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Abstract—We study the optimality of power control and
treating interference as noise (TIN) in the M × N X channel,
from the generalized degrees-of-freedom (GDoF) and constant-
gap capacity perspectives. A result by Geng, Sun and Jafar shows
that if there exist K = min(M,N) transmitter-receiver pairs
such that each direct link strength is no less than the sum of the
strongest incoming and strongest outgoing cross link strengths
(all in dB), then it is optimal to reduce the M × N X channel
to a K-user interference channel and use TIN. The proof of
this result relies on a deterministic approximation of the original
Gaussian network, specifically for the case M < N . Here we
present a simpler proof by working directly with the original
Gaussian network. Our proof relies on a new “less noisy under
interference” order exhibited by TIN-optimal M×N X channels,
akin to the “less noisy” order in broadcast channels.

I. INTRODUCTION

Geng et al. [1] showed that in a K-user Gaussian in-
terference channel, if certain conditions on channel strength
levels are satisfied, then power control at the transmitters and
treating interference as noise at the receivers (TIN for short) is
optimal from the generalized degrees-of-freedom (GDoF) and
constant-gap capacity perspectives. These TIN conditions are
described as follows: for each designated transmitter-receiver
pair, the strength of the direct (i.e. desired) link must be no
less than the sum of the strengths of the strongest incoming
(from other transmitters) and the strongest outgoing (to other
receivers) cross links, where all link strengths are in dB scale.
This pioneering work by Geng et al. [1] has inspired a surge
of interest in studying the optimality of TIN-based schemes
in a variety of wireless network settings [2]–[12].

In this paper, we are primarily interested in the optimality
of TIN in the X channel. Geng, Sun and Jafar [2] showed
that even after enhancing a TIN-optimal K-user interference
channel to an X channel, i.e. by expanding the message set
to include an independent message from each transmitter to
each receiver; it remains optimal from the sum-GDoF and
constant-gap sum-capacity perspectives to operate the new
channel as the original interference channel and to use TIN.
The authors in [2] have also extended the result to more
general M × N X channels, with distinct M and N . In this
case, the TIN conditions are modified as follows: there must
exist K transmitter-receiver pairs, where K = min(M,N),
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such that the TIN condition is satisfied by each designated pair
against all other transmitters and receivers (see Theorem 1). In
this case, it is optimal from the sum-GDoF and constant-gap
sum-capacity perspectives to operate the M × N X channel
as a K-user interference channel and use TIN.

The main technical difficulty in [2] is driving a tight
information-theoretic outer bound which matches the TIN
achievable inner bound in the sum-GDoF and constant-gap
sum-capacity sense. This turns out to be particularly chal-
lenging in the case with more receivers than transmitters (i.e.
M < N ). This challenge is circumvented in [2] through a
deterministic approximation of the original Gaussian network,
inspired by the Avestimehr-Diggavi-Tse approach in [13]. The
capacity of the original Gaussian channel is shown to be upper
bounded by the capacity of the corresponding deterministic
channel, up to a constant gap. Furthermore, the deterministic
model explicitly marks out the combinatorial structure arising
from the interaction between different signal strength levels,
which is exploited in the outer bound proof in [2].

While deterministic approximations have contributed invalu-
able insights into the capacity of Gaussian networks, including
the TIN-optimality result for the M × N X channel [2] of
interest to us here; one may wonder whether it is possible
to prove this result while working directly with the original
Gaussian model. We answer this question in the affirmative—
working directly with the Gaussian M ×N X channel (with
M < N ) in the TIN regime, we derive an outer bound for the
sum-capacity which is tight up to constant gap (hence tight
in the sum-GDoF sense). Our proof is surprisingly simple,
and avoids the intricacies of translating the Gaussian network
into a counterpart deterministic network and then proving the
faithfulness of such translation—see [2]. A key ingredient
of our proof is the utilization of a new “less noisy under
interference” order [10], akin to the “less noisy” order in
broadcast channels (see Lemma 1). It turns out that in M×N
X channels satisfying the TIN conditions, and with respect to
any transmitter and its set of N messages, users are partially
ordered such that the corresponding designated receiver is
(approximately) less noisy than all other receivers.

Notation: For positive integers z1 and z2 where z1 ≤ z2,
the sets {1, 2, . . . , z1} and {z1, z1 +1, . . . , z2} are denoted by
〈z1〉 and 〈z1 : z2〉, respectively. Bold symbols denote tuples,
e.g. a = (a1, . . . , az), also expressed as (ai : i ∈ 〈z〉), and



A = (A1, . . . , Az); and calligraphic symbols denote sets, e.g.
A = {a1, . . . , az}. Ac denotes the complement of set A.

II. PROBLEM SETTING AND PRELIMINARIES

A. Network model
We consider a wireless network with M transmitters and

N receivers. For GDoF studies [1], [2], [10], the input-output
relationship at the t-th channel use is described by

Yk(t) =

M∑
i=1

P̄αkiejθkiXi(t) + Zk(t) (1)

where Xi(t), Yk(t), Zk(t) ∈ C respectively denote the symbol
transmitted by transmitter i, the symbol received by receiver k,
and the zero-mean unit-variance additive white Gaussian noise
(AWGN) at receiver k. The signal of transmitter i is subject to
the unit average power constraint 1

T

∑T
t=1 E

[∣∣Xi(t)
∣∣2] ≤ 1,

where T is the communication duration in channel uses.
P̄αki and θki are the magnitude and phase, respectively, of
the channel between transmitter i and receiver k. For GDoF
purposes, we define P̄ ,

√
P , where P > 1 is a nominal

power parameter that approaches infinity in the GDoF limit.
The exponent αki > 0 is known as the channel strength
parameter, or channel strength level, of the link between
transmitter i and receiver k.

When operating the above M×N network as an X channel,
each of the M transmitters has a set of N independent
messages, one for each receiver. The message from transmitter
m to receiver n, where m ∈ 〈M〉 and n ∈ 〈N〉, is denoted
by Wnm, and the corresponding rate is given by Rnm. Rates,
capacity and GDoF are all defined in a standard Shannon-
theoretic fashion, see, e.g., [1], [2], [10]. For fixed P , the
capacity region, denoted by C(P ), is the closure of the set of
all achievable rate tuples R =

(
Rnm : m ∈ 〈M〉, n ∈ 〈N〉

)
.

A GDoF tuple is denoted by d =
(
dnm : m ∈ 〈M〉, n ∈ 〈N〉

)
,

and the GDoF region is defined as

D ,
{
d : dnm = lim

P→∞

Rnm

log(P )
, ∀m ∈ 〈M〉, n ∈ 〈N〉,R ∈ C(P )

}
.

Here we are primarily interested in the sum-GDoF, obtained
from the GDoF region as

dΣ , max
d∈D

M∑
m=1

N∑
n=1

dnm. (2)

We now introduce some shorthand notations for message
sets, and their corresponding rates and GDoF. The message
set originating from transmitter m, where m ∈ 〈M〉, is
denoted by Wm , {W1m, . . . ,WNm}. The sum-rate of Wm

is given by Rm ,
∑N
n=1Rnm, and the corresponding sum-

GDoF is denoted by dm ,
∑N
n=1 dnm. On the other hand,

the message set intended to user n, where n ∈ 〈N〉, is
given by W ′n , {Wn1, . . . ,WnM}. The corresponding sum-
rate and sum GDoF are given by R′n ,

∑M
m=1Rnm and

d′n ,
∑M
m=1 dnm, respectively. The following simple identi-

ties hold:
⋃M
m=1Wm =

⋃N
n=1W ′n,

∑M
m=1Rm =

∑N
n=1R

′
n,

and
∑M
m=1 dm =

∑N
n=1 d

′
n.

B. Power control and treating interference as noise (TIN)

Define K , min(M,N), and let π : 〈M〉 → 〈M〉 and
π′ : 〈N〉 → 〈N〉 be arbitrary permutations over the sets of
transmitter and receiver indices, respectively. The M × N
X channel can be operated as a regular K-user interference
channel by eliminating all messages except for a set of K
messages given by

{
Wπ′(k)π(k) : k ∈ 〈K〉

}
, for some π and

π′. Without loss of generality, we may assume that π(m) = m
and π′(n) = n, for all m ∈ 〈M〉 and n ∈ 〈N〉, by relabelling
transmitters and receivers if necessary. In this case, the K-user
interference channel is given by the first K transmitter-receiver
pairs of the underlying M ×N X channel.

By further restricting operation in the K-user interference
channel to schemes based on power control and treating
interference as noise (i.e. TIN), a sum-GDoF denoted by dTIN

Σ

is achievable, which is a lower bound for dΣ in (2). dTIN
Σ is

characterized through the following linear program [1], [2]

dTIN
Σ , max

(d1,...,dK)∈DTIN

K∑
k=1

dk (3)

where the region DTIN is defined as the set of all non-negative
tuples (d1, . . . , dK) ∈ RK+ that satisfy

dk ≤ αkk, ∀k ∈ 〈K〉 (4)∑
k∈{σ}

dk ≤
|σ|∑
s=1

(
ασ(s)σ(s) − ασ(s+1)σ(s)

)
, ∀σ ∈ ΣK . (5)

In (5), σ is a cyclic sequence (or cycle) of users in 〈K〉 of
length |σ|, and ΣK is the set of all such cycles of any length1

|σ| ∈ 〈2 : K〉. A cycle σ of length |σ| = S is written as

σ =
(
σ(1)→ σ(2)→ · · · → σ(S)

)
(6)

where {σ} ,
{
σ(1), σ(2), . . . , σ(S)

}
⊆ 〈K〉 is the set of

users traversed by σ. For any cycle of length S, indices are
interpreted modulo S, i.e. σ(s+S) = σ(s), for all integers s.

The TIN achievable sum-GDoF in (3) is optimal for the
K-user interference channel given that channel strength pa-
rameters satisfy the following TIN optimality condition [1]

αkk ≥ αjk + αkl, ∀k, j, l ∈ 〈K〉, j, l 6= k. (7)

As it turns out, this result generalizes to the M×N X channel
[2]. This is reviewed next.

C. Optimality of TIN with general message sets

The main results of [2] are stated in the following theorem.

Theorem 1. [2, Th. 2 and Th. 3] Suppose that there exists
two permutations π and π′ for the transmitter and receiver
indices, respectively, such that

απ′(k)π(k) ≥ απ′(n)π(k) + απ′(k)π(m),

∀k ∈ 〈K〉, m ∈ 〈M〉, n ∈ 〈N〉, m, n 6= k. (8)

1Trivial cycles of length 1 are excluded from the set ΣK , as their
corresponding GDoF bounds take on a different form, see e.g. (4).



Then it is optimal from the sum-GDoF and constant-gap
sum-capacity perspectives to operate the M × N X channel
as a K-user interference channel in which transmitter π(k)
communicates an independent message to receiver π′(k) only,
where k ∈ 〈K〉, and to use TIN.

As noted in the previous subsection, we may assume without
loss of generality that the permutations in Theorem 1 are given
by π(m) = m and π′(n) = n, for all m ∈ 〈M〉 and n ∈ 〈N〉.
This is assumed to be the case henceforth, with no loss of
generality. The condition in (8) becomes

αkk ≥ αnk + αkm,

∀k ∈ 〈K〉, m ∈ 〈M〉, n ∈ 〈N〉, m, n 6= k. (9)

Whenever the condition in (9) holds, we have

dΣ = dTIN
Σ (10)

where dΣ is the sum-GDoF of the X channel defined in (2),
while dTIN

Σ is the TIN achievable sum-GDoF defined in (3).
Under the TIN condition in (9), and for M ≥ N = K,
Theorem 1 implies that transmitters indexed by 〈K + 1 : M〉
are redundant from the sum-GDoF standpoint, and hence can
be omitted. On the other hand, for K = M < N , receivers
indexed by 〈K + 1 : N〉 are redundant, and hence can be
omitted in this case. The main challenge in proving Theorem
1 is the converse, especially for the case M < N . A new
proof for this result, based on the notion of less noisiness
under interference, is presented in the following section.

III. A NEW PROOF FOR THEOREM 1

We have the following outer bound.

Theorem 2. For K = M ≤ N , and under the TIN condition
in (9), the rate tuple (R1, . . . , RK) of transmitter message sets
is included in the region specified by

0 ≤ Rk ≤ αkk log (P ) +O(1), ∀k ∈ 〈K〉 (11)∑
k∈{σ}

Rk ≤
|σ|∑
s=1

(
ασ(s)σ(s) − ασ(s+1)σ(s)

)
log (P )

+O(1), ∀σ ∈ ΣK . (12)

In the GDoF sense, the rate outer bound in Theorem 2 is
identical to the TIN region DTIN described in (4) and (5),
which implies that dΣ ≤ dTIN

Σ . Since dTIN
Σ is also achievable,

it follows that dΣ = dTIN
Σ under the TIN condition in (9). The

remainder of this section is dedicated to proving Theorem 2.
Before we proceed, it is worthwhile highlighting that the

single transmitter bounds in (11) follow directly from the ca-
pacity of the degraded Gaussian BC, see, e.g. [14]. Therefore,
we focus on the multi-transmitter cyclic bounds in (12). We
start by reviewing a key lemma from [10].

A. Less noisy under interference

Let us focus on a 2-transmitter, 2-receiver sub-network of
the M × N network. We select transmitters k and m, and
receivers k and i, where k 6= m 6= i, and eliminate all other
nodes. The signal model for this sub-network is given by

Yk(t) = P̄αkkejθkkXk(t) + P̄αkmejθkmXm(t) + Zk(t) (13)

Yi(t) = P̄αikejθikXk(t) + P̄αimejθimXm(t) + Zi(t). (14)

We further define an arbitrary random variable W , independent
of Xm, Zk and Zi, and which forms a Markov chain given
by W →Xk → (Yk,Yi). The following result holds.

Lemma 1. (Less noisy under interference [10, Lemma 2])
Suppose that αkk − αkm ≥ αik. Then for any Xk, Xm and
W as defined above, we have

I
(
W ;Yi |Xm

)
≤ I
(
W ;Yk

)
+ T. (15)

It is worthwhile highlighting that in [10, Lemma 2], a
weaker version of (15) is presented, given by

I
(
W ;Yi

)
≤ I
(
W ;Yk

)
+ T (16)

which is implied by (15) due to the independence of W and
Xm (and hence I

(
W ;Yi | Xm

)
≥ I

(
W ;Yi

)
). The stronger

inequality in (15) follows from the proof of [10, Lemma 2],
presented in [10, Appendix C]. This means that even after
removing interference from the signal Yi, user i remains more
noisy than user k, up to a constant of 1 bit per channel use.
Next, we employ Lemma 1 to prove Theorem 2.

B. Proof of Theorem 2: Simple example

To gain some insights into the proof of Theorem 2, we
start with a simple example. We consider a 2× 4 X channel
in which each user n wishes to decode W ′n , {Wn1,Wn2},
with Wnm originating from transmitter m, where n ∈ 〈4〉 and
m ∈ 〈2〉. For this 2×4 network, Theorem 2 gives rise to only
one multi-transmitter bound given by

R1 +R2 ≤ (α11 − α21 + α22 − α12) log(P ) +O(1). (17)

Next, we show that this is a valid outer bound. Starting from
Fano’s inequality, the sum-rate R′1 , R11 + R12 of user 1 is
bounded above as

T
(
R′1 − εT

)
≤ I
(
W ′1;Y1

)
= I
(
W11;Y1

)
+ I
(
W12;Y1 |W11

)
≤ I
(
W11;Y1

)
+ I
(
W12;Y1 |W11,W21,W31,W41

)
(18)

= I
(
W11;Y1

)
+ I
(
W12;Y1 | W1,X1

)
. (19)

In the above, and henceforth, we use εT to denote terms
that approach zero as T goes to infinity. The inequality in
(18) holds due to the independence of messages; while (19)
holds since X1 is fully determined by the message set W1 of
transmitter 1. Next, we invoke Lemma 1 to bound the mutual
information term I

(
W12;Y1 | W1,X1

)
. We have

I
(
W12;Y1 | W1,X1

)
= I
(
W12; P̄α12ejθ12X2 + Z1

)
≤ I
(
W12;Y2

)
+ T (20)



which holds due to the TIN condition α22 − α21 ≥ α12.
Combining (20) and (19), we obtain

T
(
R′1 − εT

)
≤ I
(
W11;Y1

)
+ I
(
W12;Y2

)
+ T. (21)

In a similar fashion, we obtain a sum-rate bound for user 2 as

T
(
R′2 − εT

)
≤ I
(
W21;Y1

)
+ I
(
W22;Y2

)
+ T. (22)

We now consider the remaining users. For user 3, we have

T
(
R′3 − εT

)
≤ I
(
W31,W32;Y3

)
≤ I
(
W31;Y3 |W32

)
+ I
(
W32;Y3 |W31

)
≤ I
(
W31;Y3 | W2,X2

)
+ I
(
W32;Y3 | W1,X1

)
. (23)

Here we apply Lemma 1 to both mutual information terms in
(23), from which we obtain

T
(
R′3 − εT

)
≤ I
(
W31;Y1

)
+ I
(
W32;Y2

)
+ 2T (24)

which holds due to the TIN conditions α11 − α12 ≥ α31 and
α22−α21 ≥ α32. Through similar steps, we obtain a sum-rate
bound for user 4 as

T
(
R′4 − εT

)
≤ I
(
W41;Y2

)
+ I
(
W42;Y2

)
+ 2T. (25)

From the above bounds for all 4 users, we bound the sum-
rate of all messages as

T

4∑
n=1

(
R′n − εT

)
≤

2∑
k=1

4∑
n=1

I
(
Wnk;Yk

)
+ 6T

≤
2∑
k=1

4∑
n=1

I
(
Wnk;Yk |W1k, . . . ,W(n−1)k

)
+ 6T

= I
(
W1;Y1

)
+ I
(
W2;Y2

)
+ 6T

≤ I
(
X1;Y1

)
+ I
(
X2;Y2

)
+ 6T. (26)

Recall that Wm , {W1m,W2m,W3m,W4m} is the message
set of transmitter m. After normalizing by T and omitting
the constant additive factor, it becomes evident that the right-
hand-side of (26) bounds the sum-rate of a regular 2-user
interference channel, in which transmitter 1 communicates
X1 to user 1 and transmitter 2 communicates X2 to user
2. Therefore, we invoke the 2-user interference channel genie-
aided outer bound of Etkin et al. [15], from which we obtain

I
(
X1;Y1

)
+I
(
X2;Y2

)
≤ T log

(
1 + Pα12 +

Pα11

1 + Pα21

)
+ T log

(
1 + Pα21 +

Pα22

1 + Pα12

)
(27)

≤ T log
(
3Pα11−α21

)
+ T log

(
3Pα22−α12

)
(28)

where (27) follows from [15, Th. 1], while (28) holds due to
the TIN condition and P > 1. Combining (28) and (26), we
obtain the desired sum-rate outer bound

R1 +R2 ≤ (α11 − α21 + α22 − α12) log(P ) + 6 + 2 log(3)

which translates to d1 + d2 ≤ α11 − α21 + α22 − α12.

C. Proof of Theorem 2: General case

We now extend the proof presented in the previous part to
the M × N X channel of interest. Focusing on an arbitrary
cycle σ ∈ ΣK of length |σ| = S, we show that the corre-
sponding cyclic bound in (12) is a valid outer bound. To this
end, we start by eliminating all non-participating transmitters
and their corresponding message sets, i.e.

{
Wm : m ∈ {σ}c

}
.

This step does not decrease the rates of the remaining message
sets, i.e.

{
Wk : k ∈ {σ}

}
, and effectively reduces the M ×N

channel to an S×N channel. Note that the message set of each
user n, where n ∈ 〈N〉, reduces to W ′n ,

{
Wnm : m ∈ {σ}

}
here. We focus on the cycle σ = (1→ 2→ · · · → S) for ease
of exposition, for which we have {σ} = 〈S〉.

Starting from Fano’s inequality, the sum-rate R′1 of user 1
is bounded above as

T
(
R′1 − εT

)
≤ I
(
W ′1;Y1

)
= I
(
W11;Y1

)
+

S∑
m=2

I
(
W1m;Y1 |W11, . . . ,W1(m−1)

)
≤ I
(
W11;Y1

)
+

S∑
m=2

I
(
W1m;Y1 | {Wm}c, {Xm}c

)
(29)

≤ I
(
W11;Y1

)
+

S∑
m=2

[
I
(
W1m;Ym | {Xm−1,Xm}c

)
+T
]

(30)

≤ (S − 1)T +

S∑
m=1

I
(
W1m;Ym | {Xm−1,Xm}c

)
. (31)

In the above, {Wm}c comprises all message sets except for
Wm; and {Xm}c comprises all transmitted signals except for
Xm. The inequality in (29) holds due to the independence of
messages; the fact that {Wm}c includes {W11, . . . ,W1(m−1)};
and since {Xm}c is fully determined by {Wm}c. Going from
(29) to (30) is accomplished through the following steps:

I
(
W1m;Y1 |{Wm}c, {Xm}c

)
= I
(
W1m; P̄α1mejθ1mXm + Z1

)
(32)

≤ I
(
W1m;Ym | {Xm−1,Xm}c

)
+ T. (33)

In the above, (32) holds since conditioning on {Xm}c is
equivalent to removing the contributions of all such signals
from Y1, leaving only the contribution of Xm and noise which
are independent of {Xm}c. On the other hand, (33) follows
from Lemma 1, which applies here due to the TIN condition,
and by a similar argument to the one used in (32).

Finally, the inequality in (31) follows from

I
(
W11;Y1

)
≤ I
(
W11;Y1 | {XS ,X1}c

)
which in turn holds due to the independence of the message
W11 and signals in {XS ,X1}c. Note that the index m in (31)
is interpreted modulo S.

The above steps leading to (31) for user 1 can be repeated
for all users in the set {σ} = 〈S〉. This yields a bound on the
sum-rate R′k of each user k, where k ∈ 〈S〉, given by



T
(
R′k − εT

)
≤

(S − 1)T +

S∑
m=1

I
(
Wkm;Ym | {Xm−1,Xm}c

)
. (34)

We now consider remaining users. The sum-rate R′i of user i,
where i ∈ 〈S + 1 : N〉, is bounded as follows:

T
(
R′i − εT

)
≤ I
(
W ′i;Yi

)
=

S∑
m=1

I
(
Wim;Yi |Wi1, . . . ,Wi(m−1)

)
≤

S∑
m=1

I
(
Wim;Yi | {Wm}c, {Xm}c

)
≤ ST +

S∑
m=1

I
(
Wim;Ym | {Xm−1,Xm}c

)
(35)

From (34) and (35), we obtain the bound on the sum-rate of
all N users, given as follows

−NST + T

N∑
n=1

(
R′n − εT

)
≤

N∑
n=1

S∑
m=1

I
(
Wnm;Ym | {Xm−1,Xm}c

)
≤

S∑
m=1

N∑
n=1

I
(
Wnm;Ym |{Xm−1,Xm}c,W1m, . . . ,W(n−1)m

)
=

S∑
m=1

I
(
Wm;Ym | {Xm−1,Xm}c

)
≤

S∑
m=1

I
(
Xm;Ym | {Xm−1,Xm}c

)
. (36)

After normalizing by T , the right-hand-side of (36) bounds
the sum-rate of an S-user cyclic interference channel in which
each receiver m, where m ∈ 〈S〉, is connected to its designated
transmitter m and receives interference from transmitter m−1
only. This is bounded above by invoking the result in [1, Th.
3], which extends the genie-aided outer bound of Etkin et al.
[15] (see also [16] for a similar result). This leads to

S∑
m=1

I
(
Xm;Ym | {Xm−1,Xm}c

)
≤ T

S∑
m=1

log

(
1 + Pαm(m−1) +

Pαmm

1 + Pα(m+1)m

)
(37)

≤ 2ST + T

S∑
s=1

(
αmm − α(m+1)m

)
log (P ) . (38)

By combining the bounds in (36) and (38), we obtain the
desired cyclic bound given by∑
k∈〈S〉

Rk ≤ (N+2)S+

S∑
m=1

(
αmm−α(m+1)m

)
log (P ) . (39)

The same approach applies to all cycles in ΣK , from which
we obtain the bounds in (12). This concludes the proof.

IV. CONCLUSION

We presented a new converse proof for the TIN-optimality
result in the M×N X channel (M < N ), originally shown by
Geng, Sun and Jafar in [2]. Our new proof deals directly with
the Gaussian setting, and avoids the intricate step of translation
into a deterministic model. The main ingredient of our proof is
the utilization of a new “less noisy under interference” order,
induced in the M ×N X channel by the TIN conditions. This
new order approximates any sub-network of the X channel by
a regular interference channel, from which desired cyclic sum-
rate upper bounds are obtained using previously known results.
The TIN regime for the M ×N X channel in [2], which we
considered here, has been expanded in [7], albeit only for the
M × 2 special case (i.e. M transmitters and 2 receivers). It is
of interest to explore whether the new outer bound techniques
utilized here can help generalize the expanded regime in [7]
to settings with arbitrary M and N .
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