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Abstract  8 

Landslide monitoring has benefited from recent advances in the use of image correlation of high 9 

resolution optical imagery. However, this approach has typically involved satellite imagery that may 10 

not be available for all landslides depending on their time of movement and location. This study has 11 

investigated the application of image correlation techniques applied to a sequence of aerial imagery 12 

to an active landslide in the French Alps. We apply an indirect landslide monitoring technique (COSI-13 

Corr) based upon the cross-correlation between aerial photographs, to obtain horizontal 14 

displacement rates. Results for the2001–2003 time interval are presented, providing a spatial model 15 

of landslide activity and motion across the landslide, which is consistent with previous studies. The 16 

study has identified areas of new landslide activity in addition to known areas and through image 17 

decorrelation has identified and mapped two new lateral landslides within the main landslide 18 

complex. This new approach for landslide monitoring is likely to be of wide applicability to other 19 

areas characterised by complex ground displacements. 20 

Keywords: Image correlation, normalised cross-correlation, aerial photographs, landslides, surface 21 

deformation, displacement measurement, landslide monitoring. 22 
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1. Introduction 24 

Landslide monitoring is a very important part of any landslide hazard assessment, providing a 25 

measure of the rate and direction of slope movement in order to quantify any potential landslide 26 

risk. Different types of monitoring techniques can be employed, depending on the scale and 27 

frequency of observations required; they include in-situ instrumentation, but these provide 28 

movement data at a single location on the landslide; and are often difficult to install on very active 29 

landslides. Other options include remote ground based monitoring such as ground based radar 30 

(Monserrat et al., 2014), terrestrial laser scanning (Jaboyedoff et al., 2012;Delacourt et al., 2007; 31 

Teza et al., 2008) and multi-temporal terrestrial photography (Gance et al., 2014; Travelletti et al., 32 

2012), but these require a clear line of sight in order to monitor the entire land-slide effectively. By 33 

contrast, satellite and airborne remote sensing platforms offer better visibility and coverage of the 34 

ground surface by virtue of the vertical imaging geometry. Monitoring has been performed using 35 

digital photogrammetry applied to aerial imagery (Casson et al., 2003; Fabris et al., 2011), radar 36 

interferometry (Wasowski and Bovenga, 2014) and comparison of LiDAR derive delevation models 37 

(Daehne and Corsini, 2013). More recently, image matching has been applied to aerial and satellite 38 

imagery to monitor slope movement, by comparing two remote sensing images of a landslide from 39 

different dates to identify and quantify sur-face changes. This type of image matching or image 40 

correlation approach has been applied to landslide monitoring using aerial stereo-pairs and satellite 41 

imagery in this area, like aerial stereo-pairs used in La Clapiere landslide to understand its 42 

dynamics(Booth et al., 2013; Casson et al., 2003; Delacourt et al., 2007) and LiDAR point cloud data 43 

(Travelletti et al., 2012). However, there are no examples that use aerial photography and image 44 

matching asthe basis for landslide monitoring. There may be occasions when satellite imagery or 45 

high resolution topographic data are unavailable, either due to the age of the movement or simply 46 

through a lack of data coverage. In these circumstances, the use of aerial photography can offer 47 

opportunities for landslide monitoring, whereby aerial imagery from two different dates can provide 48 

the basis for identifying and measuring landslide movement. 49 

In this study, we present the application of an image matching technique to the study of an active 50 

glacio-lacustrine landslide in the French Alps, using aerial photography as a basis for the image 51 

correlation. This contrasts with previous studies that have principally relied upon satellite platforms 52 

to provide the imagery for the comparison. We demonstrate the suitability of COSI-Corr software 53 

(Ayoub et al., 2009), to the study of landslide movement based upon aerial photography, rather than 54 

satellite imagery or topographic data; and identify the steps, information and conditions necessary 55 

for successful application to landslide monitoring. The technique has been applied in the Harmaliere 56 



landslide to firstly, identify areas of landslide activity and secondly, obtain horizontal displacement 57 

rates on the active part of the landslide. 58 

1.1 Geological context and landslide study area  59 

In France, some of the largest and most problematic landslides in the Alps are associated with 60 

Quaternary glacio-lacustrine deposits that infill many of the alpine valleys. These lake deposits 61 

typically consist of fine grained finely laminated (varved) silts and clays deposited in dammed lakes 62 

impounded by valley glaciers during previous glacial advances. The deposits have been exposed by 63 

the local river network that has cut down deeply into these clay formations; consequently, in many 64 

places, these deposits make up much of the slope forming materials within the valleys. The 65 

geotechnical nature of these deposits is such that this exposure has resulted in significant slope 66 

instability (Giraud et al. 1991; van Asch et al. 1996).   67 

The Harmaliere landslide, documented in this study, is located in the Trieves region of the French 68 

Alps, near the village of Sinard in the Drac valley, 40km south of Grenoble in an area of extensive 69 

glacio-lacustrine deposit exposure (Fig1). Here the glacio-lacustrine deposits cover an area of 300 70 

km2 and were deposited in lakes impounded by the Isiere Glacier during the Wurm maximum 71 

episode (Van Asch et al. 2009). The thickness of the laminated clays in this region varies from 0 to 72 

250 metres, reflecting the uneven nature of the base of the lakes in which deposition took place. The 73 

deposits have been exposed by the local river network that has cut down deeply into these clay 74 

formations; consequently, in many places, including the Drac valley, these deposits make up much of 75 

the slope forming materials within the valleys. The geotechnical nature of these deposits is such that 76 

this exposure has resulted in significant slope instability, which poses a hazard to local population 77 

centres and infrastructure (Antoine et al. 1992; Giraud et al. 1991; vanAsch et al. 1996).  78 

The Harmaliere landslide underwent a major initial movement in March 1981 following a period 79 

of quiescence. The main initiation event is illustrated in Fig2 and Fig3, the landslide is shown in its 80 

pre-failure state on aerial imagery acquired in 1948 (Fig2), this contrasts with the second image 81 

taken in 1981 (Fig3), just after the main activation, where the landslide can be seen to have 82 

undergone a major retrocession and advanced down the valley into the Lac de Monteynard (this lake 83 

was filled following completion of the Monteynard Dam in 1961 and so not visible in the earlier 1948 84 

images). Since 1981 the landslide has retrogressed repeatedly through a number of episodic events 85 

at the head of the landslide in 1988, 1996 and 2001 (Bièvre et al. 2011).  86 



87 
Fig1. Location and view of the Harmaliere landslide area with its outlines. It is situated near the 88 

village of Sinard, within the Drac valley 40 kilometers south of the Grenoble city, France.  89 

 90 

In between, however the landslide has displayed evidence of mass redistribution throughout the 91 

slope and a number of lateral landslide events. 92 

Geotechnical investigations of the neighbouring Avignonet landslide indicates that the landslide 93 

movement in this area typically involves several slip surfaces at shallow depths of 5 to 15 metres and 94 

depths of greater than 50m (Jongmans et al. 2009). Consequently, a range of slide velocities are 95 

observed, as landslides of different depths respond to climatic events, such as rain and snow melt. 96 

Bièvre et al. (2011) documented velocity variations between a few centimeters to several tens of 97 

metres per year across the Avignonet and Hermaliare slides, with a mean regression rate up to 10 98 

metres/year measured from aerial photographic analysis (Jongmans et al. 2009; Jongmans et al. 99 



2008). Importantly, relict landslides are likely to be present in this area; given the length of time river 100 

erosion has been acting along the Drac valleys following glacial retreat, the river erosion and 101 

downcutting during this period of associated climatic amelioration would have resulted in a long 102 

period of landslide activity. Therefore, relict landslides are postulated to exist in many of the slopes 103 

in this area, indeed the image take in 1948 (Fig2) provides geomorphological evidence of superficial 104 

landslide activity even prior to the major event in 1981 (Fig3).  105 

Geologically, the area is characterised by an undulating carbonate bedrock that is overlain by a 250 106 

metre stack of Quaternary glacial, fluvial and lacustrine deposits formed at the frontal margin of a 107 

valley glacier (Isere Glacier,). The superficial deposits are the result of a series of glacial and inter-108 

glacial events that have affected the Alps over the past 200k years, including Wiss glaciation (200-109 

130ky BP), Wiss-Wurm interglacial (130-100ky BP) and the most recently, the Wurm (100-12ky BP). 110 

At the peak of this latest glacial period (24-18ky BP) the region was affected by the Isere Glacier, 111 

which moved from the north, past Grenoble and into the Drac valley, subsequently terminating close 112 

to the village of Sinard nearby the Hermaliere landslide locality. The base of the Quaternary 113 

sediment sequence comprises coarse fluvio-glacial deposits that rest unconformably on the Jurassic 114 

carbonate bedrock. They are dominated by extensive outwash sheets of fluvial deposits and channel 115 

infill that represent the initial phase of erosion and sedimentation during the early glacial and inter-116 

glacial periods. This was then followed by the advance of the Isere and surrounding glaciers and 117 

impounding of a lake, which was progressively infilled with varved glacio-lacustrine deposits. These 118 

deposits typically rest conformably on the fluvial deposits (Fig4) or in some places rest directly on 119 

the bedrock. The sharp contact between these two sequences (observed in Fig4) suggests a 120 

relatively sudden cessation of sediment input and switch to low energy glacio-lacustrine (lake) 121 

deposition. This was followed by a period during which the Isere Glacier fluctuated in extent, either 122 

retreating or advancing and over-riding the glacio-lacustrine deposits. This produced a series of basal 123 

till deposits that are interbedded with lacustrine deposits that reflect this period of ice fluctuation.  124 

125 



 126 

 127 

Fig2. Ortho-rectified aerial image of the Hermaliere landslide site prior to failure, the ortho-image 128 

was generated using aerial photography taken in 1948.  129 

130 



 131 

 132 

Fig3. Ortho-rectified aerial image of the Hermaliere landslide site showing the results of the major 133 

movement in March 1981. The ortho-image was generated using aerial photography taken in 1981. 134 

135 



With the end of this glaciation, ice retreat and the associated climatic amelioration, the river 136 

network gradually re-established within the valley, cutting through the Quaternary deposits to form 137 

the Drac river and the drainage network observed today. It is this sequence of events, the deposition 138 

of a thick sequence of Quaternary deposits and subsequent down cutting that has generated the 139 

conditions conducive to landsliding in this region.  140 

Glacio-lacustrine deposits are very common in previously glaciated regions of the world, where pro-141 

glacial lakes have formed in which thick sequences of laminated silts and clays (varves) have been 142 

deposited. Their geotechnical characteristics tend to lead to highly unstable behaviour (Fletcher et 143 

al. 2002), particularly where these deposits have been uplifted and subsequently eroded. Landslides 144 

in glacio-lacustrine deposits cause considerable ground related problems due to the highly sensitive 145 

nature of the geological materials, the retrogressive nature of the resulting large scale failures and 146 

the rapid conversion of this landslide material into mud flows once mobilised. The occurrence of 147 

landslides associated with glacio-lacustrine deposits have been well documented in the Alpine 148 

valleys of France (Jongmans et al. 2009), British Columbia in Canada (Evans 1982; Lu et al. 2000; 149 

Jackson 2002), Estonia and Baltic region (Kohv et al. 2010) and the Italian Alps (Tibaldi et al. 2004). In 150 

each case, the type of landsliding typically include rotational slides with mud flows developing in the 151 

displaced material and the evolution characteristics typically involve significant retrogressive 152 

behaviour (Geertsema et al. 2006; Marko et al. 2010).  These landslides are often located in areas 153 

where varved clays are cut into by river erosion, reducing support and exposing bedding planes 154 

which dip down into the valleys (as a result of dip towards the centre of the previously ice-dammed 155 

lakes). 156 



 157 

Fig4. Photograph showing the sharp contact between the basal coarse grained fluvio-glacial outwash 158 

deposits and the overlying glacial-lacustrine deposits, illustrating the dramatic and sudden drop in 159 

energy of the system from river to lake sediment deposition.  160 

 161 
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2. Data and methods 163 

The aim of the project was to evaluate the use of image cor-relation techniques for landslide 164 

monitoring of the Harmaliere landslide using aerial photographic imagery. To this end, COSI-Corr 165 

image correlation software was used to process a sequence of aerial imagery and derive two sets of 166 

landslide displacement maps for the Hermaliere landslide. The data and methods are detailed as 167 

follows: 168 

2.1 Image correlation techniques  169 

Where two epochs of imagery are available for a landslide site, it is possible to compare these 170 

images manually using standard image interpretation to visually identify and map any changes that 171 

have occurred, and thereby identify areas of landslide movement. Digital image correlation, by 172 

contrast, uses statistical techniques to automatically match identical points in the two digital images 173 

and then measure their offset (in x and y) and by doing so, create a two dimensional displacement 174 

field across the landslide. 175 

In this study, digital image correlation has been applied to a sequence of aerial photography using 176 

Cosi-Corr software (Ayoub et al. 2009; Leprince et al, 2007) in order to investigate the suitability of 177 

aerial imagery as the basis for landslide monitoring using image correlation. COSI-Corr applies Digital 178 

Image Correlation techniques using a normalised cross-correlation algorithm (NCC) to detect 179 

motions between two epochs of imagery (Le Prince et al., 2007). It has been applied successfully in 180 

several types of surface movements such as earthquakes (Copley et al. 2011; Wei et al. 2011 ; Konca 181 

et al. 2010; Barisin et al. 2009 ; Barbot et al. 2008; Leprince et al. 2008; Taylor et al. 2008; Leprince et 182 

al. 2007; Avouac et al. 2006), ice-flow (Heid and Kääb 2012; Debella-Gilo and Kääb 2011; Herman et 183 

al. 2011; Berthier et al. 2009; Quincey and Glasser 2009; Tahayt et al. 2009; Leprince et al. 2008; 184 

Scherler et al. 2008), sand migrations (Hermas et al. 2012; Necsoiu et al. 2009; Vermeesch and Drake 185 

2008) but there are very few examples in the literature that applies this technique to landslides 186 

movements (Debella-Gilo and Kääb 2011; Leprince et al. 2008; Stumpf et al. 2014). Moreover, these 187 

COSI-Corr landslides examples use satellite images instead of aerial photographs as in our case. In 188 

each case, the image correlation has been applied to two sets of satellite imagery to create a 189 

displacement field. 190 

2.2 Aerial imagery 191 

The multi-temporal analysis was undertaken using 1200 dpi digitalized aerial photographs purchased 192 

from the Institut Géographique National (IGN) covering different dates, over a period covering three 193 

years, from 2001 to 2003. Consequently, RGB (3 band images: Red (R), Green (G) and Blue (B)) colour 194 



aerial photographs from years 2001 and 2003 have been used in this study. These images 195 

correspond to different acquisitions collected at similar altitudes and therefore scale. The flight 196 

scales are between 1:23,000 and 1:25,000 approximately and flight direction was either south to 197 

north and west to east (Table 1). 198 

Table 1: Characteristics of the images used in the multi-temporal analysis 199 

Aerial images  Date 
  

Scale Flight direction 
Time span (days) 

2001_fd0026_250_c_0267 
 

28/05/2001 1: 23,733 S-N 
783 

2003_fd0038_250_c_1279 01/08/2003 1:25,830 W-E 

 200 

A combination of image pairs was chosen to minimise the temporal baselines between images in 201 

order to avoid potential decorrelation between image dates. However this technique does not 202 

require the use of image stereo pairs for each date, only a unique photograph that covers the entire 203 

area of interest is required. There-fore the photographs were chosen where the landslide was 204 

located in a more central position in the image (Table 1) (Fig. 4). How-ever the stereoscopic effect 205 

could appear when we work with two images of the same area acquired from two different points of 206 

view. In order to minimise stereoscopic effects low and similar incidence angles, near to vertical 207 

incidence must be considered (Hermas et al.,2012; Van Puymbroeck et al., 2000). In Van 208 

Puymbroeck et al. (2000) they use the parameters of the images and a DEM to model and 209 

compensate the stereoscopic effect. The geometry of the shot assures an almost vertical incidence 210 

angle that contributes to a negligible stereoscopic effect. Camera calibration information was 211 

sourced for each of the image sets from the Institut Géographique National (IGN) and used alongside 212 

the aerial photography during the initial interior orientation stage. 213 

2.2. Digital elevation model 214 

The use of a digital elevation model is not mandatory when using COSI-Corr, however, in areas of 215 

high relief it is important incorporate an elevation model to correct for the topographic effects and 216 

distortions during the image matching process (Ayoub et al. 2009). In this study, we use the 217 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation 218 

Model ASTER GDEM V2 at 30m grid posting and acquired from USGS.  219 

ASTER GDEM was released NASA and the Ministry of Economy, Trade and Industry (METI) of Japan 220 

as a contribution to the Global Earth Observing System of Systems (GEOSS). ASTER GDEM (GDEM1) 221 

was compiled from over 1.2 million scene-based DEMs covering land surfaces between 83°N and 222 



83°Slatitudes. ASTER GDEM (GDEM2) was released by NASA and METI in mid-October, 2011 223 

(Tachikawa et al. 2011). The GDEM2 has the same gridding and tile structure as GDEM1, but benefits 224 

from the inclusion of 260,000 additional scenes to improve coverage, a smaller correlation kernel 225 

(5x5 versus 9x9 for GDEM1) yielding higher spatial resolution, and improved water masking. The 226 

absolute vertical accuracy study found the GDEM2 to be within -0.20 meters on average. (ASTER 227 

GDEM V2 Validation Report, 2011). 228 

2.3 Ground Control Points (GCPs) 229 

GPS ground control data is required for image matching applied to aerial imagery in order to 230 

perform the exterior orientation of the photographs and orientate them with reference to the 231 

ground (Ayoub et al. 2009). In this study, the GPS ground control data were collected by researchers 232 

at the Université Joseph Fourier, Grenoble as part of a separate research project on the Harmaliere 233 

and Avignonet landslides (Bièvre et al. 2011; Jongmans et al. 2009). The GPS data was collected 234 

during two different field campaigns and includes more than 40 ground control points (GCPs) 235 

distributed across the entire area outside the boundary of the active landslide. The entire area 236 

covers an extension bigger than the area recorded in a single image. For this reason some of the 237 

GCPs were not used because they were outside the area recorded in the photographs used. 238 

The campaigns were carried out with ASHTECH ProMark II devices with static acquisition method 239 

with 2 seconds measurement interval and 20 minutes observation time in each point. Resulting 240 

accuracy for these specifications and devices are establish in 5mm +1ppm in horizontal and 10mm 241 

+2ppm in vertical coordinates. 242 

Fig5 shows the GCPs distribution in 2001 photograph (left) as well as Tie points distribution over 243 

2003 photograph (right). 244 

2.4 Workflow 245 

The processing workflow for COSI-Corr is shown in Fig6 and comprises of five stages; interior and 246 

exterior orientation, ortho-rectification, resampling and final image correlation. The initial interior 247 

orientation establishes the relationship between the image and camera coordinate system using the 248 

fiducial marks on the image and the camera calibration report to provide a measure of the camera 249 

geometry and distortions (Dewitt and Wulf, 2000). Once complete, the imagery is further 250 

transformed during the exterior orientation, to real world coordinate space using GPS ground 251 

control points, that provide coordinate and height information for each point located in the imagery. 252 

Ayoub et al. (2009) recommend at least three ground control points per image for the exterior 253 

orientation, but in this study, we used a minimum of six points per photograph (Fig5).  254 



 255 

 256 

Fig5: GCPs distribution in 2001 photograph (left) as well as Tie points distribution over 2003 257 

photograph (right). 258 

259 



GCP were selected from the entire list of 40 points depending on if they were clearly identified in the 260 

images and their location to get a homogeneous distribution in each photograph. For the second 261 

image 13 Tie points were selected by identifying homologous points manually in both images (2001 262 

and 2003 photographs) to cover the entire frame surface (Fig5). The imagery was then ortho-263 

rectified using the digital elevation model and known ground control points to remove terrain 264 

distortions and generate a geometrically accurate image that is then resampled to an agreed pixel 265 

size and coordinate system. Concretely in this study UTM coordinate system and bilinear resampling 266 

scheme were used. 267 

If the aerial image comprises three RGB bands, then COSI-Corr will use only one of the bands for the 268 

re-sampling process. These steps follow the traditional photogrammetric workflow applied to aerial 269 

imagery (Wulf and Dewitt 2000) but applied to one image and not the standard stereopair. Once the 270 

two sets of images have been generated for each data, COSI-Corr proceeds with the image 271 

correlation. COSI-Corr algorithms use a Normalized Cross-Correlation (NCC) to measure the similarity 272 

between matching entities in one image and their corresponding entity in a second image (Debella-273 

Gilo and Kaab 2011; Leprince et al. 2007). Once an object has been matched using its cross 274 

correlation, a Euclidean offset is computed between the two images to give a displacement in x and 275 

y. The resulting outputs include a West to East and North-South displacement field image and a 276 

vector displacement map.  277 

For the correlation step some parameters must be defined and adapted manually. In this study, 278 

according with software developers’ suggestion included in the COSI-Corr user´s guide (Ayoud, 279 

Leprince and Keene, 2009) for noisy optical images, Statistical Correlator Engine was selected. The 280 

parameters for this correlator are: window size in pixels, step in X and Y direction in pixels between 281 

two sliding windows and search range in X and Y direction in pixels for the displacements. In this 282 

study 10x10 pixels window size, 5 pixels step and 3 pixels search range in both X and Y directions 283 

were selected. 284 

2.5 Accuracy assessment  285 

According to Leprince et al, 2007 theoretical COSI-Corr subpixel accuracy is 1/50 pixel for satellite 286 

images with resolution no better than 5m.  It degrades at higher resolution (because of topographic 287 

roughness inducing more significant stereoscopic bias) of the order of 1/20th of the pixel size for 288 

aerial photographs with metric GSD (Ayoub et al, 2009). This value corresponds to 32.5 mm 289 

approximately in our research. 290 

 291 



 292 

Fig6. Image matching workflow based upon aerial photographic imagery.  293 

 294 

295 



Given the activity of landslide, there are no monitoring points installed within the active parts of the 296 

slide, therefore accuracy assessment of the displacement field has been assessed using prior 297 

knowledge of the landslide movement (Stumpf et al. 2014), in our case, using field observations and 298 

airphoto interpretation.  299 

3. Results 300 

The results of the image matching between 2001 and 2003 are shown in Fig7. The figure shows the 301 

average movement direction derived from the NS and EW displacement fields. It presents areas with 302 

clear slope movement, areas of decorrelation or noise have been removed. The vector field shown in 303 

the figure is derived from the movement field generated from the image correlation and have been 304 

added manually to the figure to provide information on the movement direction and to improve 305 

clarity.  306 

Zones of correlation indicate differing amounts of horizontal displacement of up to 2.5 metres. 307 

There are three main zones of movement identified from the displacement field data. Firstly, a 308 

strong signature of landslide motion on the western flank of the landslide is detected. The 309 

differential settlement is well controlled by arcuate scarps defining a clear landslide zone in this 310 

portion of the landslide complex. Some regression is visible at the top of this slope with subsidence 311 

bounded by these scarps visible on the lower slopes. Localised de-correlation in this area can be 312 

related to the formation of a new mudflow in this area; and this event is visible in Fig7. The eastern 313 

flank also contains some displacement, particularly associated with several pre-existing lateral 314 

landslides that appear to be undergoing some deformation. The major displacement is associated 315 

with a second zone of decorrelation that again represents the signature of completely new 316 

landslides that have formed between the two image dates (2001-2003). These new slides are clearly 317 

visible in the orthoimage in Figure 8. Lastly, the head zone of the landslide contains more diffuse 318 

displacement data but within this zone, some major movement in the north-west section of 319 

landslide is observed moving down along the strike of the valley axis. There is evidence of some 320 

displacement in the north east portion of the head zone, particularly along the major scarp zone. 321 

Aerial photography does show some regression of this scarp between 2001 and 2003 and some 322 

major secondary movement just downslope. The apron of landslide debris within the centre of the 323 

Harmaliere valley identified by (Bievre et al. 2011) is clearly visible in the photography but shows no 324 

evidence of any major displacement. Indeed, much of the landslide movement is focused at the 325 

edges and back of the landslide and little movement is detected in the centre of the valley.  326 



 327 

Fig7. Results of the image matching between 2001 and 2003 over contour lines (left) and DEM 328 

(right). Renewed landslide activity, scarps and slope movement vectors are shown. Displacement is 329 

cumulative over three years. Low SNR values have been mask to produce the image. Vector field 330 

displacement has been added as arrows movement direction over the image. 331 

 332 

333 



4. Discussion 334 

The Harmaliere landslide has undergone major pulses of movement, starting in March 1981 with the 335 

first major advance followed by several major retrogressive events (Bièvre et al. 2011). During the 336 

intervening period, the movement is characterised smaller scale flows and lateral movements. The 337 

short baseline used in this study has enabled this short temporal episodic movement to be imaged 338 

alongside the major movements between 2001 and 2003. Bièvre et al. (2011) mapped temporal 339 

landslide change across the Harmaliere landslide using aerial photographic interpretation for years 340 

1956, 1985 and 2003. They used image thresholding to identify non-vegetated soils in the aerial 341 

photography and used this to identify areas of landslide activity. Their method appears to have 342 

overestimated the area of renewed activity, but despite this, for the epoch concurrent with our 343 

study (2003), they detect major movement in the upper sections and west flanks of the landslide 344 

which are coincident with our results. However, the displacement data isolate a number of other 345 

areas of movement not identified in this previous study. Firstly, the eastern flank of the landslide is 346 

much more active, with at least three new landslides detected in the displacement data. Our results 347 

confirm that the western flank of the landslide in the lower part is undergoing significant movement, 348 

but highlights a second landslide with a similar movement rate, not previously observed. The 349 

displacement data indicates a strong component of movement for both these lateral landslides with 350 

displacements of up to 2.5 metres for the period 2001 – 2003.  351 

These results from our investigation suggest that the flanks of the Harmaliere landslide are 352 

undergoing some deformation and that this has important implications for future landslide 353 

behaviour. The lateral slope movements contribute significant material and debris into the main 354 

landslide in the Harmaliere valley. This is important when considering the geomorphological setting 355 

of the landslide; it is situated within a small catchment that funnels surface water down through the 356 

centre of the valley and into the main Drac valley. Surface runoff is therefore concentrated in the 357 

central axis of the Harmaliere valley and mobilises landslide debris that has accumulated at the 358 

bottom of the valley from these lateral landslide events. This helps to explain the flow style landslide 359 

behaviour that is observed in the lower part of the landslide system. The future behaviour of this 360 

lower part of the landslide may therefore be linked to the process of sediment input from lateral 361 

landslides, saturation and mobilisation of this debris, leading to re-activation of the lower portion of 362 

the landslide and ultimately the continued regression of the upper section and head of the landslide. 363 

Additionally, the head zone of the landslide is also affected by displacement, particularly the eastern 364 

side of the scarp. This is also coincident with results from previous studies, which suggest that the 365 

axis of the Harmaliere landslide has shifted eastward and that this is an area of increased landslide 366 

movement (Bievre et al. 2011). Two major flank failures have been imaged in the displacement data. 367 



Two areas of de-correlation on the east and west flanks of the landslide can be observed in the 368 

displacement data and using image interpretation it is clear that these are associated with 369 

completely new landslide events (see Fig7). The de-correlation stems from the mis-match between 370 

the two images as a consequence of the appearance of new landslides that cannot be correlated 371 

between the images. Consequently, localised de-correlation should be not dismissed but, as in this 372 

case, may indicate the presence of new landslide activity.  373 

Overall, the displacement data has helped us understand the behaviour of the landslide and identify 374 

particular areas of renewed activity. While we recognise that the rates of movement indicated by 375 

the displacement data for the period 2001-2003 cannot be validated (no GPS points are located in 376 

the Harmaliere valley), the overall motion of the landslide and areas of activity revealed by the 377 

image correlation are consistent with previous studies and qualitative observations from field 378 

reconnaissance and aerial photographic interpretation. 379 

Within the measured zone, some regions are characterised by noise caused by decorrelation 380 

between the two images. These are caused by changes in surface cover, such as vegetation growth 381 

or areas of new slope movement that has occurred between the dates of the two images.  The 382 

image analysis relies upon imagery that are free from shadow, snow and clouds so that the surface 383 

topography is fully visible in both images. In this study, images were taken in May 2001 and August 384 

2003 respectively at 14:10 local time (Fig. 4) in order to minimise the presence of these limiting 385 

factors in the imagery.  386 

 387 
5. Conclusions 388 

This study has demonstrated the application of image cross-correlation to the study of landslide 389 

movement using aerial photographs for the first time. The analysis has provided important insights 390 

into the dynamics of the Harmaliere landslide between 2001 and 2003, and through this, we have 391 

been able to identify new movement and slope deformation not previously identified or quantified. 392 

The short temporal baseline has been shown to be not only a requirement for the successful 393 

implementation of COSI-Corr technique for landslide monitoring; but also an advantage, in allowing 394 

us to detect multi-temporal variations in the landslide movement that would have been invisible in 395 

longer baseline image sets. 396 

Analysing landslide movement using aerial photography and image correlation techniques we have 397 

demonstrated that such monitoring is possible using aerial imagery, where high quality photography 398 

and ground control data are available. This new approach for landslide monitoring is likely to be of 399 



wide applicability to other areas characterised by complex ground displacements where aerial 400 

photographs are available for a long temporal span. In this sense aerial photographs constitute an 401 

important source of information that could be use to this purpose not only by visual image 402 

interpretation but for automatic image correlation. 403 
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