tool and implementation, inaccuracy in measurements and rounding of values.
Currently, we cannot embed these causes of inaccuracy into a formal conformance
relation and notion of test. At present, the only solution is to make a more lenient
specification that allows inaccuracy

A prototype version of a hybrid test tool has been implemented. We have imple-
mented the test generation and execution algorithm as described in Section 6.2 and
use sampled behavior as described in Section 6.3. We have run experiments with
our prototype tool on two toy example case studies. The next chapter describes
how we have used this prototype tool in an industrial setting.
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Industrial case: The Vacuum
System

This chapter describes an industrial case study that we performed with our proto-
type tool. The goal of this case study was to show that hybrid model based testing
can be used in practice. We tested the controller of an exemplary vacuum system
of a waferstepper machine.

First we introduce the vacuum system. Then we describe a hybrid χ model of the
vacuum system. The hybrid χ model itself is found in Appendix A. This χ model is
based on the hybrid χ model that was made by Frank Stappers [45] for a separate
case study on a vacuum system. Finally we describe the results of testing the
implementation of the vacuum controller against a simplified hybrid χ specification.

7.1 The Vacuum System

A waferstepper is a complex lithography machine that etches images of chip layouts
on silicon wafers with nanometer precision. The newest generation of these machines
uses Extreme Ultra Violet (EUV) laser light for printing the image on the wafers.
Because gasses can absorb the light before it reaches the wafer and gasses can cause
damage to the fragile components of the machine, the lithography process has to
take place in vacuum.

An example vacuum control system of an EUV machine (depicted in Figure 7.1)
supervises multiple vacuum chambers. These chambers contain pumps and valves
to change the vacuum conditions. Pumps are used to remove air from a chamber
and thus create vacuum. Valves are used to let air into the chamber and thus create
atmospheric conditions. The pressure conditions in each chamber are controlled
by a software component that is implemented in Labview and runs on an ordinary
Windows PC. The main task of this controller is to turn on or turn off pumps,
and to close or open valves. A system controller executed on a SUN workstation
supervises all the subsystem controllers. This SUN machine is for instance used to
start pumping down a chamber or venting a chamber.

Figure 7.2 depicts the hardware of one exemplary vacuum subsystem. If the chamber
is pumped down to vacuum conditions, then first the normal pump is turned on and
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Figure 7.1: Vacuum Control Architecture

the valve is half way opened. This position of the valve is called softstart. If the
pressure in the chamber drops below a specific level and the normal pump cannot
decrease the pressure further, then the turbo pump is turned on and the valve is
fully opened. If the chamber is vented from vacuum conditions, then first the pumps
are turned off and the valve is closed. After that, the air valve is opened and air
flows into the chamber from the pressurized air container. The chamber is never
fully closed off. There are leaks. This means that if the pressure inside the chamber
is lower than the pressure outside the chamber then some air flows into the chamber.
If the pressure outside the chamber is lower than the pressure inside the chamber
then some air flows out of the chamber.

Figure 7.2: Vacuum Hardware

The pressure inside the chamber, inside the pipe and inside the foreline are deter-
mined by the state of the pumps, valves, and the size of the leaks. E.g. if the
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pressure in the air container is higher than the pressure in the chamber and the
air valve is opened, then air flows from the container into the chamber to form an
equilibrium. If the pressure in the pipe is lower than the pressure in the foreline and
the valve is open but the pumps are off, then air flows from the foreline to the pipe
and from the chamber to the foreline until an equilibrium is reached in all three
compartments.

Figure 7.3: Subsystem Controller Input and Output

The controller observes the pressure in a chamber through multiple sensors and reads
the status of the pumps. Each sensor is capable of measuring the continuous pressure
within a specific range. The controller stores pressure samples with a sample rate of
one second. Thus, it is possible to test the controller by using sampled continuous
behavior.

The subsystem controller, upon request by the system controller, pumps down or
vents the chamber by performing a sequence of actions (see Figure 7.4 and 7.5).

Note that the venting sequence contains a loop (between step 5 to step 11 of the
sequence). The chamber pressure after venting is kept a little bit above atmospheric
levels. Thus, after venting air flows out from the chamber through leaks. If a
lower threshold is reached (step 10) the air valve is opened again to let air into the
chamber until the upper threshold is reached, after which the air valve is closed and
the pressure decreases again until the lower threshold is reached.
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pump down sequence

1. Close air valve
2. switch on primary pump

Wait until primary pump on or pump time out
Softstart foreline valve

3. Wait until chamber pressure < softstart limit
4. Open foreline valve
5. Wait until chamber pressure < turbo pump limit
6. Switch on turbo pump

Figure 7.4: Pump Down Sequence

venting sequence

1. Switch off turbo pump
2. Close foreline valve
3. Turn off primary pump
4. Wait until turbo pump stopped
5. Open air valve
6. Wait until chamber pressure > foreline pressure
7. Open foreline valve
8. Wait until chamber pressure > final atmosphere +

upper treshhold
9. Close air valve

Close foreline valve
10. Wait until chamber pressure < final atmosphere +

lower treshhold
11. Goto 5

Figure 7.5: Venting Sequence

7.2 Some Choices

Modeling the complete vacuum system (containing the system controller, all the
subsystem controllers, and all the chambers) is too complex and defies the pur-
pose of this case study. Therefore, only the subsystem controller of one chamber is
tested. Furthermore, because our prototype is not optimized for computation speed
and needs sufficient time to compute the sets of transitions allowed and validate the
output of implementation, we concentrate on the basic functional behavior of a sub-
system controller. Namely, we plan to test whether the Labview controller correctly
performs the sequences of actions required to pump down the chamber to vacuum
conditions and the sequence of actions required to vent the chamber to atmospheric
pressure. Other behavior, like error handling, is not considered. For instance, error
messages are not observed from the controller. Furthermore, the messages to the
pumps and valves are sent every second. To reduce the number of output messages
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to be validated we decided to test only for change in output messages. That is, we
implemented a test environment such that it only communicates changes in these
messages to the test tool. For instance, if a message to turn off the pump is followed
by a message to turn on the pump, then only the message to turn the pump on
is communicated. If a message to turn off the pump is followed by another mes-
sage to turn off the pump then the (second) message to turn off the pump is not
communicated.

7.3 Specification of a Vacuum Subsystem in Hybrid χ

In this section we describe the χ specification of the vacuum system. The complete
specification can be found in Appendix A. This specification was eventually not
used for testing. The reason was that at the time this case study was performed,
the χ tool set was still under development as well and could not handle guarded
differential equations as used in this model. This model is presented here to show
how such system should be modeled in hybrid χ. First we describe the structure of
the hybrid χ model. Then, we describe each process of the hybrid χ model in more
detail. As it turned out, this specification was too complex to be used in practice.
However, we still describe it here as a reference specification for the vacuum control
system and testing.

We divide the specification into a controller part and the environment of the con-
troller. The controller part specifies the output behavior of the subsystem controller.
The environment part specifies the input behavior of the subsystem controller. Note
that both parts are contained in one specification. The controller is modeled by one
process. The environment consists of a system controller process, pump and valve
processes, and the pressure flows. Sensors do not need to be modeled as a separate
process. This is because we do not want to make a difference between the pressure
in the chamber and the pressure observed by the controller. However, e.g. if we
would like to specify that switching between sensors of a different pressure range
should cause a disturbance in correctly observing the pressure, then sensors would
be specified additionally.

Figure 7.6 depicts the processes of the χ specification. The pumps and valves in-
fluence the pressure in the foreline, pipeline and chamber. Inside each of these
processes we specify the influence of the component on the pressure behavior. E.g.
Cpav models the influence of the airvalve on the chamber pressure Cp. The chamber
pressure, foreline pressure, and pipeline pressure are then specified by the sum of
pressure influences of each component. The leakage of air out of the chamber or the
leakage of air into the chamber is modeled by another pressure variable Lkp. This
leakage influences the chamber pressure as well.

The subsystem controller receives pump status messages (being either on or off)
from the pumps and sequence start messages (being either pumpdown or venting)
from the system controller. These are modeled by receive actions and depicted by
ingoing arrows in Figure 7.6.
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Figure 7.6: Processes of a Vacuum System Specification

The subsystem controller sends message on or the message off to the pumps and
message open, softstart or close to the valves. These are modeled by send actions
and depicted by outgoing arrows in Figure 7.6. The system controller sends sequence
start messages to the subsystem controller. The pumps receive message on or off
and send status messages, being on or off, back to the controller. The valves only
receive message open, close, or softstart from the subsystem controller.

7.3.1 The Environment

The environment consists of five processes (S, Valve, AirValve, Pump and Tur-
boPump). Below we describe briefly how each process is specified. The complete
specification is given in Appendix A.

S: This process describes the relevant behavior of the SUN system controller. For
our case study only selecting the start of a venting sequence or selecting the
start of a pump down sequence is relevant. The process S in Appendix A
repeatedly switches between starting the pump-down sequence and starting
the venting sequence. Because we specify this by non-urgent channel com-
munications, this process specifies that a new sequence can be started at any
time. It is also possible to define a system controller that starts a sequence in
a different way. For instance, it is possible to specify a system controller that
waits a fixed amount of time before starting a sequence.
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Air Valve: This process specifies the valve that lets air into the chamber if the
chamber is vented. The process AirV alve in Appendix A specifies a valve
which is either fully opened or fully closed. If the air valve is closed, then the
chamber pressure is not influenced by the air valve. If the valve is opened then
the influence of the chamber pressure is specified using Poiseuille’s equation on
gasses. The air flow between the air container and the chamber is determined
by the pressure difference in the air container and the chamber, the volume of
the chamber and the air container, and an air valve constant which depends
on factors like the size of the valve. It is possible to open the air valve or close
it at any time.

Valve : This process specifies a valve that lets air from the pipeline into the foreline
and back. The process V alve in Appendix A specifies a valve that is either
fully closed, half open, or fully opened. The mode of the valve in which it
is half open is called the softstart mode. Again, we use Poiseuille’s equation
to specify the pressure change between pipe and foreline. If the pressure in
the pipe is higher than in the foreline, air flows from the pipe to the foreline
(creating an equilibrium). If the pressure in the foreline is higher than the
pressure in the pipe, air flows from the foreline to the pipe. Also this valve
can be opened or closed at any time.

Pump: This process specifies the behavior of a pump that pumps air from the
chamber to the pipeline. If the pump is turned on, then the pressure in the
pipeline decreases. The pressure decrease depends on the speed Sp of the
pump. The maximum speed of the pump is modeled by a spline function with
sample points taken from the performance curves of a pump manufacturer.
This function is omitted from the χ specification in Appendix A for simplicity
reasons. The pump speed is expressed in cubic meters of air that can be moved
per second. The pump has four modes: off , accelerating, braking, and on. If
the pump is off, then the speed of the pump is 0. If the pump is accelerating,
then the speed increase is modeled by a sigmoid function. This means the
acceleration curve is S-shaped. An extra clock variable clk is needed to model
this curve. This clock variable is reset every time the pump starts accelerating
(or braking). If the pump is braking then the speed decrease is modeled by a
declining sigmoid curve. If the pump is at full speed it is in the mode on and
the pump speed is maximal. Because acceleration and braking are modeled
by sigmoid curves, the maximum speed and speed 0 are never reached in the
specification. If the pump speed comes within a margin ε of these limits, then
the mode switches from accelerating to on or from braking to off . The pump
is equipped with a membrane. If the pump is off, then, air may flow from
the pipe to the outside world but not the other way around. If the pump is
not off, then the pressure decrease in the pipe is modeled by an exponential
equation depending on the pump speed Sp and the volume of the pipe. The
pump cannot pump down the pipe to a pressure lower than (approximately)
1 10−4 mbar. This value is taken from the pump specification. The pump
sends a status message to the controller if the pump reaches the on mode or
the off mode.
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Turbo Pump: The TurboPump process is similar to the Pump process. The dif-
ference is that it operates within a different pressure range and it has a different
maximum speed Smax. This maximum speed is also modeled by a spline func-
tion based on performance curved of a pump manufacturer. The turbo pump
does not have a membrane. Therefore, if the pump is off, air flows from the
chamber to the foreline or from the foreline to the chamber (depending on the
pressure in both foreline and chamber).

7.3.2 The Controller Process

The controller process specifies the pump down sequence and venting sequence. The
pumpdown sequence and the venting sequence are specified through a number of
modes as defined by the χ language. These modes specify the two sequences as
described in the previous section. The controller is specified such that it takes
into account the possibility of a sequence being interrupted by another sequence
at any moment. If a sequence is interrupted, then the new sequence starts from
the beginning. The implementation only performs an output on a change (see next
section): e.g. only if the air valve is closed, then the output airvalve!open can be
observed. Therefore, the state of the controller (with respect to the hardware) is
checked in almost every mode. Notice that the exception is opening the valve in the
pumpdown sequence, because in this case the valve can only be in softstart mode.

Initially, the controller process waits to receive a message to start the sequence. The
controller assumes that initially the chamber has a stable atmospheric condition.

7.3.3 Composition of Controller and Environment

The processes need to be composed into one model using parallel composition, to-
gether with the pressure specifications for the chamber, foreline, pipeline, and the
leakage (see Appendix A). All pressure variables are initialized with the value of
1013 mbar (which is 1 atmosphere). The chamber pressure (Cp) consists of the
pressure influence caused by the air valve, the turbo pump, and the leaks. It is
therefore modeled as: Cp′ = Cpav + Cptp + Lkp. The leakage varies depending on
the chamber pressure multiplied by some leak constant Clk. This constant models
constant factors like the size of the leaks. The foreline pressure Fp is influenced by
the turbo pump and the valve: Fp′ = Fptp + Fpv. The pipe pressure is influenced
by the pump and the valve: Pp′ = Ppp + Ppv. The send and receive actions are
synchronized in channels and encapsulated.

By specifying the channel communications between processes as parameters of the
model, these communications are not encapsulated and are viewed can still be viewed
by our prototype test tool as separate send actions and receive actions. However,
the prototype test tool needs to be adapted such that the tester can indicate which
receive actions (of the channels) to consider the input actions for the implementation
and which send actions to consider the output of the implementation.

For future test tool implementations it is an option to generate the tests from two
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separate models, namely one being the controller and one being the environment.
This makes the distinction between a specification of the implementation under test
and its environment more explicit.

7.4 Test Setup

Figure 7.7: NA-Handler Testing

In order to test the vacuum controller we need an adapter and a test environment.
The adapter handles the timing of the samples, the communication protocol and
infrastructure, and it translates actions, variables, and values between specification
and implementation. The Labview test environment implements the interface with
the test tool from the implementation side. The adapter and test environment in this
case study were built reusing and adapting Frank Stapper’s χ to Labview connection.
He implemented this connection for co-simulation of the vacuum controller with a
discrete-event χ model of the vacuum hardware [45].

The communication between adapter and Labview is established by two socket con-
nections over a regular TCP/IP ethernet network. In order for the Labview con-
troller and the test tool to be able to send and receive messages in parallel two
socket connections are used. One socket is used for sending input for the controller
from the test tool. The other socket is used for sending output from the controller
to the test tool. The Labview controller is the server side of the sockets and the
test tool is the client. The implementation has to be initialized first to set up the
socket connection. Then, the tests start immediately after the connection with the
implementation is setup. Note that to do this the Labview controller is initialized
such that it does not perform internal behavior or output before it receives input
from the test tool.

The adapter sends input messages and samples over the network and receives output
messages and samples from the network. Output is simply passed on to the test-
engine. The adapter also takes care of the timing of input messages and samples.
The test engine calculates new samples of input and passes them on to the adapter
together with the time at which the samples have to be sent to the controller. Input
samples are sent to the implementation on the next sample point. This means that
the samples need to be computed before this next sample point. We do not take the
delay over the network into account. A sample that is sent from the adapter will
arrive a fraction of a second later at the implementation. Experiments have shown
that in this case study the delay was about 3 milliseconds. Alternatively, under the
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assumption that output actions do not occur right before input has to be applied,
it is possible to send the input earlier and let the test environment deal with the
application of input at the right time.

The adapter also translates actions, types and variables from the χ specification to
a format readable for the implementation and the other way around. For instance,
in the specification the output channels or of type string, however in the Labview
controller the position of the valves is of integer value (0 defines off , 1 defines on,
and 2 defines softstart).

The test environment receives input messages and samples from the network and
sends output messages and samples over the network. Input is simply passed on
to the implementation. A time stamp is attached to output messages. This time
stamp contains the time that the output message occurred. Inside the test tool this
time stamp is used to determine the end of the trajectory of input samples and to
determine whether the output action was allowed in the state of the specification.
Again, this is only correct, with respect to the test, if there is sufficient time between
the output and the next input.

The test environment is implemented such that it only sends an output to the
test tool if the controller implementation sends a different message than before.
Otherwise, messages from the controller implementation are disregarded.

7.5 Test Results

For testing, besides using less complex differential equations, we needed to reduce
the complexity of the model described in Appendix A in some areas. The reason
was that our prototype tool implementation needed too much time to compute the
sets of allowed actions and trajectories in between two samples. This was caused by
the performance of the version of the χ simulator at that time, the performance of
the prototype test tool, and the test platform that was used. We ran the test tool
on an ordinary 2.6 Ghz Pentium 4 PC with 512 Mb of memory.

First of all, we limited the possibility to interrupt a pump down sequence or a venting
sequence. Only after step 6 of the pump down sequence or after step 10 of the venting
sequence a new sequence start could be applied as input to the implementation. This
meant that we did not need to specify modes for every step in the pump down and
venting sequences anymore. Second, the environment processes were removed to
reduce the amount of internal actions. Then, automatically the send actions and
receive actions of the controller became the observable actions for our test tool
again. As a test purpose for input selection we used an alternating ”pumpdown”
and ”venting”messages (after a sequence was completed). Third, the pump statuses
were modeled by (input) variables with value 0 if the pump was turned off and with
value 1 if the pump was turned on. In this way a continuous trajectory did not need
to be interrupted by status messages.

With this simplified specification a mistake in a vacuum controller was found (see
Figure 7.8).
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sent: (PMPP1_STATUS,ON) at time 64.9996099472
sent:(TP1_STATUS,OFF) at time 65.9999799728
sent:(CHAMBER_PRESSURE,0.999998) at time 66.000056982
sent: (FORELINE_PRESSURE,1024.0) at time 66.0001199245
sent: (PMPP1_STATUS,ON) at time 66.0001881123
sent: (TP1_STATUS,OFF) at time 66.9995291233
sent: (CHAMBER_PRESSURE,0.899998) at time 66.9996049404
sent: (FORELINE_PRESSURE,1024.0) at time 66.9996681213
sent: (PMPP1_STATUS,ON) at time 66.9997339249
read: (NA_TP1,true)at time 66 with latency 0.999818086624

Figure 7.8: Error trace

Figure 7.8 shows the tail of the error trace returned by our prototype test tool. In
this test run, the chamber pressure was decreased while the foreline pressure was
maintained at 1 bar. This is not a realistic flow. However, since for the pump
down sequence only the chamber pressure is relevant for turning on the pumps,
maintaining the foreline pressure constant is not a problem.

After 66 seconds (in real time), a turbo pump on output was received with a chamber
pressure higher than allowed by the specification. We double checked that indeed
the turbo pump should only be turned on at a lower pressure. We verified with
the engineer of the vacuum controller that this indeed is not supposed to happen.
However, it was not considered a critical error since also due to inaccuracy of the
measurements by the sensor the turbo pump probably switches on at higher chamber
pressure levels without causing a breakdown of the system.

This proves that hybrid model based testing can be used in industry and can have
added value. The mistake that we found in the subsystem controller had not been
found by earlier testing by engineers observing the controller behavior during opera-
tion, nor in the case study of Frank Stappers [45] on the same vacuum control system.
With model checking techniques he found some other issues with the vacuum sys-
tem , e.g. that according his specification it was possible, however implausible, that
the chamber pressure reaches the pressure value of the air container. The reason
that this mistake was not found by model checking is that by model checking the
correctness of the design is validated, but not the correctness of the (eventual) im-
plementation. This shows that model checking can be used to correct the design but
it does not replace the need to validate parts of the real implementation by testing.
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Conclusions

In this chapter we summarize the results of the work presented in this thesis, we
evaluate some aspects of it, and we give some suggestions for future work.

8.1 Results

We defined a formal conformance relation for hybrid systems. This relation defines
when a hybrid implementation conforms to a hybrid specification. To our knowledge
this is the first conformance relation for hybrid systems. This relation is based on the
discrete-event input-output conformance relation by Tretmans [48] and the timed
input-output conformance relations by Brandán-Briones and Brinksma [12], and by
Krichen and Tripakis [30]. We described another conformance relation that defines
whether a hybrid implementation conforms to a hybrid specification with respect to
a separate environment. Using an environment model simplifies the formal definition
of conformance without changing its meaning.

We have also defined the notion of test for hybrid systems. This notion of test
is also based on earlier definitions of discrete-event tests and timed tests. Besides
input actions and output actions, continuous input behavior and continuous output
behavior is included in the test.

We have prove that the set of hybrid tests derived from a hybrid specification is
sound and exhaustive with respect to the conformance relation. This means that
if a hybrid test is generated from a specification according to our notion and it
leads to the verdict fail, then we know that the implementation under test does not
conform to the specification from which the test has been generated. And, if an
implementation is not conform to the specification, then we know that a test can
be derived from the specification that leads to the verdict fail.

We discussed the issues that arose when we implemented a prototype of a test tool
based on our theory. The design of a model-based test tool gave insight in the gap
between theory and practice. As a result we adapted our conformance relation and
notion of test, replacing real continuous behavior by a notion of sampled behavior.

We have implemented a prototype test tool and experiments have been conducted
on two toy examples and in an industrial case study. Part of a vacuum controller
was tested against its specification and a mistake was found. This shows that model-
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based testing of hybrid systems can be done (admittedly with sampled behavior)
and does have added value.

8.2 Evaluation

8.2.1 Applicability in Industry

We have shown that we could find a failure in a hybrid system that was not found
in earlier tests nor by modelchecking [45]. Whether hybrid model-based testing
will eventually be adopted by industry depends on the benefits it will have. Benefit
depends on whether the detected failures weigh up against the extra effort involved
in setting up the tests. Assuming that we have a mature implementation, this effort
mainly consists of modeling and setting up the connection of the test tool with the
implementation.

In order to apply (hybrid) model-based testing in practice, the modeling effort has
to be acceptable for industry standards. For a scientific correct approach to model-
based testing a formally defined specification language is required. Only in this
we know exactly which behavior is tested. The downside for using this kind of
languages is that, at the moment, these languages are not commonly used. In
order to successfully apply (hybrid) model-based testing in practice time needs to
be invested in:

• creating acceptance and willingness to use formal languages;

• training engineers to use the required specification; and languages

• developing easier to use formal languages e.g. based on subsets of existing well
known (informal) languages.

In our industrial case study most time was spent on establishing a fast and reliable
connection between the test tool and the implementation under test. The generic
part of the connection, namely the protocol used for sending information over the
TCP/IP network, can be reused in other cases. However, the test environment for
the implementation and the part of the adapter will need to be re-implemented
with a different implementation. The effort needed for model-based testing is re-
duced if generic interfaces are available for components to be tested, making it more
attractive for industry to use (hybrid) model-based testing.

8.2.2 The Environment Model

In our view an environment model next to the specification leads to a more elegant
model for hybrid model-based testing. In our case study it turned out that in
order to model our desired input behavior, we needed to model pumps and valves,
and even the chamber as separate processes in the specification. However, test
generation and execution becomes more complicated in practice since we need to
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synchronously take transitions in two models. For our prototype tool, we therefore
had chosen not to use an environment model. We recommend that a following case
study is undertaken using a separate environment model, and the two approaches
are compared.

8.2.3 Sampling

It is arguable whether to still consider using samples of continuous behavior as
hybrid model-based testing. Applying and observing samples are discrete events.
In this case using a hybrid specification with sampling still has advantages over
using a discrete-event model in which the sampled continuous behavior is mod-
eled discrete-event behavior. A hybrid specification is more concise than a similar
discrete-event version of the specification. Furthermore, if a hybrid model is used,
then the sample rate can be adapted without changing the model. Experiments
need to be conducted to investigate the influence of different sampling strategies on
the conformance between an implementation and a specification. We have proven
that under certain conditions, if an implementation conforms to a specification, then
the implementation also conforms to the specification after sampling is applied. It
remains an open problem to find the conditions for which we can guarantee that if
an implementation conforms to the specification with sampling, it also conforms to
the specification without sampling.

8.3 Future Work

8.3.1 Theory Development

There are two issues that are not addressed by the current theory. The first re-
maining issue is conformance and a notion of test for systems with feedback loops.
In these systems the continuous input depends on the continuous output. In order
to test the normal behavior of these systems the input described by the test (de-
rived from the specification) has to continuously adapt to the output observed. For
instance, if we want to test a thermostat in combination with its heater, then the
temperature input provided to the sensor should continuously adapt because the
heat coming from the heater continuously influences the temperature. Our notion
of test does not allow this because a test prescribes one fixed input behavior over
a period of time. A notion of test that may solve the problem could be a notion of
test that defines that in a test all trajectories, both on input variables and output
variables, allowed by the specification are included. Then, the adaptive input se-
lection depending on the observed output could be handled by the test execution.
Unfortunately, such a test does not describe the input behavior in case the output
behavior is not allowed by the specification and we do not know what this input
behavior should be.

The second remaining issue is to define a conformance relation that defines if an
implementation conforms to a specification in case we cannot accurately test whether
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an implementation conforms to the specification because of communication delays,
clock skews, or rounding. Or, it might be the case that we cannot make an accurate
specification but we still want to test whether an implementation conforms to that
specification within some limit of deviation. We made the suggestion to use hybrid
automata as formal model for the implementation and define a conformance relation
that allows deviations on location invariants, flow constraints, and the guards on the
switches. However, we do not know whether this satisfactory solves the problem and
whether a formal relation can be defined like this. Another option is to maintain the
conformance relation, but to create a new notion of test which gives a relative verdict
(instead of an absolute verdict pass or fail). E.g. we can imagine a relative verdict
that states that if according to the specification the acceleration of a robot should
be 3.0 m/sec2 and we allow an inaccuracy of 1% and the robot accelerates with
3.01 m/sec2, then a test leads to a verdict pass with an inaccuracy of 1− 3.0/3.1 =
0.3%.

To develop a theory for relative verdicts we need to define measures for both the
possible inaccuracy in continuous behavior and the inaccuracy in discrete event
behavior and we need to investigate whether it is still possible to derive tests from a
specification based on inaccurate observations, because this behavior is not specified.

8.3.2 Tool Development

In this research we have only built a prototype version of a hybrid test tool. In
order to develop model based testing of hybrid systems further, and to make it
more applicable for industry, an extensive tool implementation is needed. This tool
should include:

• multiple specification language support, which should be easy to use or easy
to learn for test engineers;

• an intuitive graphical user interface;

• a fast and reliable test generation and execution algorithm;

• a choice of test selection strategies and stop criteria;

• when sampling is used, a choice of predefined sample rates;

• the possibility to specify custom test purposes and stop criteria;

• when sampling is used, the possibility to define custom sampling strategies;

• comprehensible failure traces; and

• generic adapters, which can be (easily) customized for specific case studies.
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8.3.3 Case Studies

More experience with hybrid model-based testing is needed. The first reason is
to further develop hybrid model-based testing both in theory and in tooling. The
second reason to do more case studies is to show the added value of hybrid model-
based testing. This also becomes easier when theory and tooling are developed
further.

• Case studies need to be performed that, unlike the vacuum controller, contain
continuous output behavior as well. The challenge is this to find an accurate
way to observe the (sampled) continuous output behavior of the implementa-
tion under test.

• A (prototype) test tool needs to be implemented that uses two models to gen-
erate tests, namely a specification and a separate environment. Case studies
need to be performed to see whether the addition of an extra model, which
increases the computation time for performing tests, is usable in practice.

• Case studies need to be performed using varying sampling rates and sampling
strategies to study the effects of sampling.

• Case studies need to be performed to compare timed input-output confor-
mance testing to hybrid input-output conformance testing.

• Case studies need to be performed to create awareness for the use of hybrid
model-based testing.
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A

Vacuum System Specification

This appendix contains the hybrid χ model of the vacuum system as described in
chapter 7. Actual values of constants are removed for confidentiality reasons.

The Controller Process

proc Controller(Cp, Fp : real, chan ?seq, !airvalve, !valve, !pump, !turbopump, ?pstatus,
?tpstatus : string) =

|[ cont clk : real = 0.0
var av, v : string = “closed”, s : string = “manual”,

p, tp, ps, tps : string = “off”
SOFTSTART LIMIT : real = . . . , TURBOPUMP LIMIT : real = . . . ,
F INAL V ACUUM : real = . . . , F INAL ATM : real = . . . ,
UPPERTRESHHOLD : real = . . . , LOWERTRESHHOLD : real = . . . ,
T IMEOUT : real = . . .

:: clk′ = 1.0
‖ ∗( pstatus?ps )‖ ∗( tpstatus?tps )
‖ |[ mode SEQSTART =

( s = “pumpdown” → skip;PD1
[] s = “venting” → seq?s;SEQSTART
)

mode PD1 =
( s = “pumpdown” →

( av = “opened” → ( airvalve!“close”; av := “closed”; PD2
[] seq?s; PD1
)

[] av = “closed” → skip; PD2
)

[] s = “venting” → skip; V NT1
)
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mode PD2 =
( s = “pumpdown” →

( p = “off” → ( pump!on; p := “on”; PD3
[] seq?s; PD2
)

[] p = “on” → skip; PD3
)

[] s = “venting” → skip;V NT1
[] seq?s; PD2
)

mode PD3 =
( s = “pumpdown” →

( v 6= ”softstart” → clk := 0.0; ( ps = “on” ∨ clk ≥ TIMEOUT →
valve!“softstart”; v := “softstart”; PD4

[] seq?s; PD3
)

[] v = “softstart” → skip;PD4
)

[] s = “venting” → skip;V NT1
)

mode PD4 =
( s = “pumpdown” →

( CP < SOFTSTART LIMIT → valve!“open”; v := “open”; PD5
[] seq?s; PD4
)

[] s = “venting” → skip;V NT1
)

mode PD5 =
( s = “pumpdown” →

( tp = “off” →
( CP < TURBOPUMP LIMIT →

turbopump!“on”; tp := “on”; PD5
[] seq?s; PD5
)

[] tp = “on” → skip;PD5
)

[] s = “venting” → skip;V NT1
)
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mode V NT1 =
( s = “venting” →

( tp = “on” → ( turbopump!“off”; tp := “off”; V NT2
[] seq?s; V NT1
)

[] tp = “off” → skip;V NT2
)

[] s = “pumpdown” → skip;PD1
)

mode V NT2 =
( s = “venting” →

( v 6= ”closed” → ( valve!“close”; v := “closed”; V NT3
[] seq?s; V NT2
)

[] v = “closed” → skip; V NT3
)

[] s = “pumpdown” → skip;PD1
)

mode V NT3 =
( s = “venting” →

( p = “on” → ( pump!“off”; p := “off”; V NT4
[] seq?s; V NT3
)

[] p = “off” → skip;V NT4
)

[] s = “pumpdown” → skip;PD1
)

mode V NT4 =
( s = “venting” →

( av = “closed” → ( ps = “off” → airvalve!“open”; av := opened; V NT5
[] seq?s; V NT4
)

[] av = “opened” → skip;V NT5
)

[] s = “pumpdown” → skip;PD1
)

mode V NT5 =
( s = “venting” →

( v 6= ”opened” →
( Cp > Fp → valve!“open”; v := “opened”; V NT6
[] seq?s; V NT5
)

[] v = “opened” → skip; V NT6
)

[] s = “pumpdown” → skip;PD1
)
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mode V NT6 =
( s = “venting” →

( av = “opened” →
( Cp > FINAL ATM + UPPERTRESHHOLD →

airvalve!“close”; av := “closed”; V NT7
[] seq?s; V NT6
)

[] av = “closed” → skip;V NT7
)

[] s = “pumpdown” → skip;PD0
)

mode V NT7 =
( s = “venting” →

( v 6= ”closed” → ( valve!“close”; v := “closed”; V NT8
[] seq?s; V NT7
)

[] v = “closed” → skip;V NT8
)

[] s = “pumpdown” → skip;PD1
)

mode V NT8 =
( s = “venting” →

( Cp > FINAL ATM + LOWERTRESHHOLD → skip; V NT5
[] seq?s; V NT8
)

[] s = “pumpdown” → skip;PD1
)

:: seq?s; SEQSTART
]|
]|
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The Environment Processes

proc S(chan !seq : string) =
|[ ∗( seq!“pumpdown”; seq!“venting” )
]|

proc AirV alve(cont Cp,Cpav : real, chan ?airvalve : string) =
|[ var av : string = “close”
:: ( av = “close” → Cp′av = 0
‖ av = “open” → Cp′av = Cav. Vac

Vc+Vac
.(1013− Cp)

)
‖ ∗( airvalve?av )
]|

proc V alve(cont Fp, Pp, Fpv, Ppv : real, chan ?valve : string) =
|[ var v : string = “close”
:: ( v = “close” → Fp′v = 0, Pp′v = 0
‖ v = “softstart” → Fp′v = 1

2 .Cv.
Vf

Vp+Vf
.(Fp− Pp),

Pp′v = 1
2 .Cv.

Vp

Vp+Vf
.(Pp− Fp)

‖ v = “open” → Fp′v = Cv.
Vf

Vp+Vf
.(Fp− Pp),

Pp′v = Cv.
Vp

Vp+Vf
.(Pp− Fp)

)
‖ ∗( valve?v )
]|

proc Pump(cont Pp, Ppp : real, chan ?pump, !pstatus : string) =
|[ cont Sp, Smax, clk : real = 0,

var p : String = “off”, ps : string = “off”
:: clk′ = 1.0
‖ Smax = . . .
‖ ( ps = “off” → S′p = 0
‖ ps = “accelerating” → S′p = clk.(Smax − S)
‖ ps = “braking” → S′p = − clk . S
‖ ps = “on” → S′p = Smax

)
‖ ( ps = “off” ∧ Fp < 1013 → Pp′p = 0
‖ ps = “off” ∧ Fp ≥ 1013 → Pp′p = Cp.(1013− Fp)
‖ ps 6= ”off” → Pp′p = Sp

Vf
.(1 10−4 − Fp)

)
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‖ ∗( pump?p
; ( ps = “off” ∧ p = “on” → ps := “accelerating”
[] ps = “braking” ∧ p = “on” → ps := “accelerating”
[] ps = “accelerating” ∧ p = “off” → ps := “braking”
[] ps = “on” ∧ p = “off” → ps := “braking”
); clk := 0

)
‖ ∗( ( ps = “braking” ∧ S = ε → ps = “off”

[] ps = “accelerating” ∧ S = Smax − ε → ps = “on”
)
; pstatus!!ps

)
]|

proc TurboPump(cont Cp, Fp,Cpp, Fpp : real, chan ?turbopump, !tpstatus : string) =
|[ cont Stp, Smax, clk : real = 0,

var tp : String = “off”, tps : string = “off”
:: clk′ = 1.0
‖ Smax = . . .
‖ ( tps = “off” → S′tp = 0
‖ tps = “accelerating” → S′tp = clk.(Smax − S)
‖ tps = “braking” → S′tp = − clk . S
‖ tps = “on” → S′tp = Smax

)
‖ ( tps = “off” → Cp′p = Ctp.

Vc

Vp+Vc
.(Fp− Cp),

Fp′p = Ctp.
Vp

Vp+Vc
.(Cp− Fp)

‖ tps 6= ”off” → Cp′p = Stp

Vc
.(1 10−7 − Cp),

Fp′p = − S2
tp

Vp
.(1 10−7 − Fp)

)
‖ ∗( tpump?p

; ( tps = “off” ∧ p = “on” → tps := “accelerating”
[] tps = “braking” ∧ p = “on” → tps := “accelerating”
[] tps = “accelerating” ∧ p = “off” → tps := “braking”
[] tps = “on” ∧ p = “off” → tps := “braking”
); clk := 0

)
‖ ∗( ( tps = “braking” ∧ S = ε → ps = “off”

[] tps = “accelerating” ∧ S = Smax − ε → tps = “on”
)
; tpstatus!!ps

)
]|
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Model Composition

model V acuumSystem(chan seq, airvalve, valve, pump, turbopump,
pstatus, tpstatus : string ) =

|[ cont Cp, Fp, Pp, Lkp, Cptp, Cpav, Pptp, Ppv, Fpv, Fpp : real = 1013
:: Lkp′ = Clk.(1013− Cp)
‖ Cp′ = Cp′av + Cp′tp + Lkp′ ‖ Fp′ = Fp′tp + Fp′v ‖ Pp′ = Pp′v + Pp′p
‖ AirV alve(Cp,Cpav, airvalve)
‖ V alve(Fp, Pp, Fpv, Ppv, valve)
‖ Pump(Fp, Fpp, pump, pstatus)
‖ TurboPump(Cp, Pp, Cptp, Pptp, turbopump, tpstatus)
‖ S(seq)
‖ Controller(Cp, Pp, seq, airvalve, valve, pump, tpump,

pstatus, tpstatus : string)
]|





Summary

Automated Model-based Testing of Hybrid Systems

In automated model-based input-output conformance testing, tests are automati-
cally generated from a specification and automatically executed on an implemen-
tation. Input is applied to the implementation and output is observed from the
implementation. If the observed output is allowed according to the test, then test-
ing may continue, or stop with the verdict pass. If the observed output is not allowed
according to the test, then testing stops with the verdict fail. The advantages of
this test method are that:

• specifications can be reused to test every product in exactly the same way,

• test environments can be controlled because the behavior of the environment
is specified as the input of the implementation,

• tests can be generated that a test engineer did not think of yet,

• a huge quantity of tests can be generated and repeated endlessly, and

• the test engineer can focus on testing the parts of the system for which tests
are not automated.

A hybrid system is a system with both discrete-events and continuous behavior.
By continuous behavior we usually mean the behavior of physical quantities over
time. A thermostat that observes a chamber temperature and turns on a heater
based on the observed temperature change is a system with continuous input and
discrete-event output. A robot arm that moves with a certain speed on command
(e.g. ”GO LEFT”) is a system with discrete-event input and continuous output.

Within the Tangram project, a four year research project on model-based test and
integration methods and their applications, one of the goals was to develop model-
based testing for hybrid systems. This involves incorporating continuous behavior
and discrete-event behavior into one input-output conformance relation and into a
notion of hybrid test. Then, this approach to hybrid model-based testing had to be
tried out in practice, in an industrial environment. In this thesis we describe the
result of this research.
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In Chapter 2 and Chapter 3 we define the necessary preliminaries for defining our
conformance relation and notion of test for hybrid systems. We use hybrid tran-
sition systems to formally represent the implementation and the specification of a
system. We base our conformance relation on the discrete-event input-output con-
formance relation by Tretmans, and the timed input-output conformance relations
by Brandán-Briones and Brinksma, and by Krichen and Tripakis.

In Chapter 4 we define our input-output conformance relation for hybrid systems.
In this chapter we also define a notion of test for hybrid systems that we have proven
sound and exhaustive with respect to the hybrid conformance relation.

Based on the notion of hybrid test, we have implemented a proof-of-concept hybrid
model-based test tool. The architecture of our tool is based on the TorX test tool
and the tests are generated from a hybrid specification using the hybrid χ simulation
tool. In Chapter 5 we describe TorX and the hybrid χ language.

In Chapter 6 we describe the issues involved in developing a hybrid model-based
test tool in general, and our proof-of-concept tool in particular. In order to better
fit theory and practice, we adapt our hybrid input-output conformance relation and
notion of test to a conformance relation and notion of test for sampled behavior. We
have proven that, under certain conditions, if a hybrid implementation conforms to
a hybrid specification, then the implementation also conforms to the specification
with sampled behavior.

In Chapter 7 we describe the results of a case study that we have performed on
a vacuum controller of a waferstepper machine. This controller has sampled con-
tinuous input (namely samples of pressure observations) and discrete-event output
(namely controlling pumps and valves). We have made a specification that models
the sequences of events required for pumping down a vacuum chamber or venting a
vacuum chamber. We have modeled the pressure flow in the chamber as continu-
ous behavior. With the proof-of-concept tool we have been able to generate tests,
stimulate the vacuum control software with sampled pressure flow, observe output
of the vacuum control software, and give a verdict. We have found a fault in the
control software that was not found previously in the field, nor by co-simulation of
the controller and a model of the hardware, nor by model checking using Uppaal.
This result shows that hybrid model-based testing has added value.

In chapter 8 we describe the results of this research and we present some directions
for future research.



Samenvatting

Geautomatiseerd Model-gebaseerd input-output conformance testen van
hybride systemen

Bij geautomatiseerd model gebaseerd input-output conformance testen, worden tests
automatisch afgeleid uit een specificatie en automatisch geëxecuteerd op een imple-
mentatie. Input wordt toegepast op de implementatie en output wordt geobserveerd
van de implementatie. Als de geobserveerde output geoorloofd is volgens de test,
dan kan het testen doorgaan of stoppen met het oordeel pass. Als de geobserveerde
output niet geoorloofd is volgens de test, dan stopt het testen met het oordeel fail.
De voordelen van deze testmethode zijn:

• specificaties hergebruikt kunnen worden om elk product op dezelfde manier te
testen,

• test omgevingen kunnen onder controle gehouden worden doordat het gedrag
van de omgeving gebruikt kan worden als input voor de implementatie,

• er kunnen tests gegenereerd worden waar de test ingenieur nog niet aan had
gedacht,

• een grote hoeveelheid tests kan gegenereerd en eindeloos herhaald worden, en

• de test ingenieur kan zich concentreren op het testen van die onderdelen van
het systeem waarvoor de tests niet geautomatiseerd zijn.

Een hybride systeem is een systeem met zowel discrete-events als continu gedrag.
Een thermostaat die de temperatuur in een kamer observeert en een verwarming aan
aanzet afhankelijk van het geobserveerde temperatuurverloop is een systeem met
continue invoer en discrete-event uitvoer. Een robot arm die zich op commando
(bv. ”GA LINKS”) voortbeweegt met een bepaalde snelheid, is een systeem met
discrete event input en continue output.

Binnen het Tangram project, een vierjarig onderzoeksproject over model geba-
seerde test- en integratiemethoden, was één van de doelen om model gebaseerd
testen voor hybride systemen te ontwikkelen. Dit bestond uit het samenvoegen van
continu gedrag en discrete-event gedrag in één input-output conformance realatie en
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een notie van test. Vervolgens, moest deze benadering voor hybride model gebaseerd
testen uitgeprobeerd worden in de praktijk, in een industriële omgeving. In dit
proefschrift beschrijven we de resultaten van dit onderzoek.

In hoofdstuk 2 en hoofdstuk 3 definiëren we de noodzakelijke voorbereidendingen
om onze conformance relatie en notie van test voor hybride systemen te kunnen
definiëren.We gebruiken hybride transitiesystemen om formeel de implementatie en
de specificatie te representeren. We baseren onze conformance relatie op op de
discrete-event input-output conformance relatie van Tretmans, en de input-output
conformance relaties met tijd van Brandán-Briones en Brinksma, en van Krichen
en Tripakis. Een notie van hybride tests werd gedefinieerd die bewezen sound en
exhaustive is in vergelijking met de hybride conformance relatie.

In hoofdstuk 4 definiëren we onze input-output conformance relatie voor hybride
systemen. In dit hoofdstuk definiëren we ook onze notie van test. We hebben
bewezen dat deze notie van test sound en exhaustive is met betrekking tot de hybride
conformance relatie.

Gebaseerd op de notie van hybride test, hebben we een concept hybride test tool
gëımplementeerd. De architectuur van deze tool is gebaseerd op de TorX test tool
en met behulp van de hybride χ simulatie tool worden tests afgeleid uit een hybride
specificatie. In hoofdstuk 5 beschrijven we TorX en de hybride χ taal.

In hoofdstuk 6 beschrijven we de kwesties die betrekking hebben op het ontwikkelen
van een hybride model gebaseerde test tool in het algemeen en ons prototype test
tool in het bijzonder. Om beter de theory met de praktijk aan te laten sluiten,
passen we onze conformance relatie en notie van test aan voor gesampled gedrag. We
hebben bewezen dat, onder bepaalde omstandigheden, als een hybride implementatie
conformeerd aan een hybride specificatie, dan conformeerd de implementatie ook aan
de specificatie met gesampled gedrag.

In hoofdstuk 7 beschrijven we de resultaten van een case studie die we uitgevoerd
hebben op een vacuüm controller van een waferstepper machine. Deze controller
heeft gesampelde invoer (namelijk druk observatie samples) en discrete-event out-
put (namelijk het besturen van pompen en kleppen). We hebben een specificatie
gemaakt die de volgorde van events modelleerde die noodzakelijk zijn om een va-
cuüm kamer leeg te pompen of te luchten. We hebben het drukverloop in de kamer
gemodelleerd als continue gedrag. De concept tool was in staat om tests te gene-
reren, de vacuüm controller te stimuleren met gesampeld drukverloop, de output
van de vacuüm control software te observeren, en een oordeel te geven. We hebben
een fout gevonden in de control software die nog niet eerder gevonden was gedurende
de normale operatie, en die ook niet gevonden was door co-simulatie van de con-
troller en een model van de hardware, en die ook niet gevonden was door model
verificatie met Uppaal. Dit resultaat toont aan dat hybride model gebaseerd testen
toegevoegde waarde heeft.

In hoofdstuk 8 beschrijven we de conclusies van dit onderzoek en geven we aan-
wijzigingen voor toekomstig onderzoek.
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