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Abstract—Integration of spectral and spatial information is 

extremely important for the classification of high-resolution 

hyperspectral images (HSIs). Gravitation describes interaction 

among celestial bodies which can be applied to measure similarity 

between data for image classification. However, gravitation is hard 

to combine with spatial information and rarely been applied in 

HSI classification. This paper proposes a Bayesian Gravitation 

based Classification (BGC) to integrate the spectral and spatial 

information of local neighbors and training samples. In the BGC 

method, each testing pixel is first assumed as a massive object with 

unit volume and a particular density, where the density is taken as 

the data mass in BGC. Specifically, the data mass is formulated as 

an exponential function of the spectral distribution of its neighbors 

and the spatial prior distribution of its surrounding training 

samples based on the Bayesian theorem. Then, a joint data 

gravitation model is developed as the classification measure, in 

which the data mass is taken to weigh the contribution of different 

neighbors in a local region. Four benchmark HSI datasets, i.e. the 

Indian Pines, Pavia University, Salinas, and Grss_dfc_2014, are 

tested to verify the BGC method. The experimental results are 

compared with that of several well-known HSI classification 

methods, including the support vector machines, sparse 

representation, and other eight state-of-the-art HSI classification 

methods. The BGC shows apparent superiority in the 

classification of high-resolution HSIs and also flexibility for HSIs 

with limited samples. 

Index Terms—Gravitation, Hyperspectral image, Bayesian 

theorem, Image classification. 

I. INTRODUCTION

HE recent advances of the hyperspectral remote sensing 

technology are capable of collecting hyperspectral sensing

images (HSIs) with hundreds of spectral bands and 

reasonable spatial resolution simultaneously [1]. This detailed 

spectral and spatial information increases the possibility of 

more accurately discriminating materials of interest. Thus the 

hyperspectral remote sensing technology has played an 

increasingly important role in many remote sensing application, 
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such as plant assessment [2], mineral exploration [3], disaster 

monitoring [4], and astronomy [5]. In these applications, 

classification is one of the most fundamental while challenging 

tasks. 

To obtain high quality classification results, complete 

utilization of Spectral and Spatial (SS) information is extremely 

important [6, 7]. In the past decades, researchers have 

developed numerous methods to synthetically utilize the SS 

information of HSIs [8-24]. Some studies first extract spatial 

features using texture filters on each spectral feature, such as 

gray-level co-occurrence matrix (GLCM) [8], Gabor [9], local 

binary pattern (LBP) [10], and Markov model [11]. The 

extracted SS features are then stacked together as the input of 

commonly used classifiers, such as support vector machines 

(SVM) [23], random forest (RF) [25], decision tree [26], 

artificial neural networks [27], and so on. Unfortunately, these 

kinds of methods always produce huge dimension of features 

and result in deterioration of classification accuracy. 

Meanwhile, the data projection based methods, such as sparse 

representation [14, 28] and manifold learning [15, 29], and 

graph-based methods [30] are also developed to mine the 

physically meaningful consensus in a low dimensional feature 

space in order to predict the classification labels [16]. Another 

way to deal with the high dimensional and big computational 

challenges in HSI filed is the cloud computing architectures 

[31]. In these algorithms, the spatial information is often 

incorporated by the joint of neighbors, like the joint sparse 

representation classification (JSRC) [17]. Nevertheless, the 

uses of spatial information are limited to that among the central 

pixel and its surrounding neighbors, and the spatial information 

of the training samples is not incorporated.  

In addition to the aforementioned methods, some other 

studies combine the SS information by integrating different 

classifiers [12, 19-24]. One typical kind of method is the fusion 

of pixel-based classification and superpixel-based 

segmentation results by the majority voting [12, 32]. In these 

researches, the spectral information contributes mainly to the 

classification while the spatial adjacent relationships between 

pixels are considered to refine the results. The commonly used 
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classification methods are machine learning methods such as 

SVM and RF [25] while the superpixel-based segmentation 

methods include mean-shift [33], simple linear iterative 

clustering (SLIC) [34], and fractal net evolution approach 

(FNEA) [35]. The classification results are often varied due to 

the difficulty in determining the optimal segmentation scale. 

Another type of method is to design multiple classifiers to 

model different types of features and their combination 

produces the final classification [19]. One widely used example 

is the multi-kernel SVM classifier [20]. For example, in [21], 

two Gaussian radial basis function (RBF) based kernels, i.e. the 

spectral RBF kernel and texture RBF kernel, are combined by 

a weighting method. In [23], a series of kernel functions with 

different scale parameters are constructed to model spatial 

information at different scales. However, the selection of kernel 

functions, training of kernel parameters, and determination of 

the weighting parameters are still challenging [24, 36]. 

Although some intelligent optimization algorithms (IOAs) like 

genetic algorithm (GA) [37], particle swarm optimization (PSO) 

[38], and differential evolutionary (DE) [23] have been 

introduced to optimize the parameters, how to avoid an IOA fall 

into a local optimum is a big issue [24].  

Most of the aforementioned classification methods are 

constructed based on the eager learning algorithms/principles 

(ELAs) [39]. The ELAs put significant effort in abstracting 

from the training samples by creating condensed 

representations during the learning phase [40]. The 

representations are considered approximate globally and 

applied directly to the new testing pixels. However, ELAs 

generally unable to provide good local approximations and 

show poor generalization ability when dealing with complex 

problem. Even the deep learning algorithms, which have 

recently become a hot topic and superior methods in HSI 

classification, also face series of issues [5, 13, 27, 41-45]. For 

example, although the 2D and 3D conventional neural networks 

(CNNs) [41, 46, 47] can simultaneously extract and abstract the 

SS information, they usually require significantly large training 

samples and more computation resources and time [48]. 

In contrast, lazy learning algorithms (LLAs), such as k-

nearest neighbor (KNN) [14] and case-based reasoning [49], are 

non-abstracting local learning methods. LLAs classify a testing 

pixel by finding the most similar samples in its local 

neighborhood, and assign the majority class label of the 

neighborhood [40]. The most prominent advantage of LLAs is 

that they have the innate incremental learning ability and thus 

can be very effective under complex decision space [50]. In 

recent years, the LLAs have been combined with the sparse 

representation methods to promote classification accuracy of 

HSIs [51-53].  

More recently, several LLAs inspired by Newton’s law of 

gravity have been proposed [54-61]. These methods simulate 

the attractive gravitational force between data points, denoted 

as data gravitation, as the classification measure. Following the 

Newton’s law of gravity, if the testing sample falls into a certain 

category, the distance between it and the corresponding training 

sample will be small and thus the data gravitation between them 

is large. A data point is assigned the class label whose training 

samples exerted the maximum resultant data gravitation to it. 

Obviously, different from the general distance-based clustering 

models such as KNN and K-means, the data gravitation based 

methods can comprehensively utilize the information of all 

samples and these methods have proven their superiority in data 

classification [54, 57, 60]. For example, Peng et al. [54] firstly 

proposes a data gravitation classification (DGC) method for 

classification of UCI datasets. In [60], to process the 

imbalanced classification problem, an amplified gravitation 

coefficient (AGC) is introduced to develop an imbalanced DGC 

(IDGC) method. The effectiveness of IDGC has been further 

verified in the imbalanced traffic identification mission [61]. To 

deal with the classification problem with noisy data, Wen et al. 

[57] proposes a cognitive gravitation model (CGM) based on

both the law of gravitation and the law of cognitive. Besides,

the superiority of data gravitation in classification has

motivated its application to edge detection of HSIs [62].

Motivated by these applications, we have tested the 

availability of data gravitation in HSI classification by 

developing a joint neighborhood learning based GDC method 

(JDGC) [63]. Even so, the integration of SS information is still 

a challenging problem for data gravitation. Especially, the 

spatial prior information of the training samples is omitted. 

Whereas, the spatial prior of training samples can be a 

beneficial constraint to the classifier [64]. Further, similar to the 

traditional joint KNN method, JDGC relies on Euclidean 

distance as a classification measure and holds that weight of 

each neighbor in a local region is identical. This is not 

reasonable because of each neighbor have different importance 

and distribution. How to find a way to obtain the different 

weight of each neighbor in a joint region is another major issue. 

Aiming to address the above questions, we present a 

Bayesian Gravitation based Classification (BGC) method in 

this paper. In this method, each testing pixel is assigned to the 

class whose training samples exerted the largest data gravitation 

in a local joint region. The main contributions of BGC contain: 

(1) Proposed a Bayesian based data mass calculation method.

Here the testing pixel with more serried neighboring pixels and 

denser training samples is assigned with larger mass. This 

process effectively promotes the information mining of the 

limited training samples and successfully integrates the SS 

information of HSIs and training samples;  

(2) Designed a novel joint data gravitation model as the

classification measure, in which the joint Euclidean distance is 

weighted by the data mass. Thus each neighboring pixel in the 

joint region can contribute different weights to the central one 

synthetically based on their spectral and structural similarity.  

The remainder of this paper is organized as follows. Section 

II reviews the principle of the data gravitation. Section III 

presents the details of the proposed BGC method. Section IV 

describes the experimental datasets, and the corresponding 

comparison results are discussed in Section V. Finally, Section 

VI concludes this study. 

II. DATA GRAVITATION

In data gravitation model, each data point is assumed as a 

massive object. Following the Newton’s law of gravity, any two 

massive objects in the universe can exert attractive gravitational 

force to each other. The strength of the gravitational force (F) 

between two objects is direct proportional to the product of their 
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masses (m1 and m2) and inverse proportional to the square of 

the distance (r) between them [65]: 

1 2

2

m m
F G

r
 ,  (1) 

where G is the gravitational constant, which is often defined as 

1 in the data gravitation based methods. 

Obviously, the larger mass and the shorter distance will 

produce the bigger gravitational force. This is used to define the 

data gravitation and is used as a scalar to express the similarity 

between data points [54]. For a data set, each data will be 

attracted by all the other data. Thus the larger accumulative data 

gravitation indicates the greater similarity. As shown in Fig. 

1(a), for data point with unit mass, when the distance between 

data point P and the geometric center of class 1 (2r) is two times 

of that of class 2 (r), following Eq. (1), data gravitation exerted 

by class 2 (4F) is four times larger than that of class 1 (F). That 

is, P is more likely belonging to class 2. While for Fig. 1(b), 

although the distance between data point P and class 1 and class 

3 is the same, the data gravitation exerted by class 3 (2F) is two 

times larger than that of class 1 because of the overall mass of 

class 3 is twice of the class 1. In this situation, P is more likely 

belonging to class 3. 

Owing to its simple principle, the data gravitation theory has 

been utilized to solve the data clustering and classification 

problem [54, 57, 60-63]. These studies found that the definition 

of the data mass and distance metric is crucial since they form 

the similarity metric. Basic DGC method sets the mass of one 

specific data to unit value and the classification measure relies 

on the Euclidian distance between data [54]. In [57], self-

information is used to respect the data mass. In [59], reciprocal 

of the accumulative distance between a data and its k-nearest 

neighbors is set as the data mass and thus the densely distributed 

data will show larger data gravitation. This accords with the 

observation of Fig. 1(b) that the data density affects the 

classification result.  

Nevertheless, until now, data gravitation rarely been applied 

in HSI classification because of gravitation is hard to combine 

with spatial information. This paper aims to design a novel data 

mass calculation method and thus develop a more effective data 

gravitation based classification measure by integrating the SS 

information of testing pixels and prior training samples. 

III. BAYESIAN GRAVITATION BASED CLASSIFICATION (BGC)

Fig. 2 presents the overall framework of the proposed BGC 

method. BGC method contains two main steps: (1) Bayesian 

based data mass calculation in which the mass of each pixel is 

calculated based on the spectral distribution of its neighbors and 

the spatial distribution of its surrounding training samples; (2) 

Joint data gravitation model where the data mass is taken as the 

weight coefficient of joint Euclidean distance in the local joint 

region. Details of the two main steps are presented in the 

following subsections. 

A. Bayesian based Data Mass calculation

Assuming an HSI with N pixels belongs to C classes, the first

step of the BGC method is to calculate the data mass of each 

testing pixel 
iy  ( [1 2 ]i , ,...,N ). In BGC, each testing pixel is 

assumed as a massive object with unit volume and particular 

density. As is well-known, the mass (M) of an object is the 

product of its density (  ) and volume (V), i.e. M V  [66].

Fig. 2.  Framework of the BGC method. 

Fig. 1.  Data gravitation exerted on data sample P. 
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As the volume of a pixel is assumed as a unit value, the data 

mass of 
iy is only determined by its density: 

i iy yM   .           (2) 

Generally, the density of a data point is determined by its 

distribution in the attribute space. Given this, for each testing 

pixel 
iy , we define a local spectral density parameter 

yi
 and

a local spatial prior density parameter j

yi
P to jointly describe its

distribution in the spectral-spatial space. 

For the local spectral density, the  
yi

 is defined as follows:

,

1 1
dW W y kspe spe i

kyi
e


  ,           (3) 

where  
,y ki

d  is the spectral Euclidean distance between 
iy and

its k-th neighbor ( [1,2,..., ]
spe spe

k W W  ) as shown in Fig. 2. 

Obviously, if the similarity between the spectral features of the 

central pixel and its neighbors is strong, the corresponding 

density value is high.  

For the local spatial prior density,  j

yi
P  is defined as the 

spatial prior distribution of the training samples in a 
spa spaW W

local neighborhood as shown in Fig. 2. In the local 

neighborhood, the denser the training samples of a certain class 

is, the higher the possibility that the pixel belongs to this class. 

Hence, the possibility that the pixel i is classified to the j-th 

class is set as j

yi
P . 

To calculate j

yi
P , we firstly suppose two events:

Event j

yi
A : the pixel 

iy is a training sample of the j-th class;

Event j

yi
B : the pixel 

iy is classified to the j-th class, i.e. 

( )j j

y ii
P P B . 

Obviously, events j

yi
A and j

yi
B are correlate to each other, 

and the prior knowledge of event j

yi
A can make the probability

of event j

yi
B closer to the real probability. This happens to 

follow the Bayesian Theorem [67, 68]. The details for 

calculating the ( )j

i
P B  are given in the follows. 

Suppose the neighborhood of 
iy contains 

iNS training 

samples and  (
jn  is the training samples size of 

the j-th class in the local neighborhood), the probability of event 
j

yi
A can be written as: 

( )
jj

yi

spa spa

n
P A

W W



.                 (4) 

As the events j

yi
A and j

yi
B correlate to each other, following 

the Bayesian theorem, the probability of event j

yi
B can be 

obtained by: 

( )
 ( )=

( )

j j

y yj i i

yi j j

y yi i

P A B
P B

P A B

.         (5) 

In a classification model, a pixel will be classified to a 

specific class of it belongs to the class in the training data. We 

thus can conclude that when event j

yi
A occurring, event j

yi
B will 

be true. Therefore, their joint probability can be expressed as: 

( ) ( )
jj j j

y y yi i i

spa spa

n
P A B P A

W W
 


.           (6) 

For the conditional probability  ( )j j

y yi i
P A B , when we classify 

the pixel 
iy to the j-th class, the probability of event j

yi
A

occurring is the proportion of j-th training samples in the total 

number of training samples in the local neighborhoods, i.e.:  

( )j j i

y yi i

spa spa

NS
P A B

W W



.  (7) 

Then we can substitute Eq. (6) and Eq. (7) into Eq. (5) and 

obtain: 

    ( )
jj i

yi

spa spa spa spa

n NS
P B

W W W W


 
.                (8) 

Thus, the local spatial prior density of the training samples 

involved with the j-th class can be defined as: 

( )
jj j

y yi i

i

n
P P B

NS
  .  (9) 

In this way, the category with more training samples in the local 

spatial neighborhood will be regarded to have a larger local 

spatial prior density. 

Consequently, integrating the local spectral density and the 

local spatial prior density shown in Eq. (3) and Eq. (9) can make 

comprehensive use of the SS information of HSIs and the prior 

information of training samples. In this paper, the integrated 

density of 
iy involved with the j-th category ( [1,2,..., ]j C ) 

is defined by: 

(1 )
j

yi

i i

Pj

y y



  .               (10) 

Accordingly, the data mass of 
iy can be rewritten as:

,
(1 )

1=( 1)

j

y kspe spe i i

i

n

dW W NSj
kyM e




  .   (11) 

As shown, the data mass is a vector associated with the spatial 

prior distribution of the training samples. In this way, the more 

similar the center pixel is to the surrounding pixels and the more 

training samples of j-th class in the neighborhood is, the heavier 

the center pixel will be.  

B. Joint Data Gravitation Model

The HSIs with high-resolution usually have large

homogeneous regions where the neighboring pixels within the 

regions are likely to be the same type target [14]. That is, pixels 

located in a small neighborhood often sharing the similar 

spectral character and spatial structure. This understanding has 

been utilized to present the joint Euclidean distance in joint 

KNN which holds that the importance of each testing sample in 

a local region is equal [53]. Apparently, this is not reasonable 

for it omit the different spectral and spatial distribution of 

testing pixels in a local region. Therefore, in this paper, we 

design a joint data gravitation model to calculate the data 

gravitation exerted on each testing pixel 
iy ( [1 2 ]i , ,...,N ) in 

1 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3203488

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



> TGRS-2022-01336 <

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes (Indian Pines, Salinas, and Pavia University) 
2http://www.grss-ieee.org/community/technical-committees/data fusion/2014-ieee-grss-data-fusion-contest/(Grss_dfc_2014) 

5 

which the data mass is used to weigh the joint Euclidean 

distance of different neighboring pixel. The basic principle of 

the joint data gravitation model versus the basic data gravitation 

model is illustrated in Fig. 3. 

As seen in Fig. 3(a), in the conventional data gravitation 

model, a testing sample will be affected by all the training 

samples and therefore it will be assigned to the class that exerts 

the maximum accumulative gravitational force. Note that, to 

use all the samples directly, not always better. In the proposed 

joint data gravitation model, on the contrary, as shown in Fig. 

3(b), the category of the center pixel is determined only by its 

closely neighboring pixels in the local joint region and their 

nearest training samples. Especially, the data mass, 
i

j

yM , is 

taken to weigh the contribution of different neighbors in the 

local joint region. Hence, the proposed BGC method can 

effectively improve the efficacy and robustness of HSI 

classification. 

Details of the proposed joint data gravitation model are given 

below: 

Step 1: For each central pixel
iy , set a 

J JW W  square 

neighborhood as its joint region, 
i, jointy , as shown in the left 

bottom of Fig. 2. 

Step 2: Calculate the data mass of pixel 
iy using the

Bayesian based data mass calculation strategy (Eq. (11)). Due 

to the mass is directly related to the spatial distribution of every 

class of training samples, the mass is a vector other than a scalar, 

which can be written as 1 2[ ]
i i i i

C

y y y yM M ,M ,...,M . 

Step 3: For each testing pixel 
iy , calculate the Euclidean 

distance between its every neighboring pixel k 

( [1 2 ]J Jk , ,...,W W  ) in the joint region and all the training 

samples, denoted as 
( )

j
i, joint ky ,S

d  where [1,2,..., ]j C . 

Step 4: For each neighboring pixel, select the nearest training 

sample of every class, denoted as 
( )i

j

y , joint kS . 

Step 5: Calculate the data gravitation exerted on the k-th 

neighbors, 
( )

j

yi, joint k
F ,  from the nearest training sample of the j-

th class by: 

( )

2( )

( ) ( )
( )

j

y Si, joint kj

y ji, joint k

i, joint k yi, joint k

M m
F

y S




 
,  (12) 

where 
S

m is the mass of the training sample,   is a small

constant. In this paper, they are set to 1 and 610 , respectively. 

Accordingly, for each testing pixel 
iy , we can obtain the data 

gravitation between  all  its neighbors  and the nearest training 

sample of the j-th class, denoted by j

yi, joint
F  where [1,2,..., ]j C . 

Here the data mass is taken as the weighting coefficient of the 

joint Euclidean distance of different neighboring testing pixel 

( )i, joint ky . 

Step 6: The average gravitation of the joint neighbors exerted 

by the j-th class samples, j

i
F , therefore can be calculated by: 

( )1

J J

i, joint k

i, joint

W W j

ykj

y

J J

F
F

W W








 .        (13) 

In this way, the SS information of the joint neighbors is 

combined to produce the final data gravitation. 

Step 7: The label of the testing pixel 
iy can be determined 

by: 

1,2,...,

( ) arg max
i

j

i y
j C

class y F


 .         (14) 

The pseudo-code of the proposed BGC method is given in 

Algorithm 1. 

IV. EXPERIMENTAL SETUP

In this section, we describe the details of four benchmark HSI 

datasets and experimental settings. The sensitivity of 

parameters in BGC method is also analyzed. 

A. Datasets

The four benchmark datasets are Indian Pines, Salinas, Pavia

University, and Grss _dfc_2014. Al the datasets are download 

from website1,2. Details of these datasets are given below: 

1) Indian Pines (20-m resolution, 145×145): The dataset is

acquired by the AVIRIS instrument over the agricultural area

of Northwestern Indiana in 1992. The data has a wavelength

range from 0.4 to 2.5 μm with 224 wavebands. Considering the

Algorithm 1 shows the pseudo-code of the proposed BGC method. 

Algorithm 1 BGC for HSIs classification 

Initialization: N: number of pixels in an HSI; C: number of classes; Wspe, 

Wspa, WJ: sizes of the local neighborhoods for local spectral density, local 
spatial prior density of training samples, and joint region, respectively;  

Bayesian based data mass calculation 

1: For each testing pixel 𝑦𝑖 where 𝑖 ∈ [1,2,…𝑁] 
2:   Calculate the local spectral density by Eq. (3). 

3:   For each class 𝑗 ∈ [1,2,… 𝐶] 
4:     Calculate the local spatial prior density by Eq. (9). 

5:   End for 

6:   Calculate the data mass using Eq. (11). 

7: End for 

Joint data gravitation model 

8: For each testing pixel 𝑦𝑖 where 𝑖 ∈ [1,2,…𝑁] 
9:   Construct the joint region 𝑦𝑖,𝑗𝑜𝑖𝑛𝑡. 

10:  For each class 𝑗 ∈ [1,2,…𝐶] 
11:    Calculate the Euclidean distance between each neighbor and all the 

training samples. 

12:    For each neighboring pixel, select the nearest training sample. 

13:      Calculate the data gravitation exerted on neighbors by Eq. (12). 
14:    End for 

15:    Calculate the average data gravitation using Eq. (13). 

16:  End for 
17:  Predict the label of the i-th pixel using Eq. (14). 

18: End for 

Fig. 3. The basic principle of (a): data gravitation model and (b) joint data 

gravitation model. 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3203488

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



> TGRS-2022-01336 < 6 

atmospheric and water absorption, 24 bands are discarded as 

previous works [14, 69] and this paper preserves the other 200 

bands for classification test. This agricultural area mainly 

contains 16 different types of crops as the ground truth (GT) 

image shown in Fig. 4(a).  

2) Salinas (3.7-m resolution, 512×217): The dataset is

acquired by the AVIRIS sensor over Salinas Valley, California. 

Compared to Indian Pines data, spatial resolution of this data is 

significantly improved. After removing 20 water absorption 

bands from original 224 spectral bands, 204 bands are reserved. 

The area contains 16 land-cover classes as the GT image shown 

in Fig. 4(b). 

3) Pavia University (1.3-m resolution, 610 × 340): The

dataset is acquired by the Reflective Optics Spectrographic 

Imaging System-03 (ROSIS-03) sensor over the university of 

Pavia, Italy. This sensor contains 115 spectral channels with a 

much higher spatial resolution than the first two datasets. After 

removing 12 noisy bands, 103 channels are kept for further 

processing. Nine classes of different materials are considered in 

this data as the GT image shown in Fig. 4(c).  

4) Grss_dfc_2014 (0.2-m resolution, 759×564): The data is

originally used in the 2014 IEEE GRSS Data Fusion Contest 

[70], collected over an urban area near Thetford Mines in 

Quebec, Canada. This data contains 84 bands in the long 

wavelength range from 7.8 to 11.5 µm. Moreover, its spatial 

resolution up to 0.2 m, thus it is a very challenging dataset for 

the HSI classification. This area contains 7 different classes of 

land cover as shown in Fig. 4(d). 

B. Parameters Sensitivity Analysis

In BGC method, the spatial contextual information is utilized

in both the Bayesian based data mass calculation process and 

joint data gravitation model process by setting three square 

neighborhoods. Given that too small neighborhood cannot fully 

describe the structural information and too large neighborhood 

will increase the heterogeneity and computational time, we 

determine the values of , , and  on different 

datasets seriously based on individual spatial resolution and 

content of the scene. 

For , it decided the value of local spectral density 
yi

 and

the related formulation is an exponential function as shown in 

Eq. (3). It is important to maintain the homogeneity of local 

neighbors and thus keep the spectral density larger than 1. Only 

in this way the mass can be an increasing function of spatial 

prior density of training samples as illustrated in Eq. (9). Thus 

the value of  should be a very small value and set as 5 for 

all the tested datasets finally.  

For  and , because they jointly affect the value of 

data gravitation, we conducted the combined test to select the 

parameters for each dataset by trial and errors. The results are 

listed in Table I. Note that the setting of training and testing 

samples follows that introduced in Section IV.C. For the Indian 

Pines, we tested the  and  with the value of {1, 3, 5, 7, 

9, 11, 13, 15, 17, 19} respectively. Fig. 5(a) presents the 

generated overall classification accuracy (OA in percentage) for 

each pair of parameters. As shown, when equals {7, 9, 11} 

and  is set to {3, 5}, the BGC method produce the best OA. 

To reduce the computational time, the  and  are set to 

7 and 3 for the Indian Pines as listed in Table I. For the other 

three datasets, because of their much higher spatial resolution, 

we tested the larger values of  belonging to {11, 13, 15, 

17, 19, 21, 23, 25, 27, 29}. The corresponding experimental 

results are displayed in Figs. 5(b)-(d). Following the principle 

that the larger OA with the smaller neighborhood is better, 

 and  for Salinas, Pavia University, and 

Grss_dfc_2014 are set to {5, 21}, {5, 23}, and {9, 19}, 

respectively as illustrated in Table I. Table I summarized the 

parameter settings of BGC on different datasets. 

C. Experimental Settings

In this paper, to fully evaluate the performance of the

proposed BGC method, two classical HSI classification 

TABLE I 

PARAMETER SETTINGS OF DIFFERENT METHODS ON EACH TEST DATASET 

Methods 
Indian 

Pines 
Salinas 

Pavia 

University 
Grss_dfc_2014 

SVM RBF kernel, 5-fold cross validation 

JSRC 

sparsity=3 

regularization parameter=10-2 

=7 =7 =9 =17 

IDGC -- -- -- -- 

JDGC =7 =13 =15 =15 

BGC 

=5 

=7 =21 =23 =19 

=3 =5 =5 =9 

(a) Indian Pines (b) Salinas 

(c) Pavia University (d) Grss_dfc_2014 

Fig. 5. Effects of parameter settings of BGC. 

(a) Indian Pines (b) Salinas  (c) Pavia University (d) Grss_dfc_2014

Fig. 4. The ground truth images of the datasets. 
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algorithms, SVM and JSRC [14], and two improved variants of 

data gravitation based classification methods, IDGC [60] and 

JDGC [63], are adopted as comparisons. The SVM and IDGC 

only use the original spectral bands in this paper while JSRC 

and JDGC can synthetically utilize the SS information by 

combing with the joint neighborhood learning. To keep fair 

comparison, in the following experiments, the parameter 

settings of all the four compared methods were also decided by 

trial and errors, as summarized in Table I. For SVM, RBF was 

selected as the kernel function in which the penalty coefficient 

and gamma parameter were estimated by 5-fold cross validation. 

For JSRC, on all the datasets, the sparsity was set to 3 and the 

regularization parameter is empirically set as 10−2. The size of 

the joint neighborhood was set to 7, 7, 9, and 17, respectively. 

IDGC does not involve any parameter. For JGDC, the values of 

J
W  were set to 7, 13, 15, and 15, for testing. In addition, for all 

the five algorithms, the same settings of training samples were 

used as listed in Tables II-V. As shown, 10% of the samples 

were randomly selected as the training samples and the 

remaining 90% were chosen as the testing samples for the 

Indian Pines image. For the Salinas, Pavia University, and 

Grss_dfc_2014 datasets, the percent of the training samples and 

testing samples were set to 1% and 99%, respectively. 

For the quantitative evaluation, Average classification 

Accuracy (AA) of each class, the Overall classification 

Accuracy (OA) and kappa coefficient ( ) were calculated to 

compare the performance of the five classification methods. 

Besides, the running time was utilized to compare the 

computation efficiency of the comparison methods. All the 

experiments were performed using MATLAB 2016b on a 

computer with 3.0-GHz CPU and 8-GB memory. 

V. RESULTS AND DISCUSSIONS

A. Classification Results and Analysis

This section presents the qualitative and quantitative

classification results as well as the running time of the four 

datasets yielded by the proposed BGC method and the other 

four compared methods. Figs. 6-9 show the classification maps 

of the four datasets. The corresponding classification accuracy 

is listed in Tables VI-IX. Table X summarizes the running time. 

For each test, the best results are marked in bold. Details and 

discussions of the experiments are given below. 

1) Indian Pines: As shown in Fig. 6, the classification results

of SVM and IGDC have many salt-and-pepper noise. In 

comparison, the results of JSRC, JGDC, and BGC methods are 

much better, due to the combination of SS information. 

Moreover, the joint neighborhood learning-based data 

gravitation methods, i.e. the JGDC and BGC, show better 

classification capability than that of JSRC as highlighted by the 

red circles in Fig. 6. This is because of that the neighbor average 

filtering mechanism of the joint model can alleviate the effects 

of noise, which has been widely used in image denoising 

applications. Further, the Bayesian based model helps to further 

promote the BGC method as shown in Fig. 6(e). In a word, the 

BGC shows the best qualitative results for Indian Pines. This is 

also confirmed by the quantitative results listed in Table VI. 

From Table VI we can conclude that in 15 out of the 16 kinds 

of crops, the BGC generated the best classification accuracy 

and obtained the best results in OA, AA, and κ. The utilization 

Table II 
SAMPLE SETTINGS OF THE INDIAN PINES DATA 

No. Class Training Testing 

1 Alfalfa 5 41 

2 Corn-notill 143 1285 

3 Corn-min 83 747 

4 Corn 24 213 

5 Grass/pasture 49 434 

6 Grass/trees 73 657 

7 
Grass/ 

pasture-mowed 
3 25 

8 Hay-windrowed 48 430 

9 Oats 2 18 

10 Soybean-notill 98 874 

11 Soybean-min 246 2209 

12 Soybean-clean 60 533 

13 Wheat 21 184 

14 Woods 127 1138 

15 Buildings-Grass-Trees-Drives 39 347 

16 Stone-Steel Towers 10 83 

Total 1031 9218 

Table III 
SAMPLE SETTINGS OF THE SALINAS DATA 

No. Class Train Test 

1 Weed_1 21 1988 

2 Weed_2 38 3688 

3 Fallow 20 1956 
4 Fallow_P 14 1380 

5 Fallow_S 27 2651 

6 Stubble 40 3919 
7 Celery 36 3543 

8 Grapes 113 11158 

9 Soil 63 6140 
10 Corn 33 3245 

11 Lettucc_4wk 11 1057 

12 Lettucc_5wk 20 1907 
13 Lettucc_6wk 10 906 

14 Lettucc_7wk 11 1059 

15 Vineyard _U 73 7195 
16 Vineyard _T 19 1788 

Total 549 53580 

Table IV 
SAMPLE SETTINGS OF THE PAVIA UNIVERSITY DATA 

No.  class Training Testing 

1 Asphalt 67 6564 

2 Meadows 187 18462 

3 Gravel 21 2078 
4 Trees 31 3033 

5 Metal sheets 14 1331 

6 Bare Soil 51 4978 
7 Bitumen 14 1316 

8 Bricks 37 3645 

9 Shadows 10 937 

Total 432 42344 

Table V 

SAMPLE SETTINGS OF THE GRSS_DFC_2014 DATA 

No. Class Training Testing 

1 Road 45 4398 

2 Trees 11 1082 
3 Red roof 19 1835 

4 Grey roof 22 2104 

5 Concrete roof 39 3849 
6 Vegetation 74 7283 

7 Bare soil 18 1753 

Total 228 22304 
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of the data density distribution in spectral space and spatial 

distribution knowledge of the training samples may help to 

perform further utilization of the SS information. Besides, for 

class 7 and class 9 which only have 3 and 2 training samples 

respectively, the BGC method also got high classification 

accuracy. We therefore can infer that the BGC may also suit to 

classification problem with limited samples. 

2) Salinas: Fig. 7 shows the classification maps of the Salinas

and the corresponding details of classification accuracy are 

summarized in Table VII. Comparing to the Indian Pines, the 

spatial resolution of Salinas is much high. Thus the spectral 

heterogeneity is more serious. Especially the Celery and 

Vineyard which are highlighted by the red circles are easily 

confused as shown in Fig. 7. As shown, SVM and IDGC are 

almost impossible to distinguish these two classes and the 

improvement of JSRC is limited. In comparison, the 

combination of SS information in JDGC and BGC can 

effectively promote their classification results and the BGC also 

obtained the best classification accuracy as illustrated in Table 

VII. This experiment demonstrated that the BGC can better

process the HSI with high spatial resolution.

3) Pavia University: Fig. 8 displays the classification

accuracy of the Pavia University. The corresponding details of 

classification accuracy are listed in Table VIII. Like the Salinas, 

the spatial resolution of Pavia University is also very high. Thus, 

abundant details result in significant differences within the 

classification results. A shown in Fig. 8 (a)-(b), the SVM only 

using the spectral features shows a lot of misclassification 

which is also confirmed by the qualitative evaluation results 

listed in Table VIII. Besides, although the SS feature based 

JSRC and JDGC produced much better results, there are still 

existing numerous confusions between the Tress and the 

Meadows as highlighted in the red circles. Moreover, compared 

to the results of the Indian Pines and Salinas, the difference 

between JDGC and BGC is enlarged. This may because the 

BGC considers the local density of pixels to calculate their 

masses. It can be seen as a weighted process for JDGC. This 

overcomes the problem that the JGDC is greatly affected by its 

neighborhood heterogeneity [63]. Overall, the BGC method 

achieved the best classification results with an OA up to 0.97 as 

shown in Table VIII. 

4) Grss_dfc_2014: Fig. 9 and Table IX show the qualitative

and quantitative results of the Grss_dfc_2014 generated by the 

five comparisons, respectively. Due to the very high spatial 

resolution and long wavelength property, the classification 

difficulty of the Grss_dfc_2014 is much high than the other 

three datasets. As shown in Table IX, the overall classification 

accuracy of different algorithms is relatively lower. 

Nevertheless, the integration of SS information is still 

meaningful. As illustrated, the OA values of both SVM and 

(a)    (b)  (c)  

     (d)                                 (e)  
Fig. 6. Classification maps of the Indian Pines with 10% training samples per 

class: (a) SVM,  (b) JSRC, (c) IGDC, (d) JGDC, and (e) BGC. 

Table VI 
CLASSIFICATION ACCURACY OF THE INDIAN PINES WITH 10% 

TRAINING SAMPLES PER CLASS 

class SVM JSRC IDGC JGDC BGC 

1 0.4878 0.9268  0.8537  0.9268  0.9268 

2 0.7385 0.9502  0.2467  0.9339  0.9782 

3 0.6693 0.9465  0.7068  0.9759  0.9960 

4 0.5540 0.8826  0.7042  0.9437  0.9624 

5 0.9032 0.9585  0.6521  0.9862  0.9908 

6 0.9665 0.9041  0.8174  0.9802  1.0000 

7 0.5600 1.0000 0.9600 0.9200  1.0000 

8 0.9581 0.9977  0.8163  0.9953  0.9953 

9 0.3333 0.2778  1.0000 0.2222  0.7222 

10 0.7620 0.9085  0.7197  0.9336  0.9771 

11 0.7827 0.9683  0.5455  0.9909  0.9932 

12 0.7598 0.8762  0.3133  0.9493  0.9812 

13 0.9837 0.9185  0.9565  0.9511  0.9891 

14 0.9156 0.9965  0.8383  0.9956  1.0000 

15 0.5533 0.9049  0.1009  0.9625  0.9914 

16 0.9518 0.8313  0.9157  0.8675  0.9277 

OA 0.7963 0.9448 0.5950 0.9677 0.9882 

AA 0.7425 0.8905 0.6967 0.9087 0.9645 

κ 0.7679 0.9448 0.5468 0.9631 0.9865 

(a)                    (b)                   (c)                   (d)                   (e)  
Fig. 7. Classification maps of the Salinas with 1% training samples per class: 

(a) SVM,  (b) JSRC, (c) IGDC, (d) JGDC, and (e) BGC. 
Table VII 

CLASSIFICATION ACCURACY OF THE SALINAS WITH 1% 

TRAINING SAMPLES PER CLASS 

class SVM JSRC IDGC JGDC BGC 

1 0.9925  1.0000 0.9904 1.0000 1.0000 

2 0.9911  0.9986  0.9810 1.0000 1.0000 

3 0.9054  0.9903  0.8088 0.9877  0.9949  

4 0.9877  0.8949  0.9891 0.8877  0.9732  
5 0.9725  0.9679  0.9736 0.9891  0.9936  

6 0.9934  0.9967  0.9926 0.9867  0.9944  

7 0.9944  0.9983  0.9879 1.0000 1.0000 

8 0.8389  0.8654  0.5944 0.9876  0.9872  

9 0.9811  1.0000 0.9619 1.0000 1.0000 

10 0.9270  0.9735  0.7652 0.9837  0.9935  

11 0.8865  0.9905  0.9461 0.9934  0.9943  

12 1.0000 0.9722  0.9995 0.9974  0.9990  

13 0.9735  0.9934  0.9735 0.9868  0.9823  
14 0.9367  0.9594  0.9292 1.0000 0.9849  

15 0.6853  0.7801  0.7104 0.8745  0.9933  

16 0.9754  0.9877  0.7785 0.9989  0.9955  

OA 0.9059  0.9322 0.8362 0.9742 0.9935 

AA 0.9401  0.9257 0.8989 0.9796 0.9929 

κ 0.8953  0.9606 0.8184 0.9713 0.9928 
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IDGC are smaller than 0.7 and that of JSRC, IDGC, and BGC 

are all bigger than 0.8. The improve effect of the SS information 

can also be confirmed by the figures shown in Fig. 9 (b), Fig. 

9(c) and Fig. 9(e). Especially for the circled area, although the 

very high spatial resolution leads to the image details cannot be 

fully displayed, the speckle problem of SVM and IDGC is 

obviously more serious. This further confirms that the proposed 

BGC is feasible for the classification of high-resolution HSIs. 

5) Running time: Table X lists the running time of the five

comparison methods on the four datasets. Although the IDGC 

is the most efficient, its classification performance is unable to 

meet the requirement as shown in Figs. 6-9 and Tables VI-IX. 

For the other four algorithms, as can be seen, the DGC based 

methods, i.e. JDGC and BDGC, have much higher efficiency 

than that of the SVM and JSRC. This is mainly because the 

SVM and JSRC methods are eager learning algorithms that 

require longer time to perform classification model training. In 

particular, there are the largest training samples in Indian Pines 

dataset (1031), thus SVM takes the longest running time in this 

case. By contrast, the DGC based methods are lazy learning 

algorithms that only need to calculate the data similarity 

between testing pixels and training samples. In addition, 

although the BGC desires longer running time than JDGC, 

BGC obtained the best performance on all the four datasets and 

the time is much lower than SVM and JSRC.  

B. Comparison with State-of-the-Art Approaches

To further test the performance of the proposed algorithm,

we compare the BGC algorithm with eight state-of-the-art 

approaches, including Generalized Tensor Regression (GTR) 

[71], Invariant Attribute Profiles (IAP) [72], Spatial-Spectral 

Manifold Reconstruction Preserving Embedding (SSMRPE) 

[29], Superpixelwise Adaptive SSA (SpaSSA) [73], mini-batch 

Graph Convolutional Networks (mini-GCNs) [74], 2DCNN 

[41], end-to-end Fusion Network (FuNet-C) [74], and CNN-

Enhanced Graph Convolutional Network (CEGCN)[75]. These 

algorithms are all recently proposed for HSI classification with 

high precision. As to the parameter settings, for the first four 

algorithms, parameters are set by trial and errors. For the other 

four algorithms, we adopted the settings of parameters from the 

corresponding literatures [41, 74, 75]. The parameter settings 

for BGC are kept the same as the settings in Table I. The 

comparison results are listed in Table XI.  

As shown in Table XI, the CEGCN with pixel- and 

TABLE X 

COMPARISON OF RUNNING TIME (s) 

datasets SVM JSRC IDGC JGDC BGC 

Indian Pines 101.077 63.203 0.547 1.175 1.952 

Pavia University 20.384 161.989 0.942 4.654 5.669 
Salinas 27.789 340.192 1.850 4.477 10.934 

Grss_dfc_2014 5.055 88.165 0.221 1.650 4.176 

(a)   (b)  (c)  

     (d)                            (e)  

Fig. 8. Classification maps of the Pavia University with 1% training samples 

per class: (a) SVM,  (b) JSRC, (c) IGDC, (d) JGDC, and (e) BGC. 
Table VIII 

CLASSIFICATION ACCURACY OF THE PAVIA UNIVERSITY WITH 

1% TRAINING SAMPLES PER CLASS 

class SVM JSRC IDGC JGDC BGC 

1 0.8419  0.5730  0.5672 0.9633  0.9759  

2 0.9843  0.9802  0.6673 0.9957  0.9963  

3 0.6487  0.8056  0.4418 0.8128  0.9644  

4 0.7999  0.7751  0.9575 0.4857  0.7455  
5 0.9722  0.9932  0.9902 0.9752  0.9992  

6 0.3112  0.7987  0.6264 0.9620  1.0000 

7 0.6429  0.9483  0.9187 0.9757  1.0000 

8 0.7267  0.8883  0.7646 0.9871  0.9591  

9 0.9082  0.5315  0.9989 0.7524  0.9669  

OA 0.8285 0.8541  0.6904 0.9338  0.9704  

AA 0.7595 0.8104  0.7703 0.8789  0.9564  

κ 0.7509 0.8055  0.6129 0.9113  0.9605  

(a) SVM (b) JSRC  (c) IGDC

(d) JGDC (e) BGC

Fig. 9. Classification maps of the Grss_dfc_2014 with 1% training samples 
per class. 

Table IX 

CLASSIFICATION ACCURACY OF THE GRSS_DFC_2014 WITH 1% 
TRAINING SAMPLES PER CLASS. 

class SVM JSRC IDGC JGDC BGC 

1 0.9659 0.9757 0.8481 0.9923 0.9527 

2 0.0157 0.4455 0.2736 0.3919 0.5573 

3 0.2594 0.6354 0.3041 0.6218 0.7297 

4 0.5837 0.4815 0.5242 0.7376 0.6972 

5 0.5214 0.9618 0.0057 0.9101 0.9623 

6 0.8584 0.8439 0.6666 0.9470 0.9856 

7 0.4404 0.7895 0.4398 0.8118 0.8945 

OA 0.6725 0.8153 0.5082 0.8655 0.8989 

AA 0.5207 0.7333 0.4375 0.7732 0.8256 

κ 0.5784 0.7673 0.3895 0.8298 0.8724 

m

n
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superpixel-level feature fusion obtains a close result to BGC in 

the first three datasets. The GTR, SpaSSA, IAP, and SSMRPE 

obtained relatively better classification performances than the 

other three deep leaning based algorithms in most cases. This is 

mainly because these algorithms deeply excavate the spectral 

features or comprehensively utilize the SS features, which 

further confirms the necessity of SS combination in HSI 

classification. In comparison, the BGC method does not involve 

with any feature extraction process but can effectively mine the 

SS information and achieved the better OA and kappa 

coefficient, especially on the complex scene of Grss_dfc_2014. 

Besides, the computational efficiency of BGC method has an 

absolute advantage as illustrated in Table XI, owing to the BGC 

method does not require training process. 

C. Analysis of Training Sample Size

In view of the good performance of BGC in dealing with

small-sample problem in previous experiments, we further 

tested its flexibility in cases with different sizes of small-sample. 

Specifically, we randomly selected training samples according 

to their number and percentage. For the number of sample size 

(num/class), the data is selected as 3, 5, 10, 12, and 15 per-class. 

For the percentage of sample size (per/class), the value is set to 

1%, 3%, 5%, 8%, and 10% per-class. The Indian Pines dataset 

is selected as the testing data for it has 16 different kinds of 

targets and several of the classes only with few training samples. 

The parameter settings of BGC on each dataset are consistent 

with that listed in Table I. 

We compared the experimental results with a recently 

presented model, denoted as 3D-Gabor method, which focuses 

on the HSI classification with small-sample [69]. The 3D-

Gabor method also emphasizes the simultaneous utilization of 

the SS information. In this paper, the obtained results of BGC 

and that of the 3D-Gabor method are all summarized in Table 

XII. Note that the results of 3D-Gabor method are inherited

from its original paper. As can be seen, for all the cases, the

BGC algorithm is still superior to 3D-Gabor method. This

comes from that the 3-D Gabor method in essential is a

handcrafted feature-based method, which requires predefined

image structures. In contrast, BDC does not need to design any

feature extraction strategy using determined image structure

while only explores the simple SS information from its local

area. This may further verify that BGC has better data mining

capability than many other classification methods do. 

D. Discussions

The integration of SS information is essential for improving

the HSI classification. Although the simplicity of data 

gravitation principle has motivated its application in HSIs, it is 

hard to combine with the spatial information. In contrast, our 

proposed BGC method can fully mine the SS information of the 

HSI and training samples. The BGC thus possesses three 

specific properties. 

First of all, BGC method is a lazy learning algorithm with 

innate incremental learning ability. Hence it obtains 

outstanding classification performance on the Grss_dfc_2014 

dataset as shown in Fig. 9 and Table XI. Moreover, BGC spend 

less running time as illustrated in Table X and Table XI since it 

does not require training process. 

Secondly, the Bayesian based data mass calculation method 

combine the local spectral information of neighbors and the 

local spatial prior information of training samples, thus it 

effectively promotes the information mining of the limited 

training samples and improves the combination of SS 

information of testing pixels and training samples. In addition, 

the presentation of joint data gravitation model makes good use 

of the neighborhood pixels and alleviates the effects of 

heterogeneity in the high-resolution HSIs. 

Lastly, the BGC method does not involve with any feature 

extraction process but can effectively mine the spectral and 

structural similarity of pixels. The classification accuracy can 

precede many of the state-of-the-art classification methods as 

reported in section V.B and Section V.C. This also show its high 

potential for the small sample classification problem. 

Table XI 

COMPARISON WITH STATE-OF-THE-ART APPROACHES. 

Datasets 

(training 
samples)

accuracy GTR IAP SSMRPE SpaSSA miniGCN 2DCNN FuNet-C CEGCN BGC 

Indian Pines 

 (10%) 

OA 0.9811 0.9630 0.9112 0.9777 0.7314 0.8679 0.8581 0.9904 0.9882 

 0.9785 0.9577 0.8986 0.9745 0.6996 0.8491 0.8377 0.9891 0.9865 

T(s) 19.803 6.415 28.129 27.256 12.884 216.200 121.277 9.54 1.952 

Salinas (1%) 

OA 0.9744 0.9671 0.9549 0.9729 0.8920 0.8944 0.8912 0.9933 0.9935 

 0.9715 0.9634 0.9498 0.9698 0.8798 0.8823 0.8788 0.9926 0.9928 

T(s) 205.410 14.831 44.826 150.815 56.434 1239.660 317.980 51.21 5.669 

Pavia University 
(1%) 

OA 0.9260 0.9324 0.8792 0.9423 0.8491 0.9034 0.9150 0.9944 0.9913 

 0.9013 0.9088 0.8384 0.9231 0.8021 0.8709 0.8871 0.9926 0.9883 

T(s) 117.000 15.340 19.648 212.572 35.520 437.115 163.848 93.36 10.934 

Grss_dfc_2014 
(1%) 

OA 0.8680 0.8233 0.7397 0.8423 0.6299 0.6695 0.6778 0.8078 0.8989 

 0.8331 0.7733 0.6665 0.8021 0.5437 0.5777 0.5938 0.7135 0.8724 

T(s) 79.476 39.094 32.943 278.777 16.442 171.004 51.516 203.82 4.176 

Table XII 

CLASSIFICATION ACCURACY (OA) OF THE INDIAN PINES WITH 

VARIABLE SIZE OF TRAINING SAMPLES 

num/class 3 5 10 12 15 

BGC 0.6916 0.7686 0.8458 0.8646 0.8940 

3D-Gabor 0.6650 0.7400 0.8250 0.8450 0.8700 

per/class 1% 3% 5% 8% 10% 

BGC 0.9106 0.9545 0.9705 0.9815 0.9882 

3D-Gabor -- <0.9500 0.9600 0.9700 <0.9800 
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VI. CONCLUSIONS

This paper presents a Bayesian gravitation-based 

classification (BGC) to further explore the SS information of 

HSIs. In BGC, the SS information of the neighboring pixels and 

training samples are firstly combined to calculate the mass of 

each pixel. Then, a joint gravitation model is designed based on 

the joint neighborhood learning strategy in which the joint 

Euclidean distance is weighted by the data mass. By this means, 

the SS similarity of each neighboring testing pixel can be 

measured. Finally, the testing pixel is labeled to the class that 

exerted the largest average data gravitation to the neighbors. To 

verify the proposed method, four benchmark hyperspectral 

datasets i.e. the Indian Pines, Salinas, Pavia University, and 

Grss_dfc_2014 data sets are tested. Comparison results with the 

SVM, JSRC, IDGC, JDC, and other eight state-of-the-art 

classification methods confirm the superiority of the proposed 

BGC. The BGC also shows feasibility on the HSI classification 

with limited samples. Nevertheless, its feasibility for extremely 

small size of training samples needs further research. 
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