
Fuzzy Context-Free Languages — Part 1:

Generalized Fuzzy Context-Free Grammars

Peter R.J. Asveld

Department of Computer Science, Twente University of Technology

P.O. Box 217, 7500 AE Enschede, the Netherlands

Abstract

Motivated by aspects of robustness in parsing a context-free language, we study gen-
eralized fuzzy context-free grammars. These fuzzy context-free K-grammars provide
a general framework to describe correctly as well as erroneously derived sentences
by a single generating mechanism. They model the situation of making a finite
choice out of an infinity of possible grammatical errors during each context-free
derivation step. Formally, a fuzzy context-free K-grammar is a fuzzy context-free
grammar with a countable rather than a finite number of rules satisfying the fol-
lowing condition: for each symbol α, the set containing all right-hand sides of rules
with left-hand side equal to α forms a fuzzy language that belongs to a given family
K of fuzzy languages. We investigate the generating power of fuzzy context-free
K-grammars, and we show that under minor assumptions on the parameter K, the
family of languages generated by fuzzy context-free K-grammars possesses closure
properties very similar to those of the family of ordinary context-free languages.

Key words: formal language, fuzzy context-free grammar, grammatical error,
algebraic closure property

1 Introduction

Usually there are many different reasons to call a specific parser for a lan-
guage more or less robust. One obvious aspect of robustness in parsing is the
requirement that, given a slightly incorrect input, the parser still behaves as
were its input flawless. In an ideal setting the parser could even report which
corrections it made in the original input in order to produce the desired out-
put. However, in making this intuitive description of robustness more formal,
we encounter a few serious problems. First of all, what is a tiny mistake and
what is a big irreparable error in the input of a parser? In the usual formal

Email address: infprja@cs.utwente.nl (Peter R.J. Asveld).

way of dealing with languages and parsing we are unable to distinguish these
two types of errors at all.

In that formal approach we have the following situation: Given a language
L0 over an alphabet Σ, we construct a finite description of L0 by means of a
context-free grammar G such that the language L(G) generated by G satisfies
L(G) = L0, and finally, we develop a parser M based on G. Of course, the
domain of M equals Σ⋆; on input strings x from L(G) the parser accepts (and
delivers some syntactic description of x according to G), whereas strings from
Σ⋆ −L(G) are simply rejected as not belonging to L0. So the least we demand
from a parser M for a language L0 is, that M recognizes the language L0, i.e.,
that M is able to compute the characteristic function µL0

: Σ⋆ → {0, 1} of L0

defined by µL0
(x) = if x ∈ L0 then 1 else 0.

Thus an input x is either correct (in case µL0
(x) = 1) or incorrect (when

µL0
(x) = 0) and there is no room for subtleties like a distinction between a

“tiny mistake” and a “capital blunder”. Clearly, a way out is to demolish the
sharp boundary between in (i.e., µL0

(x) = 1) and out (i.e., µL0
(x) = 0) the

language L0. This leads to the concept of fuzzy language [20], being a language
L0 over an alphabet Σ provided with a membership function µL0

: Σ⋆ → [0, 1].
Note that the set {0, 1} with two elements has been replaced by the real
closed interval [0, 1] and, consequently, now µL0

(x) can take any real value in
between 0 and 1. Thus this approach allows for describing “tiny mistakes” x
with ∆ ≤ µL0

(x) < 1 as well as “capital blunders” x with 0 < µL0
(x) ≤ δ

with respect to L0, once we made an appropriate choice for the thresholds
∆ and δ. However, in order to model the accumulation of grammatical errors
—i.e., making an error twice is worse than making it once— we will use in this
paper a completely distributive complete lattice provided with an additional
operation [6–8] as codomain for membership functions rather than the special
case of the real closed interval [0,1]; cf. Sections 2, 3 and 4 for details.

The second question we address is the type of errors we allow in the input
of the parser and the way we generate these errors. In view of the discussion
above, a fuzzy context-free grammar [20] is a natural choice to generate a
fuzzy context-free language. Such a fuzzy context-free grammar G generates,
apart from the usual “correct strings” x (with µL(G)(x) = 1), some “incorrect
strings” x′ (with 0 < µL(G)(x

′) < 1) due to grammatical errors as well. So
erroneous inputs to a parser are assumed to be generated by grammatical er-
rors, and in order to obtain these grammatical errors we extend the original
context-free grammar with some additional rules resulting in a fuzzy context-
free grammar (Section 4).

But we will run to an extreme by using fuzzy context-free K-grammars (Sec-
tion 5), i.e., fuzzy context-free grammars with a countable rather than a finite
number of grammar rules. This concept models the feature that, in general,
there is an infinite number of ways in which we may apply a given grammar

2

rule erroneously. The notion of fuzzy context-free K-grammar happens to be
a general way to describe context-free languages with both correct as well as
erroneous sentences generated by a single grammatical device (Sections 5, 6
and 7). Provided that the parameter K satisfies some minor assumptions, the
family of languages generated by these fuzzy context-free K-grammars shares
many of the interesting algebraic closure properties that the family of (ordi-
nary) context-free languages possesses; cf. Sections 8 and 9. Finally, Section
10 contains some discussion and a few concluding remarks.

The third problem related to erroneous inputs of parsers, is the concept of ro-
bustness in parsing and recognizing (fuzzy) context-free languages. However,
this topic is postponed to the companion [9] of the present paper.

Of these two papers, the present one (Part 1) deals with rudiments (Sections
1–4) and theoretical issues (Sections 5–9). So readers interested in more prac-
tical aspects, like recognition and parsing, are referred to Sections 1–4 of Part
1 and then to Part 2.

The results in this paper and its companion [9] are extensions of simpler ones
announced in [4,5]. The present generalizations have been suggested by related
work in [7] on a restricted type of fuzzy context-free K-grammar and in [6] on
parallel fuzzy rewriting systems.

Finally, we emphasize that we use fuzzy languages purely at a syntactical level,
i.e., for describing the quality of a string x generated by a fuzzy context-free
grammar (viz. x is completely correct / a tiny mistake / a capital blunder
/ completely incorrect). Note that this approach differs considerably from
modeling “vagueness” or “uncertainty” in natural language fragments, which
occurs at a purely semantical level (viz. by translating a sentence from a non-
fuzzy context-free language to a formula in first-order fuzzy logic or to an
element of a domain defined in terms of fuzzy sets); cf. [19] for many papers
on this latter subject.

2 Preliminaries

For all unexplained terminology and notation on formal languages and gram-
mars we refer to standard texts like [1,15,16]. We also need some rudiments
of lattice theory which can be found in many books on algebra; see also [3].
Before we turn to fuzzy languages we fix some notation with respect to ordi-
nary (or crisp) formal languages.

An alphabet Σ is a finite set of symbols. A word or string over Σ is a finite
sequence of symbols from Σ. The empty word is denoted by λ. For each al-
phabet Σ, Σ⋆ [Σ+, respectively] is the set of all [nonempty] words over Σ. Let
|w| denote the length of the word w; so |λ| = 0, and for all w in Σ+: if w = ax
with a ∈ Σ and x ∈ Σ⋆, then |w| = 1 + |x|. For each σ in Σ and each w in Σ⋆,
let #σ(w) be the number of times that the symbol σ occurs in the word w.

3

An (ordinary or crisp formal) language over Σ is a subset of Σ⋆. A language
L is λ-free if it does not contain λ, i.e., if L ⊆ Σ+.

Example 2.1. Let Σ be the alphabet {a, b}. Then λ, aab, and babb are words
over Σ of length 0, 3 and 4, respectively. We have #a(λ) = 0, #a(aab) = 2
and #a(babb) = 1.

The set L0 = {w | w ∈ {a, b}+, #a(w) = #b(w)} is a λ-free language over Σ.
Note that for each w in L0, |w| is even. 2

Fuzzy languages have been originally introduced in [20] in which the character-
istic function µL0

: Σ⋆ → {0, 1} of a language L0 over Σ has been generalized
to the (degree of) membership function µL0

: Σ⋆ → [0, 1]. In [6,7] we replaced
the interval [0,1] by a more general lattice-ordered structure in order to model
errors in grammatical and parallel rewriting; cf. also [18,23]. Many definitions
and examples in this section and the next one are quoted from [6,7].

Definition 2.2. An algebraic structure L or (L,∧,∨, 0, 1, ⋆) is a type-00 lat-
tice if it satisfies the following conditions.

• (L,∧,∨, 0, 1) is a completely distributive complete lattice, i.e., a complete
lattice satisfying: for all ai, a, bi and b in L, a ∧

∨

i bi =
∨

i(a ∧ bi) and
(
∨

ai) ∧ b =
∨

i(ai ∧ b) hold. And 0 and 1 are the smallest and the great-
est element of L, respectively; so 0 =

∧

L and 1 =
∨

L.

• (L, ⋆) is a commutative semigroup.

• The following identities hold for all ai’s, bi’s, a and b in L:

a ⋆
∨

i bi =
∨

i(a ⋆ bi), (
∨

i ai) ⋆ b =
∨

i(ai ⋆ b),

0 ∧ a = 0 ⋆ a = a ⋆ 0 = 0, 1 ∧ a = 1 ⋆ a = a ⋆ 1 = a.

A type-01 lattice is a type-00 lattice in which the operations ⋆ and ∧ coincide;
so it is a completely distributive complete lattice. A type-10 lattice is a type-00
lattice in which (L,∧,∨, 0, 1) is a totally ordered set, i.e., for all a and b in L,
we have a ∧ b = a or a ∧ b = b. In a type-10 lattice the operations ∨ and ∧
are usually denoted by max and min, respectively. Finally, when L is both a
type-01 lattice and a type-10 lattice, L is called a type-11 lattice. 2

The above definition of type 00-lattice is a slight modification of a structure
originally introduced in [13]; cf. also [18,23].

Example 2.3. (1) The structure ([0, 1] × [0, 1],∧,∨, (0, 0), (1, 1), ⋆), with
operations ∧, ∨ and ⋆ defined by

(x1, y1) ∨ (x2, y2) = (max{x1, x2},max{y1, y2}),

(x1, y1) ∧ (x2, y2) = (min{x1, x2},min{y1, y2}) and

(x1, y1) ⋆ (x2, y2) = (x1x2, y1y2)

for all x1, x2, y1 and y2 in [0, 1], is a type-00 lattice.

(2) Then ([0, 1]× [0, 1],∧,∨, (0, 0), (1, 1), ⋆), where the operations ∧ and ∨ are

4

defined as in (1) and (x1, y1) ⋆ (x2, y2) = (min{x1, x2},min{y1, y2}) for all x1,
x2, y1 and y2 in [0, 1], is a type-01 lattice.

(3) The structure ([0, 1],min,max, 0, 1, ⋆) with x1 ⋆ x2 = x1x2 for all x1 and

x2 in [0, 1], is a type-10 lattice.

(4) A type-11 lattice is obtained by taking ⋆ equal to min in (3). 2

The following elementary fact is very useful in the sequel.

Lemma 2.4. [6,7] For each type-00 lattice L, a ⋆ b ≤ a∧ b holds for all a and
b in L. Consequently, a ⋆ b ≤ a also holds for all a and b in L. 2

3 Fuzzy Languages and Operations on Fuzzy Languages

As mentioned above the notion of fuzzy language (Definition 3.1 below) will
be based on the lattice-ordered structures of Definition 2.2 rather than the
real closed interval [0, 1].

Definition 3.1. Let L be a type-00 lattice and Σ be an alphabet. An L-fuzzy
language over Σ is an L-fuzzy subset of Σ⋆, i.e., it is a pair L = (Σ, µL) where
µL is a function µL : Σ⋆ → L, the degree of membership function. For each
L-fuzzy language L, s(L) and c(L) denote the support and the crisp part of L,
respectively: s(L) = {w ∈ Σ⋆ | µL(w) > 0} and c(L) = {w ∈ Σ⋆ | µL(w) = 1}.

When L is clear from the context, we use “fuzzy language” instead of “L-fuzzy
language”. We will often write µ(x;L) rather than µL(x) in order to reduce
the number of subscript levels.

Each ordinary (non-fuzzy) language L coincides with its crisp part c(L). There-
fore an ordinary language will also be called a crisp language. 2

In dealing with fuzzy languages (Σ, µL) the degree of membership function
µL is actually the principal concept, whereas its support s(L), its crisp part
c(L) and many other crisp languages like L≥a = {w ∈ Σ⋆ | µ(w;L) ≥ a},
L<a = {w ∈ Σ⋆ | µ(w;L) < a} and La≤;≤b = {w ∈ Σ⋆ | a ≤ µ(w;L) ≤ b} are
derived notions (a and b are elements in L).

Example 3.2. (1) Let Σ be the alphabet {a, b}, let L be the type 11-lattice
of Example 2.3(4), and consider the L-fuzzy language L1 over Σ, where µL1

is
defined for w ∈ {a, b}⋆ by

• µ(w;L1) = 1 if and only if #a(w) = #b(w) and w 6= λ,

• µ(w;L1) = 0.9 if and only if #b(w) ≥ #a(w) + 2 and |w| is even,

• µ(w;L1) = 0.1 if and only if #a(w) ≥ #b(w) + 2 and |w| is even,

• µ(w;L1) = 0 if and only if either w = λ or |w| is odd.

Then c(L1) = L0 where L0 is the crisp language of Example 2.1.

(2) Let L be the type-00 lattice of Example 2.3(1). Consider the L-fuzzy
language L2 over Σ = {a, b} defined by

5

µ(ambn;L2) =
(

m
max{1,m,n}

, n
max{1,m,n}

)

, if m,n ≥ 0.

In defining the degree of membership function is such a concrete case, we
always tacitly assume that µ(x;L2) equals the zero element of L in all other,
unmentioned cases for x in Σ⋆. Consequently, we have, e.g., µ(b2a4;L2) =
µ(a3b2a5;L2) = µ(ab4a3b2;L2) = (0, 0).

Then the crisp part of L2 equals c(L2) = {ambm | m ≥ 1}: for each x in c(L2),
we have µ(x;L2) = (1, 1). Note that for each m ≥ 1, µ(am;L2) = (1, 0) and
µ(bm;L2) = (0, 1), whereas for the empty word λ, we have µ(λ;L2) = (0, 0).

(3) Now we take for L the type-10 lattice of Example 2.3(3). Let L3 be the
fuzzy language over {a, b} defined by

µ(w;L3) = if |w| = 2k for some k ≥ 0 then 2−#b(w) else 0.

Then the fuzzy language L3 satisfies s(L3) = {w | w ∈ {a, b}+, |w| = 2k for
some k ≥ 0}, and c(L3) = {a2k

| k ≥ 0}. 2

Remark. Since in many of our examples the function µ has as (a part of) its
codomain the closed interval [0, 1], each real number from this interval may
occur as the value for some string x. However, using non-computable reals as
a cut point or as a threshold in specifying a fuzzy language may give rise to
problems of an undecidable nature, i.e., to languages that are not recursively
enumerable [10]. In the sequel we avoid this problem by restricting ourselves
to the computable, or even to the rational elements of [0, 1] only. 2

For an account on the impact of computability constraints in fuzzy formal
languages we refer the reader to [10].

Note that two fuzzy languages L1 = (Σ1, µL1
) and L2 = (Σ2, µL2

) are equal ,
denoted by L1 = L2, if Σ1 = Σ2 and µL1

= µL2
, i.e., if for all x ∈ (Σ1 ∪ Σ2)

⋆,
µ(x;L1) = µ(x;L2). Of course, equality (L1 = L2) implies equality of supports
(s(L1) = s(L2)) and of crisp parts (c(L1) = c(L2)), but not vice versa. See
also Example 4.5 below.

Starting from simple fuzzy languages we can define more complicated ones
by applying operations on fuzzy languages. First, we consider the operations
union, intersection and concatenation for fuzzy languages; they have been
defined originally in [20] for the type-11 lattice [0, 1]; cf. Example 2.3(4) and
[23]. In [5] we remarked that a generalization to the type-10 lattice of Example
2.3(3) is possible. However, it is easy to define these operations for arbitrary
type-00 lattices; cf. [6,7] from which we quote the following definitions.

Let L1 = (Σ1, µL1
) and L2 = (Σ2, µL2

) be fuzzy languages, then the union,
the intersection, and the concatenation of L1 and L2, denoted by L1 ∪ L2 =
(Σ1 ∪ Σ2, µL1∪L2

), L1 ∩ L2 = (Σ1 ∩ Σ2, µL1∩L2
) and L1L2 = (Σ1 ∪ Σ2, µL1L2

)
respectively, are defined for all x in (Σ1 ∪ Σ2)

⋆ by

µ(x;L1 ∪ L2) = µ(x;L1) ∨ µ(x;L2),

µ(x;L1 ∩ L2) = µ(x;L1) ∧ µ(x;L2), and

6

µ(x;L1L2) =
∨

{µ(y;L1) ⋆ µ(z;L2) | x = yz}.

Once we have defined union and concatenation it is straightforward to define
the operations of Kleene + and Kleene ⋆ for a fuzzy language L; viz. by

L+ = L ∪ LL ∪ LLL ∪ · · · =
⋃

{Li | i ≥ 1}, and

L⋆ = {λ} ∪ L ∪ LL ∪ LLL ∪ · · · =
⋃

{Li | i ≥ 0}, respectively,

where L0 = {λ}, and Ln+1 = LnL with n ≥ 0. Clearly, we have for n ≥ 0,

µ(x;Ln) =
∨

{µ(x1;L) ⋆ µ(x2;L) ⋆ · · · ⋆ µ(xn;L) | x1x2 · · ·xn = x}, and

µ(x;L⋆) =
∨

{µ(x1;L) ⋆ µ(x2;L) ⋆ · · · ⋆ µ(xn;L) | n ≥ 0, x1x2 · · ·xn = x}.

Then µ(λ;L0) = 1, since x1x2 · · ·xn = λ and a1 ⋆a2 ⋆ · · ·⋆an = 1 in case n = 0
(a1, a2, . . . , an ∈ L) , and so µ(λ;L⋆) = 1. Hence L⋆ = L+ ∪ {λ} where the
latter set in this union is crisp.

Remark. To avoid technical problems we require the following convention:
if a fuzzy language L contains λ, then µ(λ;L) = 1. So for each fuzzy language
L, we have µ(λ;L) ∈ {0, 1}. 2

Example 3.3. L1 from Example 3.2(1) satisfies the equality L+
1 = L1, but

L1 is a proper subset of L⋆
1. 2

Apart from these simple operations on fuzzy languages we need some other
well-known ones, like homomorphisms and substitutions. They can be ex-
tended from crisp to fuzzy languages by means of the concept of fuzzy func-
tion; cf. [6] and [7] for the original definitions.

A fuzzy relation R between crisp sets X and Y is a fuzzy subset of X × Y . If
R ⊆ X × Y and S ⊆ Y × Z are fuzzy relations, then their composition R◦S
is a fuzzy subset of X × Z, defined by

µ((x, z);R◦S) =
∨

{µ((x, y);R) ⋆ µ((y, z);S) | y ∈ Y }. (1)

A fuzzy function f : X → Y is a fuzzy relation f ⊆ X × Y , satisfying the
condition that for all x in X: if µ((x, y); f) > 0 and µ((x, z); f) > 0 hold, then
y = z and hence µ((x, y); f) = µ((x, z); f). For fuzzy functions (1) holds as
well, but we usually write the composition of two functions f : X → Y and
g : Y → Z as g◦f : X → Z rather than as f ◦g.

Let F(X) denote the power set of the fuzzy set X, i.e., the collection of all
fuzzy subsets of the fuzzy set X:

F(X) = {Y | ∀x ∈ X,µ(x, Y) ≤ µ(x;X); ∀x /∈ X : µ(x;Y) = 0}.

In the sequel we need functions of type f : V ⋆ → F(V ⋆), where V is an al-
phabet, that will be extended to a function of type f : F(V ⋆) → F(V ⋆) by
f(L) =

⋃

{f(x) | x ∈ L} and for each language L over V ,

µ(y; f(L)) =
∨

{µ(x;L) ⋆ µ((x, y); f) | x ∈ V ⋆}. (2)

Consequently, by (1) and (2) iterating a single fuzzy function f , yielding func-
tions like f ◦f , f ◦f ◦f , and so on, is now defined. Each of these functions f (k)

7

is of type f (k) : F(V ⋆) → F(V ⋆). Of course, we can iterated a finite set of such
functions {f1, . . . , fn} in the very same way.

4 Fuzzy Context-Free Grammars

The notion of fuzzy context-free grammar has originally been introduced in
[20]. However, in Definition 4.3 below, we define fuzzy context-free grammars
in a slightly different way, but it is easy to show that both definitions are
equivalent. Definition 4.3 uses operations like concatenation and intersection
of fuzzy languages and is a better starting point for introducing the generalized
fuzzy context-free grammars of Section 5. First, we will reconsider (ordinary
or crisp) context-free grammars, then we will turn to their fuzzy counterparts.

Recall that a context-free grammar G = (V,Σ, P, S) consists of an alphabet
V , a terminal alphabet Σ (Σ ⊆ V), a finite set P of productions or rules
(P ⊆ N × V ⋆, where N = V − Σ is the set of nonterminal symbols of G),
and an initial symbol S (S ∈ N). Usually, a production (A, ω) is written as
A → ω, and all rules A → ω1, A → ω2, . . ., A → ωn with the same left-hand
side A are collected in a single expression of the form A → ω1 | ω2 | . . . | ωn.

A context-free grammar G = (V,Σ, P, S) gives rise to a derivation relation
⇒ and a language L(G) generated by G. Formally, ϕ1 ⇒ ϕ2 holds for words
ϕ1, ϕ2 ∈ V ⋆ if and only if there exist words u, v ∈ V ⋆ and a rule A → ω in P
such that ϕ1 = uAv and ϕ2 = uωv. Then L(G) is defined by L(G) = {w ∈
Σ⋆ | S ⇒⋆ w}, where ⇒⋆ is the reflexive and transitive closure of ⇒.

Example 4.1. Let Σ = {a, b}, N = {S,A,B} and V = N ∪ Σ. Consider
the context-free grammars G1 = (V,Σ, P1, S) and G2 = (V,Σ, P2, S) where P1

and P2 are given by

P1: S → AB | BA P2: S → aSB | aBS | bSA | bAS | aB | bA

A → AS | SA | a A → aS | a

B → BS | SB | b B → bS | b.

Then S ⇒ BA ⇒ BSA ⇒ BSa ⇒ BABa ⇒ bABa ⇒ bAba ⇒ baba and
S ⇒ bSA ⇒ bSa ⇒ bbAa ⇒ bbaa are derivations according to G1 and G2,
respectively. It is straightforward to prove that G1 and G2 both generate the
crisp language L0 of Example 2.1: L(G1) = L(G2) = L0. 2

Our first step in defining fuzzy context-free grammars consists of redefining
crisp context-free grammars slightly. Viz. we define, given G = (V,Σ, P, S),
for each symbol α in V ,

P (α) = {ω | α → ω ∈ P} ∪ {α},

i.e., P (α) is the set consisting of α together with all right-hand sides of those
rules in P with left-hand side equal to α. Thus for each α, P (α) is a finite
language over V that contains α. And P (α) = {α} whenever α belongs to Σ.

8

The next step is that we consider P as a mapping from V to the family of
finite languages over V . This mapping can be extended to words over V by

• P (λ) = {λ}, and

• P (α1 · · ·αn) = P (α1) · · ·P (αn) where αi ∈ V (1 ≤ i ≤ n),

and to languages L over V by

• P (L) =
⋃

{P (x) | x ∈ L}.

Such a mapping P is called a nested finite substitution over V [14,22,2,3], since
P is a finite substitution (i.e., each P (α) is a finite language) that is nested
(i.e., α ∈ P (α) for each α in V). And it can be iterated :

• P 0(x) = {x},

• P i+1(x) = P (P i(x)), and

• P ⋆(x) =
⋃

{P i(x) | i ≥ 0}.

Then it is straightforward to prove that for each context-free grammar G =
(V,Σ, P, S), we have L(G) = P ⋆(S) ∩ Σ⋆. Now L(G) is defined in terms of
set-theoretical operations only rather than using the concept of derivation.
Moreover, these operations on crisp sets can be easily replaced by their fuzzy
counterparts introduced in Section 3; cf. Definition 4.3 below.

Example 4.2. Viewing P1 and P2 of Example 4.1 as nested finite substitu-
tions over the alphabet {S,A,B, a, b} yields

P1(S) = {S,AB,BA} P2(S) = {S, aSB, aBS, bSA, bAS, aB, bA}

P1(A) = {A,AS, SA, a} P2(A) = {A, aS, a}

P1(B) = {B,BS, SB, b} P2(B) = {B, bS, b}

P1(a) = {a} P2(a) = {a}

P1(b) = {b} P2(b) = {b} 2

The last step is to replace the crisp finite sets P (α) (α ∈ V) in the definition
of context-free grammar by fuzzy finite sets.

Definition 4.3. A fuzzy context-free grammar G is a 4-tuple (V,Σ, P, S)
where V , Σ and S are as usual, and for each α in V , P (α) is a fuzzy subset
of V ⋆ satisfying

(1) µ(α;P (α)) = 1, i.e., P is nested ,

(2) the support of P (α), i.e. s(P (α)) = {ω | µ(ω;P (α)) > 0}, is finite, and

(3) the support of P (α) equals {α} in case α belongs to Σ: s(P (α)) = {α}.

The fuzzy context-free language generated by G is the fuzzy subset L(G) of Σ⋆

defined by L(G) = P ⋆(S) ∩Σ⋆. A fuzzy language L0 is called a fuzzy context-
free language if there exists a fuzzy context-free grammar G with L(G) = L0.

The family of all fuzzy context-free languages is denoted by CFf . 2

In the expression “P ⋆(S)∩Σ⋆” all operations involved are operations on fuzzy

9

sets (intersection as well as union, concatenation and composition of fuzzy
functions via P ⋆; cf. Section 3), although Σ⋆ happens to be a crisp set.

Note that, if we replace in a fuzzy context-free grammar each fuzzy set P (α)
by a crisp finite language over V , then we reobtain an ordinary context-free
grammar. The family of crisp context-free languages will be denoted by CF.
Then we have CF ⊆ {c(L) | L ∈ CFf}.

When L equals the type-11 lattice of Example 2.3(4) it is a routine mat-
ter to show that Definition 4.3 is equivalent to the one of [20]. Then L(G)
can also be defined in terms of derivations consisting of rules of G that are
applied consecutively [20]. And a string x over Σ belongs to the fuzzy lan-
guage L(G) if and only if there exist strings ω0, ω1, . . . , ωn over V such that
S = ω0 ⇒ ω1 ⇒ ω2 ⇒ · · · ⇒ ωn = x. If Ai → ψi (0 ≤ i < n) are the
respective productions used in this derivation, then the degree of membership
of x in L(G) is

µ(x;L(G)) = max{min{µ(ψi;P (Ai)) | 0 ≤ i < n} | S = ω0 ⇒
⋆ ωn = x }.

When such a derivation is viewed as a chain link of rule applications, its total
“strength” equals the strength of its weakest link; hence the min-operation.
And µ(x;L(G)) is the strength of the strongest derivation chain from S to x:
the maximum is taken over all possible derivations of x from S [20].

Henceforth, we use X = {x1/m1
, . . . , xn/mn

} as a concise representation of the
finite fuzzy set X = {x1, . . . , xn} with µ(xi;X) = mi (1 ≤ i ≤ n).

Example 4.4. Let L be the type-11 lattice of Example 2.3(4) and G3 =
(V,Σ, P3, S) the L-fuzzy context-free grammar with N = V − Σ = {S,A,B},
Σ = {a, b}, and P3 is defined by

P3(S) = {S/1, AB/1, BA/1, AA/0.1, BB/0.9}, P3(a) = {a/1},

P3(A) = {A/1, AS/1, SA/1, a/1}, P3(b) = {b/1},

P3(B) = {B/1, BS/1, SB/1, b/1}.

The crisp language c(L(G3)) is generated by the (ordinary) context-free gram-
mar G1 of Example 4.1; cf. also Example 4.2.

So G3 describes the set of all nonempty even length strings over {a, b} with
preferably as many a’s as b’s (degree of membership equal to 1). Occasionally,
some a’s in these nonempty even length strings may be changed into b’s or vice
versa, due to grammatical errors modeled by the rules S → BB and S → AA,
respectively. The former error happens to be a quite less severe incident than
the latter (degrees of membership 0.9 and 0.1, respectively). It is easy to show
that L(G3) = L1, where L1 is the language from Example 3.2(1). 2

Modeling grammatical errors as in Example 4.4 has a serious shortcoming:
making the same error twice (or many more times) does not decrease the
degree of membership as one would expect intuitively; cf. [4,5]. Actually, a
fixed finite set of rationals —viz. {0, 0.1, 0.9, 1}— serves as codomain of

10

the function µL(G3); cf. also Example 3.2(1). Obviously, the operations min
and max applied to this set do not yield any new, different values in this
codomain. Augmenting L with an operation ⋆ different from min enables us
to model grammatical errors more adequately; cf. Lemma 2.4.

Example 4.5. Consider the L-fuzzy context-free grammar G4 = (V,Σ, P4, S)
which is equal to G3 of Example 4.4 except that L is now the type-10 lattice
of Example 2.3(3) rather than the type-11 lattice of Example 2.3(4). Then we
have for w in {a, b}⋆,

• µ(w;L(G4)) = 1 iff #a(w) = #b(w) and w 6= λ,

• µ(w;L(G4)) = (9
10

)(#b(w)−#a(w))/2 iff #b(w) ≥ #a(w) + 2 and |w| is even,

• µ(w;L(G4)) = (1
10

)(#a(w)−#b(w))/2 iff #a(w) ≥ #b(w) + 2 and |w| is even,

• µ(w;L(G4)) = 0 iff either w = λ or |w| is odd.

So the fuzzy languages (Σ, µL(G4)) and (Σ, µL1
) of Example 3.2(1) are different,

since µL(G4) and µL1
differ: not for all w in Σ⋆, µ(w;L(G4)) = µ(w;L1) or,

equivalently, L(G4) 6= L1. But their crisp parts and supports still coincide:
c(L(G4)) = c(L1) and s(L(G4)) = s(L1). 2

Note that the codomain of µL(G4) in Example 4.5 is a countably infinite set of
rationals. And the accumulation of grammatical errors results in strings, still
belonging to the support of µL(G4), of which the degree of membership strictly
decreases as the number of grammatical errors increases; cf. Lemma 2.4.

5 Fuzzy Context-Free K-grammars

In this section we continue to address the question how “tiny mistakes” and
“capital blunders” can be described by (generalized) fuzzy context-free gram-
mars. Our ultimate main goal is to determine the expressive power of these
generalized fuzzy context-free grammars; cf. Theorem 7.1 below.

To be more concrete, let us return to Example 4.4. The principal aim of the
fuzzy context-free grammar G3 is to generate the (crisp) language

L1 = L(G1) = {w | w ∈ {a, b}+, #a(w) = #b(w)} = c(L(G3)).

However, applying the rule S → BB instead of either S → AB or S → BA
one or more times during a derivation, results in a terminal string w that satis-
fies: #b(w) ≥ #a(w)+ 2, |w| is even, and µ(w;L(G3)) = 0.9. So such terminal
strings w may be considered as tiny mistakes. On the other hand, using the
rule S → AA instead of either S → AB or S → BA one or more times in a
derivation, yields a terminal string w that satisfies: #a(w) ≥ #b(w)+ 2, |w| is
even, and µ(w;L(G3)) = 0.1. Terminal strings w of this type may be viewed
as capital blunders, since they “hardly belong” to the fuzzy language L(G3).

In Example 4.5 we may encounter the situation that due to the accumula-
tion of errors in a long sequence of tiny mistakes we end up with a terminal
string that looks like a capital blunder. And in both Examples 4.4 and 4.5

11

using an erroneous rule S → BB can be compensated by the application of
an erroneous rule S → AA (and vice versa) resulting in a correct string x,
i.e., µ(x;L(G3)) = µ(x;L(G4)) = 1, as there also exists a “completely correct”
derivation for x that determines its degree of membership.

Note that P3 is obtained from P1 by adding the rules S → AA and S → BB
with degree of membership 0.1 and 0.9, respectively: so P3(S) = P1(S) ∪ E1

with E1 = {AA/0.1, BB/0.9}. But the union of two finite fuzzy sets is a finite
fuzzy set; so (2) of Definition 4.3 is not violated and we remain within the
framework of fuzzy context-free grammars.

Now the question arises: to what extend can we proceed in this way? Or:
what are the limits of the fuzzy context-free framework in describing errors?
In Examples 4.4 and 4.5 we modeled the situation of two ways to apply a
rule erroneously. But in principal there are infinitely many ways to make an
error, although substituting a very long word instead of a short one is rather
unlikely. So what happens, for instance, when we add an infinite fuzzy set E1

to P1(S) instead of a finite one? Or, equivalently, when we replace the finite
fuzzy sets P (α) (for each α in V) by infinite ones satisfying µ(α;P (α)) = 1?
Unfortunately, this will not work, since then the languages L(G′

3) and L(G′
4)

generated by the resulting respective grammars G′
3 and G′

4 might not even
be recursively enumerable [10]. Thus we have to restrain the languages P (α)
in some, preferably natural, way. The method we use here, originates from
[22]: we assume that a family K of fuzzy languages is given in advance, from
which we are allowed to take whatever languages we think to be appropriate.
Then replacing the finite languages P (α) over V by members from the family
K, yields the concept of fuzzy context-free K-grammar (Definition 5.3). The
family K plays the rôle of parameter, and when we take K equal to the con-
stant value FINf , the family of finite fuzzy languages, we reobtain the ordinary
fuzzy context-free grammars. In this approach we need the notions of family of
fuzzy languages (Definition 5.1) and of fuzzy K-substitution (Definition 5.2).

Definition 5.1. Let Σω be a countably infinite set of symbols. As usual a
family of languages over Σω is a set of pairs (ΣL, L) where L is a crisp lan-
guage over ΣL and ΣL is a finite subset of Σω. The set ΣL is assumed to be
the minimal alphabet of L.

Similarly, a family of fuzzy languages K is a set of fuzzy languages (ΣL, µL)
such that each ΣL is a finite subset of Σω. As usual, we assume that for each
fuzzy language (ΣL, µL) in K, ΣL is minimal with respect to µL, i.e., a symbol
α belongs to ΣL if and only if there exists a word w in which α occurs and for
which µL(w) > 0 or, equivalently, for which w ∈ s(L) holds.

A family K is called normalized , if it contains a normalized language, i.e.,
a fuzzy language L = (ΣL, µL) with c(L) ∩ Σ+

L 6= ∅ or, equivalently, with
µ(x;L) = 1 for some word x in Σ+

L .

The crisp part c(K) of a family K is defined by c(K) = {c(L) | L ∈ K}. 2

12

Henceforth we assume that each family K of (fuzzy) languages is normalized
and closed under isomorphism; thus for each language L in K over some
alphabet Σ and for each bijective mapping i : Σ → Σ1 —extended to words
and to languages in the usual way— the language i(L) belongs to K.

Concrete examples of simple, normalized families of fuzzy languages, which
we will need in the sequel, are the family FINf of finite fuzzy languages

FINf = {(ΣL, µL) | ΣL ⊂ Σω, s(L) is finite},

the family ONEf of singleton fuzzy languages

ONEf = {(ΣL, µL) | ΣL ⊂ Σω, s(L) is a singleton},

the family ALPHAf of fuzzy alphabets

ALPHAf = {(ΣL, µL) | ΣL ⊂ Σω, s(L) = ΣL},

and the family SYMBOLf of singleton fuzzy alphabets

SYMBOLf = {(ΣL, µL) | ΣL ⊂ Σω, s(L) = ΣL, s(L) is a singleton}.

The crisp counterparts of these language families are denoted by FIN, ONE,
ALPHA, and SYMBOL, respectively. Clearly, the equality c(FINf) = FIN
holds, as well as similar statements for these other simple families.

The concept of fuzzy substitution is defined in a way very similar to the notion
of substitution for crisp languages; cf. [6–8].

Definition 5.2. Let K be a family of fuzzy languages and let V be an
alphabet. A mapping τ : V → K is called a fuzzy K-substitution on V ; it is
extended to words over V by τ(λ) = {λ/1}, and τ(α1 . . . αn) = τ(α1) · · · τ(αn)
where αi ∈ V (1 ≤ i ≤ n), and to languages L over V by τ(L) =

⋃

{τ(w) |
w ∈ L}. If for each α ∈ V , s(τ(α)) ⊆ V ⋆, then τ : V → K is called a fuzzy
K-substitution over V . A fuzzy K-substitution τ over V is called nested if
µ(α; τ(α)) = 1 for each α in V . 2

When we takeK equal to a family of crisp languages, we obtain the well-known
definition of substitution. So a ONE-substitution is a homomorphism, and one-
to-one SYMBOL-substitution is an isomorphism (“renaming of symbols”).
And a fuzzy ONEf -substitution will be called a fuzzy homomorphism.

Definition 5.3. Let K be a family of fuzzy languages. A fuzzy context-free
K-grammar G = (V,Σ, U, S) consists of an alphabet V , a terminal alphabet
Σ (Σ ⊆ V), a start symbol S (S ∈ V), and a finite set U of nested fuzzy
K-substitutions over V . So each element τ of U is a mapping τ : V → K
satisfying: for each symbol α in V , τ(α) is a fuzzy language over the alphabet
V from the family K with µ(α; τ(α)) = 1.

The fuzzy language generated by G is the fuzzy set L(G) defined by

L(G) = U⋆(S) ∩ Σ⋆ =
⋃

{τn◦ · · · ◦τ1(S) | τi ∈ U, 1 ≤ i ≤ n, n ≥ 0} ∩ Σ⋆.

Two fuzzy context-free K-grammars G1 and G2 are equivalent if L(G1) =
L(G2).

13

The family of fuzzy languages generated by fuzzy context-free K-grammars is
denoted by Af(K). The family of fuzzy languages generated by fuzzy context-
free K-grammars that possess at most m (m ≥ 1) elements in U is denoted
by Af,m(K). Consequently, Af(K) =

⋃

{Af,m(K) | m ≥ 1}. 2

Note that the families of crisp languages corresponding to the families Af (K)
and Af,m(K) are c(Af(K)) = {c(L) | L ∈ Af(K)} and c(Af,m(K)) = {c(L) |
L ∈ Af,m(K)}, respectively.

Replacing K in Definition 5.3 by a family of crisp languages results in the
definition of context-free K-grammar [22,2]; the corresponding family of lan-
guages is denoted by A(K). Obviously, if K is a family of crisp languages,
then A(K) = Af(K). In case K is a family of L-fuzzy languages, where L is
a type-00 lattice, then we have A(c(K)) ⊆ c(Af (K)) ⊆ Af (K), which implies
CF = A(FIN) ⊆ c(Af (FINf)) = c(CFf) ⊆ CFf ; cf. Corollary 7.2 below.

If L is linearly ordered, i.e. if L is a type-10 lattice, we have the equality:
A(c(K)) = c(Af (K)). On the other hand, if K = FINf and L equals the four
element distributive lattice that is not a chain —i.e., L = {0, ξ, η, 1} with
0 < ξ < 1, 0 < η < 1 whereas ξ and η are incomparable— we can show that
CF = A(FIN) ⊂ c(Af (FINf)) = c(CFf) ⊆ CFf ; cf. [8].

Example 5.4. Let L be the type-11 lattice of Example 2.3(4) and G5 =
(V,Σ, {τ5}, S) the L-fuzzy context-free CFf -grammar with N = V − Σ =
{S,A,B}, Σ = {a, b}, and

τ5(S) = P3(S) ∪ L2 ∪ L3 ∪ L4

τ5(α) = P3(α) α 6= S

where P3 is as in Example 4.4, s(L2) = {aAnbBn | n ≥ 1}, s(L3) = {aA2n−1 |
n ≥ 2}, and s(L4) = {B2n | n ≥ 3}. The degrees of membership are as in
Example 4.4 together with

µ(aAmbBm;L2) = 1 (m ≥ 1),

µ(aAm;L3) = if m is odd and m ≥ 2 then 0.1 else 0,

µ(Bm;L4) = if m is even and m ≥ 6 then 0.9 else 0.

Since L(G5) = L(G3), G5 and G3 (Example 4.4) are equivalent. 2

Example 5.5. Let L be the type-10 lattice of Example 2.3(3) and G6 =
(V,Σ, {τ6}, S) the L-fuzzy context-free CFf -grammar with N = V − Σ =
{S,A,B}, Σ = {a, b}, and

τ6(S) = P4(S) ∪ L2 ∪ L3 ∪ L4

τ6(α) = P4(α) α 6= S

where P4 is as in Example 4.5, and s(L2), s(L3) and s(L4) are as in Example
5.4. Most degrees of membership have been given in Example 4.5, except for

µ(aAmbBm;L2) = 1 (m ≥ 1),

14

µ(aAm;L3) = if m is odd and m ≥ 2 then (1
10

)(m+1)/2 else 0,

µ(Bm;L4) = if m is even and m ≥ 6 then (9
10

)m/2 else 0.

Then G6 and G4 of Example 4.5 are equivalent: L(G6) = L(G4). 2

6 Elementary Properties

Comparing Definitions 4.3 and 5.3 shows that we removed the requirements
(2) and (3) in 4.3 to obtain 5.3, and we use a finite set of nested fuzzy K-
substitutions rather than a single fuzzy finite substitution. Now (3) is just a
minor point as we will see in Lemma 6.1. Using a finite number rather than
a single substitution is neither a proper extension (Lemma 6.2). So removing
(2) in Definition 4.3 is the main point: we replace finite fuzzy languages in
Definition 4.3 by (not necessarily finite) fuzzy languages from a given family
K. This latter aspect is the main feature of fuzzy context-free K-grammars.

Now we turn to a few lemmas needed to establish the main result of this paper
(Theorem 7.1).

Lemma 6.1. Let K be a family of fuzzy languages that is closed under union
with languages from SYMBOL. If K ⊇ SYMBOL, then for each fuzzy context-
free K-grammar G1 = (V1,Σ, U1, S), there exists an equivalent fuzzy context-
free K-grammar G2 = (V2,Σ, U2, S) such that for each τ in U2, τ(α) = {α/1}
in case α belongs to Σ.

Proof. We introduce for each a in Σ a new nonterminal symbol Aa with for
each τ in U1, τ(Aa) = {Aa/1, a/1}. Next we replace each occurrence of a by
Aa by means of the isomorphism i(a) = Aa. Thus the language τ(α) from
K becomes the language i(τ(α)) for each τ ∈ U1 and each α ∈ V1. This
language i(τ(α)) is in K too, since we assumed that all language families
are closed under isomorphism. Consequently, µ(ω; τ(α)) = µ(i(ω); i(τ(α))) for
each ω ∈ V ⋆

1 . Finally, we define τ(α) = {α/1} for each α ∈ Σ and each τ ∈ U1.
Now the set U2 is obvious, while V2 = V1 ∪ {Aa | a ∈ Σ}. 2

Lemma 6.2. Let K be a family of fuzzy languages that is closed under union
with languages from SYMBOL. If K ⊇ SYMBOL, then for each fuzzy context-
free K-grammar G1 = (V1,Σ, U1, S), there exists an equivalent fuzzy context-
free K-grammar G2 = (V2,Σ, U2, S) such that U2 is a singleton set.

Proof. Let U1 = {τ1, . . . , τm} for some m (m ≥ 2). For each k (1 ≤ k ≤ m), we
define an isomorphism ik(α) = αk (α ∈ V1); all αk’s are new distinct symbols
such that j 6= k implies that ij(V1) and ik(V1) are disjoint alphabets.

Define V2 = V1 ∪ {ik(α) | α ∈ V1, 1 ≤ k ≤ m} and U2 = {τ0} with

τ0(α) = {α/1, α1/1} α ∈ V1, α1 = i1(α)

τ0(αk) = {αk/1, αk+1/1} ∪ τk(α) αk ∈ ik(V1), αk+1 = ik+1(α), 1 ≤ k < m

τ0(αm) = {αm/1} ∪ τm(α) αm ∈ im(V1).

15

Then L(G0) = L(G), and hence Af,m(K) ⊆ Af,1(K) for each m (m ≥ 1). 2

The proof of Lemma 6.2 can be simplified when we put a stronger condition
on the family K, e.g., the condition that K is closed under union.

Corollary 6.3. (1) Let K be a family that is closed under union with lan-
guages from SYMBOL. If K ⊇ SYMBOL, then Af,1(K) = Af,m(K) = Af (K)
for each m (m ≥ 1).

(2) CFf = Af,1(FINf) = Af,m(FINf) = Af (FINf) for each m (m ≥ 1).

Proof. (1) Clearly, Af,1(K) ⊆ Af,m(K) ⊆ Af (K) holds for each m (m ≥ 1).
From Lemma 6.2 it follows that for each m (m ≥ 1), Af,m(K) ⊆ Af,1(K).

(2) follows from CFf = Af,1(FINf) and Corollary 6.3(1) with K = FINf . 2

Lemma 6.4. Let K be a family of fuzzy languages that is closed under union
with languages from SYMBOL. If K ⊇ SYMBOL, then K ⊆ Af(K).

Proof. Let L0 with s(L0) ⊆ Σ⋆ be a fuzzy language in K. In order to show
that L0 also belongs to Af (K), we consider the fuzzy context-free K-grammar
G = (V,Σ, U, S) with U = {τ}, S /∈ Σ, V = Σ ∪ {S}, τ(S) = {S/1} ∪ L0 and
τ(α) = {α/1} for all α in Σ. Then we have L(G) = L0. 2

7 The Main Result

This section is devoted to the principal result of this paper (Theorem 7.1) and
a few of its consequences (Corollaries 7.2 and 7.3).

Theorem 7.1. Let K be a family of fuzzy languages that is closed under union
with SYMBOL-languages. If K ⊇ SYMBOL, then Af (Af(K)) = Af (K).

Proof. First, we show that if K ⊇ SYMBOL and K is closed under union with
SYMBOL-languages, then (i) Af(K) ⊇ SYMBOL, (ii) Af (K) is closed under
union with SYMBOL-languages, and (iii) Af(K) is closed under isomorphism.
We tacitly assume that the family K is closed under isomorphism. Now (i)
directly follows from Lemma 6.4.

In order to prove (ii) and (iii), let L0 be a fuzzy language inAf(K) generated by
a fuzzy context-free K-grammar G1 = (V1,Σ1, U1, S1), let {β} be a SYMBOL-
language, and let i : Σ1 → Σ3 be an isomorphism. We will construct fuzzy
context-free K-grammars G2 and G3 such that L(G2) = L(G1) ∪ {β/1} =
L0∪{β/1} and L(G3) = i(L(G1)) = i(L0), respectively. According to Lemmas
6.1 and 6.2, we assume that U1 = {τ1}, and for all α in Σ1, µ(α; τ1(α)) = 1
whereas µ(ω; τ1(α)) = 0 for all ω in V ⋆ − {α}.

Assuming that the symbol β does not belong to N1 (N1 = V1 −Σ1), we define
the grammar G2 by G2 = (V2 ∪ {S2},Σ1 ∪ {β}, {τ2}, S2) where S2 is a new
symbol (i.e., S2 /∈ V1 ∪ {β}), τ2(S2) = {S2/1, S1/1, β/1} and τ2(α) = τ1(α) for
each α 6= S2. Note that τ2(S2) is a crisp set. To define G3, we first extend the
isomorphism i : Σ1 → Σ3 to the isomorphism i : V1 → V3 by i(A) = A for all

16

A in N1, whereas V3 = N1∪Σ3. Then G3 becomes G3 = (V3,Σ3, {τ3}, S1) with
τ3(i(α)) = i(τ1(α)) for each α in V1.

The properties (i), (ii) and (iii) enable us to apply Lemmas 6.1, 6.2 and 6.4
to the family Af (K) rather than to the family K.

Now we are ready to prove the statement of Theorem 7.1. So applying Lemma
6.4 with Af (K) instead of K, yields Af (K) ⊆ Af (Af(K)).

To establish the converse inclusion, consider an arbitrary fuzzy context-free
Af (K)-grammar G = (V,Σ, U, S). By Lemma 6.2 we may assume that U
consists of a single nested fuzzy Af (K)-substitution τ over the alphabet V .
For each α in V , let Gα = (Vα, V, Uα, Sα) be a fuzzy context-free K-grammar
such that L(Gα) = τ(α). We assume —again following Lemma 6.2— that for
each α in V , the set Uα consists of a single nested fuzzy K-substitution τα
over Vα. By Lemma 6.1, we also assume that for each τα (α ∈ V), we have
τα(σ) = {σ/1} for each σ in V . Finally, we assume without loss of generality
that all nonterminal alphabets Vα − V of the fuzzy context-free K-grammars
Gα (α ∈ V) are mutually disjoint.

Thus we have to show that L(G) ∈ Af (K). To this end we define the fuzzy
context-free K-grammar G0 = (V0,Σ, U0, S0) as follows.

• V0 =
⋃

{Vα | α ∈ V } (So V ⊆ V0, as V ⊆ Vα for each α ∈ V .),

• U0 = {ρα | α ∈ V },

• S0 = SS. (Note that SS ∈ VS, VS ⊆ V0, and hence S0 ∈ V0.)

For each nested fuzzy K-substitution τα over Vα, we define a corresponding
nested fuzzy K-substitution ρα in U0 by

ρα(β) = τα(β) β ∈ Vα − V (α ∈ V),

ρα(β) = {β/1, Sβ/1} β ∈ V ,

ρα(β) = {β/1} β ∈ V0 − Vα (α ∈ V).

Finally, it is a tedious but straightforward exercise to verify that L(G0) =
L(G), and hence the fuzzy language L(G) belongs to the family Af(K). 2

Corollary 7.2. Af(CFf) = Af(Af (FINf)) = Af (FINf) = CFf .

Proof. Corollary 6.3(2) and Theorem 7.1 with K = FINf . 2

According to Corollary 7.2 we may extend the sets τ(α) (α ∈ V , τ ∈ U) in a
fuzzy context-free grammar G = (V,Σ, U, S), not only with a finite number of
elements, but even with a countable infinite number, as long as the resulting
sets τ(α) still constitute fuzzy context-free languages over V . In this sense we
are able to model the case of an infinite number of grammatical errors within
the framework of fuzzy context-free grammars.

Corollary 7.3. Af(Af (ALPHAf)) = Af(ALPHAf) = ALPHAf .

Proof. The first equality follows from Theorem 7.1 with K = ALPHAf . The

17

inclusion Af (ALPHAf) ⊇ ALPHAf is a consequence of Lemma 6.4. To estab-
lish the converse inclusion, consider the fuzzy context-free ALPHAf -grammar
G = (V,Σ, U, S). As for each τ ∈ U and each α ∈ V , we have s(τ(α)) ⊆ V , it
follows that s(L(G)) ⊆ V , i.e., L(G) ∈ ALPHAf . 2

8 Algebraic Closure Properties — Preliminaries

A closure operator Γ on a partially ordered set X is a mapping Γ : X → X
that is extensive, monotonic, and idempotent , i.e., it satisfies for all x and y
in X, x ≤ Γ(x), x ≤ y implies Γ(x) ≤ Γ(y), and Γ(Γ(x)) = Γ(x), respectively.

Now Theorem 7.1 shows that Af is idempotent on the class of all language
families satisfying the conditions of Theorem 7.1. Similarly, it follows from
Lemma 6.4 that on the same class Af is extensive. Since it is straightfor-
ward to show that Af is also monotonic on this class (i.e., K1 ⊆ K2 implies
Af (K1) ⊆ Af (K2) for all such families K1 and K2), this means that Af is a
closure operator. Consequently, if a family K of fuzzy languages meets the
conditions of Theorem 7.1, then the language family Af (K) possesses inter-
esting algebraic closure properties as we will see in Section 9. In the present
section we will recall some elementary concepts, notation and basic results.

The smallest family of fuzzy languages that satisfies the conditions of Theo-
rem 7.1 is the family ALPHAf . But according to Corollary 7.3, we have that
Af (ALPHAf) equals ALPHAf . However, we obtain much more interesting re-
sults, as we will see in Section 9, when we turn to less trivial families of fuzzy
languages, viz. to families that include FINf ; cf. Definition 8.5.

Apart from the families in Section 5 we need the family REGf of regular fuzzy
languages, which is defined in a way similar to its crisp counterpart.

Definition 8.1. For each alphabet Σ, the regular fuzzy languages over Σ are
defined by:

(1) The fuzzy subsets ∅, {λ/1}, and {σ} (σ ∈ Σ) of Σ⋆, are regular fuzzy
languages over Σ.

(2) If R1 and R2 are regular fuzzy languages over Σ, then so are R1 ∪ R2,
R1R2, and R⋆

1.

(3) A fuzzy subset R of Σ⋆ is a regular fuzzy language over Σ if and only if R
can be obtained from (1) by a finite number of applications of (2).

The family of regular fuzzy languages is denoted by REGf . 2

It is a routine matter to show that each regular fuzzy language is also a fuzzy
context-free language; so we have REGf ⊆ CFf .

The family of regular fuzzy languages is closely related to an automaton model:
the so-called nondeterministic fuzzy finite automaton. Similar to the crisp case
we have a characterization of REGf by fuzzy finite automata (Proposition 8.3).

18

Definition 8.2. A nondeterministic fuzzy finite automaton with λ-moves or
NFFA M is a 5-tupleM = (Q,Σ, δ, q0, F) where Q is a finite crisp set of states,
Σ is an alphabet, q0 is an element of Q, F is a crisp subset of the crisp set Q,
and δ is a fuzzy function of type δ : Q× (Σ ∪ {λ}) → F(Q) that satisfies the
following restriction: for each q in Q, δ(q, λ) is a crisp subset ofQ. The function
δ is extended to δ̂ : Q× Σ⋆ → F(Q) as follows: for all q ∈ Q, δ̂(q, λ) = δ(q, λ)
and δ̂(q, σω) =

⋃

{δ̂(q′, ω) | q′ ∈ δ(q, σ)}. That means, according to (2),

µ(p; δ̂(q, σω)) =
∨

{µ(p; δ̂(q′, ω)) ⋆ µ(q′; δ(q, σ)) | q′ ∈ Q} (p ∈ Q).

The fuzzy language L(M) accepted by the NFFA M is defined by L(M) =
{x ∈ Σ⋆ | δ̂(q0, x) ∩ F 6= ∅} or, equivalently, µ(x;L(M)) =

∨

{µ(q; δ̂(q0, x)) |
q ∈ F}. 2

Proposition 8.3. [8] A fuzzy language L is regular if and only if L is accepted
by a nondeterministic fuzzy finite automaton. 2

In Definition 5.2 we already met the notion of fuzzy substitution. In the next
definition we consider two special instances.

Definition 8.4. Let τ : V → K be a fuzzy K-substitution on the alphabet
V . If K equals FINf or REGf , τ is called a fuzzy finite or a fuzzy regular
substitution, respectively.

Given families K and K ′ of fuzzy languages, let Sûb(K,K ′) = {τ(L) | L ∈ K;
τ is a fuzzy K ′-substitution}. A familyK is closed under fuzzy K ′-substitution
if Sûb(K,K ′) ⊆ K, and K is closed under fuzzy substitution, if K is closed
under fuzzy K-substitution. 2

To ensure that K is less trivial than ALPHAf , we need the notion of fuzzy
prequasoid.

Definition 8.5. A fuzzy prequasoid K is a normalized family of fuzzy lan-
guages that is closed under fuzzy finite substitution and intersection with
regular fuzzy languages. A fuzzy quasoid is a fuzzy prequasoid that contains
a fuzzy language L such that c(L) is infinite. 2

It is a straightforward exercise to show that each fuzzy [pre]quasoid includes
the smallest fuzzy [pre]quasoid REGf [FINf , respectively], whereas FINf is
the only fuzzy prequasoid that is not a fuzzy quasoid; cf. [8].

Let Πf(K) denote the smallest fuzzy prequasoid that includes the family K.
Similarly, let Φf (K) [∆f (K), Θf(K), respectively] be the smallest family of
fuzzy languages that includes K and is closed under fuzzy finite substitu-
tions [intersection with regular fuzzy languages, fuzzy homomorphisms, re-
spectively]. Then for each family K, we have Πf(K) = {Φf ,∆f ,Θf}

⋆(K)
or Πf (K) = {Φf ,∆f}

⋆(K). But instead of this infinite set of strings over
{Φf ,∆f ,Θf} or over {Φf ,∆f} respectively, a single string suffices; viz.

Proposition 8.6. [8] For each family K of fuzzy languages, we have Πf(K) =
Θf∆fΦf (K) = Φf∆fΦf(K). 2

19

When we combine the properties related to the operators Af and Πf we obtain
an algebraic structure that is (a special case of) the fuzzy counterpart of full
AFL (full Abstract Family of Languages [11]); cf. Definition 9.4.

Definition 8.7. A full Abstract Family of Fuzzy Languages or full AFFL
is a normalized family of fuzzy languages closed under union, concatena-
tion, Kleene ⋆, fuzzy homomorphism (i.e., fuzzy ONEf -substitution), inverse
fuzzy homomorphism, and intersection with regular fuzzy languages. A full
substitution-closed AFFL is a full AFFL closed under fuzzy substitution. 2

The following characterization of full AFFL is useful; its proof in [8] is a
modification of a result for crisp languages, originally established in [12].

Proposition 8.8. [8] A family K of fuzzy languages is a full AFFL if and
only if K is a fuzzy prequasoid closed under fuzzy regular substitution (i.e.,
Sûb(K,REGf) ⊆ K), and under substitution in the regular fuzzy languages
(i.e., Sûb(REGf , K) ⊆ K). 2

Actually, the notion of full AFFL reflects some of the closure properties of the
family REGf of regular fuzzy languages. More formally, we have

Corollary 8.9. [8] (1) If K is a full AFFL, then K ⊇ REGf .

(2) REGf is the smallest full substitution-closed AFFL. 2

9 Algebraic Closure Properties — Results

In this section we first consider some simple closure properties (Lemmas 9.1
and 9.3) before we turn to more important ones (Theorem 9.6) due to our
results from Section 7.

Lemma 9.1. Let K and K ′ be families of fuzzy languages such that K ′ is
closed under union with SYMBOL-languages and K ⊇ K ′ ⊇ SYMBOL. Then
the family of fuzzy languages Af(K) is closed under fuzzy K ′-substitution.

Proof. Let G = (V,Σ, U, S) be a fuzzy context-free K-grammar and let σ :
Σ → ∆⋆ be a fuzzy K ′-substitution. Without loss of generality we assume that
Σ and ∆ are disjoint.

Consider the fuzzy context-free K-grammar G0 = (V0,∆, U0, S) where V0 =
V ∪ ∆, U0 = {τ ′ | τ ∈ U} ∪ {σ′} with

σ′(α) = if α ∈ Σ then σ(α) ∪ {α/1} else {α/1}

and for each τ in U we define

τ ′(α) = if α ∈ V then τ(α) else {α/1}.

Then for each x in ∆⋆, we have µ(x; σ(L(G))) = µ(x;L(G0)), i.e., L(G0) =
σ(L(G)). 2

Corollary 9.2. (1) If K ⊇ FINf , then Af (K) is closed under fuzzy finite
substitution.

20

(2) If K is closed under union with SYMBOL-languages and K ⊇ SYMBOL,
then Af(K) is closed under fuzzy K-substitution.

Proof. Lemma 9.1 with K ′ = FINf and K ′ = K, respectively. 2

Lemma 9.3. Let K be a fuzzy prequasoid. Then the family of fuzzy languages
Af (K) is closed under intersection with regular fuzzy languages.

Proof. Let G = (V,Σ, U, S) be a fuzzy context-free K-grammar, and let R be
a regular fuzzy language accepted by a nondeterministic fuzzy finite automa-
ton with λ-moves (NFFA) (Q,Σ, δ, q0, F); cf. Proposition 8.3.

Consider the fuzzy context-free K-grammar G0 = (V0,Σ, U0, S0) where V0 =
Σ ∪ {S0} ∪ {[q, α, q′] | q, q′ ∈ Q, α ∈ V }, U0 = {σ0, σ1} ∪ {τ ′ | τ ∈ U}, with

σ0(S0) = {S0/1} ∪ {[q0, S, q]/1 | q ∈ F} q ∈ F ,

σ0(α) = {α/1} α ∈ V0 − {S0},

σ1(α) = {α/1} α ∈ Σ ∪ {S0},

σ1([q, α, q
′]) = {[q, α, q′]/1} ∪ {α | q′ ∈ δ(q, α)} α ∈ V , q, q′ ∈ Q.

In the latter case we have, of course, µ(α; σ1([q, α, q
′])) = µ(q′; δ(q, α)).

For each τ in U , we define the fuzzy substitution τ ′ over V0 by

τ ′([q, α, q′]) = {[q, α1, q1][q1, α2, q2] · · · [qn−1, αn, q
′] | q1, . . . , qn−1 ∈ Q, n ≥ 1,

α1α2 · · ·αn ∈ s(τ(α))} ∪ {[q, α, q′]/1} ∪ E(τ, α, q, q′),

for all α ∈ V and all q, q′ ∈ Q, where E(τ, α, q, q′) is the crisp set defined by

E(τ, α, q, q′) = if λ ∈ s(τ(α)) and q = q′ then {λ/1} else ∅.

So for the corresponding degrees of membership we have

µ([q, α1, q1] · · · [qn−1, αn, q
′]; τ ′([q, α, q′])) = µ(α1 · · ·αn; τ(α)), n ≥ 1.

Since K is a fuzzy prequasoid, it easy to show that each τ ′ is a nested fuzzy
K-substitution over V0. The proof that L(G0) = L(G)∩R holds is also left to
the reader. 2

We now turn to more complicated closure properties for fuzzy languages.

Definition 9.4. A family K of fuzzy languages is closed under iterated nested
fuzzy substitution if for each fuzzy language L in K over some alphabet V ,
and each finite set U of nested fuzzy K-substitutions over V , the language
U⋆(L) belongs to K, where U⋆(L) is defined by

U⋆(L) =
⋃

{τp(· · · (τ1(L)) · · ·) | p ≥ 0; τi ∈ U, 0 ≤ i ≤ p}.

A full super-AFFL is a full AFFL closed under iterated nested fuzzy substi-
tution. 2

Clearly, the notion of full super-AFFL is the fuzzy counterpart of the concept
of full super-AFL, introduced in [14].

We are now ready for the main results of this section (Theorems 9.5 and 9.6).

21

Theorem 9.5. (1) A family K of fuzzy languages is a full super-AFFL if
and only if K is a fuzzy prequasoid and Af (K) = K.

(2) Each full super-AFFL is a full substitution-closed AFFL.

Proof. (1) Suppose K is a full super-AFFL. By Proposition 8.8, K is a fuzzy
prequasoid; so it remains to show that Af (K) ⊆ K as the converse inclusion
follows from Lemma 6.4.

Let G = (V,Σ, U, S) be an arbitrary fuzzy context-free K-grammar. Because
K is a full super-AFFL, the fuzzy languages {S}, U⋆(S) and U⋆(S) ∩ Σ⋆ all
belong to the family K. But the latter fuzzy language equals L(G). Hence
L(G) ∈ K and Af (K) ⊆ K.

Conversely, let K be a fuzzy prequasoid that satisfies Af(K) = K. As K is a
fuzzy prequasoid, we have FINf ⊆ K and thus CFf = Af (FINf) ⊆ Af (K) =
K by Corollary 7.2. But REGf ⊆ CFf and consequently we have K ⊇ REGf .
Corollary 9.2(2) implies that K is closed under fuzzy substitution, and by
Proposition 8.8 we obtain that K is a full AFFL. Now it remains to prove
that K is closed under iterated nested fuzzy substitution.

Let L0 be an arbitrary fuzzy language in K with s(L0) ⊆ V ⋆ for some alphabet
V , and let U be a finite set of nested fuzzy K-substitutions over V . Consider
the fuzzy context-free K-grammar G = (V ∪ {S}, V, U ∪ {τ}, S) with S /∈ V ,
τ /∈ U , τ(S) = L0 ∪ {S/1} and τ(α) = {α/1} for each α in V . Then L(G) =
U⋆(L0), L(G) ∈ Af(K) = K, and hence U⋆(L0) ∈ K, i.e., K is closed under
iterated nested fuzzy substitution.

(2) follows from (1) together with Corollary 9.2(2). 2

Theorem 9.6. (1) If K is a fuzzy prequasoid, then Af (K) is a full super-
AFFL.

(2) For each arbitrary family K of fuzzy languages, AfΠf (K) is the smallest
full super-AFFL that includes K.

(3) For each arbitrary family K of fuzzy languages, AfΘf∆fΦf (K) is the
smallest full super-AFFL that includes K.

Proof. (1) By Corollary 9.2(1) and Lemma 9.3, it follows that Af (K) is a
prequasoid. Now Theorem 7.1 implies that Af (Af(K)) = Af(K), since each
prequasoid satisfies the conditions of Theorem 7.1. Consequently, Af (K) is a
full super-AFFL by Theorem 9.5(1).

(2) Let Âf(K) be the smallest full super-AFFL that includes K. By the

inclusion K ⊆ Âf(K) and the monotonicity of both Πf and Af , we have

AfΠf(K) ⊆ AfΠf Âf(K). By Theorem 9.5(1) this yields AfΠf (K) ⊆ Âf(K).

But Theorem 9.6(1) and Lemma 6.4 imply that AfΠf(K) is a full super-AFFL

that includes K. Hence Âf(K) = AfΠf (K).

22

(3) follows from (2) and Proposition 8.6. 2

By Theorem 9.5(1) we have thatK is a full super-AFFL if and only if Πf(K) =

K and Af (K) = K. So the smallest full super-AFFL Âf(K), that includes K,

equals Âf(K) =
⋃

{w(K) | w ∈ {Πf , Af}
⋆} or, written equivalently, Âf(K) =

{Πf , Af}
⋆(K). According to Theorem 9.6(2) this infinite set of strings over

the alphabet {Πf , Af} can be reduced to the single string AfΠf . Of course,
an analogous remark applies to Theorem 9.6(3).

Obviously, the following corollary is the counterpart of Corollary 8.9.

Corollary 9.7. (1) If K is a full super-AFFL, then K ⊇ CFf .

(2) CFf is the smallest full super-AFFL.

Proof. (1) follows from Theorem 9.5(1), Corollary 7.2, the monotonicity of
the operator Af , and the fact that FINf is the smallest fuzzy prequasoid.

(2) is implied by (1) and Corollary 7.2. 2

The converse of Theorem 9.5(2) does not hold: REGf is a full substitution-
closed AFFL [7], but it is properly included in CFf . From Corollary 9.7 it
follows that REGf is not a full super-AFFL.

10 Concluding Remarks

First, we generalized fuzzy context-free grammars, as introduced in [20], to
the concept of L-fuzzy context-free grammar. Here L is a completely distribu-
tive complete lattice provided with an additional operation, rather than the
real closed interval [0, 1] as in [20]. Then we showed that using these L-fuzzy
context-free grammars we are able to model the case in which at each deriva-
tion step a choice from a finite number of possible grammatical errors is made.
The generalization to a choice from an infinite number of possible grammatical
errors is modeled by the concept of L-fuzzy context-freeK-grammar. However,
from Theorem 7.1 and Corollary 7.2 it follows that in order to stay within the
framework of fuzzy context-free languages the parameter K should satisfy:
FINf ⊆ K ⊆ CFf .

Our approach in describing grammatical errors has a global character: the
right-hand side ω of a rule A → ω may be replaced erroneously by a com-
pletely different string ω′ with µ(ω′; τ(A)) < 1. At first sight, allowing such
a choice from an infinity of grammatical errors seems not very plausible. In-
deed, to achieve an infinite choice, τ(A) must be infinite and so τ(A) must
contain arbitrary long strings. Using a very long ω′ rather than a short ω
is “unlikely”. Fortunately, this “unlikeliness” can be modeled adequately: we
define µ in such a way that µ(ω′; τ(A)) decreases as the length of ω′ increases;
cf. Example 5.5.

Nevertheless, the notion of L-fuzzy context-free K-grammar turned to be a
useful instrument in studying algebraic closure properties; cf. Sections 8–9.

23

These properties are very similar to those of ordinary, crisp context-free lan-
guages [14,2,3].

When we take L equal to a type-00 or to a type-10 lattice we are able to model
the accumulation of grammatical errors in a satisfactory way: each additional
error decreases the “quality” of the string that will be derived ultimately
(Lemma 2.4). In this way a long sequence of “tiny mistakes” can result in
something that resembles a “capital blunder”; see Examples 4.5 and 5.5.

In this paper we treated grammatical errors in a rather “macroscopic” fash-
ion: instead of ω a quite different string ω′ may have been used. For a more
“microscopic” treatment of errors —viz. in terms of edit operations like dele-
tions, insertions and changes of terminal symbols— in (fuzzy) context-free and
context-sensitive language recognition we refer to [21] and [17]. Unfortunately,
both these papers are restricted to a few concrete examples to point out the
main ideas, whereas the extension to generally applicable results are left to
the reader. More seriously, these papers are limited to the case in which errors
only occur with respect to terminal symbols. So erroneously rewriting of non-
terminal symbols —e.g., S ⇒ AA or S ⇒ BB instead of S ⇒ AB according
to a rule S → AB as in Example 4.4— is not dealt with at all. And the dele-
tion of nonterminal symbols —e.g., S ⇒ A or S ⇒ B instead of S ⇒ AB—
is not considered either in [17] or [21].

Finally, we list a few limitations of this paper briefly. Of course, there are other
aspects of robustness that are not touched upon in this paper. We only men-
tion the problems of undergeneration (Given a language L0 and a grammar G
for L0, then G generates less than L0.) and overgeneration (Now G generates
too much: either L0 is a proper subset of L(G), or L(G) = L0 but G gives rise
to less desired additional ambiguities).

In this paper we only considered the problem of describing and generating
grammatical errors by means of fuzzy grammars. In the companion paper [9]
we will consider some recognition and parsing algorithms that are robust in
the sense that they are able to deal with correct as well as erroneous inputs.

References

[1] A.V. Aho & J.D. Ullman: The Theory of Parsing, Translation and Compiling

— Volume I: Parsing (1972), Prentice-Hall, Englewood Cliffs, NJ.

[2] P.R.J. Asveld: Iterated Context-Independent Rewriting — An Algebraic

Approach to Formal Languages (1978), Ph.D. Thesis, Dept. of Appl. Math.,
Twente University of Technology, Enschede, the Netherlands.

[3] P.R.J. Asveld: An algebraic approach to incomparable families of formal
languages, pp. 455–475 in: G. Rozenberg & A. Salomaa (eds.): Lindenmayer

Systems — Impacts on Theoretical Computer Science, Computer Graphics, and

Developmental Biology (1992), Springer-Verlag, Berlin, etc.

24

[4] P.R.J. Asveld: Towards robustness in parsing — Fuzzifying context-free
language recognition, pp. 443–453 in: J. Dassow, G. Rozenberg & A.
Salomaa (eds.): Developments in Language Theory II — At the Crossroads

of Mathematics, Computer Science and Biology (1996), World Scientific,
Singapore.

[5] P.R.J. Asveld: A fuzzy approach to erroneous inputs in context-free language
recognition, pp. 14–25 in: Proc. 4th Internat. Workshop on Parsing Technologies

IWPT’95 (1995), Prague/Karlovy Vary, Czech Republic.

[6] P.R.J. Asveld: Controlled fuzzy parallel rewriting, pp. 49–70 in: Gh. Păun &
A. Salomaa (eds.): New Trends in Formal Languages — Control, Cooperation,

and Combinatorics (1997), Lect. Notes in Comp. Sci. 1218, Springer, Berlin,
etc.

[7] P.R.J. Asveld: The non-self-embedding property for generalized fuzzy context-
free grammars, Publ. Math. Debrecen 54 Suppl. (1999) 553–573.

[8] P.R.J. Asveld: Algebraic aspects of families of fuzzy languages, Theor. Comp.

Sci. 293 (2003) 417–445.

[9] P.R.J. Asveld: Fuzzy context-free languages — Part 2: Recognition and parsing
algorithms. Theor. Comp. Sci. 347 (2005) 191–213.

[10] G. Gerla: Fuzzy grammars and recursively enumerable fuzzy languages, Inform.

Sci. 60 (1992) 137–143.

[11] S. Ginsburg: Algebraic and Automata-Theoretic Properties of Formal Languages

(1975), North-Holland, Amsterdam.

[12] S. Ginsburg & E.H. Spanier: Substitution in families of languages, Inform. Sci.

2 (1970) 83–110.

[13] J.A. Goguen: L-fuzzy sets, J. Math. Analysis Appl. 18 (1967) 145–174.

[14] S.A. Greibach: Full AFL’s and nested iterated substitution, Inform. Contr. 16

(1970) 7–35.

[15] M.A. Harrison: Introduction to Formal Language Theory (1978), Addison-
Wesley, Reading, Mass.

[16] J.E. Hopcroft & J.D. Ullman: Introduction to Automata Theory, Languages,

and Computation (1979), Addison-Wesley, Reading, Mass.

[17] M. Inui, W. Shoaff, L. Fausett & M. Schneider: The recognition of imperfect
strings generated by fuzzy context-sensitive grammars, Fuzzy Sets and Systems

62 (1994) 21–29.

[18] H.H. Kim, M. Mizumoto, J. Toyoda & K. Tanaka: L-fuzzy grammars, Inform.

Sci. 8 (1975) 123–140.

[19] G.J. Klir & B. Yuan (eds.): Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems. Selected

Papers by Lofti A. Zadeh (1996), World Scientific, Singapore.

25

[20] E.T. Lee & L.A. Zadeh: Note on fuzzy languages, Inform. Sci. 1 (1969) 421–434.

[21] M. Schneider, H. Lim & W. Shoaff: The utilization of fuzzy sets in the
recognition of imperfect strings, Fuzzy Sets and Systems 49 (1992) 331–337.

[22] J. van Leeuwen: A generalization of Parikh’s theorem in formal language theory,
pp. 17–26 in: J. Loeckx (ed.): 2nd ICALP, Lect. Notes in Comp. Sci. 14 (1974),
Springer-Verlag, Berlin, etc.

[23] W. Wechler: The Concept of Fuzziness in Automata and Language Theory

(1978), Akademie-Verlag, Berlin.

26

