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A B S T R A C T

The European spruce bark beetle Ips typographus, L. (hereafter bark beetle), causes major economic loss to the
forest industry in Europe, especially in Norway Spruce (Picea abies). To minimise economic loss and preclude a
mass outbreak, early detection of bark beetle infestation (so-called “green attack” stage – a period at which trees
are yet to show visual signs of infestation stress) is, therefore, a crucial step in the management of Norway spruce
stands. It is expected that a bark beetle infestation at the green attack stage affects a tree’s physiological and
chemical status. However, the concurrent effect on key foliar biochemical such as foliar nitrogen and chlorophyll
as well as spectral responses are not well documented in the literature. Therefore, in this study, the early de-
tection of bark beetle green attacks is investigated by examining foliar biochemical and spectral properties
(400–2000 nm). We also assessed whether bark beetle infestation affects the estimation accuracy of foliar bio-
chemicals. An extensive field survey was conducted in the Bavarian Forest National Park (BFNP), Germany, in
the early summer of 2015 to collect leaf samples from 120 healthy and green attacked trees. The spectra of the
leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. Significant differ-
ences (p < 0.05) between healthy and infested needle samples were found in the mean reflectance spectra, with
the most pronounced differences being observed in the NIR and SWIR regions between 730 and 1370 nm.
Furthermore, significant differences (p < 0.05) were found in the biochemical compositions (chlorophyll and
nitrogen concentration) of healthy versus green attacked samples. Our results further demonstrate that the es-
timation accuracy of foliar chlorophyll and nitrogen concentrations, utilising partial least square regression
model, was lower for the infested compared to the healthy trees. We show that early stage of infestation reduces
not only foliar biochemical content but also their retrieval accuracy. Our results further indicate that remote
sensing measurements can be successfully used for the early detection of the bark beetle infestation. We de-
monstrated that bark beetle infestation at the green attack stage effects leaf spectral response as well as leaf
biochemical properties and their retrievals from hyperspectral measurements.

1. Introduction

Bark beetles (Ips typographus, L., and Dendroctonus spp.) are im-
portant biotic disturbance agents in the coniferous forests of Europe and
North America, respectively (Christiansen and Bakke, 1988; Fahse and
Heurich, 2011; Raffa et al., 2008; Seidl et al., 2011; Seidl et al., 2014).
In the past decades, an increasing number of severe bark beetle out-
breaks has led to an extensive economic loss in the forest industry
(Goheen and Hansen, 1993; Waring et al., 2009). The economic impacts
include a reduction in the commercial value of the infested trees and

increased management costs (Schowalter, 2012). Besides causing eco-
nomic losses, outbreaks of the bark beetle form an important factor in
the ecological development of the forest landscape, in terms of forest
structure and composition (Pfeifer et al., 2011; Schowalter, 2012;
Simard et al., 2012; Zeppenfeld et al., 2015), as well as biodiversity and
ecosystem services (Thom and Seidl, 2015). Bark beetles can affect
forest ecosystems both directly and indirectly. Direct impacts include an
increase in tree mortality rates and a reduction in forest stand densities
(Bright et al., 2013; Eitel et al., 2011; Filchev, 2012; Hais and Kučera,
2008; Schowalter, 2012; Vanderhoof et al., 2013; Verbesselt et al.,
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2009). Other indirect impacts are; reduction in carbon uptake, changes
in tree species’ distribution, as well as changes in erosion processes, fire
frequency, and nutrient cycling (Beudert et al., 2015; Kurz et al., 2008;
Lehnert et al., 2013; Lindenmayer and Franklin, 2002; Mikkelson et al.,
2013). Additionally, recent studies showed that the infestation of bark
beetle leads to biodiversity enhancement by opening the canopy layers
and altering microclimate condition in the forest. This alteration will
provide the essential habitats and sources of energy for various or-
ganisms, and allow them to persist in the disturbed areas by bark beetle
(Beudert et al., 2015; Lehnert et al., 2013; Müller et al., 2008).

The phenology of bark beetle and the associated host responses are
well described in Wermelinger, (2004). The infested tree goes through
three stages of attack (Coulson et al., 1985; Sprintsin et al., 2011;
Wermelinger, 2004). These stages are termed green, red and grey at-
tacks, respectively. During the green attack stage, the foliage remains
green (hence the name green attack), and therefore, it is difficult to
detect this stage by the human eye at leaf and canopy levels (Niemann
and Visintini, 2005; Wulder et al., 2006). However, the subsequent
degradation of the needles can be noted by regular field observations,
as, during the red attack stage, the needles of the tree turn from green to
yellow and red-brown. Finally, the needles fall off, and only the grey
bark will remain, hence the last stage being called a grey attack. This
discolouration of the attacked trees is evident at canopy level (Coulson
et al., 1985). It is expected that bark beetle infestation induces changes
in the spectral response of the infested trees (Filchev, 2012; Meddens
et al., 2013), as the biophysical characteristics of the entire tree, and
very likely the biochemical features of the needles, change. Therefore,
during the infestation period, the trees are subjected to increasing stress
and face physiological change (Heath, 2001). This is due to the inter-
ruption of the water flow and the deterioration of chloroplasts as the
beetle drills into the tree’s cambium tissue (Yamaoka et al., 1990). The
fungi carried by the beetles penetrate the living phloem and xylem cells,
hampering the translocation of water, sugar and other nutrients within
the bole of the tree (Paine et al., 1997; Rohde et al., 1996; Safranyik
et al., 2007; Wermelinger, 2004). This leads to a gradual change in
biochemical and water content in the attacked tree, thus inducing al-
terations to itś spectral characteristics over the course of the infestation
(Deshayes et al., 2006; Lawrence and Labus, 2003; Marx and an der
Havel, 2010; Reid, 1961; Sprintsin et al., 2011; Yamaoka et al., 1990)

A considerable increase in unplanned harvesting of European forests
following bark beetle infestation has led to increased research interest
in understanding the dynamics and improving the management of Ips
typographus, L. outbreaks (Seidl et al., 2011). Furthermore, an increase
in the frequency and severity of bark beetle outbreaks is expected due
to global climate change (Bentz et al., 2010). Consequently, more at-
tention is devoted to this topic. It has also been evoked to increase
discussion regarding salvage logging in protected areas in Europe
(Lehnert et al., 2013). Early detection of Ips typographus, L. outbreaks at
the green attack stage may prove an important step, as management
aims to control this species and preclude a mass outbreak. At the green
attack stage, the trees hold the next generation of beetles. Management
intervention to prevent further outbreaks may, therefore, involve the
removal of infested trees before the new brood emerges and migrates
(Wermelinger, 2004; Wulder et al., 2009). Traditionally, foresters have
performed field surveys to identify infested trees; such surveys are very
laborious, costly, and therefore it is inefficient and hard to apply for
management purposes in large areas. Remote sensing has the potential
to detect pest infestations over large areas in relatively short periods of
time. Employing remotely sensed data allows monitoring of the changes
in leaf and canopy properties before and after insect infestation (Bentz
and Endreson, 2003; Deshayes et al., 2006; Dye et al., 2008; Jensen,
2009). To date, the utilisation of remote sensing for the monitoring and
detection of bark beetles by forest managers has mainly focused on the
last two attack stages (i.e., the red and grey stage) and has achieved
high degrees of accuracy. During the last two stages of the attack, the
changes in canopy colour effect the spectral reflectance signature which

are mainly been used as an indicator to detect infestations (Carter et al.,
1998; Franklin et al., 2003; Heurich et al., 2010b; Latifi et al., 2014;
Meddens, 2012; Nikolov et al., 2014; Skakun et al., 2003; Wulder et al.,
2006). However, detecting the infestation in the last two stages is not
sufficient for appropriate management, as phenological research proved
that during the red attack stage the newly developed beetles have al-
ready left their host trees and started to attack new trees. Therefore, the
continuing of an outbreak can not be prevented by salvage logging
during this stage. Consequently, the detection of the bark beetle at the
green attack stage by means of remote sensing is necessary to have a
meaningful effect on the spreading of the beetle, but is challenging due
to the lack of apparent visual symptoms in needles.

Early detection of infestations by Dendroctonus spp in lodgepole pine
trees has been investigated at canopy level (Gimbarzevsky et al., 1992;
Heath, 2001; Klein, 1973; Murtha and Wiart, 1989; Murtha, 1972).
Similarly, detection of a bark beetle green attack (Ips typographus, L.) at
canopy level in Norway spruce trees has been investigated by (Immitzer
and Atzberger, 2014; Lausch et al., 2013; Marx and an der Havel, 2010;
Ortiz et al., 2013). However, these studies did not succeed in dis-
criminating healthy from green attacked trees. More recently, Niemann
et al. (2015) used LIDAR and hyperspectral data to examine the spectral
properties of healthy trees and those under mountain pine beetle green
attack and demonstrated that the most promising wavelengths, for the
detection of mountain pine beetle at green attack stage, is located in the
shortwave infrared region. Furthermore, Näsi et al. (2015) used a hy-
perspectral sensor (500–900 nm) mounted on an unmanned aerial ve-
hicle (UAV) to map bark beetle damage at the tree level, by dividing
tree stands into three different classes (healthy including trees with
potential early infestation stage, red attack; and dead). They found that
the healthy and dead trees can be classified with 90% over-all accuracy,
however, when all classes were considered (healthy, red and dead), the
overall accuracy dropped to 76%.

At the leaf level, there are very few studies, although with different
beetle and tree species, that have examined the differences in spectral
reflectance between healthy needles and those that have been under
bark beetle green attack (Ahern, 1988; Cheng et al., 2010; Foster et al.,
2017). In addition to a change in spectral reflectance properties, Cheng
et al. (2010) observed that there were differences in water content of
healthy and infested needles, particularly, between 1318 and 1322 nm.

These results show that remote sensing has the potential to detect
early stages of bark beetle attacks. However, these studies have mostly
considered the effect of early infestation on reflectance spectra and not
on the biochemical properties of the needles. Therefore, it is highly
important to understand whether, in addition to the spectral re-
flectance, the biochemical properties are also affected at the bark beetle
early infestation stage. Consequently, the topic warrants further in-
vestigation.

As mentioned earlier, it is expected that the infested tree will exhibit
a change in terms of its biochemical and spectral properties, due to the
beetle larva and blue stain fungi such as (Ophiostoma and Cerato-cystis
species) carried by the beetles starts to penetrate the living phloem and
xylem cells, hampering the translocation of water, sugar and other
nutrients within the bole of the tree (Paine et al., 1997; Rohde et al.,
1996; Safranyik et al., 2007; Wermelinger, 2004).Therefore, in this
study, we aim to investigate the possible early detection of a bark beetle
green attack by examining and comparing the foliar biochemical
(chlorophyll and nitrogen) and spectral properties (400–2000 nm) of
both healthy and green attacked trees. Chlorophyll and nitrogen are
two important elements that have a key role to play in plant life and
status and can be considered as indicators that reflect the status of plant
growth and health (Heinze and Fiedler, 1976; van Maarschalkerweerd
and Husted, 2015; Wang et al., 2015a; Wang et al., 2015b). As such
changes, initiated by bark beetle attack cause stress during the in-
festation time, we hypothesise that chlorophyll and nitrogen con-
centrations are reduced during such an attack. These can thus provide
suitable proxies for detecting the presence of Ips typographus L. during a
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green attack stage. Specifically, there are three main objectives: (a) to
investigate the impact of an Ips typographus L. green attack on folair
spectral reflectance; (b) to examine the changes in folair biochemical
properties due to the Ips typographus L. green attack; (c) to explore the
impact of the Ips typographus L. green attack on the estimation accuracy
of folair biochemical properties utilizing hyperspectral measurements.

2. Material and methods

2.1. Study area

The study area is the Bavarian Forest National Park (BFNP) in south-
east Germany, which covers an area of 240 km2 between 13°12′9″ E
(longitude) and 49°3′19″ N (latitude) (Fig.1). The elevation in the BFNP
ranges from 600 m to 1453 m. This region is characterised as having a
temperate climate with a total annual precipitation along the gradient
between 900 and 1800 mm as well as a mean annual temperature that
varies between 3.5 and 7.2 °C (Bässler et al., 2008; Lehnert et al., 2013).
The area is divided into three ecological zones: high elevations, hill-
sides, and valley bottoms. Around 90% of the tree stands in high ele-
vations are Norway spruce (Picea abies (L.) Karst), 2% are beech (Fagus
sylvatica L.), and the remaining 8% are covered by other broad-leaves
trees, mainly Common Rowan (Sorbus aucuparia). While on the hill-
sides, around 58% is occupied by Norway spruce, and the rest is a
mixture of European silver fir (Abies alba) and beech. In the valley
bottoms, 83% of the trees are Norway spruce, and the rest is a mix of
species (Cailleret et al., 2014; Heurich et al., 2010a). Multiple storm
events in the 1980s and a series of hot summers in the 1990s have lead
to an extensive mortality of canopy trees by bark beetles on about
8000 ha (Lausch et al., 2013).

2.2. Data acquisition

The adult bark beetle starts to attack new host trees during the
European springtime (between the end of April and the beginning of
May). This process strongly depends on the air temperature as the
beetles start their swarming when the air temperature reaches 16.5 °C
(Lobinger, 1994; Wermelinger, 2004). Therefore, the field data were
collected in the early summer of 2015 within 15–30 days from the early
stages of infestation. In total 120 trees were measured, of which 66
were healthy, and 54 were freshly infested trees. An extensive field
survey was conducted to identify the trees under bark beetle green
attack by spotting piles of dry, boring dust, which had been pushed out
onto the bark surface (Fig. 2). An Average of 2–3 branches were taken
from each tree. Needle samples from each branch were collected se-
parately. All the branches were taken from the upper part of the trees,
which was exposed to the sunlight.The heights of the trees varied be-
tween approximately 25 and 30 m. A crossbow was used to shoot an
arrow with a fishing line attached to a branch with sunlit leaves (Ali
et al., 2016). The fishing line was used to feed a rope over the targeted
branch. Once the rope was in place, the branch was pulled down gently
until it broke off. Needles were immediately removed from the fallen
branches and placed in a labelled plastic zip-locked bag, which was
then covered with wet pulp paper and subsequently transported to the
laboratory in a portable cooling box filled with frozen ice packs to keep
the sample cool. The aim was to retard, as much as possible, any
changes in the needles’ reflectance spectra and biochemical character-
istics (Malenovský et al., 2006). Once the spectral measurements were
completed, the same sample branch was transported to the laboratory
to measure the fresh weight, leaf area and the biochemical properties of
the foliar samples.

Fig. 1. The location of Bavarian Forest National park in Central Europe.
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2.3. Chemical analyses

The concentration of Chlorophyll a and b in the collected fresh leaf
samples was determined destructively by a spectrophotometer fol-
lowing the Lichtenthaler (1987) method using acetone (v 100%). In
addition, to determine foliar nitrogen, the needles were dried for 72 h
using an oven dryer at 60° C. The dried needles were properly grounded
using mortar and pestle until the ground leaves became a soft powder
and were passed through a 0.25 mm mesh screen. Subsequently, 2 mg
of powdered leaves was transferred to a small aluminium capsule to
measure the nitrogen content, using an organic elemental analyser
(FLASH 2000).

2.4. Reflectance measurements

The leaf directional hemispherical reflectance from 350 to 2500 nm
was measured for collected samples, using an ASD FieldSepc-3 Pro FR
spectrometer equipped with an ASD RT3-3ZC integrating sphere
(Analytical Spectral Devices, Inc., Boulder, Co, USA). The integrating
sphere had a port diameter of 15 mm for a reflectance measurement.
The Norway spruce needles did, however, not cover the entire sample
port of the integrating sphere. Therefore, the method proposed by
Daughtry et al. (1989) was applied, where a universal sample holder,
designed by Malenovský et al. (2006), was used to accommodate all
sizes and lengths of Norway spruce needles. For every measurement
five to six needles were secured on the sample holder with cellophane
tape, leaving a gap of one needle’s width between needles to avoid
multiple reflectances of the adjusted needles (Ali et al., 2016; Daughtry
et al., 1989). To minimise the effect of spectral signal noise, for every
needle sample two hundred scans were averaged to present a single
spectrum. The integrating sphere has an internal light source, and

therefore, the sun angle and cloudiness does not affect the spectral
measurement (Foster et al., 2017). However, to prevent possible light
entering into the integrating sphere ports, covering the integrating
sphere with a black piece of cloth is recommended by Mesarch et al.
(1999).

The measured spectral reflectance from the sample holder contained
the effects of the gap between the attached needles to the sample
holder; therefore, the spectral measurements were corrected by calcu-
lation of the gap fraction. To do so, a black painted paper mask with a
15-mm diameter circular aperture was precisely superimposed onto the
samples and photographs were taken using a 16.1 megapixel Panasonic
LUMIX camera (Ali et al., 2016). Then, the images were imported into
ImageJ software (Schneider et al., 2012), to compute the gap fraction,
based on the illuminated area of the sample port. The following equa-
tion was adapted from Mesarch et al. (1999) for the Field ASD spec-
trometer and to compute the hemispherical reflectance of the sample
needles:

Reflectance = [(ρ− Rd/1 − Rd) × Rr]/(1− GF); (1)

where: ρ is the measured reflectance from the sample holder; Rd is stray
light (ambient light) inside the integrating sphere, measured as a ra-
diation flux of the empty illuminated sample port in reflectance mode;
Rr, is reference of sample reflectance; and GF is the gap fraction of the
sample.

2.5. Data preprocessing and statistical analysis

A series of pre-processing steps were performed on the measured
reflectance data. First, the spectral reflectance was examined, and
“noisy” bands (in the spectral ranges 350–399 nm and 2000–2500 nm)
were excluded from the analysis. Secondly, to eliminate and reduce the
sensor noise, a Savitzky – Golay smoothing filter with a frame size of 15
(2nd-degree polynomial) was applied to the reflectance spectra
(Savitzky and Golay, 1964).

The significance of differences (p ≤ 0.05) in foliar reflectance as
well as chlorophyll and nitrogen concentration between leaf samples
from green attacked and healthy trees, was examined using Student t-
tests, in order to determine whether there is spectral variation at any
spectral band. Because the considered adjacent wavelengths are highly
correlated, we corrected the p-value using Holm (1979) procedure, next
the significant wavebands with mean reflectance spectra of both
healthy and infested samples were plotted following the technique used
by Schmidt and Skidmore (2003).

To investigate the relationship between the spectral reflectance of
the healthy and infested samples and their biochemical parameters, the
Pearson’s correlation coefficients were calculated between spectral re-
flectance (400 − 2000 nm) and chlorophyll as well as nitrogen con-
centration for both healthy and infested samples to identify the most
sensitive wavebands in healthy and infested samples.

2.5.1. Partial least square regression model (PLSR)
Partial least squares regression (PLSR) was used to investigate the

impact of the bark beetle green attack stage on the retrieval accuracy of
the chlorophyll and nitrogen concentrations in needles. PLSR is a re-
gression method that takes into account both the variance of the ex-
planatory and the dependent variables. It specifies a linear relationship
between a set of dependent (Y) variables and a set of predictor (X)
variables (Wold et al., 2001). PLSR performs particularly well when the
various X-variables have strong correlations, as is normally the case
with hyperspectral data. (Carrascal et al., 2009; Nicolaï et al., 2007).
Further details on PLSR can be found in Geladi and Kowalski (1986).

PLSR was used to predict the foliar chlorophyll and nitrogen con-
centrations (dependent variables) of the healthy and infested needles
from spectral reflectance (predictor variables). PLSR models were built
independently for the healthy and infested samples. For the chlorophyll

Fig. 2. Dry dust produced through boring by the bark beetle Ips typographus, L.; used to
identify freshly infested trees in the field.
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concentration, PLSR was fitted to the VNIR range (400–790 nm), as this
spectral region mainly contributes to total chlorophyll estimation in
plants (Curran, 1989; Yoder and Pettigrew-Crosby, 1995). However, as
nitrogen is associated with many other leaf chemical compounds, the
spectral wavebands corresponding to nitrogen are distributed over the
whole spectrum (VIR, NIR, SWIR) (Curran, 1989; Peterson et al., 1988)
and consequently, for the nitrogen concentration, PLSR was fitted to the
entire spectrum (400–2000 nm). To determine the number of compo-
nents needed to build the PLSR model, Monte Carlo cross-validation
(MCCV) was applied (Xu and Liang, 2001). The procedure involves
adding an extra component to the model when the value of the root
mean square error of cross-validation (RMSEcv) is reduced by ≥2%
(Darvishzadeh et al., 2008; Geladi and Kowalski, 1986). The perfor-
mance of the PLSR models were assessed by computing the coefficient
of determinations (R2), the normalised root mean square error of pre-
dictions (nRMSEP) and normalised root mean square error of cross-
validations (nRMSECV) of predicted versus measured values.

We further examined whether the most informative wavelengths for
the estimation of chlorophyll and nitrogen concentrations in both
healthy and infested samples correspond. To achieve this, the variable
importance in the projection (VIP) was calculated for all wavebands
from the PLSR models. VIP scores summarise the influence of individual
X variables (reflectance) in the PLSR model. A variable with a VIP score
close to, or greater than 1, can be considered significant in a given
model (Chong and Jun 2005; Tenenhaus, 1998; Wold et al., 1993). A
detailed description of the calculation of VIP scores can be found in
Farrés et al. (2015); Wold et al. (1993). TOMCAT and libPLS toolbox
was used within MATLAB to establish PLSR analysis and calculate VIP
score, respectively (Daszykowski et al., 2007; Li et al., 2014).

3. Results

3.1. Spectral reflectance variation due to bark beetle green attack

The results demonstrated that the mean reflectance spectra of
healthy and green attacked foliage were statistically different
(p ≤ 0.05) for 917 wavebands out of the 1600 wavebands used in this
study (Fig. 3). As can be seen from Fig. 3, a clear distinction was ob-
served in the mean reflectance between healthy and infested foliage in
the visible and near-infrared regions. In the visible region, the mean
reflectance of the infested foliage was higher than of the healthy leaves,
in conjunction with chlorophyll degradation (Fig. 4). However, there
was a larger difference (p ≤ 0.05) between infested and healthy nee-
dles in the wavelength range 730–1370 nm, as the healthy needles had
higher reflectance compared to mean infested spectra.

3.2. Impact of bark beetle green attacks on foliar biochemical properties

A Student t-test demonstrated a significant difference between total
chlorophyll and foliar nitrogen concentrations of healthy and infested
leaves (p < 0.05). In healthy foliage, the mean and±of the total
chlorophyll concentration were 0.766 ± 0.140 mg/g, respectively,
whereas for the green attacked leaves they were 0.657 ± 1.62 mg/g,
respectively. Furthermore, the concentration of nitrogen was
1.25 ± 0.21% within healthy leaves, while for the infested leaves they
were 1.13 ± 0.18%, respectively (Fig. 4). The correlation between
total chlorophyll and nitrogen concentration was higher in needles from
healthy trees (r = 0.68, p < 0.05) than in needles from green attacked
trees (r = 0.57, p < 0.05).

3.3. Effects of bark beetle green attack on the retrieval accuracy of leaf
biochemical properties

The impact of bark beetle green attack on the retrieval accuracy of
foliar chlorophyll and nitrogen concentrations was assessed using PLSR.
In general, higher accuracies were observed when healthy samples were
assessed (Table 1). For healthy foliage, the coefficients of determination
for chlorophyll and nitrogen concentrations were R2 = 0.64 and
R2 = 0.76, respectively. However, these coefficients decreased for
models fitted to data from infested foliage, both for chlorophyll
(R2 = 0.55) and for nitrogen (R2 = 0.68) (Table 1). Similar results
were discerned with the Pearson correlation coefficient between
chlorophyll and the reflectance data, as well as between nitrogen and
the reflectance data. As can be observed from Fig. 6, significantly
higher correlations were observed for healthy leaves than for infested
leaves. In addition, the prediction error for chlorophyll in healthy
leaves (nRSMSEp = 0.20) was much lower than for chlorophyll in in-
fested leaves (nRMSEp = 0.62) (Fig. 5). However, this variation in
nRMSEp for nitrogen content was much lower (0.12 and 0.22) in both
healthy and infested samples respectively.

As shown in Figs. 6 and 7, the spectral regions, in particular, the
green and the red edge (536–559 nm and 732–790 nm, respectively),
demonstrated the highest VIP (VIP > 1) and a moderately negative
correlation (r =−0.41 and −0.32, for the green and red edge, re-
spectively; P < 0.05) between chlorophyll and the reflectance spectra
of healthy foliage. The high VIP value indicated that the spectral feature
was of major importance in estimating the chlorophyll concentration. A
weaker negative correlation with a lower VIP score was observed for
the infested samples (r = −0.12, P < 0.05).

The spectral regions that were most sensitive to changes in nitrogen
content were in the range of 980–1000 nm and 1448–1469 nm, where

Fig. 3. Mean reflectance spectra of healthy and infested leaves at
the green attack stage. Gray areas depict the location of wave-
bands displaying is a significant difference between healthy and
infested spectra.
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the infested leaves had a lower VIP score (Fig. 6). Furthermore, the
correlation coefficients between foliar nitrogen concentration and the
reflectance spectra show a distinct variation between healthy and in-
fested foliage, especially in the spectral region between 720–1400 nm.

The healthy foliage showed a moderately negative correlation
(r = −0.30, P < 0.05), while for the infested foliage a positive cor-
relation was found (Fig. 6).

4. Discussion

It has long been believed that the detection of bark beetle green
attack using remote sensing data is a challenging task (Wulder et al.,
2009; Niemann and Visintini, 2005). However, recent studies have
shown that remote sensing data obtained across a number of wave-
lengths have the potential for the detection of bark beetle green attack
(Cheng et al., 2010; Foster et al., 2017; Niemann et al., 2015). In this
study, we investigated whether bark beetle green attack has a con-
current effect on key foliar biochemical properties (i.e. chlorophyll and
nitrogen concentration) as well as spectral responses (400–2000 nm).

Fig. 4. Distribution of measured chlorophyll and nitrogen con-
centration for healthy and infested needles. There is a significant
difference (p < 0.05) in chlorophyll and foliar nitrogen con-
centration between healthy and infested sample.

Table 1
Number of latent variables, R2 and nRMSEp between measured and predicted chlorophyll
and nitrogen in healthy and green attacked needles.

Sample
Condition

Variables Nr. Of latent
variables

nRMSEP nRMSECV R2

Healthy Chl 9 0.20 0.24 0.64
N 10 0.12 0.20 0.76

Infested Chl 10 0.62 0.75 0.55
N 8 0.22 0.35 0.68

Fig. 5. Measured versus predicted foliar chlorophyll (a) and
nitrogen (b) concentration for healthy and infested samples
derived from the PLSR analysis.
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The results demonstrate that the foliar reflectance of needles from green
attacked trees differs significantly from healthy needles (p≤ 0.05), in
particular between wavelengths of 730 and 1370 nm. Furthermore, the
infestation significantly (p≤ 0.05) affected the biochemical con-
centrations of total chlorophyll and foliar nitrogen and reduced their
retrieval accuracy using PLSR (Figs. 3 and 4).

The measured reflectance spectra of healthy needles matched those
of similar studies which measured needle reflectance of Norway Spruce
(Ali et al., 2016; Atzberger and Werner, 1998; Kováč et al., 2012).
However, there were significant differences observed between the re-
flectance spectra of the healthy and the green attacked samples. This
can be attributed to differences in their foliar biochemical properties,
especially to their chlorophyll concentration which is known to be ef-
fected by vegetation stress. In our study, the reflectance increased in the
visible region, and decreased in the NIR, for the green attack leaves.
This is in line with the findings of Ahern (1988), who studied the
spectral range of 400- 1100 nm and showed that the spectral band at
the green peak increased for the lodgepole pine needles infested by
similar beetle species (Mountain pine beetle) at the green attack stage.
In the visible region, the concentration of pigments such as total
chlorophyll is the main factor for determining leaf spectral variation
and absorption peaks (Carter and Knapp, 2001; Demetriades-Shah
et al., 1990; Feret et al., 2008; Zhang et al., 2008). The infested trees
had significantly (p < 0.05) lower chlorophyll and foliar nitrogen
concentrations than the healthy ones, resulting in lower absorption and
higher scattering (Figs. 3 and 4). The observed behaviour of the re-
flectance spectra in the visible region in this study is a clear indication
of stress caused by early infestation and is in agreement with the results
of earlier studies focused on plant stress (Carter, 1993; Carter and
Knapp, 2001; Zarco-Tejada and Sepulcre-Cantó, 2007). Furthermore,

wavelength ranges between 730 and 790 nm that contained the most
informative spectral region regarding variations in chlorophyll con-
centration, demonstrated the greatest amount of dissimilarity (58 wa-
vebands) between the healthy and infested leaf samples (Fig. 7). This
spectral region is often referred as red-edge, and it responds quickly to
changes in foliar chlorophyll (Carter, 1993; Carter and Knapp, 2001;
Smith et al., 2004). This is in good agreement with finding by Lottering
et al. (2016), as they studied the utility of spectral vegetation indices
derived from WorldView-2 data in detecting and mapping G. scutellatus
induced vegetation defoliation. Their result showed that the combina-
tion between red-edge and NIR region has the potential to detect stress
induced by G. scutellatus insect.

Moreover, as noted in Fig. 3, the more pronounced changes in the
reflectance spectra were observed at the wavelength region between the
NIR and SWIR regions (730–1370 nm), where the reflectance of the
infested leaves was distinctively lower than that of the healthy ones.
This can probably be explained by the changes in water content that
occur due to the infestation, which leads to a degeneration of the in-
ternal leaf structure at the cellular level (Miller et al., 1991; Murtha,
1978; Paine et al., 1997; Slaton et al., 2001; Zhang et al., 2012). This
result partially agrees with the findings of Niemann et al. (2015), who
demonstrated that at the wavelength of 970 nm there was no separation
between healthy trees and samples infested by mountain pine beetle,
while at the wavelength of 1200 nm a significant difference existed
between them. Additionally, Ismail and Mutanga (2010) showed the
importance of the wavelength between 900 and 1110 nm and identified
both Ratio975 and water index has the ability to assess water stress
induced by S. noctilio in P. patula trees from an early stage of infestation
when there is no sign of infestation at the canopy level.

In addition to the variations in VIS and NIR, the reflectance spectra

Fig. 6. Correlation between chlorophyll and nitrogen and the
reflectance of individual wavebands. The bold lines represent
the wavebands at which the reflectance spectra correlated
significantly with the chlorophyll and nitrogen concentra-
tions. The arrows show the wavebands in which recorded the
highest correlation with chlorophyll content in both healthy
and infested samples.

Fig. 7. Importance of wavelengths corresponding to the highest
value of variable importance in the projection scores of partial
least squares regression in healthy and infested samples, used for
chlorophyll and nitrogen estimation.
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of healthy and green attacked samples were also significantly different
(p < 0.05) in two short-wave infrared regions (1430–1500 nm and
1897–2000 nm) (Fig. 3). The most likely cause for this variation is the
low water and nitrogen content in the infested samples (Curran et al.,
1992; Mirzaie et al., 2014; Peñuelas and Filella, 1998). Physiological
research has shown that the fungi carried by the beetles penetrate the
living phloem, hampering the translocation of water, sugar and other
nutrients within the bole of the tree (Paine et al., 1997; Rohde et al.,
1996; Safranyik et al., 2007; Wermelinger, 2004). Not only are the
fungi instrumental in the decline of trees, but they also provide a ne-
cessary food source for insects during the infestation period (Runesson,
1991). This leads to a gradual decrease in needle biochemical content
and water content. Foster et al. (2017) and Cheng et al. (2010) showed
that a number of wavebands in the shortwave infrared region have the
potential for the detection of bark beetle infestation at the green attack
stage which is in line with our observation. Furthermore, in our study,
we have verified that the infested trees had a significantly (p < 0.05)
lower nitrogen concentration than that found in the healthy trees.

It should also be noted that we found that infestation at the green
attack stage weakened the correlation between chlorophyll and foliar
nitrogen concentrations. The correlation dropped from r = 0.68 to
r = 0.57, which may be partially explained by the reduction in the
range of the two parameters (Fig. 4). Furthermore, the correlation be-
tween reflectance and both total chlorophyll and foliar nitrogen dete-
riorated as leaves were stressed by a bark beetle green attack (Fig. 6).
The significant correlation (negative) between foliar nitrogen and
spectral reflectance at the 700 and 1200 nm (Fig. 6) is due to high
concentrations of foliar nitrogen in healthy needles as they also contain
high chlorophyll (and possibly other pigment) concentrations, lowering
the reflectance. Under stress, trees tend to break down their pigments
(Carter and Knapp, 2001), which probably effects the relationship be-
tween nitrogen and reflectance for the infested needles. Therefore, the
infestation affects the selection of wavelengths that were most sensitive

to the biochemical properties, in particular, the chlorophyll con-
centration, and their retrieval from spectral reflectance. This is de-
monstrated in Fig. 7, where distinctively lower VIP scores were ob-
served for the infested samples in the 730–790 nm spectral region.
Consequently, the accuracy of estimation of the two parameters in the
infested samples decreased (Table 1). To investigate the effects of bark
beetle green attack on the prediction bias for total chlorophyll and fo-
liar nitrogen we have used standardized residuals. In general, as can be
seen from Fig. 8, the infestation at the green attack stage caused under-
estimation of these two biochemical parameters from hyperspectral
measurements.

5. Implications for remote sensing applications

Our study confirms the importance of hyperspectral measurement
as well as foliar biochemical properties (i.e. chlorophyll and nitrogen)
for the detection of Ips typographus, L. green attack. An extension of this
finding would be to investigate the up-scaling of our findings to the
canopy level. However, this forms a challenge as many factors such as
logistical and technological aspects may limit the scaling up to the
canopy level (Foster et al., 2017; Wulder et al., 2009). One of the cri-
tical logistical factors that affect a remotely sensed survey for green
attacked trees is the timing of the optimal conditions for image acqui-
sition. In addition, spatial and spectral resolutions play an important
role in the studies of bark beetle green attack. However, this limitation
may be overcome by utilising a UAV-based application and newly
available multispectral satellite data, such as provided by Sentinel-2. In
our study, the estimation accuracy of foliar chlorophyll and nitrogen
concentration using hyperspectral measurements decreased when the
tree was infested by bark beetle green attack. This might be used as an
indicator for the efficient landscape-wide detection of bark beetle green
attack. It is, however, important to note that retrieval accuracies for the
total chlorophyll and foliar nitrogen concentrations at the leaf level

Fig. 8. Standardized residuals of predicted total chlorophyll and
nitrogen concentration for healthy and infested samples.

H. Abdullah et al. Int J Appl  Earth Obs Geoinformation 64 (2018) 199–209

206



would probably be different from those at the canopy level, because
structural and external factors such as illumination and atmospheric
conditions may affect the reflectance spectra at the canopy level. Ad-
ditionally, we found that the wavelength region between 730 and
790 nm (red-edge) is the most informative spectral region regarding
variations in chlorophyll concentration due to bark beetle green attack
(Fig. 6). This portion of the spectrum can be found in new multispectral
satellites such as Sentinel-2, World View-2 & 3 RapidEye and therefore
it might be possible to scaling up our findings to the canopy level,
particularly considering the high spectral and spatial resolution data.
Further investigation will show how accurate green attack stages can be
detected with different air and spaceborne sensors.

6. Conclusion

This study demonstrates that reflectance properties of healthy and
green attached Norway spruce trees are significantly different in 917
wavebands between 400 and 2000 nm. We also observed differences in
the biochemical properties chlorophyll and nitrogen between healthy
and green attacked needles by the bark beetle (Ips typographus, L.).
Furthermore, the results demonstrated that the relationship between
reflectance and both chlorophyll and nitrogen deteriorated as the leaves
became stressed by a bark beetle green attack. Such an infestation af-
fected the estimation accuracy of chlorophyll and nitrogen concentra-
tions, examined using PLSR and hyperspectral reflectance data. The
research findings indicate that hyperspectral measurements are pro-
mising, and present a powerful tool to determine the damage caused by
bark beetle green attack at the leaf level. Further research is required to
assess whether or not, the findings of the current study can be verified
at the canopy level using different remote sensing data.
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