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Abstract
We present an Isabelle/HOL formalization of the first half of Bachmair and Ganzinger’s
chapter on resolution theorem proving, culminating with a refutationally complete first-order
prover based on ordered resolution with literal selection.We developed general infrastructure
andmethodology that can form the basis of completeness proofs for related calculi, including
superposition. Our work clarifies fine points in the chapter, emphasizing the value of formal
proofs in the field of automated reasoning.

Keywords Resolution calculus · Automatic theorem provers · Proof assistants

1 Introduction

Much research in automated reasoning amounts tometatheoretical arguments, typically about
the soundness and completeness of logical inference systems or the termination of theorem
proving processes. Often the proofs contain more insights than the systems or processes
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1170 A. Schlichtkrull et al.

themselves. For example, the superposition calculus rules [2],with theirmany side conditions,
look rather arbitrary, whereas in the completeness proof the conditions emerge naturally from
the model construction. And yet, despite being crucial to our field, today such proofs are
usually carried out without tool support. We believe proof assistants are becoming mature
enough to help.

In this article, we present a formalization, developed using the Isabelle/HOL system[28],
of a first-order prover based on ordered resolution with literal selection. We follow Bach-
mair and Ganzinger’s account [4] from Chapter 2 of theHandbook of Automated Reasoning,
which we refer to as simply “the chapter.” Our formal development covers the refutational
completeness of two resolution calculi for ground (i.e., variable-free) clauses and general
infrastructure for theorem proving processes and redundancy. It culminates with a complete-
ness proof for a first-order prover expressed as transition rules operating on triples of clause
sets. This material corresponds to the chapter’s first four sections.

From the perspective of automated reasoning, increased trustworthiness of the metatheory
of automatic theorem provers is an obvious benefit of formal proofs. But formalizing also
helps clarify arguments, by exposing and explaining difficult steps. Making definitions and
theorem statements precise can be a huge gain for communicating metatheoretical results.
Moreover, a formal proof can tell us exactly where hypotheses and lemmas are used. Once we
have created a rich library of basic results and a methodology, we will be in a good position
to study extensions and variants. Given that automatic provers are integrated into modern
proof assistants, there is also an undeniable thrill in applying these tools to reason about their
own metatheory.

From the perspective of interactive theorem proving, formalizationwork constitutes a case
study in the use of a proof assistant. It gives us, as developers and users of such a system, an
opportunity to experiment, contribute to lemma libraries, and get inspiration for new features
and improvements.

Our motivation for choosing Bachmair and Ganzinger’s chapter is manifold. The text
is a standard introduction to superposition-like calculi (together with Handbook Chap-
ters 7 [25] and 27 [49]). It offers perhaps the most detailed treatment of the lifting of a
resolution-style calculus’s static completeness to a saturation prover’s dynamic complete-
ness. It introduces a considerable amount of general infrastructure, including different types
of inference systems (sound, reductive, counterexample-reducing, etc.), theorem proving
processes, and an abstract notion of redundancy. The resolution calculus, extended with a
term order and literal selection, captures most of the insights underlying superposition-like
calculi [2,3,6,7,19,24,46], but with a simple notion of model.

The chapter’s level of rigor is uneven, as shown by the errors and imprecisions that
we discovered. We will see that the main completeness result does not hold, due to the
improper treatment of self-inferences. Naturally, our objective is not to diminish Bachmair
and Ganzinger’s outstanding achievements, which include the development of superposition;
rather, it is to demonstrate that even the work of some of the most celebrated researchers
in our field can benefit from formalization. Our view is that formal proofs can be used to
complement and improve their informal counterparts.

This work is part of the IsaFoL (Isabelle Formalization of Logic) project [9], which aims at
developing a library of results about logical calculi used in automated reasoning. The Isabelle
theory files are available in the Archive of Formal Proofs [38]. They amount to about 8000
lines of source text. A good way to study the theory files is to open them in Isabelle/jEdit
[51], an integrated development environment for formal proof. This will ensure that logical
andmathematical symbols are rendered properly (e.g., ∀ instead of\<forall>) and let you
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Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 1171

inspect proof states. We used Isabelle version 2017, but the Archive is continuously updated
to track Isabelle’s evolution.

An earlier version of this work was presented at IJCAR 2018 [39]. This article extends
the conference paper with in-depth discussions of many formalization aspects, notably: some
hurdles arising fromorderingmultisets ofmultisets of literals (Sect. 2); examples demonstrat-
ing Isabelle’s proof language (Sect. 3); and details concerning the resolution rules, including
discussions of their soundness (Sects. 4 and 6). Compared with the conference paper, we
made the article more self-contained with respect to the chapter, quoting the main definitions
from the chapter and contrasting them with their formal counterparts. Nevertheless, we still
assume that the reader is familiar with the chapter’s content. Finally, we added Appendix A,
which summarizes the mathematical errors and imprecisions we discovered in the chapter in
the course of formalization.

2 Preliminaries

Ordered resolution depends on little background metatheory that needs to be formalized
using Isabelle. Much of it, concerning partial and total orders, well-foundedness, and finite
multisets, is provided by standard Isabelle libraries. We also need literals, clauses, models,
terms, and substitutions.

2.1 Isabelle

Isabelle/HOL[28] is a proof assistant based on classical higher-order logic (HOL) [20] with
Hilbert choice, the axiom of infinity, rank-1 polymorphism, and type classes. HOL notations
are similar to those of functional programming languages. Functions are applied without
parentheses or commas (e.g., f x y). Through syntactic abbreviations, many traditional nota-
tions from mathematics are provided, notably to denote simply typed sets and multisets. We
refer to Nipkow and Klein [27, Part 1] for a modern introduction to Isabelle.

2.2 Multisets

Multisets are central to our development. Isabelle provides a multiset library, but it is
much less developed than those of sets and lists. In the context of the IsaFoL effort, we
had already extended it considerably and implemented further additions in a separate file
(Multiset_More.thy). Some of these, notably a plugin for Isabelle’s simplifier to apply
cancellation laws, are described elsewhere [11, Sect. 3].

2.3 Clauses andModels

We used the same library of clauses (Clausal_Logic.thy) as for the verified SAT solver
byBlanchette et al. [10],which is also part of IsaFoL.Atoms are represented by a type variable
′a, which can be instantiated by arbitrary concrete types—e.g., numbers or first-order terms.
A literal, of type ′a literal (where the type constructor is written in ML-style postfix syntax),
can be of the form Pos A or Neg A, where A :: ′a is an atom. The literal order > (written
� in the chapter) extends a fixed atom order > by comparing polarities to break ties, with
Neg A > Pos A.
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1172 A. Schlichtkrull et al.

Following the chapter, a clause is defined as a finite multiset of literals, ′a clause =
′a literal multiset, where multiset is the Isabelle type constructor of finite multisets. Thus,
the clause A∨ B, where A and B are atoms, is identified with the multiset {A, B}; the clause
C ∨ D, where C and D are clauses, is C � D; and the empty clause ⊥ is {}. The clause order
is the multiset extension [17] of the literal order.

A Herbrand interpretation I (Herbrand_Interpretation.thy), of type ′a set,
specifies which ground atoms are true. The “models” operator � is defined in the usual way
on atoms, literals, clauses, sets, and multisets of clauses; e.g., I � C ⇐⇒ ∃L ∈ C . I � L .
Satisfiability of a set or multiset of clauses N is defined by sat N ⇐⇒ ∃I . I � N.

The main hurdle we faced concerned multisets. Multisets of clauses have type
′a literal multiset multiset. The corresponding order is the multiset extension of the clause
order. In Isabelle, themultiset orderwas called #⊂#, and it relied on the element type’s<oper-
ator, through Isabelle’s type class mechanism. Unfortunately, for multisets, < was defined
as the subset relation, so when nesting multisets (as ′a multiset multiset), we obtained the
multiset extension of the subset relation. Initially, we worked around the issue by defining
an order #⊂## on multisets of multisets, but we also saw potential for improvement. After
some discussions on the Isabelle users’ mailing list, we let < be the multiset order. To avoid
introducing subtle changes in the semantics of existing developments, we first renamed < to
something else, freeing up <; then, in the next Isabelle release, we replaced #⊂# and #⊂##
by <. In the intermediate state, all occurrences of < were flagged as errors, easing porting.

2.4 Terms and Substitutions

The IsaFoR (Isabelle Formalization of Rewriting) library, an inspiration for IsaFoL, contains
a definition of first-order terms and results about substitutions and unification [43]. It made
sense to reuse this functionality. A practical issue is that most of IsaFoR is not accessible
from the Archive of Formal Proofs.

Resolution depends only on basic properties of terms and atoms, such as the existence
of most general unifiers (MGUs). We exploited this to keep the development parameterized
by a type of atoms ′a and an abstract type of substitutions ′s, through Isabelle locales [5]
(Abstract_Substitution.thy). A locale represents amodule parameterized by types
and terms that satisfy some assumptions. Inside the locale, we can refer to the parameters and
assumptions in definitions, lemmas, and proofs. The basic operations provided by our locale
are application (· :: ′a ⇒ ′s ⇒ ′a), identity (id :: ′s), and composition (◦ :: ′s ⇒ ′s ⇒ ′s),
about which some assumptions are made (e.g., A · id = A for all atoms A). Substitution is
lifted to literals, clauses, sets of clauses, and so on. Many other operations can be defined in
terms of the primitives—for example:

is_ground A ⇐⇒ ∀σ. A = A · σ is_renaming σ ⇐⇒ ∃τ. σ ◦ τ = id

is_ground σ ⇐⇒ ∀A. is_ground (A · σ) instance_of C D ⇐⇒ ∃σ. C · σ = D

MGUs are also taken as a primitive: Themgu :: ′a set set ⇒ ′s option operation takes a set
of unification constraints, each of the form A1

?= · · · ?= An , and returns either an MGU or a
special value (None).

Perhaps themain reason to prefer multisets to sets for representing clauses is that multisets
behave better with respect to substitution. Using a set representation, applying σ = {x �→
a, y �→ a} to either the unit clause C = p(x) or the two-literal clause D = p(x) ∨ p(y)
yields a unit clause p(a). This oddity breaks stability under substitution—the requirement
that D > C implies D · σ > C · σ .
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Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 1173

To complete our formal development and ensure that our assumptions are legitimate,
we instantiated the locale’s parameters with IsaFoR types and operations and discharged its
assumptions (IsaFoR_Term.thy).

3 Refutational Inference Systems

In their Sect. 2.4, Bachmair and Ganzinger introduce basic conventions for refutational
inference systems. In Sect. 3, they present two ground resolution calculi and prove them
refutationally complete in Theorems 3.9 and 3.16. In Sect. 4.2, they introduce a notion of
counterexample-reducing inference system and state Theorem 4.4 as a generalization of The-
orems 3.9 and 3.16 to all such systems. For formalization, two courses of actions suggest
themselves: follow the book closely and prove the three theorems separately, or focus on the
most general result. We chose the latter, as being more consistent with the goal of providing
a well-designed, reusable library, at the cost of widening the gap between the text and its
formal companion.

We collected the abstract hierarchy of inference systems in a single Isabelle theory file
(Inference_System.thy). An inference, of type ′a inference, is a triple (C, D, E) that
consists of a multiset of side premises C, a main premise D, and a conclusion E . An inference
system, or calculus, is a possibly infinite set of inferences:

locale inference_system =
fixes � :: ′a inference set

The Isabelle locale fixes, within a named context (inference_system), a set � of inferences
between clauses over atom type ′a. Inside the locale, we defined a function infers_from that,
given a clause set N , returns the subset of � inferences whose premises all belong to N .

Asatisfiability-preserving (or consistency-preserving) inference systemenriches the infer-
ence system locale with an assumption, whereas sound systems are characterized by a
different assumption:

locale sat_preserving_inference_system = inference_system +
assumes sat N ��⇒ sat (N ∪ concl_of ‘ infers_from N )

locale sound_inference_system = inference_system +
assumes (C, D, E) ∈ � ��⇒ I � C ∪ {D} ��⇒ I � E

The notation f ‘ X above stands for the image of the set or multiset X under function f .
Soundness is a stronger requirement than satisfiability preservation. In Isabelle, this can

be expressed as a sublocale relation:

sublocale sound_inference_system < sat_preserving_inference_system

This command emits a proof goal stating that sound_inference_system’s assumption
implies sat_preserving_inference_system’s. Afterwards, all the definitions and lemmas about
satisfiability-preserving calculi become available about sound ones.

In reductive inference systems (reductive_inference_system), the conclusion of each infer-
ence is smaller than the main premise according to the clause order. A related notion, the
counterexample-reducing inference systems, is specified as follows:

locale counterex_reducing_inference_system = inference_system +
fixes I_of :: ′a clause set ⇒ ′a set
assumes {} /∈ N ��⇒ D ∈ N ��⇒ I_of N � D ��⇒

(∀C ∈ N . I_of N � C ��⇒ D ≤ C) ��⇒
∃C ⊆ N . ∃E . I_of N � C ∧ (C, D, E) ∈ � ∧ I_of N � E ∧ E < D
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1174 A. Schlichtkrull et al.

The parameter I_of maps clause sets to candidate models. The assumption is that for any
clause set N that does not contain {} (i.e., ⊥), if D ∈ N is the smallest counterexample—the
smallest clause in N that is falsified by I_of N—we can derive a smaller counterexample E
using an inference from clauses in N . This property is useful because if N is saturated (i.e.,
closed under � inferences), we must have E ∈ N , contradicting D’s minimality:

theorem saturated_model: saturated N ��⇒ {} /∈ N ��⇒ I_of N � N
corollary saturated_complete: saturated N ��⇒ ¬ sat N ��⇒ {} ∈ N

Bachmair and Ganzinger claim that compactness of clausal logic follows from the
refutational completeness of ground resolution (Theorem 3.12), although they give no jus-
tification. Our argument relies on an inductive definition of saturation of a set of clauses:
saturate :: ′a clause set ⇒ ′a clause set. Most of the work goes into proving this key
lemma, by rule induction on the saturate function:

lemma saturate_finite: C ∈ saturate N ��⇒ ∃M ⊆ N . finite M ∧ C ∈ saturate M

The interesting case is when C = ⊥. We established compactness in a locale that combines
counterex_reducing_inference_system and sound_inference_system:

theorem clausal_logic_compact: ¬ sat N ⇐⇒ ∃M ⊆ N . finite M ∧ ¬ sat M

To give a taste of the formalization, here is the formal Isar [50] proof:

proof
assume ¬ sat N
then have {} ∈ saturate N
using saturated_complete saturated_saturate saturate.base
unfolding true_clss_def by meson

then have ∃M ⊆ N . finite M ∧ {} ∈ saturate M
using saturate_finite by fastforce

then show ∃M ⊆ N . finite M ∧ ¬ sat M
using saturate_sound by auto

next
assume ∃M ⊆ N . finite M ∧ ¬ sat M
then show ¬ sat N
by (blast intro: true_clss_mono)

qed

The ��⇒ direction relies on the calculus’s refutational completeness to show that ⊥ belongs
to saturate N , on the above lemma to obtain a finite subset M from which ⊥ can be derived,
and on the calculus’s soundness to conclude that M is unsatisfiable.

Our compactness result is meaningful only if the locale assumptions are consistent. In the
next section, we will exhibit two sound counterexample-reducing calculi that can be used to
instantiate the locale and retrieve an unconditional compactness theorem.

4 Ground Resolution

A useful strategy for establishing properties of first-order calculi is to initially restrict our
attention to ground calculi and then to lift the results to first-order formulas containing
terms with variables. Accordingly, the chapter’s Sect. 3 presents two ground calculi: a
simple binary resolution calculus and an ordered n-ary resolution calculus with literal selec-
tion. Both consist of a single resolution rule, with built-in positive factorization. Most of
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Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 1175

the explanations and proofs concern the simpler calculus. To avoid duplication, we fac-
tored out the candidate model construction (Ground_Resolution_Model.thy). We
then defined the two calculi and proved that they are sound and reduce counterexam-
ples (Unordered_Ground_Resolution.thy, Ordered_Ground_Resolution
.thy).

4.1 Candidate Models

Refutational completeness is provedby exhibiting amodel for any saturated clause set N �� ⊥.
The model is constructed incrementally, one clause C ∈ N at a time, starting with an empty
Herbrand interpretation, in which all atoms are false. The idea appears to have originated
with Brand [14] and Zhang and Kapur [52].

Bachmair andGanzinger introduce two operators to build the candidatemodel: IC denotes
the current interpretation before consideringC , and εC denotes the set of (zero or one) atoms
added, or produced, to ensure that C is satisfied. Bachmair and Ganzinger define IC and εC
as follows (Definition 3.14):

Take IC to be the set
⋃

C>D εD . Furthermore, if C is a clause that

(i) is contained in N ;
(ii) is of the form C ′ ∨ A, where A is the maximal literal in C ;
(iii) is false in IC ; and
(iv) nothing is selected in C ;

then εC = {A}; otherwise, εC is the empty set.

We take the liberty to adapt quotes from the chapter to our notations.
Formally, the candidate model construction is parameterized by a literal selection function

S. It can be ignored by taking S := λC . {}.
locale ground_resolution_with_selection =
fixes S :: ′a clause ⇒ ′a clause
assumes S C ⊆ C and L ∈ S C ��⇒ is_neg L

Inside the locale, we fixed a clause set N , for which we want to derive a model. Then we
defined two operators corresponding to εC and IC :

function production :: ′a clause ⇒ ′a set where
production C = {A | C ∈ N ∧ C �= {} ∧ Max C = Pos A

∧ (⋃
D<C production D

)
� C ∧ S C = {}}

definition interp :: ′a clause ⇒ ′a set where
interp C = ⋃

D<C production D

To ensuremonotonicity of the construction, any produced atommust bemaximal in its clause.
Moreover, clauses that produce an atom, called productive clauses, may not contain selected
literals. In the chapter, εC and IC are expressed in terms of each other. We simplified the
definition by inlining IC in εC , so that only εC is recursive. Since the recursive calls operate on
clauses D that are smaller with respect to awell-founded order, the definition is accepted [22].
Once the operators were defined, we could inline interp’s definition in production’s equation
to derive the intended mutually recursive specification as a lemma. The I C and IN operators
are defined as abbreviations:

Interp C = interp C ∪ production C INTERP = ⋃
C∈N production C
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1176 A. Schlichtkrull et al.

We then proved a host of lemmas about these concepts. Bachmair and Ganzinger’s
Lemma 3.4 states the following:

Let C and D be clauses such that D ≥ C . If C is true in ID or I D then C is also true
in IN and in all interpretations ID′ and ID

′
, where D′ ≥ D.

This amounts to six monotonicity properties, including

lemma Interp_imp_interp: C ≤ D ��⇒ D < D′ ��⇒ Interp D � C ��⇒ interp D′ � C
lemma Interp_imp_Interp: C ≤ D ��⇒ D ≤ D′ ��⇒ Interp D � C ��⇒ Interp D′ � C
lemma Interp_imp_INTERP: C ≤ D ��⇒ Interp D � C ��⇒ INTERP � C

In the chapter, the first property is wrongly stated with D ≤ D′ instead of D < D′, admitting
the counterexample N = {{A}} and C = D = D′ = {A}.

Lemma 3.3, whose proof depends on a monotonicity property, is better proved after
Lemma 3.4:

lemma productive_imp_INTERP: production C �= {} ��⇒ INTERP � C

A more serious oddity is Lemma 3.7. Using our notations, we can state it as

D ∈ N ��⇒ C �= D ��⇒ (∀D′ ≤ D. Interp D′ � C
) ��⇒ interp D � D′

However, the last occurrence of D′ is clearly wrong—the context suggests C instead. Even
after this amendment, we have a counterexample, corresponding to a gap in the proof: D = {},
C = {Pos A}, and N = {D,C}. Since this “lemma” is not used, we simply ignored it.

4.2 Unordered Resolution

The unordered ground resolution calculus consists of a single binary inference rule, with the
side premise C ∨ A ∨ · · · ∨ A, the main premise ¬ A ∨ D, and the conclusion C ∨ D:

C ∨ A ∨ · · · ∨ A ¬ A ∨ D

C ∨ D

Formally, this rule is captured by a predicate:

inductive unord_resolve :: ′a clause ⇒ ′a clause ⇒ ′a clause ⇒ bool where
unord_resolve (C � replicate (n + 1) (Pos A)) ({Neg A} � D) (C � D)

Soundness was trivial to prove:

lemma unord_resolve_sound: unord_resolve C D E ��⇒ I � C ��⇒ I � D ��⇒ I � E
using unord_resolve.cases by fastforce

To prove completeness, it sufficed to show that the calculus reduces counterexamples. This
corresponds to Bachmair and Ganzinger’s Theorem 3.8:

Let N be a set of clauses not containing the empty clause andC be aminimal counterex-
ample in N for IN . Then there exists an inference by binary resolution with factoring
from C such that

(i) its conclusion is a counterexample for IN and is smaller than C ; and
(ii) C is its main premise and the side premise is a productive clause.

In our formalization, the conclusion is strengthened slightly to match the locale counterex_
reducing_inference_system’s assumption:
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Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 1177

theorem unord_resolve_counterex_reducing:
assumes {} /∈ N and C ∈ N and INTERP N � C and

∀D ∈ N . INTERP N � D ��⇒ C ≤ D
obtains D E where
D ∈ N and INTERP N � D and production N D �= {} and
unord_resolve D C E and INTERP N � E and E < C

The arguments N to INTERP and production are necessary because the theorem is located
outside the block in which N was fixed. This explicit dependency makes it possible to
instantiate the locale’s I_of :: ′a clause set ⇒ ′a set parameter with INTERP.

By instantiating the sound_inference_system and counterex_reducing_inference_system
locales, we obtained refutational completeness (Theorem 3.9 and Corollary 3.10) and com-
pactness of clausal logic (Theorem 3.12).

4.3 Ordered Resolution with Selection

Ordered ground resolution consists of a single rule, ord_resolve. Like unord_resolve, it is
sound and counterexample-reducing (Theorem3.15).Moreover, it is reductive (Lemma3.13):
The conclusion is always smaller than the main premise. The rule is given in the chapter’s
Figure 2 as

C1 ∨ A1 ∨ · · · ∨ A1 · · · Cn ∨ An ∨ · · · ∨ An ¬ A1 ∨ · · · ∨ ¬ An ∨ D

C1 ∨ · · · ∨ Cn ∨ D

where

(i) either the subclause¬A1∨· · ·∨¬An , is selected by S in D, or else S(D) is empty,
n = 1, and A1 is maximal with respect to D,

(ii) each atom Ai is strictly maximal with respect to Ci , and
(iii) no clause Ci ∨ Ai ∨ · · · ∨ Ai contains a selected atom.

The side conditions help prune the search space and make the rule reductive.
The rule’s (n + 1)-ary nature constitutes a substantial complication. The ellipsis notation

hides most of the complexity in the informal proof, but in Isabelle, even stating the rule
is tricky, let alone reasoning about it. We represented the n side premises by three parallel
lists of length n: CAs gives the entire clauses, whereas Cs and As store the Ci and the
Ai = Ai ∨ · · · ∨ Ai parts separately. In addition, As is the list [A1, . . . , An]. The following
inductive definition captures the rule formally:

inductive
ord_resolve ::
′a clause list ⇒ ′a clause ⇒ ′a multiset list ⇒ ′a list ⇒ ′a clause ⇒ bool

where
|CAs| = n ��⇒ |Cs| = n ��⇒ |As| = n ��⇒ |As| = n ��⇒ n �= 0 ��⇒
(∀i < n. CAs ! i = Cs ! i � Pos ‘As ! i) ��⇒ (∀i < n. As ! i �= {}) ��⇒
(∀i < n. ∀A ∈ As ! i . A = As ! i) ��⇒ eligible As (D � Neg ‘mset As) ��⇒
(∀i < n. strict_max_in (As ! i) (Cs ! i)) ��⇒ (∀i < n. S (CAs ! i) = {}) ��⇒
ord_resolve CAs (D � Neg ‘mset As) As As ((

⋃
mset Cs) � D)

The xs ! i operator returns the (i +1)st element of xs, andmset converts a list to a multiset.
Before settling on the above formulation, we tried storing the n premises in a multiset, since
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their order is irrelevant. However, due to the permutative nature of multisets, there can be no
such things as “parallel multisets”; to keep the dependencies between the clauses Ci and the
atoms Ai , we must keep them in a single multiset of tuples, which is very unwieldy.

An early version of the formalization represented each Ai ∨ · · · ∨ Ai as a value of type′a × nat—the nat representing the number of times Ai is repeated. With this approach, the
definition of ord_resolve did not need to state the equality of the atoms in each As ! i . On
the other hand, the approach does not work on the first-order level, where atoms should be
unifiable instead of equal.

Formalization revealed an error and a fewambiguities in the rule’s statement. References to
S(D) in the side conditions should have been toS(¬ A1∨· · ·∨¬ An∨D). In our formalization,
this is captured by the eligible As (D � Neg ‘mset As) premise that corresponds to (i) from
the original rule, where eligible is defined by

eligible As DA ⇐⇒
S DA = Neg ‘mset As ∨ (S DA = {} ∧ |As| = 1 ∧ As ! 0 = Max (atms_of DA))

The ambiguities are discussed in Appendix A.
Soundness is a good sanity check for our definition:

lemma ord_resolve_sound:
ord_resolve CAs DA As As E ��⇒ I � mset CAs ��⇒ I � DA ��⇒ I � E

The proof is by case distinction: Either the interpretation I contains all atoms Ai , in which
case the D subclause of the main premise¬ A1 ∨· · ·∨¬ An ∨D must be true, or there exists
an index i such that Ai /∈ I , in which case the corresponding Ci must be true. In both cases,
the conclusion C1 ∨ · · · ∨ Cn ∨ D is true.

5 Theorem Proving Processes

In their Sect. 4, Bachmair and Ganzinger switch from a static to a dynamic view of saturation:
from clause sets closed under inferences to theorem proving processes that start with a clause
set N0 and keep deriving new clauses until ⊥ is generated or no inferences are possible.
Proving processes support an important optimization: Redundant clauses can be deleted at
any point from the clause set, and redundant inferences need not be performed at all.

A derivation performed by a proving process is a possibly infinite sequence N0 �
N1 � N2 � · · · , where � relates clause sets (Proving_Process.thy). In Isabelle,
such sequences are captured by lazy lists, a codatatype [8] generated by LNil :: ′a llist and
LCons :: ′a ⇒ ′a llist ⇒ ′a llist, and equipped with lhd (“head”) and ltl (“tail”) selectors
that extract LCons’s arguments. Unlike datatypes, codatatypes allow infinite values—e.g.,
LCons 0 (LCons 1 (LCons 2 . . .)). The coinductive predicate chain checks that its argument
is a nonempty lazy list whose pairs of consecutive elements are related by a given binary
predicate R:

coinductive chain :: (′a ⇒ ′a ⇒ bool) ⇒ ′a llist ⇒ bool where
chain R (LCons x LNil)

| chain R xs ��⇒ R x (lhd xs) ��⇒ chain R (LCons x xs)

A derivation is a lazy list Ns of clause sets satisfying the chain predicate with R = �.
Derivations depend on a redundancy criterion presented as two functions, RF and RI, that
specify redundant clauses and redundant inferences, respectively:
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locale redundancy_criterion = inference_system +
fixes
RF :: ′a clause set ⇒ ′a clause set and
RI :: ′a clause set ⇒ ′a inference set

assumes
RI N ⊆ � and
N ⊆ N ′ ��⇒ RF N ⊆ RF N ′ and
N ⊆ N ′ ��⇒ RI N ⊆ RI N ′ and
N ′ ⊆ RF N ��⇒ RF N ⊆ RF (N \ N ′) and
N ′ ⊆ RF N ��⇒ RI N ⊆ RI (N \ N ′) and
sat (N \ RF N ) ��⇒ sat N

By definition, a transition from M to N is possible if the only new clauses added are conclu-
sions of inferences from M and any deleted clauses would be redundant in N :

inductive � :: ′a clause set ⇒ ′a clause set ⇒ bool where
N \ M ⊆ concl_of ‘ infers_from M ��⇒ M \ N ⊆ RF N ��⇒ M � N

This rule combines deduction (the addition of inferred clauses) and deletion (the removal of
redundant clauses). The chapter distinguishes the two operations:

Deduction: N � N , M if M ⊆ concl_of ‘ infers_from N
Deletion: N , M � N if M ⊆ RF N

This is problematic, because it is sometimes necessary to perform both deduction and deletion
in a single transition, as we will see in Sect. 7.

A key concept to connect static and dynamic completeness is that of the set of persistent
clauses, or limit of a sequence of clause sets: N∞ = ⋃

i
⋂

j≥i Nj . These are the clauses that
belong to all clause sets except for at most a finite prefix of the sequence Ni . We also needed
the supremum of a sequence,

⋃
i Ni , and of a bounded prefix,

⋃ j
i=0 Ni . We introduced these

functions (Lazy_List_Liminf.thy):

definition Liminf :: ′a llist ⇒ ′a where
Liminf xs = ⋃

i<|xs|
⋂

j :i≤ j<|xs| xs ! j
definition Sup :: ′a llist ⇒ ′a where
Sup xs = ⋃

i<|xs| xs ! i
definition Sup_upto :: ′a llist ⇒ nat ⇒ ′a where
Sup_upto xs j = ⋃

i :i<|xs|∧i≤ j xs ! i
Although codatatypes open the door to coinductive methods, we followed the chapter’s

index-based approach whenever possible. When interpreting the expression
⋃

i
⋂

j≥i Nj for
the case of a finite sequence of length n, it is crucial to use the right upper bounds, namely
i, j < n. For j , it is clear that ‘< n’ is needed to keep Nj ’s index within bounds. For i , the
danger is more subtle: If i ≥ n, then

⋂
j : i≤ j<n Nj collapses to the trivial infimum

⋂
j∈{} Nj ,

i.e., the set of all clauses.
Lemma 4.2 connects redundant clauses and inferences at the limit to those of the supre-

mum, and the satisfiability of the limit to that of the initial clause set. Formally:

lemma Rf_limit_Sup: chain (�) Ns ��⇒ RF (Liminf Ns) = RF (Sup Ns)
lemma Ri_limit_Sup: chain (�) Ns ��⇒ RI (Liminf Ns) = RI (Sup Ns)
lemma sat_limit_iff : chain (�) Ns ��⇒ (

sat (Liminf Ns) ⇐⇒ sat (lhd Ns)
)

The proof of the last lemma relies on

123



1180 A. Schlichtkrull et al.

lemma deriv_sat_preserving: chain (�) Ns ��⇒ sat (lhd Ns) ��⇒ sat (Sup Ns)

In the chapter, this property follows “by the soundness of the inference system � and
the compactness of clausal logic,” contradicting the claim that “we will only consider
consistency-preserving inference systems” [4, Sect. 2.4] and not sound ones. Thanks to
Isabelle, we now know that soundness is unnecessary. By compactness, it suffices to show
that all finite subsetsD of

⋃
i Ni are satisfiable. By finiteness ofD, theremust exist an index k

such thatD ⊆ ⋃k
i=0 Ni .We perform an induction on k. The base case is trivial. For the induc-

tion step, if k is beyond the end of the list, then
⋃k

i=0 Ni = ⋃k−1
i=0 Ni and we can apply the

induction hypothesis directly. Otherwise, we have that the set Sup_upto Ns (k − 1) ∪
concl_of ‘ infers_from (Sup_upto Ns (k − 1)) is satisfiable by the induction hypothesis
and satisfiability preservation of � inferences. Hence, Sup_upto Ns (k − 1) ∪ Ns ! k, i.e.,
Sup_upto Ns k, is satisfiable, as desired.

Next, we formally showed that the limit is saturated, under some assumptions and for a
relaxed notion of saturation. A clause set N is saturated up to redundancy if all inferences
from nonredundant clauses in N are redundant:

definition saturated_upto :: ′a clause set ⇒ bool where
saturated_upto N ⇐⇒ infers_from (N \ RF N ) ⊆ RI N

The limit is saturated for fair derivations—derivations in which no inferences from nonre-
dundant persisting clauses are delayed indefinitely:

definition fair_clss_seq :: ′a clause set llist ⇒ bool where
fair_clss_seq Ns ⇐⇒ let N ′ = Liminf Ns \ RF (Liminf Ns) in
concl_of ‘ infers_from N ′ \ RI N ′ ⊆ Sup Ns ∪ RF (Sup Ns)

The criterion must also be effective, which is expressed by a locale:

locale effective_redundancy_criterion = redundancy_criterion +
assumes γ ∈ � ��⇒ concl_of γ ∈ N ∪ RF N ��⇒ γ ∈ RI N

In a locale that combines sat_preserving_inference_system and effective_redundancy_
criterion, we have Theorem 4.3:

theorem fair_derive_saturated_upto:
chain (�) Ns ��⇒ fair_clss_seq Ns ��⇒ saturated_upto (Liminf Ns)

It is easy to show that the trivial criterion defined by RF N = {} and RI N = {γ ∈ � |
concl_of γ ∈ N } satisfies the requirements on effective_redundancy_criterion. A more
useful instance is the standard redundancy criterion, which depends on a counterexample-
reducing inference system � (Standard_Redundancy.thy):

definition RF :: ′a clause set ⇒ ′a clause set where
RF N = {C | ∃D ⊆ N . (∀I . I � D ��⇒ I � C) ∧ (∀D ∈ D. D < C)}

definition RI :: ′a clause set ⇒ ′a inference set where
RI N = {γ ∈ � | ∃D ⊆ N . (∀I . I � D � side_prems_of γ ��⇒ I � concl_of γ ) ∧

(∀D ∈ D. D < main_prem_of γ )}
Standard redundancy qualifies as an effective_redundancy_criterion. In the chapter, this is
stated as Theorems 4.7 and 4.8, which depend on two auxiliary properties, Lemmas 4.5 and
4.6. The main result, Theorem 4.9, is that counterexample-reducing calculi are refutationally
complete under the application of standard redundancy:

theorem saturated_upto_complete: saturated_upto N ��⇒ (¬ sat N ⇐⇒ {} ∈ N )
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The informal proof of Lemma 4.6 applies Lemma 4.5 in a seemingly impossible way, con-
fusing redundant clauses and redundant inferences and exploiting properties that appear only
in the proof of Lemma 4.5. Our solution is to generalize the core argument into the following
lemma and apply it to prove both Lemmas 4.5 and 4.6:

lemma wlog_non_Rf :
(∃D ⊆ N . (∀I . I � D � C ��⇒ I � E) ∧ (∀D′∈ D. D′ < D)) ��⇒
∃D ⊆ N \ RF N . (∀I . I � D � C ��⇒ I � E) ∧ (∀D′∈ D. D′ < D)

Incidentally, the informal proof of Theorem 4.9 also needlessly invokes Lemma 4.5.
Finally, given a redundancy criterion (RF,RI) for �, its standard extension for �′ ⊇ �

is (RF,R′
I), whereR′

I N = RI N ∪ (�′ \�) (Proving_Process.thy). The standard
extension is itself a redundancy criterion and it preserves effectiveness, saturation up to
redundancy, and fairness. In Isabelle, this can be expressed outside the locale blocks by using
the locale predicates—explicit predicates named after the locales and parameterized by the
locale arguments:

lemma standard_redundancy_criterion_extension:
� ⊆ �′ ��⇒ redundancy_criterion � RF RI ��⇒ redundancy_criterion �′ RF R′

I
lemma standard_redundancy_criterion_extension_effective:

� ⊆ �′ ��⇒ effective_redundancy_criterion � RF RI ��⇒
effective_redundancy_criterion �′ RF R′

I
lemma standard_redundancy_criterion_extension_saturated_upto_iff :

� ⊆ �′ ��⇒ redundancy_criterion � RF RI ��⇒
(redundancy_criterion.saturated_upto � RF RI N ⇐⇒
redundancy_criterion.saturated_upto �′ RF R′

I N )

lemma standard_redundancy_criterion_extension_fair_iff :
� ⊆ �′ ��⇒ effective_redundancy_criterion � RF RI ��⇒
(effective_redundancy_criterion.fair_clss_seq �′ RF R′

I Ns ⇐⇒
effective_redundancy_criterion.fair_clss_seq � RF RI Ns)

6 First-Order Resolution

The chapter’s Sect. 4.3 presents a first-order version of the ordered resolution rule and a
first-order prover, RP, based on that rule. The first step towards lifting the completeness
of ground resolution is to show that we can lift individual ground resolution inferences
(FO_Ordered_Resolution.thy).

6.1 Inference Rule

First-order ordered resolution consists of a single rule. In the chapter, ground and first-order
resolution are both called O�

S . In the formalization, we also let the rules share the same name,
but since they exist in separate locales, the system generates qualified names that make this
unambiguous: Isabelle generates the nameground_resolution_with_selection.ord_resolve,
which refers to ground resolution, and FO_resolution.ordered_resolve, which refers to first-
order resolution. If the user is in doubt at any time, the system can always tell which one is
meant.
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The rule is given in the chapter’s Figure 4 as follows:

C1 ∨ A11 ∨ · · · ∨ A1k1 · · · Cn ∨ A1n ∨ · · · ∨ Ankn ¬ A1 ∨ · · · ∨ ¬ An ∨ D

C1 · σ ∨ · · · ∨ Cn · σ ∨ D · σ

where σ is a most general simultaneous solution of all unification problems Ai1 =
· · · = Aiki = Ai , where 1 ≤ i ≤ n, and

(i) either A1, . . . , An are selected in D, or else nothing is selected in D, n = 1, and
A1 · σ is maximal in D · σ ,

(ii) each atom Aii · σ is strictly maximal with respect to Ci · σ , and
(iii) no clause Ci ∨ Ai1 ∨ · · · ∨ Aiki contains a selected atom.

The Isabelle representation of this rule is similar to that of its ground counterpart, gener-
alized to apply σ . We corrected a few typos listed in Appendix A.

inductive
ord_resolve ::
′a clause list ⇒ ′a clause ⇒ ′a multiset list ⇒ ′a list ⇒ ′s ⇒ ′a clause ⇒ bool

where
|CAs| = n ��⇒ |Cs| = n ��⇒ |As| = n ��⇒ |As| = n ��⇒ n �= 0 ��⇒
(∀i < n. CAs ! i = Cs ! i � Pos ‘As ! i) ��⇒ (∀i < n. As ! i �= {}) ��⇒
Some σ = mgu (set_mset ‘ set (map2 add_mset As As)) ��⇒
eligible σ As (D � Neg ‘mset As) ��⇒
(∀i < n. strict_max_in (As ! i · σ) (Cs ! i · σ)) ��⇒ (∀i < n. S (CAs ! i) = {}) ��⇒
ord_resolve CAs (D � Neg ‘mset As) As As σ (((

⋃
mset Cs) � D) · σ)

Our MGU σ is uniquely determined by the unification problems Ai1 = · · · = Aiki = Ai ,
which ensures that each concrete set of premises gives rise to exactly one conclusion.

The rule as stated is incomplete; for example, the clauses p(x) and ¬p(f(x)) cannot
be resolved because x and f(x) are not unifiable. Such issues arise when the same variable
names appear in different premises. In the chapter, the authors circumvent this issue by stating,
“We also implicitly assume that different premises and the conclusion have no variables in
common; variables are renamed if necessary.” For the formalization, we first considered
enforcing the invariant that all derived clauses use mutually disjoint variables, but this does
not help when a clause is repeated in an inference’s premises. An example is the inference

p(x) p(y) ¬p(a) ∨ ¬p(b)

⊥
where p(x) and p(y) are the same clause up to renaming. Instead, we rely on a predi-
cate ord_resolve_rename, based on ord_resolve, that standardizes the premises apart. The
renaming is performed by a function called renamings_apart :: ′a clause list ⇒ ′s list that,
given a list of clauses, returns a list of corresponding substitutions to apply. This function is
part of our abstract interface for terms and substitutions (Sect. 2) and is implemented using
IsaFoR.

As in the ground case, it is important to establish soundness. We formally proved that any
ground instance of the rule ord_resolve is sound:

lemma ord_resolve_ground_inst_sound:
ord_resolve CAs DA As As σ E ��⇒ I � mset CAs · σ · η ��⇒ I � DA · σ · η ��⇒
is_ground_subst η ��⇒ I � E · η
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Similarly, ground instances of ord_resolve_rename are sound. It then follows that the rules
ord_resolve and ord_resolve_rename are sound:

lemma ord_resolve_rename_sound:
ord_resolve_rename CAs DA As As σ E ��⇒
(∀σ. is_ground_subst σ ��⇒ I � (mset CAs + {DA}) · σ) ��⇒
is_ground_subst η ��⇒ I � E · η

6.2 Lifting Lemma

To lift ground inferences to the first-order level, we consider a set of clauses M and introduce
an adjusted version SM of the selection function S.

definition SM :: ′a literal multiset ⇒ ′a literal multiset where
SM C =
(if C ∈ grounding_of M then

(SOME C ′. ∃D ∈ M . ∃σ. C = D · σ ∧ C ′ = S D · σ ∧ is_ground_subst σ)

else
S C)

Here, SOME is Hilbert’s choice operator, which picks an arbitrary element satisfying the
condition if one exists, and a completely arbitrary element otherwise. For the above definition,
we could prove that an element satisfying the condition always exists. The new selection
function depends on both S and M and works in such a way that any ground instance inherits
the selection of at least one of the nonground clauses of which it is an instance:

lemma S_M_grounding_of _clss:
C ∈ grounding_of M ��⇒
∃D ∈ M . ∃σ. C = D · σ ∧ SM C = S D · σ ∧ is_ground_subst σ

where grounding_of M is the set of ground instances of a set of clauses M .

The lifting lemma, Lemma 4.12, states that whenever there exists a ground inference from
clauses belonging to grounding_of M , there exists a (possibly) more general inference from
clauses belonging to M :

Let M be a set of clauses and K = grounding_of M . If

C1 · · · Cn C0

C

is an inference in O�
SM

(K ) then there exist clauses C ′
i in M , a clause C ′, and a ground

substitution σ such that

C ′
1 · · · C ′

n C ′
0

C ′

is an inference in O�
S (M), Ci = C ′

i · σ , and C = C ′ · σ .

In the formalization, the side premises are stored in a list CAs, the main premise is called
DA, and the conclusion is called E .

lemma ord_resolve_rename_lifting:
(∀ρ C . is_renaming ρ ��⇒ S (C · ρ) = S C · ρ) ��⇒
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ord_resolve SM CAs DA As As σ E ��⇒
{DA} ∪ set CAs ⊆ grounding_of M ��⇒
∃ηs η θ CAs0 DA0 As0 As0 E0 τ.

ord_resolve_rename S CAs0 DA0 As0 As0 τ E0 ∧
CAs0 · ηs = CAs ∧ DA0 · η = DA ∧ E0 · θ = E ∧ {DA0} ∪ set CAs0 ⊆ M

The informal proof of this lemma consists of two sentences spanning four lines of text. In
Isabelle, these two sentences translate to 250 lines and 400 lines, respectively, excluding
auxiliary lemmas. Our proof involves six steps:

1. Obtain a list of first-order clauses CAs0 and a first-order clause DA0 that belong to M
and that generalize CAs and DA with substitutions ηs and η, respectively.

2. Choose atoms As0 and As0 in the first-order clauses on which to resolve.
3. Standardize CAs0 and DA0 apart, yielding CAs′0 and DA′

0.
4. Obtain the MGU τ of the literals on which to resolve.
5. Show that ordered resolution on CAs′0 and DA′

0 with τ as MGU is applicable.
6. Show that the resulting resolvent E0 generalizes E with substitution θ .

In step 1, suitable clauses must be chosen so that S (CAs0 ! i) generalizes SM (CAs ! i), for
0 ≤ i < n, and S DA0 generalizes SM DA. By the definition of SM , this is always possible.
In step 2, we choose the literals to resolve upon in the first-order inference depending on
the selection on the ground inference. If some literals are selected in DA, we let As0 be the
selected literals in DA0, such that (As0 ! i) · η = As ! i for each i . Otherwise, As must be
a singleton list containing some atom A, and we let As0 be the singleton list consisting of
an arbitrary A0 ∈ DA0 such that A0 · η = A. Step 3 may seem straightforward until one
realizes that renaming variables can in principle influence selection. To rule this out, our
lemma assumes stability under renaming: S (C · ρ) = S C · ρ for any renaming substitution
ρ and clause C . This requirement seems natural, but it is not mentioned in the chapter, and
it is easy to imagine implementations that would violate it.

The above choices allowed us to perform steps 4 to 6. In the chapter, the authors assume
that the obtained CAs0 and DA0 are standardized apart from each other as well as their
conclusion E0. This means that they can obtain a single ground substitution that connects
CAs0, DA0, E0 to CAs,DA, E . By contrast, we provide separate substitutions ηs, η, θ for the
different side premises, the main premise, and the conclusion.

7 A First-Order Prover

Modern resolution provers interleave inference steps with steps that delete or reduce (sim-
plify) clauses. In their Sect. 4.3, Bachmair and Ganzinger introduce the nondeterministic
abstract prover RP that works on triples of clause sets, similarly to the Otter and DIS-
COUNT loops [16,23]. RP’s core rule, called inference computation, performs first-order
ordered resolution as described above; the other rules delete or reduce clauses or move them
between clause sets. We formalized RP and proved it complete assuming a fair strategy
(FO_Ordered_Resolution_Prover.thy).
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7.1 Abstract First-Order Prover

The RP prover is a relation � on states of the form (N ,P,O), where N is the set of new
clauses, P is the set of processed clauses, and O is the set of old clauses. RP’s formal
definition closely follows the original one:

inductive � :: ′a state ⇒ ′a state ⇒ bool where
Neg A ∈ C ��⇒ Pos A ∈ C ��⇒ (N ∪ {C},P,O) � (N ,P,O)

| D ∈ P ∪ O ��⇒ subsumes D C ��⇒ (N ∪ {C},P,O) � (N ,P,O)

| D ∈ N ��⇒ strictly_subsumes D C ��⇒ (N ,P ∪ {C},O) � (N ,P,O)

| D ∈ N ��⇒ strictly_subsumes D C ��⇒ (N ,P,O ∪ {C}) � (N ,P,O)

| D ∈ P ∪ O ��⇒ reduces D C L ��⇒ (N ∪ {C � {L}},P,O) � (N ∪ {C},P,O)

| D ∈ N ��⇒ reduces D C L ��⇒ (N ,P ∪ {C � {L}},O) � (N ,P ∪ {C},O)

| D ∈ N ��⇒ reduces D C L ��⇒ (N ,P,O ∪ {C � {L}}) � (N ,P ∪ {C},O)

| (N ∪ {C},P,O) � (N ,P ∪ {C},O)

| ({},P ∪ {C},O) � (concl_of ‘ infers_between O C,P,O ∪ {C})
The rules correspond, respectively, to tautology deletion, forward subsumption, backward
subsumption in P and O, forward reduction, backward reduction in P and O, clause pro-
cessing, and inference computation.

Initially, N consists of the problem clauses, and the other two sets are empty. Clauses in
N are reduced using P ∪O, or even deleted if they are tautological or subsumed by P ∪O.
Conversely, N can be used for reducing or subsuming clauses in P ∪O. Clauses eventually
move fromN toP , one at a time. As soon asN is empty, a clause fromP is selected to move
toO. Then all possible resolution inferences between this given clause and the clauses inO
are computed and put in N, closing the loop. The subsumption and reduction rules depend
on the following predicates:

subsumes D C ⇐⇒ ∃σ. D · σ ⊆ C

strictly_subsumes D C ⇐⇒ subsumes D C ∧ ¬ subsumes C D

reduces D C L ⇐⇒ ∃D′ L ′ σ. D = D′ � {L ′} ∧ − L = L ′ · σ ∧ D′ · σ ⊆ C

The definition of the set infers_between O C , on which inference computation depends, is
more subtle. In the chapter, the set of inferences between C and O consists of all inferences
from O ∪ {C} that have C as exactly one of their premises. This, however, leads to an
incomplete prover, because it ignores inferences that needmultiple copies ofC . For example,
assuming a maximal selection function (one that always returns all negative literals), the
resolution inference

p p ¬p ∨ ¬p

⊥
is possible. Yet if the clause ¬p ∨ ¬p reaches O earlier than p, the inference would not
be performed. This counterexample requires ternary resolution, but there also exists a more
complicated one for binary resolution, where both premises are the same clause. Consider
the clause set containing

(1) q(a, c,b) (2) ¬q(x, y, z) ∨ q(y, z, x) (3) ¬q(b, a, c)

and an order > on atoms such that q(c,b, a) > q(b, a, c) > q(a, c,b). Inferences between
(1) and (2) or between (2) and (3) are impossible due to order restrictions. The only possible
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inference involves two copies of (2):

¬q(x, y, z) ∨ q(y, z, x) ¬q(x ′, y′, z′) ∨ q(y′, z′, x ′)
¬q(x, y, z) ∨ q(z, x, y)

From the conclusion, we derive ¬q(a, c,b) by (3) and ⊥ by (1).
This incompleteness is a severe flaw, although it is probably just an oversight. Fortunately,

it can easily be repaired by defining infers_between O C as {(C, D, E) ∈ � | C ∪ {D} ⊆
O ∪ {C} ∧ C ∈ C ∪ {D}}.

7.2 Projection to Theorem Proving Process

On the first-order level, a derivation can be expressed as a lazy list Ss of states, or as
three parallel lazy lists Ns, Ps, Os. The derivation’s limit state is defined as Liminf Ss =
(Liminf Ns, Liminf Ps, Liminf Os), where Liminf on the right-hand side is as in Sect. 5.

Bachmair and Ganzinger use the completeness of ground resolution to prove RP complete.
The first step is to show that first-order derivations can be projected down to theorem proving
processes on the ground level. This corresponds to Lemma 4.10:

If S � S ′, then grounding_of S �∗ grounding_of S ′, with � based on some exten-
sion of ordered resolution with selection function S and the standard redundancy
criterion (RF,RI).

This raises some questions: (1) Exactly which instance of the calculus are we extending?
(2) Which calculus extension should we use? (3) How can we repair the mismatch between
�∗ in the lemma statement and � where the lemma is invoked?

Regarding question (1), it is not clear which selection function to use. Is the function the
same S as in the definition of RP or is it arbitrary? It takes a close inspection of the proof
of Lemma 4.13, where Lemma 4.10 is invoked, to find out that the selection function used
there is SLiminf Os.

Regarding question (2), the phrase “some extension” is cryptic. It suggests an existential
reading, and from the context it would appear that a standard extension (Sect. 5) is meant.
However, neither the lemma’s proof nor the context where it is invoked supplies the desired
existential witness. A further subtlety is that the witness should be independent of S and S ′,
so that transitions can be joined to form a single theorem proving derivation. Our approach
is to let � be the standard extension for the proof system consisting of all sound derivations:
� = {(C, D, E) | ∀I . I � C ∪ {D} ��⇒ I � E}. This also eliminates the need for Bachmair
and Ganzinger’s subsumption resolution rule, a special calculus rule that is, from what we
understand, implicitly used in the proof of Lemma 4.10 for the subcases associated with RP’s
reduction rules.

As for question (3), when the lemma is invoked, it is used to join transitions together to
whole theorem proving processes. This requires the transitions to be of �, not �∗. The need
for �∗ instead of � arises because one of the cases requires a combination of deduction and
deletion, which Bachmair and Ganzinger model as separate transitions. By merging the two
transitions (Sect. 5), we avoided the issue altogether and could use� in the formal counterpart
of Lemma 4.10.

With these issues resolved, we could formalize Lemma 4.10. In Sect. 6, we established
that ground instances of the first-order resolution rule are sound. Since our ground proof
system consists of all sound rules, we could reuse that lemma in the inference computation
case. We proved Lemma 4.10 for single steps and extended it to entire derivations:
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lemma RP_ground_derive: S � S ′ ��⇒ grounding_of S � grounding_of S ′
lemma RP_ground_derive_chain:
chain (�) Ss ��⇒ chain (�) (lmap grounding_of Ss)

The lmap function applies its first argument elementwise to its second argument.

7.3 Fairness and Clause Movement

From a given initial state (N 0, {}, {}), many derivations are possible, reflecting RP’s non-
determinism. In some derivations, we could leave a crucial clause in N or P without ever
reducing it or moving it to O, and then fail to derive ⊥ even if N 0 is unsatisfiable. For this
reason, refutational completeness is guaranteed only for fair derivations. These are defined as
derivations such that Liminf Ns = Liminf Ps = {}, ensuring that no clause will stay forever
in N or P .

Fairness is expressed by the fair_state_seq predicate, which is distinct from the
fair_clss_seq predicate presented in Sect. 5. For the rest of this section, we fix a lazy list
of states Ss and its projections Ns, Ps, andOs, such that chain (�) Ss, fair_state_seq Ss,
and lhd Os = {}.

Thanks to fairness, any nonredundant clause C in Ss’s projection to the ground level
eventually ends up inO and stays there. This is proved as Lemma 4.11 in the chapter. Again
there are some difficulties: The vagueness concerning the selection function can be resolved
as for Lemma 4.10, but there is another, deeper flaw.

Bachmair and Ganzinger’s proof idea is as follows. By hypothesis, the ground clause C
must be an instance of a first-order clause D in Ns ! j ∪ Ps ! j ∪ Os ! j for some index j . If
C ∈ Ns ! j , then by nonredundancy of C , fairness of the derivation, and Lemma 4.10, there
must exist a clause D′ that generalizes C in Ps ! l ∪ Os ! l for some l > j . By a similar
argument, if D′ belongs to Ps ! l, it will be in Os ! l ′ for some l ′ > l, and finally in all Os ! k
with k ≥ l ′. The flaw is that backward subsumption can delete D′ without moving it to O.
The subsuming clause would then be a strictly more general version of D′ (and of the ground
clause C).

Our solution is to choose D, and consequently D′, such that it is minimal, with respect to
subsumption, among the clauses that generalizeC in the derivation. This works because strict
subsumption is well founded—which we also proved, by reduction to a well-foundedness
result about the strict generalization relation on first-order terms, included in IsaFoR [21,
Sect. 2]. By minimality, D′ cannot be deleted by backward subsumption. This line of rea-
soning allows us to prove Lemma 4.11, where O_of extracts the O component of a state:

lemma fair_imp_Liminf _minus_Rf _subset_ground_Liminf _state:
Gs = lmap grounding_of Ss ��⇒
Liminf Gs − RF (Liminf Gs) ⊆ grounding_of (O_of (Liminf Ss))

7.4 Soundness and Completeness

The chapter’s main result is Theorem 4.13. It states that, for fair derivations, the prover
is sound and complete. Soundness follows from Lemma 4.2 (sat_deriv_Liminf_iff ) and is
independent of whether the derivation is fair:

theorem RP_sound: {} ∈ clss_of (Liminf Sts) ��⇒ ¬ sat (grounding_of (lhd Sts))
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Once we had brought Lemmas 4.10, 4.11, and 4.12 into a suitable shape, completeness
was not difficult to formalize:

theorem RP_saturated_if_fair: saturated_upto (Liminf (lmap grounding_of Ss))
corollary RP_complete_if _fair:

¬ sat (grounding_of (lhd Ss)) ��⇒ {} ∈ O_of (Liminf Ss)
A crucial point that is not clear from the text is that we must always use the selection

function S on the first-order level and SLiminf Os on the ground level. Another subtle point
is the passage “Liminf Gs (and hence Liminf Ss) contains the empty clause.” Obviously, if
grounding_of (Liminf Ss) contains⊥, then Liminf Ssmust as well. However, the authors do
not explain the step from Liminf Gs, the limit of the grounding, togrounding_of (Liminf Ss),
the grounding of the limit. Fortunately, by Lemma 4.11, the latter contains all the nonre-
dundant clauses of the former, and ⊥ is nonredundant; hence the informal argument is
fundamentally correct. For the other direction, which is used in the soundness proof, we
proved that the former includes the latter.

The proof of Theorem 4.13 simultaneously talks about the prover architecture and the
lifting of inferences using an appropriate extension of the nonground selection function to
ground clauses. One might have expected a more modular proof in which redundancy is
first lifted to nonground clauses, then RP is proved to compute fair derivations according to
fair_clss_seq and the lifted redundancy criterion, and finally Theorem 4.3 establishes that
the limit of these derivations is saturated, which yields completeness immediately. Instead,
Theorem 4.3 is used in neither the informal nor the formal completeness proof and appears
to play a purely pedagogical role.

The reason why Bachmair and Ganzinger did not follow the modular approach is sub-
sumption. Deletion of subsumed clauses is crucial for the efficiency of any practically useful
saturation prover, but it is not covered by the usual lifting of redundancy to nonground
clauses, according to which a clause is redundant with respect to a clause set N if all its
ground instances are entailed by strictly smaller ground instances of clauses in N . For sub-
sumed clauses, we can guarantee only that the nonstrict ordering relation holds. Thus, the
sequences of nonground clause sets computed by RP are not derivations with respect to the
lifted redundancy criterion, and Theorem 4.3 is not applicable. A redundancy lifting that
permits a modular proof independently of the prover architecture has very recently been
investigated by Waldmann et al. [47].

8 Discussion

Bachmair and Ganzinger cover a lot of ground in a few pages.We found much of the material
straightforward to formalize: It took us about two weeks to reach their Sect. 4.3, which
defines RP and proves it refutationally complete. By contrast, we needed months to fully
understand and formalize that section. While the chapter successfully conveys the key ideas
at the propositional level, the lack of rigor makes it difficult to develop a deep understanding
of ordered resolution on first-order clauses.

There are several reasons why Sect. 4.3 did not lend itself easily to a formalization.
The proofs often depend on lemmas and theorems from previous sections without explicitly
mentioning them. The lemmas and proofs do not quite fit together. And while the general
idea of the proofs stands up, they have many confusing flaws that must be repaired. Our
methodology involved the following steps: (1) rewrite the informal proofs to a handwritten
pseudo-Isabelle; (2) fill in the gaps, emphasizing which lemmas are used where; (3) turn the
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pseudo-Isabelle into real Isabelle, but with sorry placeholders for the proofs; and (4) replace
the sorrys with proofs. Progress was not always linear. As we worked on each step, more
than once we discovered an earlier mistake.

The formalization helps us answer questions such as, “Is effectiveness of ordered res-
olution (Lemma 3.13) actually needed, and if so, where?” (Answer: In the proof of
Theorem 3.15.) It also allows us to track definitions and hypotheses precisely, so that we
always know the scope and meaning of every definition, lemma, or theorem. If a hypothesis
appears too strong or superfluous, we can try to rephrase or eliminate it; the proof assistant
tells us where the proof breaks. If a definition is changed, the proof assistant again tells
us where proofs break. In the best case, they do not break at all since the proof assistant’s
automation is flexible enough. This happened, for example, when we changed the definition
of � to combine deduction and deletion.

Starting from RP, we have refined it to obtain a functional implementation [37]. We could
further refine it to an efficient imperative implementation following the lines of Fleury,
Blanchette, and Lammich’s verified SAT solver with the two-watched-literals optimiza-
tion [18]. However, this would probably involve a huge amount of work. To increase provers’
trustworthiness, amore practical approach is to have themgenerate detailed proofs that record
all inferences leading to the empty clause [35,42]. Such output can be independently checked
by verified programs or reconstructed using a proof assistant’s inference kernel. This is the
approach implemented in Sledgehammer [12], which integrates automatic provers in Isabelle.
Formalized metatheory could in principle be used to deduce a formula’s satisfiability from a
finite saturation.

We found Isabelle/HOL eminently suitable to this kind of formalizationwork. Its logic bal-
ances expressiveness and ease of automation. We nowhere felt the need for dependent types.
We benefited from many features of the system, including codatatypes [8], Isabelle/jEdit
[51], the Isar proof language [50], locales [5], and Sledgehammer [12]. It is perhaps indica-
tive of the maturity of theorem proving technology that most of the issues we encountered
were unrelated to Isabelle. The main challenge was to understand the informal proof well
enough to design suitable locale hierarchies and state the definitions and lemmas precisely,
and correctly.

9 RelatedWork

Formalizing the metatheory of logic and deduction is an enticing proposition for many
researchers in interactive theorem proving. In this section, we briefly review some of the
main related work, without claim to exhaustiveness. Two recent, independent developments
are particularly pertinent.

Peltier [31] proved static refutational completeness of a variant of the superposition calcu-
lus in Isabelle/HOL. Since superposition generalizes ordered resolution, his result subsumes
our static completeness theorem. On the other hand, he did not formalize a prover or dynamic
completeness, nor did he attempt to develop general infrastructure. It would be interesting to
extend his formal development to obtain a verified superposition prover. We could also con-
sider calculus extensions such as polymorphism [15,48], type classes [48], andAVATAR[45].
Two significant differences betweenPeltier’swork andours is that he represents clauses as sets
instead ofmultisets (to exploit Isabelle’s better proof automation for sets) and that he relies, for
terms and unification, on an example theory file included in Isabelle (Unification.thy)
instead of IsaFoR.
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Hirokawa et al. [21] formalized, also in Isabelle/HOL, an abstract Knuth–Bendix comple-
tion procedure as well as ordered (unfailing) completion, a method developed by Bachmair,
Dershowitz, and Plaisted [1]. Superposition combines ordered resolution (to reason about
clauses) and ordered completion (to reason about equality). There are many similarities
between their formalization and ours, which is unsurprising given that both follow work by
Bachmair; for example, they need to reason about the limit of fair infinite sequences of sets
of equations and rewrite rules to establish completeness.

The literature contains many other formalized completeness proofs, mostly for inference
systems of theoretical interest. Early work was carried out in the 1980s and 1990s, notably
by Shankar [40] and Persson [32]. Some of our own efforts are also related: completeness
of first-order unordered resolution using semantic trees by Schlichtkrull [36]; completeness
of a Gentzen system following the Beth–Hintikka style and soundness of a cyclic proof
system for first-order logic with inductive definitions by Blanchette, Popescu, and Traytel
[13]; and completeness of a SAT solver based on CDCL (conflict-driven clause learning) by
Blanchette, Fleury, Lammich, and Weidenbach [10].

The formal Beth–Hintikka-style completeness proof mentioned above has a generic fla-
vor, abstracting over the inference system. Could it be used to prove completeness of the
ordered resolution calculus, or even of the RP prover? The central idea is to build a finitely
branching tree that encodes a systematic proof attempt. Given a fair strategy for applying
calculus rules, infinite branches correspond to countermodels. It should be possible to prove
ordered resolution complete using this approach, by storing clause sets N on the tree’s nodes.
Each node would have at most one child, corresponding to the new clause set after perform-
ing a deduction. Such degenerate trees would be isomorphic to derivations N0 � N1 � · · ·
represented by lazy lists. However, the requirement that inferences can always be postponed,
called persistence [13, Sect. 3.9], is not met for deletion steps based on a redundancy crite-
rion. Moreover, while the generic framework takes care of applying inferences fairly and of
employing König’s lemma to extract an infinite path from a failed proof attempt (which is,
incidentally, overkill for degenerate trees that have only one infinite path), it offers no help
in building a countermodel from an infinite path (i.e., in proving the chapter’s Theorem 3.9).

Very recently, Waldmann et al. [47] proposed a saturation framework that generalizes
Bachmair and Ganzinger’s framework. Its Isabelle/HOL mechanization, by Tourret [44],
could form the basis of a streamlined formal proof of RP’s completeness.

Beyond completeness, Gödel’s first incompleteness theorem has been formalized in
Nqthm by Shankar [41], in Coq by O’Connor [29], in HOL Light by Harrison (in unpub-
lished work), and in Isabelle/HOL by Paulson [30] and by Popescu and Traytel [34]. The
Isabelle formalizations also cover Gödel’s second incompleteness theorem. We refer to our
earlier papers [10,13,36] for further discussions of related work.

10 Conclusion

We presented a formal proof that captures the core of Bachmair and Ganzinger’s Handbook
chapter on resolution theorem proving. For all its idiosyncrasies, the chapter withstood the
test of formalization, oncewe had added self-inferences to the RP prover. Given that the text is
a basic building block of automated reasoning (as confirmed by its placement as Chapter 2),
we believe there is value in clarifying its mathematical content for the next generations of
researchers. We also hope that our work will be useful to the editors of a future revision of
the Handbook.
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Formalization of the metatheory of logical calculi is one of the many connections between
automatic and interactive theorem proving. We expect to see wider adoption of proof assis-
tants by researchers in automated reasoning, as a convenient way to develop metatheory.
By building formal libraries of standard results, we aim to make it easier to formalize state-
of-the-art research as it emerges. We also see potential uses of formal proofs in teaching
automated reasoning, inspired by the use of proof assistants in courses on the semantics of
programming languages [26,33].
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Appendix A: Errors and Imprecisions Discovered in the Chapter

In the chapter, we encountered several mathematical errors and imprecisions of various levels
of severity. We also found lemmas that were stated but not explicitly applied afterwards. For
reference, this appendix provides an exhaustive list of our findings. This list illustrates how
difficult it is to write paper proofs correctly, and reminds us that we cannot rely on reviewers
or second readers to catch all mistakes. We hope that our corrections will further increase
the chapter’s value to the research community.

Regarding the errors and imprecisions, we have ignored infelicities that are not mathe-
matical in nature, such as typos and LATEX macros gone wrong (e.g., “by the defn[candidate
model]candidate model for N” on page 34); for such errors, careful reading, not for-
malization, is the remedy. We have also ignored minor ambiguities if they can easily be
resolved by appealing to the context and the reader’s common sense (e.g., whether the clause
C ∨ A ∨ · · · ∨ A may contain zero occurrences of A).

– One of Lemma 3.4’s claims is that if clause C is true in I D , then C is also true in ID′,
where C � D � D′. This does not hold if C = D = D′ and C is productive. Similarly,
the first sentence of the proof is wrong if D = D′ and D is productive: “First, observe
that ID ⊆ I D ⊆ ID′ ⊆ ID

′ ⊆ IN , whenever D′ � D.”
– The last occurrence of D′ in the statement of Lemma 3.7 should be changed to C . In

addition, it is not clear whether the phrase “another clause C” implies that C �= D,
but the counterexample we gave in Sect. 4 works in both cases. Correspondingly, in the
proof, the case distinction is incomplete, as can be seen by specializing the proof for the
counterexample.

– In the chapter’s Figure 2, in Sect. 3, the selection function is wrongly applied: References
to S(D) should be changed to S(¬ A1 ∨ · · · ∨ ¬ An ∨ D). Moreover, in condition (iii),
it is not clear with respect to which clause the “selected atom” must be considered, the
two candidates being S(¬ A1 ∨ · · · ∨ ¬ An ∨ D) and S(Ci ∨ Ai ∨ · · · ∨ Ai ). We assume
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the latter is meant. Finally, phrases like “A1 is maximal with respect to D” (here and in
Figure 4) are slightly ambiguous, because it is unclear whether A1 denotes an atom or a
(positive) literal, and whether it must be maximal with respect to D’s atoms or literals.
From the context, we infer that an atom-with-atom comparison is meant.

– Soundness is required in the chapter’s Sect. 4.1, even though it is claimed in Sect. 2.4
that only consistency-preserving inference systems will be considered.

– In Sect. 4.1, it is claimed that “a fair derivation can be constructed by exhaustively
applying inferences to persisting formulas.” However, this construction is circular: The
notion of persisting formula (i.e., the formulas that belong to the limit) depends itself on
the derivation.

– In the proof of Theorem 4.3, the case where γ ∈ RI(N∞ \ RF(N∞)) is not covered.
– In Sect. 4.2, the phrase “side premises that are true in N” must be understood as meaning

that the side premises both belong to N and are true in IN .

– Lemma 4.5 states the basic properties of the redundant clause operatorRF (monotonicity
and independence). Lemma 4.6 states the corresponding properties of the redundant
inference operatorRI. As justification for Lemma 4.6, the authors tell us that “the proof
uses Lemma 4.5,” but redundant inferences are a more general concept than redundant
clauses, and we see no way to bridge the gap.

– Similarly, in the proof of Theorem 4.9, the application of Lemma 4.5 does not fit. What
is needed is a generalization of Lemma 4.6.

– In condition (ii) of Figure 4, Sect. 4.2, Aiiσ should be changed to Aijσ .
– In the nth side premise of Figure 4, Sect. 4.2, A1n should be changed to An1.
– In Figure 4, Sect. 4.2, the same mistakes as in Figure 2 occur about the application of the

selection function.
– Sect. 4.3 states “Subsumption defines a well-founded ordering on clauses.” A simple

counterexample is an infinite sequence repeating some clause. “Subsumption” should be
replaced by “proper subsumption.”

– In Lemma 4.10, it is not clear which selection function is used. When the lemma is
applied in the proofs of Lemma 4.11 and Theorem 4.13, it must be SO∞ .

– In Lemma 4.10, G(S) and G(S ′) are related by �∗, but � is needed in the proofs of
Lemma 4.11 and Lemma 4.13 since then derivations in RP, which are possibly infinite,
can be projected to theorem proving processes. However G(S) � G(S ′) does not hold
in one of the cases since a combination of deduction and deletion is required. A solution
is to change the definition of � to allow such combinations.

– In Lemma 4.10, it is not clear that the extension used should be the same between any
considered pair of states. Otherwise, the lemma cannot be used to project derivations in
RP to theorem proving processes.

– In Lemma 4.11, it is not clear which selection function is used. When the lemma is
applied in the proofs of Theorem 4.13, it must be SO∞ .

– A step in the proof of Lemma 4.11 considers a clause D ∈ Pl which has a nonredundant
instance C . It is claimed that when D is removed from P , another clause D′ with C
as instance appears in some O′

l . That, however, does not follow if D was removed by
backward subsumption. The problem can be resolved by choosing D as minimal, with
respect to subsumption, among the clauses that generalize C in the derivation. This can
be done since proper subsumption is well founded.

– In Lemma 4.11, a minor inconsistency is that the described first-order derivation is
indexed from 1 instead of 0.

– In the proof of Theorem 4.13, the conclusion of Lemma 4.11 is stated as N∞ \R(N∞) ⊆
O∞, but it should have been N∞ \R(N∞) ⊆ G(O∞). Furthermore, when Lemma 4.11
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was first stated, the conclusion was N∞ \ RF(N∞) ⊆ G(S∞). The two are by fairness
equivalent, but we find N∞ \ R(N∞) ⊆ G(O∞) more intuitive since it more clearly
expresses that all nonredundant clauses become old.

Chief among the factors that contribute to making the chapter hard to follow is that many
lemmas are stated (and usually proved) but not referenced later. We already mentioned the
unfortunate Lemma 3.7. Sect. 4 contains several other specimens:

– Theorem 4.3 (fair_derive_saturated_upto) states a completeness theorem for fair deriva-
tions. However, in Sect. 4.3, fairness is defined differently, and neither the text nor the
formalization applies this theorem.

– For the same reason, the property stated in the next-to-last sentence of Sect. 4.1 (standard_
redundancy_ criterion_ extension_fair_iff ), which lifts fairness with respect to (RF,RI)
to a standard extension (RF,R′

I), is not needed later.
– Lemma 4.2 (sat_deriv_Liminf_iff, Ri_limit_Sup, Rf_limit_Sup) is not referenced in

the text, but we need it (sat_deriv_Liminf_iff, Ri_limit_Sup) to prove Theorem 4.13
(fair_state_seq_complete). We also need it (Rf_limit_Sup) to prove Lemma 4.11
(fair_imp_Liminf_minus_Rf_subset_ground_Liminf_state).

– Lemma 4.6 (saturated_upto_complete_if ) is not referenced in the text, but we need it
to prove Lemma 4.10 (resolution_prover_ground_derivation), Lemma 4.11 (fair_imp_
Liminf_minus_Rf_subset_ground_Liminf_state), and Theorem 4.13 (fair_state_seq_
complete).

– Theorem 4.8 (Ri_effective) is not referenced in the text, but we need it to prove Theo-
rem 4.13 (fair_state_seq_complete).

– Theorem 4.9 (saturated_upto_complete) is invoked implicitly in the next-to-last sentence
in the proof of Theorem 4.13 (fair_state_seq_complete).
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