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Abstract: In this paper a new approach for the realization 
of the DNA computing paradigm is presented. It exploits 
the natural richness of the chaotic dynamics to efficiently 
generate and process coded binary sequences following the 
DNA computing framework introduced by Leonard M. 
Adleman. The new method is discussed and some 
simulation results regarding the directed hamilitonian paih 
problem are presented. 

1. Introduction 
In 1994 Leonard M. Adleman presented a 
revolutionary paper [l] in which an instance of the 
Directed Hamiltonian Path Problem was solved using 
DNA synthesis. Essentially, he proved that some 
computationally untractable combinatorial problems 
(NP-complete problems in particular) could be 
efficiently solved by exploiting DNA. In his synthesis 
procedure, DNA strands are used to represent 
information that can then be processed by using 
standard methods of molecular biology. This 
biological experiment originated the emergence of a 
new interesting interdisciplinary area of research 
known as “DNA computing”. Most of the research in 
this field has been devoted to study computational 
models and to answer two fundamental open 
questions [3]: (1) Can every algorithmlprogram be 
simulated by a DNA algorithm? (2 )  Is it possible, to 
design programmable DNA computers able to run any 
arbitrarily given program? 

The research hereby presented focuses on the efficient 
and unconventional implementation of the DNA 
computing paradigm using non von Neuman 
computational models. The need for unconventional 
computing models stems from the fact that many 
DNA operations rely on a combinatorial process 
among molecules. To effectively model a 
combinatorial processing engine and the associated 
DNA operations, a nonlinear chaotic dynamical 
system is proposed as the core engine of the search 
process. Conventional approaches generate randomly 
a coded sequence of bits and then make use of bit 
stream matching algorithms to find the sequence of 
bits that provides the solution. The power of this 
method is limited by the complexity of the search- 
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matching operation and the search space. This 
translates into untractable memory usage and long 
computation times. In our approach, we use chaotic 
systems to search the space, and instead of using 
deterministic bit stream matching algorithms, the 
proposed nonlinear chaotic computing model adapts 
itself as the space search progresses narrowing it at 
the same time to find autonomously the optimal 
solution! 

Chaotic dynamical systems exhibit a long term 
unpredictable behavior due to the so-called sensitivity 
to initial conditions. Furthermore, the so-called 
chaotic attractors are characterized by the existence of 
a dense set of unstable periodic orbits [ 5 ] .  In our 
computing model the huge amount of information 
generated by the flow of a chaotic system [4,6] is 
exploited to represent potential candidate solutions of 
a combinatorial problem in analogy to biological 
DNA synthesis. This information is then processed by 
using a simple feedback scheme that tracks the 
dynamics of the system and acts on its inputs in order 
to select the desired solution among the generated 
candidates. The various blocks composing the 
feedback are based on the same principles of the test 
tubes used in the Adleman’s approach [l-31. 

2. Background 

2.1 DNA computing 
A DNA strand is composed by a sequence of units 
called nucleotides which are distinguished by the 
chemical group, or base, attached to them. The four 
bases are abbreviated by the letters A, G, C and T. 
These letters integrate an alphabet 
2 = {A,G,C,T}and are used to form strings to 
encode the information [l-31. A DNA molecule 
represents a string in this alphabet. A multiset of 
strings can then be used to represent candidate 
solutions of an optimization problem such as the 
Directed Hamiltonian Path Problem. In practice, the 
actual solution (or one of the solutions) has to be 
selected among the many candidates. This selection 

mailto:gyvez@pineda.tamu.edu


process is accomplished by using standard methods of 
molecular biology. These biochemical operations can 
be synthesized into an abstract model of molecular 
computing. In particular, the use of test tubes has been 
formalized in the so-called restricted DNA model as 
follows[3]: a tube is a multi-set of aggregates over an 
alphabet C. Given a tube, the following operations can 
be performed: 
1. Separate. Given a tube T and a symbol SE Z, two 

tubes can be produced: 
+(rs) containing all the aggregates of T 
containing s 
-(T,s) all the remaining aggregates of T 
not containing s. 

Merge. Given tubes TI and T2, produce the new 
tube U(Tl,T2)=TluT2. 
Detect. Given a tube T, say 'yes' if T contains at 
least one aggregate, otherwise say 'no'. 

2. 

3. 
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The above three operations allow the processing of 
the DNA strands and so they permit to realize well 
defined algorithms using them as the elementary 
instructions. A device capable of performing these 
algorithms is considered a molecular computer. 

. 

- 
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2.2 Chaotic systems 
Some definitions are needed for the following 
presentation[4]. Let us define an nth-order 
nonautonomous dynamic system by the time-varying 
state equation: 

where x = &/dt, x ( t )  E Y?" is the state at time t and 

f:%" x %  + 31" is called the vector field. The 
solution of (1) with initial condition xo is called a 
trajectory and is denoted by A ( ~ ~ ) .  The mapping 

&:%" + 32" is called the flow of the system. The 
dynamic system (1) is linear if and only if (iff) f(x,t) 
is linear with respect to x, otherwise it is nonlinear. 
Finally, i f f  is a function of x only (namely it is 
independent of r )  the system (1) is an autonomous 
system. 

x = f ( x , t )  x(t , )  = x, (1) 

The steady-state behavior of nonlinear dynamic 
systems can be quite complex depending on the form 
off and the value of its parameters. The main features 
characterizing chaos are: 
1. the trajectories are bounded and are not periodic; 
2. the steady state trajectories tend to a geometrical 

object called attractor whose dimension is not 
integer (it is a so-called fractal object); 
the trajectories emanating from any two initial 
points, arbitrarily close one to another, diverge at 

3. 

a rate characteristic of the system until, for all the 
practical purposes, they are uncorrelated. 

The last feature is the so-called sensitivity to initial 
conditions and it is the one that mostly makes chaos 
interesting; in fact, in practice the initial state of the 
system can never be specified exactly, but only to 
within some tolerance. Therefore, two or more states 
whose difference is less than that tolerance are 
practically not distinguishable. However, their long 
term values are different because of property (3). It 
follows that even if the dynamic system is completely 
deterministic it is not possible to predict its long term 
behavior. 

The inherent randomness of chaotic systems along 
with some of the other features above recalled will be 
the strength points of our approach. 

2.2.1 The Lorenz system 
A classic example of chaotic systems is the Loren2 
system, described by the following state model [6]: 

x=-ox+oy 

i = - b z + q  

y = R x - y - x z  (2) 

where x, y and z are the state variables while 0, R and 
b are the system parameters. This is an autonomous 
system because it is independent from t. If -10, 
R=28 and b=8/3 then the system (2) will have a 
chaotic behavior. The steady state behavior is 
characterized by a double-lobe attractor in the three- 
dimensional state space whose projection on the x-y 
plane is shown in Fig. 1. 

30 I 

I ^^  

""-30 -20 -10 0 10 20 30 
X 

Figure I: The projection of the Lorenz attractor into the x-y plane; 
the two section planes 0 and 1 cutting the trajectories in 
correspondence of two of the equilibrium points are reported. 

2.2.2 Poincare' maps and symbolic dynamics 
Let us consider an nth-order autonomous chaotic 
system, e.g. the Lorenz system (in this case n=3). Let 
x* be a point belonging to'a trajectory and consider an 
(n-1)-dimensional hyper-plane transverse to the 
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trajectory at x*. The trajectory emanating from x* 
after a certain time will encounter again the section 
plane in another point and so on. The iterative 
function defining this sequence of points into the 
section plane is called the Poincare' map (P.M.) and 
constitutes a discrete-time representation of the 
continuous time chaotic system [4]. In Fig. 1 two 
possible Poincare' sections (perpendicular to the 
plane of the figure) labeled plane 0 and 1 are shown. 
In particular these are the two half-planes defined by 
the equations: 

Let us associate two binary symbols 0 and 1 to the 
two planes 0 and 1, respectively. Consider an initial 
condition x* on one of these two planes, and then 
keep track of the next intersections between the state 
trajectory emanating from x* and the two Poincare' 
sections. In this way a sequence of binary digits (6,) 

is defined by the initial condition x*. This sequence, 
associated to x*, is completely deterministic and it is 
called the symbolic dynamics of the system[6]. It can 
be represented by the binary fraction: 

Y - -  --+&ET; l x l 2 J m ;  (3) 

- 
r = z b n 2 - "  (4) 

n=l 

where r is called the symbolic state [6]. The function 
r(x) is called the codingfunction and can be obtained 
experimentally by measurements on the free-running 
system [6] .  It can be quite complex depending on the 
vector field and/or the Poincare' sections. The one 
obtained for the Lorenz system with the above two 
Poincare' sections is smooth enough and its inverse, 
relative only to variable x,  is shown in Fig. 2. 

Finally, it has to be noted that certain sequences of 
bits do not appear if the system is allowed to evolve 
without external perturbations. The rules specifying 
allowed and disallowed sequences are called the 
grammar [6]. 

2.2.3 Symbolic dynamics and external 
perturbations 
Let us now consider the symbolic dynamics 
(constrained to N bits): 

{bl,b2,b3 ,...,bN} ( 5 )  
associated to a point XI  on one of the P.M. and let the 
system run until the trajectory 4(x,) intersects again 
one of the two P.M. in a new point x2. It follows that 
the symbolic dynamics of x2 will be: 

{bz .b, ,  . .- h, .bN+, 1 (6) 
For the same reason, the next intersection x3 will 
correspond to the symbolic dynamics: 

(7) 
and so on. In conclusion the binary string 
corresponding to a point following another one in an 
unperturbed evolution is obtained by doing a circular 
shifting. 

However, if the system is perturbed by an external 
signal U, while going from XI to x2, then the trajectory 
will change and the next intersection will be on 
X; # x2 with new symbolic dynamics: 

The length of the sequence is still N bits but only the 
first k bits are the same of the symbolic dynamics 
shown in (6). Of course the more intense the 
perturbation the lower will be k (it can even be k=2). 
Moreover, due to the sensitivity to initial conditions it 
follows that small perturbations are able to strongly 
change the symbolic dynamics. 

3. Chaos for DNA computing 
In this section a completely new approach to DNA 
computing is discussed. The richness of the chaotic 
dynamics and the sensitivity to initial conditions are 
exploited to generate information while a feedback 
scheme is used to process it. 

3.1 Coding information into the chaos 
From the above discussion it turns out that it is 
possible to associate a binary string to each point of 
the Poincare' maps (P.M.). Any binary string 
corresponding to any of these points describes the 
sequence of intersections of the trajectory with the 
two planes. 

201 ' ' ' ' ' ' ' ' ' I 
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Figure 2: The inverse coding function for the b r e n z  system with 
the plane 0 and 1. 
In section 2.1 it has been recalled how the 4 bases of 
DNA can be used to code information into the DNA 
strands. Analogously strings of bits can be used to 
code information into binary words using a chaotic 
system[6,8]. For instance, let us suppose that the 26 
letters of the alphabet have to be coded by using the 
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two PM and a Lorenz system. This means that any 
symbol (letter) needs 5 bits (e.g. the letter C can be 
coded into OOOll). Therefore, a binary symbolic 
dynamics with N=5 bits can be considered. For this 
example the binary fraction is r=O.OOOll, i.e. the 
decimal fraction -0.09375. By using the coding 
function of Fig. 2, it turns out that the letter C is 
coded into a point into the plane 0 since ~0.09375 < 
0.5. 

Finally, multiple points in the PM lead to the same 
future.symbo1 sequence due to the limited number of 
bits considered for the symbolic dynamics. However, 
due to the smoothness of the coding function of Fig. 2 
this means that all the points corresponding to the 
same symbolic state belong to the same contiguous 
common interval (and as such they can be considered 
indistinguishable). 

3.2 Chaos and test tubes 
In the previous paragraphs it has been seen that it is 
possible to generate information by coding it into the 
points of the PM. The generation of new information 
is due to the sensitivity to the initial condition and this 
phenomenon can be even strengthen by means of 
weak perturbations. All those PM points are 
analogous to the DNA strands contained in a test tube. 
Hence, the chaotic system can be viewed as a test tube 
containing the information to be processed. 

However, the DNA algorithms permit to arrive to the 
solution of a problem by manipulating the content of 
the tubes by means of the three fundamental 
operations described in the restricted DNA model 
above discussed. Hence, analogous manipulations will 
be now defined for our chaotic tube. 

Given the above duality between chaotic systems and 
tubes the two terms and the associated formalism will 
be now used interchangeably. 

3.2.1 Feedback and the restricted DNA model 
Let us consider the operation separate and a free- 
running chaotic system T. Note that in order to create 
the negative tube -(T,s) it is necessary to discard all 
the points in the PM that correspond to symbolic 
dynamics containing the sub-sequence s. Moreover, if 
T generates a point X I  whose symbolic dynamics 
contains s, then another point x2 from the free running 
dynamics most likely still contains s (except for the 
particular case in which the first bit of s is also the 
first bit of the symbolic dynamics of XI) .  Therefore T 
has to be perturbed so that: 
1. the undesired sub-sequence s is removed; 

2. a complete different information is generated. 

This means that a control unit, that senses the state 
variables, has to perturb the state of T, when the 
trajectory encounters a PM, upon the following rule: 

i f s  is a part of r(x1) then perturb T (9a) 

We will call this unit negative-tube feedback block. It 
easily follows that to obtain the positive tube +(T,s) 
the antecedent of this rule has to be negated, leading 
to the rule: 

i f s  is NOT a part of 4x1) then perturb T (9b) 

This defines the positive-tube feedback block. The 
(weak) perturbation of T has not been specified yet. In 
fact a well determined perturbation is not needed and 
it is even undesirable because the new information is 
partially a function of this perturbation. Another 
chaotic system uncorrelated to the state of T can then 
be used as a source of perturbations. 

The block diagram of Fig. 3 depicts the realization of 
the positive tube. 

Figure 3: Block diagram for the realization of +(T,s). 

Tis the chaotic system with state vector x. The state is 
sensed by the feedback block Cst that executes rule 
(9) when x encounters the PM. If the result is “perturb 
T’ then the logic variable 1 is set to 1 (otherwise it is 
set to 0). This is multiplied by signal E, coming from 
the independent chaotic system C so that the 
perturbation S=1.5 is applied to T: 

The whole system realizes the separate operation 
+(T,s). To accomplish the merge operation a logic 
composition of feedback blocks analogous to Cs+ is 
used. In fact, consider two tubes T1 and T2 obtained by 
adding suitable feedback blocks Cfl and Cfz to tube T 
containing all the DNA strands. If U(T1,T,)=T1uT2 
has to be realized, then the merge is obtained by the 
parallel connection of the two feedback blocks Cfl 
and Cfz and composing the associated logic output by 
means of a simple logic AND gate as shown in Fig.4. 
This is easily verified by considering the rules 
corresponding to the independent feedback blocks 
and by application of the De Morgan theorems. The 

i =  f ( x ) + S  (10) 
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merge operation can be generalized to an arbitrary 
number of tubes and corresponding feedback blocks. 
The last DNA operation )(detect) is trivially obtained 
by checking the total logic output of the feedback 
network. 

With this approach a DNA algorithm is systematically 
transposed in the corresponding feedback network. 
This one will check the generated information and 
perturb or not the system T according to the logical 
evolution of the DNA algorithm. When no 
perturbation is applied it means that the information 
generated fits all the requirements and so this 
represent a solution to the problem. Finally it is worth 
noting that if a merge operation combines the logic 
results of the feedback blocks by using an AND gate, 
then, conversely, successive seggregations of a set of 
DNA strands corresponds to combining the outputs of 
the feedback blocks by using an OR gate. 

a l 

Figure 4. Merge between TI and Tz. through two control blocks 

All of this is perfectly coherent with the Adleman 
approach in which, at the very end, the aim of all the 
biochemical manipulations (here translated into a 
suitable feedback network) is to filter the DNA string 
representing a solution among the many candidates. 

4. Directed Hamiltonian Path Problem 
The proposed approach is now applied to the solution 
the Direct Hamiltonian Path problem. A directed 
graph G is said to have a hamiltonian path if and only 
if there exists a sequence of compatible one-way 
edges that begins at hn and ends at v,,, and enters 
every other vertex exactly only once. The following 
non-deterministic algorithm was used by Adleman 
HI :  
1. 
2. 

3. 

4. 

5.  

Generate random paths through the graph 
Keep only those paths that begin with vi, and end 
with v,,~ 
If the graph has n vertices keep only those paths 
that enter exactly n vertices 
Keep only those paths that enter all of the 
vertices of the graph at least once 
If any paths remain, say YES; otherwise say NO 

In order to apply the chaotic solver to the execution of 
this algorithm the candidate paths of the graph need to 
be coded into the Lorenz system. First, k-bit binary 
strings are assigned to each of the vertices of G (e.g. 
for 9 vertices 4 bits are needed). Because the graph 
has n vertices that have to be visited, then a 
candidate solution is a sequence of exactly n vertix 
codes. Hence, candidate solutions are strings of length 
N=k*n bits which are inherently encoded into the N- 
bit symbolic dynamics of the chaotic tube T. Any time 
the chaotic system T intersects a PM a new random 
path passing through exactly n vertices of G is 
generated. This basically satisfies points (1) and (3) of 
the above non-deterministic algorithm. 

Let us now consider point (2). Let ci, and tout be the 
binary codes associated to vertex yn and v,,, 
respectively. A separate operation that eliminates the 
paths that do not have cin and tout as first and last 
codes is needed. This is obtained by means of two 
positive-tube feedback blocks Cin+ and Cout+. The 
first one senses the state x, evaluates the 
corresponding symbolic dynamics and then compares 
the first city’s code with ci,. If they are equal its 
output is a logic 0 (this means that this particular 
constrain has been met and that it is not necessary to 
perturb T). Analogously, another positive-tube 
feedback block Cout+ is used to check the last city 
code. 

To implement point (4) the remaining vertex codes c2, 
c3. . . ., c,.~ are considered in the following operations: 
+(T,c2), +(T,c~) ,.., +(T, c,.~). In this way the presence 
of all the vertices is checked. If there is at least one 
vertex missing then the corresponding feedback block 
will respond with a logic 1. The corresponding 
feedback block are C2+, C3+,.. in Fig. 5. 

The outputs of these building blocks are combined by 
using a logic OR gate (as explained in Section 3 this 
corresponds to a successive seggregation). If the 
generated state corresponds to the solution of the 
problem, then no feedback block responds with a 
logic 1 and so no perturbation is applied. In all the 
other cases at least one block fires up and a 
perturbation is applied forcing T to cancel the current 
symbolic dynamics and to generate another candidate. 

The solution we are addressing holds for both 
complete symmetric and asymmetric graphs. A 
complete symmetric graph has both edges (vi. vj) and 
(vj. vi) for every two distinct vertices vi and vi.; a 
complete asymmetric graph has only one. 
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Figure 5 Block diagram for the directed hamiltonian path 
problem. 

Therefore, additional feedback blocks are needed to 
check that all the edges involved in the current path 
are really existing in the given graph G.  To this aim, a 
feedback logic similar to the one used for checking 
the presence of all the vertices is adopted. This 
corresponds to blocks Ekl-, .. , Ekm- shown in Fig. 5. 
Some results obtained from simulations using Matlab 
are shown in Table. 1. 

Table 1: Simulation results for the Directed Hamiltonian Path 
problem. 

[ Edges I Vertices I C I RT I 
4 1  3 I 59.7 1 11.94ms 
6 1  3 I 57.7 I 11.54ms 
9 1  4 I 333.6 I 66.72111s 
11 1 4 I 81.8 I 16.36ms 
16 I 5 I 217.5 I 43.5ms 
30 1 6 I 15083 I 3.0166s 

Several graphs with different number of edges and 
vertices were considered. C is the average number of 
candidates generated by the chaotic system prior to 
arriving at the solution. The average rate at which a 
new candidate is generated (considering a chaotic 
circuit oscillating with harmonic components in the 
acoustic range, e.g. 5KHz) is around every 0.2ms. 
Multiplying this by C provides us with an estimate of 
the running time if specialized hardware were in 
place. This has been reported in Table 1 as RT. 

remarkable property if compared to conventional 
methods. 

5. Conclusions 
In this paper a new approach to DNA computing has 
been presented. It exploits the rich dynamics of chaos 
to siinulate a test tube along with suitable feedback 
schemes for manipulating the contents of the tube. A 
systematic approach to obtain the feedback network 
corresponding to a desired DNA algorithm has been 
discussed. Finally, the new method has been applied 
to the Directed Hamiltonian Path Problem. Because of 
its features, the proposed setup represents a molecular 
computer in the sense introduced by Adleman [3]. 
Moreover, it can be implemented in real hardware. 
Preliminary results show that even at a moderate 
speed of operation the corresponding throughput is 
fairly remarkable. 
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needed, the more edges present in the graph, the faster 
is the convergence to the solution. This is a 

260 


