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 Abstract 
We automatically generate CG animations to express the 
pronunciation movement of speech through articulatory 
feature (AF) extraction to help learn a pronunciation. The 
proposed system uses MRI data to map AFs to coordinate 
values that are needed to generate the animations. By using 
magnetic resonance imaging (MRI) data, we can observe the 
movements of the tongue, palate, and pharynx in detail while a 
person utters words. AFs and coordinate values are extracted 
by multi-layer neural networks (MLN). Specifically, the 
system displays animations of the pronunciation movements of 
both the learner and teacher from their speech in order to show 
in what way the learner’s pronunciation is wrong. Learners 
can thus understand their wrong pronunciation and the correct 
pronunciation method through specific animated 
pronunciations. Experiments to compare MRI data with the 
generated animations confirmed the accuracy of articulatory 
features. Additionally, we verified the effectiveness of using 
AF to generate animation. 
Index Terms: animated pronunciation, pronunciation learning, 
articulatory feature 

1. Introduction 
Computer Assisted Language Learning (CALL) systems have 
been introduced for language education in recent years [1][2]. 
CALL systems typically analyze a learner’s speech by using 
speech recognition technology, and point out pronunciation 
problems with specific phonemes in words and automatically 
score the pronunciation quality [3][4][5]. However, although 
the learner can thus realize that his/her speech is different from 
the teacher’s, the learner cannot understand how to correctly 
move the appropriate articulation organ. The system should 
show how to do this when the learner makes a wrong 
pronunciation, in the same way that teachers teach. On the 
other hand, although other studies have examined making 
correct pronunciation animations and video in advance 
[6][7][8], they do not automatically produce animations of the 
learner’s wrong pronunciation. The proposed system visually 
represents the teacher’s and the learner’s articulatory 
movements (movement of the tongue, palate, and lips) by 
using CG animations. As a result, the learner can study how to 
move an articulatory organ while visually comparing their 
mispronunciation animation with the correct pronunciation 
animations. To represent the teacher’s and the learner’s 
articulatory movements, the proposed system extracts the 
articulatory features (AFs) from the learner and teacher 

speeches automatically. Next, the system converts speech from 
articulatory features into coordinate distances based on MRI 
data by two MLN. This paper describes the method of 
automatically generating animated pronunciations from speech. 
In section 2 we describe the method of articulatory feature 
extraction, coordinate distance extraction and CG animation 
generation. Section 3 discusses the experimental evaluation to 
confirm the accuracy of the generated animated pronunciation. 
The last section summarizes this paper. 

2. CG Animation Generation System 

2.1. System outline 
Figure 1 shows an outline of the system. The system consists 
mainly of articulatory feature extraction by first multi-layer 
neural networks (MLN), coordinate distance extraction by 
second MLN, and CG animation generation programs. 
We use the articulatory features composed of place of 
articulation and manner of articulation extracted from the 
speech, and use them to generate highly accurate CG 
animations. Concretely, the articulatory features are extracted 
from the speech input to first MLN, and the articulatory 
features and the coordinate distances of the MRI data are 
trained by second MLN. As for articulatory extraction, we use 
existing developed technologies as described in the next 
paragraph. The CG animation is generated based on the y-
coordinate distances (Δy) extracted from trained MLN. As a 
result, the user’s speech is input in our system, and a CG 

Figure 1: System outline. 
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animation that visualizes the pronunciation movement is 
automatically generated. 

2.2. Articulatory feature extraction 
In order to vocalize, human beings change the shape of the 
vocal tract and move articulatory organs such as the lips, 
alveolar arch, palate, tongue and pharynx. This is called 
articulatory movement. Each attribute of the place of 
articulation (back vowel, front vowel, palate, etc.) and manner 
of articulation (fricative, plosive, nasal, etc.) in the articulatory 
movement is called an articulatory feature. In short, 
articulatory features are information (for instance, closing the 
lips to pronounce "m") about the movement of the articulatory 
organ that contributes to the articulatory movement. In this 
paper, articulatory features are expressed by assigning +/- as 
the feature of each articulation in a phoneme. For example, the 
articulatory feature sequence of "/jiNkoese/ (space satellite)" 
in Japanese is shown in Figure 2. Because phoneme N is a 
voiced sound, "voiced" in Figure 2 is given [+] (Actually, [+] 
is given a value of "1" (right side of Figure 2)) as the teacher 
signal. Because phoneme k is a voiceless sound, "voiced" in 
Figure 2 is given [-]. Actually, [-] is given a value of "0" (right 
side of Figure 2) as the teacher signal and "unvoiced" in 
Figure 2 is given [+]. We generated an articulatory feature 
table of 15 dimensions corresponding to 25 Japanese 
phonemes. We defined the articulatory features based on 
distinctive phonetic features (DPF) involved in Japanese 
phonemes in international phonetic symbols (International 
Phonetic Alphabet; IPA) [9]. 
We also used our previously developed articulatory feature 
(AF) extraction technology [10]. The extraction accuracy is 
about 95 %. Figure 3 shows the AF extractor. An input speech 
is sampled at 16 kHz and a 512-point FFT of the 25 ms 
Hamming-windowed speech segment is applied every 10 ms. 
The resultant FFT power spectrum is then integrated into a 24-
ch BPFs output with mel-scaled center frequencies. At the 
acoustic feature extraction stage, the BPF outputs are first 
converted to local features (LFs) by applying three-point linear 
regression (LR) along the time and frequency axes. LFs 
represent variation in a spectrum pattern along two axes. After 
compressing these two LFs with 24 dimensions into LFs with 
12 dimensions using a discrete cosine transform (DCT), a 25-
dimensional (12 Δt, 12 Δf, and ΔP, where P stands for the log 
power of a raw speech signal) feature vector called LF is 
extracted. Our previous work showed that LF is superior to 
MFCC as the input to MLNs for the extraction of AFs. LFs 
then enter a three-stage AF extractor. The first stage extracts 

45-dimensional AF vectors from the LFs of input speech using 
two MLNs, where the first MLN maps acoustic features, or 
LFs, onto discrete AFs and the second MLN reduces 
misclassification at phoneme boundaries by constraining the 
AF context. The second stage incorporates 
inhibition/enhancement (In/En) functionalities to obtain 
modified AF patterns. The third stage decorrelates three 
context vectors of AFs. 

2.3. Coordinate distance extraction 
We use the magnetic resonance imaging (MRI) data to map 
AFs to coordinate values that are necessary to generate CG 
animations. MRI captures images within the body by using 
magnetic fields and electric waves. We used MRI data 
captured in three dimensions, which shows in detail the 
movements of the person’s tongue, larynx, and palate while 
making an utterance. CG animations are generated based on 
coordinate distances. Concretely, MLN inputs AFs extracted 
from speeches included in the MRI data and outputs 
coordinate distances. As a result, after the user’s voice is input, 
the coordinate vectors adjusted to the speech are extracted, and 
a CG animation is generated based on them. This section 
describes the extraction of the feature points on the MRI data 
and the method of calculating the y-coordinate distance from 
them. 
We assigned feature points to the mouth shape on the MRI 
data (tongue, palate, lips, and lower jaw) beforehand. To 
generate CG animations automatically, the proposed system 
uses the distance of the y coordinate of each feature point. We 
assigned 15 tongue points, 2 lip points, and 18 palate points as 
the initial feature points in view of the frequency of movement 
of the articulatory organs. Figure 4 shows these feature points. 
The relative, not absolute, coordinate distance is used for CG 
animations because the feature points of each articulatory 
organ in the MRI data vary among individuals.  
The coordinate distances are extracted as follows. Firstly, we 
imported 10-ms speech and image segment in the MRI data
because speech segment is 10 ms. The coordinate value of 
each feature point is extracted by the optical flow calculation 
program for each frame. The input data for the program is the 
MRI images and coordinate vectors of the initial feature points. 
Next Acquisition of many MRI data costs time and money, so 
we decreased the number of dimensions of MLN training data 
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Figure 2: Articulatory feature sequence: /jiNkoese 
(artificial satellite)/. 

Figure 3: Articulatory feature extraction. 

Figure 4: Feature points on MRI data. 
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in order to train MLN effectively by even a small amount of 
MRI data. Therefore, only eight feature points having large 
changes in movement are trained in MLN (Figure 5). 
Moreover, the proposed system calculates only the y-
coordinate distance of each feature point used as MLN training 
data to decrease the number of dimensions. The y-coordinate 
distance is calculated by subtracting y from y’. The x-
coordinate value is the same as x-coordinate of the initial 
feature point (Figure 5). That is, the distance is calculated only 
the y-axis. 
Specifically, to fix the palate with a little movement and to 
acquire the change of the uvula, we set feature point . 
Moreover, to express the movement of the tongue, the system 
determines the distance of the y coordinate (Δy) from feature 
point  to feature point . To acquire the movement of the 
lips, the change in y-coordinate distance (Δy) between feature 
point  and feature point  was calculated. The spline curve 
mainly supplements the y-coordinate distance (Δy) of other 
initial feature points based on the above-mentioned eight 
points. On the other hand, to consider co-articulation, the 
system calculates the y-coordinate distance of the preceding 
and subsequent frames (t-3, t+3) in each frame (t), and trains 
these data in MLN. That is, the output of MLN is 8×3 
dimensions. 
Next, we explain the training method of MLN. AF is obtained 
by converting the speeches that accompany the MRI data. 
MLN projects the extracted AF to the y-coordinate distance. 
The number of dimensions of MLN is articulatory features 
(15×3 dimensions) as inputs and y-coordinate distances (8×3 
dimensions) as outputs.  

2.4. CG animation generation programs 
We used the moving average method, spline curve, and 
median filter to construct smooth CG animations by using the 
y-coordinate distance extracted from MLN. 
Firstly, the system smoothes the movement of the tongue, 
palate, upper lip, and lower jaw by the moving average 
method to average the coordinate vectors of each frame. 
Moreover, the spline curve is used to complement between 8 
feature points (training by MLN) and other feature points. This 
generates a CG animation having a smooth curve and 
movement. The movement is drawn based on the y-coordinate 
distance, but it moved twitchily, so we used a median filter to 
smooth the movement. The median value means the 
intermediate value when it is arranged finite data in 
descending order. The present study outputs as the median 
value the intermediate value of five data: the y-coordinate 
value of the third frame is used as the median value when the 
coordinate values of five frames are sorted in ascending order. 

The pronunciation learning system is designed to play CG 
animations on a web browser so that various users can use it. 

The CG animation program was implemented with 
Actionscript3.0 to operate on a Web browser with a Flash 

Player plug-in installed. Figure 6 shows a screen shot of a CG 
animation developed in the present study. The animation can 

Table 1. Words and syllables included in MRI data 
Japanese 

vowels and 
consonants 

/a/ /i/ /u/ /e/ /o/ /ka/ /ki/ /ku/ /ke/ /ko/ /sa/ /si/ 
/su/ /se/ /so/ /ta/ /ti/ /tu/ /te/ /to/ /na/ /ni/ /nu/ /ne/ 
/no/  /ha/ /hi/ /hu/ /he/ /ho/ /ma/ /mi/ /mu/ /me/ 
/mo/  /ya/ /yi/ /yu/ /ye/ /yo/ /ra/ /ri/ /ru/ /re/ /ro/ 
/wa/ /ga/ /gi/ /gu/ /ge/ /go/ /za/ /zi/ /zu/ /ze/ /zo/ 
/da/ /di/ /du/ /de/ /do/  /ba/ /bi/ /bu/ /be/ /bo/ /pa/ 
/pi/ /pu/ /pe/ /po/ 

Contracted 
sounds 

/kya/ /kyu/ /kyo/ /sya/ /syu/ /syo/ /cya/ /cyu/ 
/cyo/ /nya/ /nyu/ /nyo/ /hya/ /hyu/ /hyo/ /mya/ 
/my/ /myo/ /rya/ /ryu/ /ryo/ /gya/ /gyu/ /gyo/ 
/zya/ /zyu/ /zyo/ /bya/ /byu/ /byo/ /pya/ /pyu/ 
/pyo/ 

Sound of the 
kana /N/ 

/saNbai/, /saNdai/, /saNnin/, /saNko/, /saNen/, 
/saNwari/, /saNsai/  

Double 
consonant /Q/ 

/iQpai/, /iQtai/, /iQko/, /iQsai/, /iQsyo/, /iQtu/, 
/iQcho/ 

 
be played slowly at half speed. Users can see the 
pronunciation in slow-motion by adjusting the play speed 

3. Evaluation 
We calculated the correlation coefficient between the 
coordinate values of generated CG animations and MRI data 
to confirm the accuracy of the animations. Moreover, to show 
the effectiveness of using articulatory features to extract 
coordinate distances, we compared the correlation coefficients 
of the case of AF with the case of LF as MLN inputs. 

3.1. Experimental setup and method 
We used MRI data pronounced by a 39-year-old Japanese 
male who specializes in Japanese-language education and who 
has received phonology training. The data is consisted of 
pictures and Japanese speeches when the subject pronounced 
in an MRI machine.  
We used 5 vowels and 99 syllables, 11 words as MLN training 
data and 3 words ("sandai," "sanbai," "sanko") as test data 
among 41 Japanese words included in the MRI data. Table 1 
shows the Japanese MRI data used by MLN. 
Each MLN has three layers. The number of input layer is 75, 
hidden layer is 150, and output layer is 45 in the first MLN to 
extract AF. The number of input layer is 45, hidden layer is 90, 
and output layer is 24 in the second MLN to extract coordinate 
distances. 

3.2. Experimental Results 
Here, we discuss mainly the results of three words with the 
kana /N/ because the pronunciation movement of this sound 
differs according to the back phoneme. As a typical example, 
/N/ in "sanbai" is the same as the nasal sound of the English 
/m/ with both lips shut. As for /N/ of “sandai,” it is the nasal 
sound when uttering with the tongue tip touching the alveolar 

Figure 5: Feature point used in MLN training. 

Palate

(x1, y’1)

Figure 6: CG animation of pronunciation movement. 
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ridge behind the anterior teeth as in the English /n/. The /N/ of 
“sanko” is created without the tongue tip touching the alveolar 
ridge behind the anterior teeth unlike /N/ of “sandai”. It is the 
nasal sound that is made by stopping the flow of air to the 
mouth and breathing out from the nose. When uttered, the 
back of the tongue rises just a little. We evaluated whether the 
animated pronunciation including /N/ was accurately 
generated according to the different back phoneme. Thus, the 
experimental method compared the correlation coefficient of 
the coordinate value of CG animation automatically generated 
from the speech and the coordinate value of the MRI data for 
each frame for three words. The key point is that these three 
words are not trained in MLN. 
Firstly we calculated the correct rate of AF that is important to 
generate CG animation (Figure 7). Although the overall 
average was about 82%, it is necessary to improve AF 
extraction because the correct rate of /d/ was low. Next we 
also compared LF with AF as the input of the second MLN to 
show the effectiveness of using AF extracted from speech. 
Figure 8 also shows the results of them. The all in Figure 8 is 
average correlation coefficient of target phonemes. AF shows 
a higher correlation coefficient than LF overall. The results 
showed the pronunciation movement was expressed more 
accurately by mapping the speech to the articulatory feature. 

Although the pronunciation movement of /N/ differs according 
to the back phoneme (that is coarticulation), the result of /N/ is 
about 0.85 which is high. The results showed that the proposed 
system can accurately generate CG animations while 
considering coarticulation. Although the AF correct rate of /o/ 
in Figure 7 was high, its correlation coefficient in Figure 8 was 
not good. Therefore, it is important to improve second MLN. 
Figure 9 shows the correlation coefficient per frame. The 
change rate of the correlation coefficient in a phoneme 
boundary is large depending on phoneme (Figure 9) As for 
/N/, the correlation coefficient decreases rapidly from around 
80ms. The small amount of MRI data was used in this 
experiment. To generate more accurate animation, we intend 
to use more MRI data in future. Moreover, we will generate 
not only Japanese animation but also English animation by 
using English MRI data. 

4. Conclusions 
 We developed a system to automatically generate CG 
animations to express pronunciation movement through 
articulatory features extracted from speech. The pronunciation 
mistakes of the user can be pointed out by expressing the 
pronunciation movements of the user’s tongue, palate, lips, 
and lower jaw as animated pronunciations. We conducted 
experiments which confirmed the accuracy of the generated 
CG animations. The correlation coefficient was more than 
about 0.7, and we confirmed that smooth animations were 
generated from speech automatically. We will also improve 
the system to make the animation motions more natural, and 
build a pronunciation instructor system including the CG 
animation program. In the future, we will conduct experiments 
to compare AF and MFCC as the inputs of MLN. 
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Figure 9: Correlation coefficient of “sandai”. 
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Figure 7: AF correct rate for each phoneme. 
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