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MemEFS - a Network-Aware In-Memory Distributed

File System

Abstract

Scientific domains such as astronomy or bioinformatics produce increasingly large
amounts of data that need to be analyzed. Such analyses are modeled as scientific
workflows - applications composed of many individual tasks that exhibit data depen-
dencies. Typically, these applications suffer from significant variability in the inter-
play between achieved parallelism and data footprint. To efficiently tackle the data
deluge, cost effective solutions need to be deployed by extending private computing
infrastructures with public cloud resources. To achieve this, two key features for
such systems need to be addressed: elasticity and network adaptability. The former
improves compute resource utilization efficiency, while the latter improves network
utilization efficiency, since private clouds suffer from significant bandwidth vari-
ability. This work extends MemEFS, an in-memory elastic distributed file system by
adding network adaptability. Our results show that MemEFS’ network adaptation
policy achieves up to 50% speedup compared to its network-agnostic counterpart.

The contents of this chapter are under submission in the Future Generation Computer Systems journal,
and have been slightly modified to improve readability.
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70 CHAPTER 4. MEMEFS - NETWORK-AWARE ELASTIC STORAGE

4.1 Introduction

Many-task computing applications are typically deployed on private computing in-
frastructures. In such setups, due to the inherent application structure, the challenge
is to achieve high-performance, and resource-efficient storage solutions. In our pre-
vious work [110], we have presented an elastic in-memory distributed file system
for running MTC applications on clusters. MemEFS drastically improves resource
utilization efficiency for such platforms.

Limiting the elastic approach presented previously to private computing infras-
tructure capacity, however, is ill-suited for the rapid increase in the data volumes
produced by typical scientific applications [42]. Ideally, to achieve cost-efficient in-
memory storage solutions, the private computing infrastructure would be augmented
by means of on-demand, public cloud resources.

Here, a new type of problem appears: in contrast to private computing infrastruc-
ture, many studies [95, 11] point out that in public clouds the network performance
is impacted by large degrees of variability - due to virtualization, colocation and
congestion overheads [56, 13].

This chapter introduces a data distribution policy proportional to network ca-
pabilities that aims to better utilize compute and network resources. The key in-
sight of the proportional policy is that the interplay between compute-to-storage
ratio and available bandwidth highly impacts the overall system performance. We
implement this policy in MemEFS, our locality-agnostic in-memory elastic storage
system [110]. In contrast to network-agnostic setups, MemEFS is able to adapt to
its current network infrastructure, thus largely improving the bandwidth resource
utilization.

The contribution of this chapter is two-fold:

• We introduce a network-aware mechanism that enables MemEFS to seam-
lessly access resources located across networks without bandwidth guarantees.

• We demonstrate the efficiency of our design using a variety of real-world and
synthetic scientific workloads. We show that MemEFS’ network adaptability
mechanism reduces execution time by up to 50%.

This chapter is organized as follows. Section 4.2 sketches the background and
design of our work. Section 4.3 describes the evaluation results, Section 4.4 dis-
cusses related work and we draw conclusions in Section 4.5.

4.2 MemEFS Network Adaptation

In this section, we give a short overview of MemEFS, our elastic, in-memory dis-
tributed file system for MTC applications. Further, we argue that for migrating
MemEFS to public compute clouds one needs a network adaptation mechanism to
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take advantage of the bandwidth imbalances of such platforms. Then, the MemEFS
adaptation mechanism is explained in detail.

4.2.1 MemEFS

Previously, we introduced MemEFS [110], an elastic in-memory runtime distributed
file system that highly improves resource utilization efficiency for scientific work-
flows. MemEFS stores data in main memory and is able to saturate premium net-
work (InfiniBand, 10G Ethernet) bandwidth [112]. Using a two-layer consistent
hashing [57] scheme, MemEFS spreads data evenly across cluster reservation nodes.
Hence, MemEFS achieves balanced storage and network traffic.

MemEFS implements consistent hashing through a two-layer hashing scheme
that maps file stripes to partitions and then partitions to nodes. We assume it is
preferable to organize data in a manner that permits moving small numbers of large
objects (partitions) rather than large numbers of small objects (file stripes). Better
performance is achieved when transferring larger objects since fewer data transfers
are needed, and hence we minimize the latency and maximize the bandwidth uti-
lization. With this argument in mind, each node holds multiple partitions, such that,
when reconfiguring the file system, we migrate partitions, thus avoiding rehashing
the file stripes.

Throughout the application runtime the number of partitions is constant. The
total number of partitions sets the upper bound on the number of nodes to which the
elastic distributed file system can scale out to. The size of each partition is limited by
the total amount of memory the nodes have. Thus, when running on a small number
of nodes with many partitions, the partition size will be small. When scaling out to a
larger number of nodes, a subset of the partitions will be migrated to the newly added
nodes, allowing all the partitions to grow in size. MemEFS computes the number
of partitions each node stores after each reconfiguration by adapting the algorithm
proposed in Y0 [37].

4.2.2 Network Awareness

With a highly distributed design, file systems like MemEFS are not robust to net-
work variability. While in a private infrastructure setup this aspect is downplayed
by the intrinsic performance isolation of the execution environment, the situation
is radically different in public clouds. Figure 4.1 plots the results of an exhaustive
study [11] which showed that the network performance is highly variable in public
clouds. Such an imbalance in the bandwidth observed by MemEFS nodes would
lead to a general slowdown of the system, as faster connected nodes will be reduced
to the speed of the slower connected ones. Thus, adding network adaptability to a
file system like MemEFS also affects the design of its data distribution and load bal-
ancing mechanisms. In this work, we introduce a network-aware data distribution
policy in the design of MemEFS.



72 CHAPTER 4. MEMEFS - NETWORK-AWARE ELASTIC STORAGE

 0

 200

 400

 600

 800

 1000

 1200

A B C D E F G H

B
a
n
d
w

id
th

 (
M

b
it/

s)

Cloud use case

Percentiles

Figure 4.1: Bandwidth distributions for A-H cloud network bandwidth distributions.
1st-25th-50th-75th-99th percentiles. Data points courtesy of authors of [11].

As typical private clusters have homogeneous networks, nodes of the same type
receive the same number of MemEFS partitions. In public clouds, when dealing with
highly heterogeneous links, we assume that it is beneficial to distribute MemEFS
partitions in such a way that nodes with more bandwidth host more partitions.

In a cloud setup, we start by measuring the available bandwidth of the MemEFS
virtual machines. Next, we adapt again the Y0 algorithm to compute the numbers
of partitions per virtual machine according to the bandwidth capacity; Equation 3.2
becomes:

c
v

=

Bandwidth(v) ◊ nq
uœNodes

Bandwidth(u)

(4.1)

The bandwidth distributions shown in Figure 4.1 are the results of benchmark-
ing network traffic between virtual machines in the respective clouds over relatively
coarse periods of time (hours-days). These results provide clear upper and lower
bounds of achievable performance when two virtual machines communicate in a
cloud. However, due to the uncertainty of the underlying conditions (e.g. network-
ing activity bursts of other cloud customers’ virtual machines colocated on the same
physical infrastructure as MemEFS), the bandwidth variation granularity could be
much finer (e.g. seconds, minutes).

To counteract this behaviour, we have implemented a bandwidth monitoring pro-
cess in the MemEFS central manager. The monitoring process collects achieved
bandwidth information from the worker nodes, and, based on a configurable time
window, takes reconfiguration (i.e. data migration) decisions in case some nodes
suffer from network performance degradation. As migrating data to rebalance the
system (according to bandwidth capacities) means that the running application is
suspended, a small time monitoring window could translate to many reconfigura-
tions of the system, resulting in performance loss.

Therefore, a trade-off between the time monitoring window period and possible
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loss of performance due to fine granularity bandwidth variations needs to be con-
sidered. Moreover, when considering such trade-offs, the runtime of the application
needs to be taken into account: for shorter applications (tens of minutes), many re-
configurations could result in unwanted slowdowns; for longer running applications
(hundreds of minutes, hours) making MemEFS more reactive, could result in impor-
tant speedups. As our target applications fall in the latter category, for MemEFS we
implemented a bandwidth time monitoring window of 15 minutes. Therefore, when
MemEFS’ central manager notices that certain nodes’ bandwidths have degraded by
more than 20% compared to the previously known values, it triggers a reconfigura-
tion. Considering shorter running applications or finer grained network variability
intervals is outside the scope of this thesis, and is therefore left for future work.

4.3 Network Adaptability Evaluation

To show the efficiency of MemEFS adapting to cloud-like network conditions, we
first assessed the optimization potential of the network-adapted MemEFS and then
studied its behavior on real-world workflows. As network variability would affect
the overall application runtime, we evaluate in a cloud setup the performance of
MemEFS in terms of the application runtime.

4.3.1 Cloud Experimental Setup

In [11], Ballani et al. present the network variability in eight real-world cloud data
centers. We use these eight network bandwidth distributions to emulate the real-
world network bandwidth variability in our controlled Open Nebula [77] environ-
ment installed on DAS4 [22]. We chose this approach over directly using a public
cloud to create a controlled environment.

To emulate these eight datacenter network bandwidth distributions [11], we use
the hose model [39] to control bandwidth in our Open Nebula deployment. This
model is a simple virtual network overlay able to limit VM-to-VM traffic according
to the user specification. To implement this bandwidth limitation model we use the
Linux tc tool [47]. For our experiments, we use 32 VMs that each have 8 cores
and 20GB of memory. Their allotted bandwidth capabilities follow the distributions
reported in [11], shown in Figure 4.1.

Figure 4.2 shows the bandwidths achieved by our hose-model limitation mecha-
nism. Figures 4.2a - 4.2d show the achieved bandwidth of a virtual machine when
its network traffic is limited to bw œ {200, 400, 800, 1000} Mb/s. We notice that the
achieved values are, in practice, slightly lower than the theoretical limitation. How-
ever, this is an expected behaviour and it is important to notice that the difference is
always below 10%.
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(a): Bandwidth limit = 200 Mbit/s
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(b): Bandwidth limit = 400 Mbit/s
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(c): Bandwidth limit = 800 Mbit/s
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(d): Bandwidth limit = 1000 Mbit/s

Figure 4.2: VM achieved bandwidth when network link is limited to bw œ {200, 400, 800, 1000}.

4.3.2 Network Adaptability Experiments

We first study the optimization potential of the network-adapted MemEFS by run-
ning an I/O-intensive microbenchmark on each setup. The workload is composed
of 1000 tasks, each writing 100MB of data to MemEFS. We chose this microbench-
mark configuration due to its behaviour of fully saturating the network bandwidth.
We noticed in Section 2.4, when evaluating the MTC Envelope, that writing larger
files in our file system achieves higher bandwidths than smaller files. Therefore, we
use this benchmark as a stress test to verify our network-adaptation mechanism for
MemEFS.

We compared the performance achieved by the network-adapted MemEFS to the
network-agnostic version, that distributes partitions evenly across nodes. Figure 4.3
shows the evaluation results.

The results are consistent with the bandwidth distributions depicted in Figure 4.1.
The distributions A, D, F, G, H exhibit more network bandwidth variability. The
network-adapted MemEFS is therefore able to leverage this variability and improve
performance. The B, C, E distributions indicate much more stable network con-
ditions, thus adapting MemEFS to their bandwidth characteristics can intrinsically
deliver a much smaller performance gain.
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Figure 4.3: Network-Adapted MemEFS vs. Network-Agnostic MemEFS on 32 VMs running an
I/O intensive benchmark (lower is better).

Table 4.1: Workflow Characteristics

Application # Tasks Input Size Peak Storage
Montage 39472 13GB 320GB
BLAST 3072 57GB 192GB

To further analyze our network adaptation policies, we selected two real-world
applications, Montage and BLAST. Their parallel stages are representative for a wide
range of the typical workload characteristics spectrum. First, mProjectPP, mBack-
ground stages of Montage are CPU-bound, while mDiffFit is I/O bound. Next, al-
though BLAST tasks are CPU-bound, they also show moderate memory and I/O uti-
lization. Considering runtime, the Montage tasks are short (order of seconds), while
BLAST tasks are longer (tens of seconds to minutes). Considering intermediary data
size, while Montage generates small files (1-4MB), BLAST deals with much larger
files (hundreds of MB). Therefore, we consider running these two applications suffi-
cient to validate our network-adapted MemEFS. The workloads’ characteristics are
shown in Table 4.1. When reporting the runtime of each experiment, we compute
the full makespan of the applications (i.e. since the data stage-in starts until the last
task of the workflows has finished).

Given the limited size of our cloud setup, we have scaled down the Montage
and BLAST applications such that their generated data could fit in 32 VMs, each
equipped with 20 GB memory. Furthermore, when the bandwidth distribution is
highly heterogeneous (e.g. cloud setups A, B, F, H), some VMs may store much
more data than others in the network-adapted setup. As a consequence, we had to
choose application sizes that do not generate more than 20 GB of data per VM in the
most extreme bandwidth distribution setups.

Figure 4.4a shows the BLAST runtimes when using the network-aware and the
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network-agnostic MemEFS systems in each emulated cloud network bandwidth dis-
tribution. The results clearly show that for the more bandwidth-imbalanced setups
(A, B, D, F, G, H), the network-aware MemEFS outperforms the network-agnostic
MemEFS.

Figures 4.4b and 4.4c show the bandwidth in and bandwidth out utilization:
the network-aware setup consistently achieves better bandwidth utilization than the
network-agnostic setup. This is because in the network-agnostic setup, fast nodes
are slowed down by the slow node and cannot fully utilize their bandwidth capacity.
In the network-aware setup, the fast nodes hold more MemEFS partitions and thus
more I/O operations are directed to them.

Figure 4.5a shows the runtimes obtained for the Montage workload. Figures 4.5b
and 4.5c show the bandwidth utilization when running the network-aware and network-
agnostic versions of MemEFS on the emulated cloud setups. The more bandwidth-
imbalanced setups lead to much better performance when using the network-aware
MemEFS. This is a direct consequence of the network-adapted MemEFS making
better use of the available bandwidth by distributing more data to the faster nodes.

For both workflows, we notice that although the bandwidth utilization is im-
proved in the network-aware setup, we do not reach full utilization. The expla-
nation for this behavior is twofold. First, BLAST tasks are not I/O-bound. Since
MemEFS I/O is done through the network, BLAST tasks are unable to saturate the
bandwidth. Second, in the Montage case, the parallel stages (mProjectPP, mDiff-
Fit, mBackground) are intertwined with (long-running) sequential stages (mImgTbl,
mConcatFit, mBgModel). These synchronization points decrease the overall net-
work utilization.

For the clouds that exhibit less network variability (B, C, E), the network adap-
tation mechanism of MemEFS cannot achieve better bandwidth utilization since the
partition-to-node mapping is similar to the network-agnostic setup. Furthermore, the
network utilization achieved in this setup is close to 40% due to application charac-
teristics: BLAST tasks are not I/O bound, while Montage has synchronization points
that decrease the overall network utilization.

4.3.3 Discussion

When migrating scientific applications to public clouds, our experiments show that
it is imperative to adapt MemEFS to the underlying network characteristics. Using
real-world cloud data center bandwidth distributions [11], we evaluated MemEFS’
network adaptation mechanism on two real-world applications that exhibit different
structural characteristics and runtime behaviors. Our results show that the MemEFS’
network adaptation mechanism greatly improves performance in cloud setups suffer-
ing from high bandwidth variability. In such scenarios, MemEFS’ adaptation policy
improves the application performance by up to 50% through judicious use of the
available network bandwidth.
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(b): Inbound Bandwidth (higher is better).
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Figure 4.4: BLAST on 32 VMs executed using network-agnostic MemEFS and, respectively,
network-adapted MemEFS.
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Figure 4.5: Montage on 32 VMs executed using network-agnostic MemEFS and, respectively,
network-adapted MemEFS.
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4.4 Related Work

We identified several studies that improve application performance when the un-
derlying compute resources suffer from bandwidth variability. The main difference
between our approach and these studies is that we target the distributed file system
level. Therefore, our approach is more generic and transparent to the application and
scheduler.

In [84], the authors propose the use of a Software Defined Network (SDN) to
achieve a bandwidth-aware scheduler for Hadoop. They utilize the link measur-
ing and bandwidth setting capabilities of an SDN to distribute data and tasks in
such a way that the makespan of a MapReduce job is minimized. Another frame-
work [58] that adds network awareness to Hadoop considers multi-cluster Hadoop
setups. Because inter-cluster bandwidth is often lower than intra-cluster bandwidth,
they account for this in their scheduler and achieve good performance in terms of
makespan. EHadoop is another framework that also takes into account the network
usage of MapReduce jobs when scheduling [119]. It decouples data from com-
putation by having two separate clusters. The bandwidth between the two clusters
is variable. By performing online profiling of task network usage and completion
time, EHadoop keeps job completion time stable when faced with different network
topologies.

In [64], the authors describe a task scheduler for independent tasks that incorpo-
rates bandwidth knowledge to schedule tasks on resources. Tasks are scheduled on
VMs with different bandwidth capabilities. It is not immediately clear, however, if
the bandwidth requirements of the individual tasks are known beforehand. Assum-
ing available bandwidth is known, but variable, the authors from [18] propose a DAG
workflow scheduler that minimizes makespan using fuzzy optimization techniques.
It can handle workflows that have inter-task data dependencies, such as Montage. It
assumes data transfer information between tasks is known beforehand.

4.5 Conclusions

With the rapid increase of data volumes generated by scientific domains such as
bioinformatics or astronomy ("data deluge"), we expect scientific workflows to out-
grow the (memory) storage capacities of private clusters. As a consequence, clus-
ters will need to be augmented by means of public cloud computing infrastructure.
However, as many studies point out, such platforms are plagued by large bandwidth
variability due to colocation and virtualization overheads.

In this chapter, we have introduced a network bandwidth adaptation mechanism
for MemEFS, our elastic in-memory distributed file system for many-task comput-
ing applications. Our evaluation show that it is imperative to adapt the storage layer
to the underlying network, as otherwise the application would observe a severe per-
formance penalty. To overcome this performance penalty, MemEFS’ network adap-
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tation mechanism takes advantage of network variability and increases performance
by up to 50%. Our experiments show that the larger the network variability is, the
more MemEFS outperforms the network-agnostic approach.


