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Chapter 1

Introduction

In this thesis we use several combinatorial optimization techniques to solve
the Generalized Minimum Spanning Tree problem. For an overview of gen-
eral combinatorial optimization techniques, we refer to the books of Nemhauser
and Wolsey [55], Papadimitriou and Steiglitz [57] and Schrijver [69].

In this chapter we present fundamental concepts of Combinatorial and Integer
optimization (Section 1.1), Polyhedral theory (Section 1.2) and Graph theory
(Section 1.3). We end the chapter with an outline of the thesis.



1.1 Combinatorial and Integer Optimization

Combinatorial Optimization is the process of finding one or more best (op-
timal) solutions in a well defined discrete problem space, i.e. a space con-
taining a finite set of possible solutions, that optimizes a certain function, the
so-calledobjective function The finite set of possible solutions can be de-
scribed by inequality and equality constraints, and by integrality constraints.
The integrality constraints force the variables to be integers. The set of points
that satisfy all these constraints is called (feasible) solution set

Such problems occur in almost all fields of management (e.g. finance, mar-
keting, production, scheduling, inventory control, facility location, etc.), as
well as in many engineering disciplines (e.g. optimal design of waterways
or bridges, design and analysis of data networks, energy resource-planning
models, logistic of electrical power generation and transport, etc). A survey
of applications of combinatorial optimization is given byd®chel in [30].

Combinatorial Optimization models are often referred to as integer program-
ming models where some or all of the variables can take on only a finite
number of alternative possibilities.

In this thesis we consider combinatorial optimization problems for which the
objective function and the constraints are linear and the variables are integers.
These problems are call@tteger programming problems

min 'z
(IP) st. Ax < b
r € 7"

whereZ" is the set of integrak-dimensional vectorsy = (z4,...,x,) IS an
integern-vector ande is an integem-vector. Furthermore, we let denote

the number of inequality contraints, anm x n matrix andb an m-vector.

If we allow some variables; to be continous instead of integer, i.e. € R
instead ofr; € Z, then we obtain anixed integer programming problere-

noted by (MIP). For convenience, we discuss integer linear programs that are
minimizationproblems withbinary variables, i.e. the integer variables are
restricted to values 0 or 1. In Chapter 3 we present several integer program-
ming and mixed integer programming models of the Generalized Minimum
Spanning Tree problem.



Solving integer programming problems can be a difficult task. The difficulty
arises from the fact that unlike linear programming, where the feasible region
is a convex set, in integer problems one must search a lattice of feasible points
or, in the mixed integer case a set of disjoint halflines or line segments to find
an optimal solution. Therefore, unlike linear programming where, due to
the convexity of the problem, we can exploit the fact that any local solution
is a global optimum, integer programming problems may have many “local
optima” and finding a global optimum to the problem requires one to prove
that a particular solution dominates all feasible points by arguments other than
the calculus-based derivative approaches of convex programming.

When optimizing combinatorial problems, there is always a trade-off between
the computational effort (and hence the running time) and the quality of the
obtained solution. We may either try to solve the problem to optimality with
an exact algorithm or choose for ampproximationor heuristic algorithm
which uses less running time but does not guarantee optimality of the solution.

1.1.1 Complexity theory

The first step in studying a combinatorial problem is to find out whether the
problem is "easy” or "hard”. Complexity theory deals with this kind of prob-
lem classification. In this subsection we summarize the most important con-
cepts of complexity theory. Most approaches are taken from the books men-
tioned before and from the book of @schel, Lowasz and Schrijver [31].

An algorithmis a list of instructions that solves evenstanceof a problem
in a finite number of steps. (This means also: the algorithm detects that the
problem instance has no solution).

The sizeof a problem is the amount of information needed to represent the
instance. The instance is assumed to be described (encoded) by a string of
symbols. Therefore, the size of an instance equals the number of symbols in
the string.

Therunning timeof a combinatorial optimization algorithm is measured by
an upper bound on the number of elementary arithmetic operations (adding,
subtracting, multiplying, dividing and comparing numbers) it needs for any
valid input, expressed as a function of the input size. ifipaitis the data
used to represent a problem instance. If the input size is measured by
then the running time of the algorithm is expressedag(s)), if there are
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constant$ ands, such that the number of steps for any instance with s
is bounded from above byf(s). We say that the running time of such an
algorithm is of orderf (s).

An algorithm is said to be polynomial time algorithmwvhen its running time

is bounded by a polynomial functiorf(s). An algorithm is said to be aex-
ponential time algorithmvhen its running time is bounded by an exponential
function (e.g.0(2®)).

The theory of complexity concerns in the first place decision problente-A
cision problems a question that can be answered only by "yes” or 'no”. For
example in the case of the integer programming probléf) the decision
problem is:

Given an instance of/(P) and an integel. is there a feasible
solutionz such that”x> < L?

For a combinatorial optimization problem we have the following: if one can
solve the decision problem efficiently, then one can solve the corresponding
opimization problem efficiently.

Decision problems that are solvable in polynomial time are considered to be
"easy” , the class of these problems is denote@byP includes for example
linear programming and the minimum spanning tree problem.

The class of decision problems solvable in exponential time is denoted by
EX P. Most combinatorial optimization problems belong to this class. If a
problem is inEX P \ P, then solving large instances of this problem will be
difficult. To distinguish between "easy” and "hard” problems we first describe
a class of problems that contaiRs

The complexity clasd/P is defined as the class of decision problems that are
solvable by a so-calledon-deterministic algorithm A decision problem is
said to be in\/P if for any input that has a positive answer, there is a certifi-
cate from which the correctness of this answer can be derived in polynomial
time.

Obviously,? C NP holds. It is widely assumed th@& = AP is very un-
likely. The classN'P contains a subclass of problems that are considered to
be the hardest problems jk"P. These problems are calledP-complete
problems. Before giving the definition of aki7?-completedecision prob-
lem we explain the technique of polynomially transforming one problem into
another. LefI;, andII, be two decision problems.
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Definition 1.1 A polynomial transformation is an algorithmA that, for ev-
ery instancer; of II; produces in polynomial time an instaneg of I1, such
that the following holds: for every instanee of I1, the answer ta is "yes”
if and only if the answer to instanee of 11, is "yes”. g

Definition 1.2 A decision problenil is called N'P-complete ifll is in N'P
and every othe/N'P decision problem can be polynomially transformed into
I1. O

Clearly, if an\'P-completeproblem can be solved in polynomial time, then
all problems in\P can be solved in polynomial time, henBe= N'P. This
explains why the\P-completeproblems are considered to be the hardest
problems in\/P. Note that polynomially transformability is a transitive re-
lation, i.e if IT; is polynomially transformable tbl, andlIl, is polynomially
transformable tdls, thenlIl, is polynomially transformable tl;. Therefore,

if we want to prove that a decision probldrnis \/P-completethen we only
have to show that

(i) Misin NP.

(i) Some decision problem already known to¥d@-completecan be poly-
nomially transformed tal.

Now we want to focus on combinatorial optimization problems. Therefore
we extend the concept of polynomially transformability. LktandIl; be
two problems (not necessarily decision problems).

Definition 1.3 A polynomial reduction from I1; to Il is an algorithm.4;
that, solvedI; by using an algorithnd, for II, as a subroutine such that, if
As were a polynomial time algorithm fdi,, then.4; would be a polynomial
time algorithm forll;. O

Definition 1.4 An optimization problentl is called AV/P-hard if there exists
an N'P-complete decision problem that can be polynomially reducédl

Cearly, an optimization problem j&P-hard if the corresponding decision
problem isNP-complete In particular, the Generalized Minimum Spanning
Tree problem isV’P-hard (see Section 2.5).
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1.1.2 Heuristic and Relaxation Methods

As we have seen, once established that a combinatorial probl&f#ifard,
it is unlikely that it can be solved by a polynomial algorithm.

Finding good solutions for hard minimization problems in combinatorial op-
timization requires the consideration of two issues:

e calculation of an upper bound that is as close as possible to the opti-
mum;

e calculation of a lower bound that is as close as possible to the optimum.

General techniques for generating good upper bounds are essentially heuristic
methods such as Simulated Annealing, Tabu Search, Genetic Algorithms, etc.,
which we are going to consider in chapter 7 of the thesis. In addition, for any
particular problem, we may well have techniques which are specific to the
problem being solved.

On the question of lower bounds, we present in Chapter 5 the following tech-
niques:

e Linear Programming (LP) relaxation
In LP relaxation we take an integer (or mixed-integer) programming
formulation of the problem and relax the integrality requirement on the
variables. This gives a linear program which can either be solved ex-
actly using a standard algorithm (simplex or interior point); or heuristi-
cally (dual ascent). The solution value obtained for this linear program
gives a lower bound on the optimal solution to the original minimization

problem.

e Lagrangian relaxation
The general idea of Lagrangian relaxation is to "relax” (dualize) some
(or all) constraints by adding them to the objective function using La-
grangian multipliers. Choosing "good” values for the Lagrangian mul-
tipliers is of key importance in terms of quality of the lower bound

generated.

e Semidefinite programming (SDP) relaxation
Combinatorial optimization problems often involve binary (0,1 or +1,-
1) decision variables. These can be modelled using quadratic con-
straintsz® — z = 0, andz? = 1, respectively. Using the positive semidef-
inite matrix X = zz”, we can lift the problem into a matrix space and
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obtain a Semidefinite Programming Relaxation by ignoring the rank one
restriction on X, see e.g. [49]. These semidefinite relaxations provide
tight bounds for many classes of hard problems and in addition can be
solved efficiently by interior-point methods.

The connection between heuristics and relaxations in the case of a minimiza-
tion problem can be summarized by the diagram of Figure 1.1.

Heuristics Value

Problem-specific
Local search
Simulated annealing

Optimal solution to the

Relaxations problem (minimization)

Linear programming
Lagrangian

Semidefinite programming

Figure 1.1: Connection between heuristics and relaxations

1.1.3 Dynamic programming

Dynamic programming is a decomposition technique that first decomposes
the problem into a nested family of subproblems. The solutions to the orig-

inal problem are obtained by either working backward from the end to the

beginning backward dynamic programmihgr forward from the beginning

to the end forward dynamic programming

Five characteristics can be distinguished that are common to dynamic pro-
gramming applications:

1. The problem can be divided in&tagest, with a decisionrequired at
each stage.



2. Each stage has a set oftates{i;} associated with it. At any stage, a
state holds all the information that is needed to make a decision.

3. The decision chosen at any stage determines how the state at the cur-
rent stage is transformed into the state at the next stage, as well as the
immediately earned reward or cost.

4. Given the current state, the optimal decision for each remaining stages
must not depend on previously reached states or previously chosen de-
cisions. This is the so-callegrinciple of optimalityfor dynamic pro-
gramming (Bellman, [3]).

5. If the states for the problem have been classified into orié stages,
there must be gecursionthat relates the cost or reward earned during
staged,t + 1,...,T to the cost or reward earned from stages1,t +
2,...,T.

Dynamic programming algorithms are computationally efficient, as long as
the state space does not become too large. However, when the state space be-
comes too large implementation problems may occur (e.g. insufficient com-
puter memory), or excessive computational time may be required to use dy-
namic programming to solve the problem. For more information about dy-
namic programming we refer to Bellman [3] and Dreyfus and Law [12].

1.2 Polyhedral theory

The theory we discuss in this section is derived from the the books of Schrijver
[69] and Gbtschel, Lowasz and Schrijver [31].

Consider a set of pointy = {2!,..., 2%} C R” and a vector\ € R*. The
linear combinationr = 3% | \;2? is anaffine combinationif 2% X\, =1,
andz is called aconvex combinatioif in addition to 3% | \; = 1 we have
A\ > 0. X is calledlinearly (affinely) independerit no pointz* € X can be
written as a linear (affine) combination of the other pointXin

A subsetS C R" is convexf for every finite number of points!,... . 2% € S
any convex combination of these points is a membef.of

A nonempty sef’ C R" is called aconvex cond \x + uy € C'forall z,y € C
and for all real numbers, ;. > 0.



A convex setP C R" is apolyhedronif there exists amn x n matrix A and a
vectorb € R™ such that

P=P(Ab)={zeR"| Az < b}.
We call Az < b asystem of linear inequalities

A polyhedronP C R" is boundedif there exist vectorg, « € R™ such that
[ <z <wuforallz € P. A bounded polyhedron is calledpmlytope

For our purposes, only rational polyhedra are of interest. A polyhedron is
rational if it is the solution set of a systemhz < b of linear inequalities, where

A andb are rational. From now on we will implicitly assume a polyhedron to
be rational.

A point x € P is called avertexof P if = cannot be written as a convex
combination of other points if.

Thedimensiornof a polyhedronP C R" is equal to the maximum number of
affinely independent points iR minus1. An implicit equalityof the system

Az <bisaninequality) ", a;;z; < b; of that system such that’_, a;;z; =

b; for all vectorsxz € P(A,b). For Ax < b we denote the (sub)system of
implicit equalities byA=z < b=. Let rank(d) denote thaank of a matrix

i.e., the maximum number of linearly independent row vectors. We have the
following standard result.

Theorem 1.1 The dimension of a polyhedrdi(A,b) C R is equal ton —
rank(A=). d

A subsetd C R" is called ahyperplanef there exists a vectak € R" and a
numbera € R such that

H={recR"|hlz=al.

A separating hyperplantr a convex seb and vector ¢ S is a hyperplane
given by a vectoh € R and a numbet € R such that”z < o andh’y > o
holds for allx € S.

The separation problenfior a polyhedronP C R™ is, given a vector: € R",

to decide whether € P or not, and, ifr ¢ P, to find a separating hyperplane
for P andz. A separation algorithnfor a polyhedronP is an algorithm that
solves the separation problem fBr



Linear programmindLP) deals with maximizing or minimizing a linear func-
tion over a polyhedron. I C R” is a polyhedron and € R", then we call
the optimization problem

(LP) max{d'z |z € P}

alinear program A vectorx € P is called afeasible solutiorof the linear
program and:* is called aroptimal solutionif 2* is feasible and’ z* > d”x

for all feasible solutions:. We say that [, P) is unboundedf for all A € R

there exists a feasible solutiari € P such thatd”z* > ), If (LP) has no
optimal solution then it is either infeasible or unbounded.

The first polynomial time algorithm for LP is the so-calletlipsoid algo-
rithm, proposed by Khachiyan [43]. Although of polynomial running time,
the algorithm is impractical for LP. Nevertheless, it has extensive theoretical
applications in combinatorial optimization: the stable set problem on perfect
graphs for example can be solved in polynomial time using the ellipsoid al-
gorithm. Gitschel, lovasz and Schrijver [32] refined this method in such a
way that the computational complexity of optimizing a linear function over a
convex setS depends on the complexity of the separation problentfoin
1984, Karmarkar [42] presented another polynomial time algorithm for LP.
His algorithm avoids the combinatorial complexity (inherent in the simplex
algorithm) of the vertices, edges and faces of the polyhedron by staying inside
the polyhedron. His algorithm lead to many other algorithms for LP based on
similar ideas. These algorithms are knownrdsrior point methods

1.3 Graph theory

In this section we include some terminology for readers not familiar with
graph theory. For more details on graph theory we refer to the book of Bondy
and Murty [7].

A graph( is an ordered paifV, £'), whereV is a nonempty, finite set called
thenode seand E is a set of (unordered) pairs () with i, € V' called the
edge set

The elements of/ are calledhodesand the elements of are callededges
If e = (4,j) € £ we say that nodeé and nodej areadjacent In such a case
1 andj are called thend pointof e or incidentwith e. Furthermore, we say
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thate is incidentwith 7 andj. Two edges are calleadjacentif they have a
common incident node. A nodgfor which there is an edgg@,j) € F is a
neighborof i. The set of neighbors of a nodés denoted by(:) and a node
with no neighbors is called asolated nodeForU C V, we define theutset
denoted by (U) as follows:

(U)={e=(,j)eE|icl j¢U}
A multigraphis a graph with possibly more than one edge between two nodes.

We speak of aveightedgraph if aweight functionv : £ — R is defined on the
edge sef of a graphG. The numbetru(e) is theweightof an edge: € E. (It
can usually be interpreted as a certain profit or cost.) Waight of a subset
E' C FEis equal to the sum of the weights of its edges and denoted BY).

A complete graphs a graph with an edge between every pair of nodes. The
complete graph on nodes is denoted bi,,.

A subgraphof G is a graphG’ = (V/, E') with V' C V andE’' C E. G’ is
called the subgrapinducedby V’, denoted by |, if E' ={(i,j) € E'|i,j €
V'3 If VP C Vo then we letG\ V' denote the graph obtained by removirig
(and the edges incident with nodeslit). If £’ C E thenG\ E’ denotes the
graph obtained by removing the edgesih We say that a grap&f contains
a graphG’ if G hasG’ as subgraph.

A pathfrom i to j is a graphP = (V, E) with a node set that can be or-
dered asv, ..., v, wWith vy = ¢ andv,, = j such thattl = {(vy,ves1) | k =
0,...,n—1}. The nodesg and; are called thend pointf the path and: is
thelengthof the path. We also writ& = vqv; ... v,

A cycleis a graph for which the node set can be orderedyas ., v, such
that & = {(vg,vk41) | K =0,...,n — 1} U{(v,,v0)}. We denote a cycle on
nodes byC,,.

A graph( is calledconnectedf G contains a path fromito 5 for each two
nodesi,j € V. A componenti’ of G is a maximal connected subgraph of
G, i.e., if G is a connected subgraph 6fand G’ is a subgraph oy, then

G = G'. Thesize of a componeris its number of nodes. We denote the size
of a component?’ by |G'|. A component is calle@venor odd if it has an
even respectively odd number of nodes.

A treeis a connected gragh that does not contain any cycle. A node V/
is called deafof atreel’ = (V, E), if i has exactly one neighbor. fArestis a
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graph (not necessarily connected) that does not contain any cysfgaming
treeof G = (V,E)isatree(V' E") with V' = V.

A node covein a graphGG = (V, E') is a subset”’ of V such that every edge
in E is incident with a node iv’.

If the pairs(i,j) in the edge set of a graph are ordered, then we speak of
a directed graphor digraph and we call such an ordered pair j) an arc.

In this case the edge set is usually denoteddbyThe arca = (i,j) € A is

an outcoming arcof node: and is anincoming arcof nodej. The set of
outcoming arcs of a nodeis denoted by (i) and the set of incoming arcs

of a nodei is denoted by~ (4). To this end, call a subsef of A ans — ¢ cut

if A" =0%(U) for some subsdl of V satisfyings € U andt ¢ U, where for
everyU C V, 0% (U) is defined as follows:

0(U)={(i.j)eAliel, j¢U}

Let D = (V, A) be a directed graph and lets € V. Afunctionf: A — R is
called an- — s flowif

(i) f(a) >0 for eacha € A,
@) Y fla= > f(a) foreachy eV \{rs}.
a€dt(v) a€d—(v)

The value of amr — s flow f is, by definition:

value(f Z fla Z f(a).

a€dt(r) a€d—(r)

So the value is the net amount of flow leavinglt is also equal to the net
amount of flow entering.

Letc: A — R, be acapacity functionWe say that a flovf is underc if

fla) < c(a) for eacha € A.

Themaximum flow problemow is to find an- — s flow undere, of maximum
value. To formulate the so-called min-max relation, we define#pacityof
acutdt(U) by

12



(6t (U) = D> cla).

acdt(U)
Then the following result known asax-flow min-cutheorem, holds

Theorem 1.2 (Ford and Fulkerson (1956))

For any directed graplD = (V, A), r,s € V,andc: A — R, the maximum
value of anr — s flow underc is equal to the minimum capacity of an- s
cut:

_ : +
f rglsa}%ow UCLlU@(f) - 5+(UI§17}I—15 cut 0(5 (U))

1.4 Outline of the thesis

In this thesis we apply several techniques of combinatorial optimization to
the Generalized Minimum Spanning Tree probldenoted by GMST. This
combinatorial optimization problem was introduced by Mywah@l. [54] and
finds many interesting applications.

In Chapter 2 we introduce the conceppeheralizatiorin the context of com-
binatorial optimization, describe the Minimum Spanning Tree problem which
is a special case of the Generalized Minimum Spanning Tree problem and
two efficient algorithms for constructing minimum spanning trees, namely,
Kruskal's algorithm and Prim’s algorithm. Finally, we define the Generalized
Minimum Spanning Tree problem, present results regarding its complexity
and cases when the problem is solvable in polynomial time and applications.

Chapter 3 concentrates on several integer and mixed integer programming
formulations of the GMST problem. We compare the polyhedra defined by
the LP relaxations of these formulations. Based on a new formulation we give
a solution procedure which solves the problem to optimality for all numerical
instances considered in the related literature so far. Computational results are
reported for many instances of the problem.

Chapter 4 deals with approximation algorithms. We present an in-approxima-
bility result for the GMST problem: under the assumptiBrz NP, there

IS no approximation algorithm for the GMST problem. However, under the
following assumptions:

13



e the graph has bounded cluster size,

e the cost function is strictly positive and satisfies the triangle inequality,
i.e. Cij + Cjk > ¢, for all 1,7, keV,

we present a polynomial approximation algorithm for the GMST problem.

In Chapter 5 we discuss the basic theory of Lagrangian and semidefinite pro-
gramming relaxations and we study different possible dualizations for a gen-
eral 0-1 program.

In Chapter 6 we present an algorithm based on Lagrangian relaxation of a
bidirectional multicommodity flow formulation of the GMST problem. The
subgradient optimization algorithm is used to obtain lower bounds. Compu-
tational results are reported for many instances of the problem.

Chapter 7 deals with heuristic algorithms. We present the basic theory of local
search and other concepts underlying many modern heuristic techniques, such
as Simulated Annealing, Tabu Search Genetic Algorithms, etc., and we solve
the GMST problem with Simulated Annealing. Computational results are
reported.

14



Chapter 2

The Generalized Minimum
Spanning Tree Problem

The aim of this chapter is to introduce the Generalized Minimum Spanning

Tree problem. In the first section we discuss the concepjeokralization

and provide a list of problems defined on graphs that hayenaralizedtruc-

ture. In the second section we describe the Minimum Spanning Tree problem
which is a special case of the Generalized Minimum Spanning Tree prob-
lem and two efficient algorithms for constructing minimum spanning trees,

namely, Kruskal's algorithm and Prim’s algorithm. The next sections focus

on the GMST problem: we give the definition of the problem, present results

regarding its complexity and cases when the problem is solvable in polyno-
mial time and applications. As well as in the last section we present a variant
of the GMST problem.
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2.1 Generalized Combinatorial Optimization
Problems

In this section we present a list of problems defined on graphs that have a
generalizedstructure. We begin this section by introducing the concept of
generalization.

Given a graplG = (V, E') and a cost function : £ — R, following the defi-
nition of Nemhauser and Wolsey [55]cambinatorial optimizatiomproblem
consists of determining among a finite set of feasible solutions those that min-
imize the cost function. If we lef be a family of subsets of the edge #et

and denote by(F') = Zce for I/ C E, a combinatorial optimization prob-

ecF
lem in its minimization form is:

min {c(F) : F e F}.

Classical combinatorial optimization problems can oftengbaeralizedin
a natural way by considering a related problem relative to a gbagtition
V =V UV U...UV,, of the nodes intelustersV, C V, k € {1,...,m} such
that the classical problem corresponds to the trivial partitipa= {£} into
singletons.

For example,
- the Generalized Minimum Spanning Tree Problem

as introduced by Myung, Lee and Tcha [54] asks for a cost-minimalZree
in G which spans exactly one nodee< V,. in each cluster. The Generalized
Minimum Spanning Tree Problem is the subject of this thesis. In what it fol-
lows we will present several results regarding its complexity, approximability,
solvability, etc.

- the Generalized Steiner Tree Problem

Given an complete undirected gragh= (V, E') and a subset of nodesC V'
such thatS is partitioned inton clusters and a positive cost function defined
on the edge set, the Generalized Steiner Tree Problaenoted GSTP asks
for a minimum cost tree aff that containst leastone node from each cluster.

16



The Generalized Steiner Tree problem was introduced by Reich and Wid-
mayer [65] and is also known as tleoup Steiner Tree Probleor theClass
Steiner Tree Problem

- the Generalized Traveling Salesman Problem

Given an undirected gragh = (V, E') with the nodes partitioned inta clus-

ters and edges defined between nodes from different clusters with a positive
cost, thesymmetric Generalized Traveling Salesman Proldsks for a mini-

mum cost cycle that visitsxactlyone node in each cluster. This problem was
introduced by Henry-Labordere [36], Saskena [68] and Srivastava [72].

Consider the directed gragh = (V, A) obtained by replacing each edge-

(i,7) € F by the opposite ards, j) and(j,7) in A with the same weight as the
edge(i,j) € E. The directed version of the Generalized Traveling Salesman
Problem called thasymmetric Generalized Traveling Salesman Probles
introduced by Laporte, Mercure and Nobert [46], [47] and asks for a minimum
cost oriented cycle that visits exactly one node from each cluster.

For more examples of generalized combinatorial optimization problems we
refer the reader to Feremans [17] and Dror and Haouari [13].

2.2 Minimum Spanning Trees

The aim of this section is to describe the well-known algorithms of Kruskal
and Prim for finding the minimum spanning tree.

Let G = (V, E) be a connected graph with a positive cost functior 0
defined on the edge sét

Definition 2.1 (Minimum spanning tree)
A minimum spanning tree (MST) 6f is a spanning tred™ of GG that has
minimal cost, i.e.,

c¢(E(T*)) =min {c(E(T)) | T is a spanning tree of } (2.1)
U

Recall that a spanning tree is a connected subgragh thiat has no cycles
and contains all nodés.
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We present two efficient algorithms for constructing minimum spanning trees,
namely, Kruskal’s algorithm [45] and Prim’s algorithm [58].

Kruskal's algorithm is also called thgreedy algorithm Given a set of ob-
jects, the greedy algorithm attempts to find a feasible subset with minimum
objective value by repeatedly choosing an object of minimum cost among
the unchosen ones and adding it to the current subset provided the result-
ing subset is feasible. In particular, Kruskal’s algorithm works by repeatedly
choosing an edge of minimum cost among the edges not chosen so far, and
adding this edge to the "current spanning forest” provided this does not create
a cycle. The algorithm terminates when the current spanning forest becomes
connected.

Kruskal’s Minimum Spanning Tree Algorithm

Input: A connected grapliy = (V, E) with a positive cost function
on the edges.

Output: Edge setr" C E of minimum spanning tree df.

F :=0; (F is the edge set of the current spanning forest)
linearly order the edges iR according to nondecreasing cost;
let the ordering beey, e, ..., e g|;

for each edge;,i=1,2,...,|E|, do
if F"U{e;} has no cycle

then F := F U {e;}; (add the edge to the current forest)
if |F'| = |V]— 1 then stopandoutput F'; end,
end; (if)
end; (for)

Theorem 2.1 Kruskal’s algorithm is correct and it finds a minimum spanning
tree. Its running time i©(|V || E]).

Proof: See for example [55]. O

Remark 2.1 By using appropriate data structures, the running time of the
Kruskal's algorithm can be improved (| E|log |V]). O
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Prim’s algorithm starts with a "current tre@” that consists of a single node.
In each iteration, a minimum-cost edge in the "boundar{¥’ (7")) of 7" is
added tdl', and this is repeated till' is a spanning tree.

Prim’s Minimum Spanning Tree Algorithm

Input: A connected grapliy = (V, E) with a positive cost function
on the edges.

Output: Minimum spanning tre&” = (S, F') of G.

F :=0; (F'is the edge set of the current trég
S :={v}, wherev is an arbitrary node; qis the node set dfI)

while S # T do
among all the edges having exactly one endiind an edge
(,7) € E of minimum cost;

F:=FU(i,j);
S:=SU{i,j }\9); (add the end node i1 \ \S)
end; (while)

Theorem 2.2 Prim’s algorithm is correct and it finds a minimum spanning
tree. Its running time i©(|V|?).

Proof: See for example [55]. O

Remark 2.2 By using the Fibonacci heaps data structure, the running time
of the Prim’s algorithm can be improved (| E| + |V |log |V]). O

2.3 Definition of the GMST problem

The Generalized Minimum Spanning Tree Problemdefined on an undi-
rected graptG = (V, E') with the nodes partitioned inte node sets called
clusters Let|V| =nandK = {1,2,...,m} be the node index of the clusters.
Then,V =1,UV,U...UV,,andV,; NV, =0 forall i,k € K suchthat # k.

We assume that edges are defined only between nodes belonging to different
clusters and each edge- (i, j) € F has a nonnegative cost
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The Generalized Minimum Spanning Tree Prob)etanoted by GMST is the
problem of finding a minimum cost tree spanning a subset of nodes which
includesexactlyone node from each cluster (see Figure 2.2 for a feasible
solution of the GMST problem). We will call a tree containing exactly one
node from each clustergeneralized spanning tree

The GMST problem was introduced by Myung, Lee and Tcha [54]. Fer-
emans, Labé and Laporte [18] present several integer formulations of the
GMST problem and compare them in terms of their linear programming re-
laxations, and in [19] they study the polytope associated with the GMST prob-
lem.

TheMinimum Spanning Tree Probleisa special case of the GMST problem
where each cluster has exactly one node. The MST problem can be solved
by a polynomial time algorithm, for instance the algorithm of Kruskal [45] or
the algorithm of Prim [58] as we have seen in the previous section. However,
as we will show the GMST problem j§"P-hard.

Figure 2.1: A feasible solution for the GMST problem
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2.4 The GMST problem on trees

We present in this section a special case of the GMST problem: the case when
the graphz = (V, F) is a tree.

Garey and Johnson [21] have shown that for certain combinatorial optimiza-
tion problems, the simple structure of trees can offer algorithmic advantages
for efficiently solving them. Indeed, a number of problems that/sie-
complete when are formulated on a general graph, become polynomially
solvable when the graph is a tree. Unfortunately, this is not the case for the
GMST problem. We will show that on trees the GMST problenVig-hard.

Let us consider the case when the grépk- (V, F) is a tree. For any tree
T C G and node € V sety; = 1 if i € T"and0 otherwise. We will regard-
as a rooted tree with roete V. Let (i) be the parent of nodec V' \ {r}.
Since each edge joins some nadmd its parent, we can set= (¢, 7(i)) and
Ci = Ce; = C(i,m(i))> forallie V \ {T}

We can formulate the GMST problem éawith {r} = V; forming a cluster
as the following integer linear program:

min E Cili

i€V

st. y(Vi) =1, Vke K={1,..,m} (2.2)
Yi < Yn(i)s VieV\{0} (2.3)
y; € {0,11, VieV (2.4)

Constraints (2.2) assure that from every cluster we select a node. Constraints
(2.3) guarantee that the selected nodes form a tree.

The structure of this integer program is particulary simple because of the fact
that graph= is a tree. The general case (see Chapter 3) is more complicated.

To show that the GMST problem on treesNSP-hard we introduce the so-
calledset cover problerwhich is known to be\V’P-completegsee [21]).

Given a finite sefX = {z4,...,x,}, a collection of subsets, ..., 5, C X and
an integeft < |X|, theset cover probleris to determine whether there exists
a subset” C X such thatY'| < k and

S.NY #0, Vewithl <c<b.
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We call such a set” aset coverfor X.

After a discussion with G. Woeginger we came with the following result:
Theorem 2.3 The Generalized Minimum Spanning Tree problem on trees is
NP-hard.

Proof: In order to prove that the GMST problem on trees\i$?-hard it
is enough to show that there exists AffP-completeproblem that can be
polynomially reduced to GMST problem.

We consider the set cover problem for a given finite et {xy,...,z,}, a
collection of subsets of XS, ..., S, € X and an integek < | X|.

We show that we can construct a gragh= (V, F) having a tree structure
such that there exists a set coYelC X, |Y| < k if and only if there exists a
generalized spanning tree@nof cost at most.

The constructed grapfi contains the followingn = a + b + 1 clusters
Vi ooy Vi
e V] consists of a single node denotedrby

e V5, ....,V,.1 node sets (correspondingio, z», ..., z, € X) each of which
has two nodes: one 'expensive’ (see the construction of the edges) say
7; and one 'non-expensive’ say, fori =2,...,a, and

e bnode setsy, s,...,V,, WithV, = S, _(o11), fOorv =a+2,...,m.
Edges inG are constructed as follows:

(i) Each 'expensive node’, say of V; forallt =2,...,a + 1, is connected
with » by an edge of cost 1 and each 'non-expensive’ nodezsafV;
forallt =2,...,a+ 1, is connected withr by an edge of cost 0.

(i) Choose any nodge V, for anyt € {a+2,...,m}. SinceV, C X, then
j coincides with a node iX, sayj = x;. We construct an edge between
j and (the expensive nodg) € V; with [ € {2,...,a}. The cost of the
edges constructed in this way is 0.

By construction the grap&y' = (V, E') has a tree structure.

Suppose now that there exists a generalized spanning t€¢eficost at most
k then by choosing
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Y :={x; € X | the expensive vertex; € V;,; corresponding ta; is

a vertex of the generalized spanning treéih

we see thal” is a set cover ofX.

On the other hand, if there exists a set coveC X, |Y'| < k then according
to the construction of7 there exists a generalized spanning tre€&'iaf cost
at mostk.

g

2.5 Complexity of the GMST problem

The following theorem due originally to Myung et al. [54] is an easy conse-
guence of Theorem 2.3.

Theorem 2.4 (Myung, Lee and Tcha [54])
The Generalized Minimum Spanning Tree problerv'i8-hard.

Remark 2.3 To show that the GMST problem j§P-hard, Myung, Lee and
Tcha [54] used the so-callewbde cover problemhich is known that is\VP-
completgsee [21]) and showed that it can be polynomially reduced to GMST
problem. Recall that given a gragh= (V, F) and an integek < |V, the
node cover problers to determine whether a graph has aeif at mostk
nodes such that all the edges®@fare adjacent to at least one nodebfWe

call such a sef’ anode covenf G. O

2.6 Polynomially solvable cases of the GMST
problem

As we have seen the GMST problemAN&P-hard. In this section we present
some cases when the GMST problem can be solved in polynomial time.

A special case in which the GMST problem can be solved in polynomial time
is the following:
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Remark 2.4 If |V;| =1, forall k =1, ...,m then the GMST problem trivially
reduces to the classical Minimum Spanning Tree problem which can be solved
in polynomial time, by using for instance the algorithm of Kruskal or the
algorithm of Prim, presented in the first section of this chapter. O

Another case in which the GMST problem can be solved in polynomial time
is given in the following proposition:

Proposition 2.1 If the number of clusters: is fixed then the GMST problem
can be solved in polynomial time (in the number of nades

Proof: We present a polynomial time procedure based on dynamic program-
ming which solves the GMST problem in this case.

We contract all the nodes from each cluster into one, resulting in a graph with
vertex se{ V1, ..., V;,,} which we assume to be complete.

Given a global spanning tree, i.e. a tree which spans the clusters, we use
dynamic programming in order to find the best (w.r.t. minimization of the
cost) generalized spanning tree.

Fix an arbitrary clusteV;.,.; as the root of the global spanning tree and orient
all the edges away from verticesdf,,; according to the global spanning tree.

The "subtree” rooted at a vertex v € V, with £ < m, denoted byT'(v)
includes all the vertices reachable frenunder this orientation of the edges.
Thechildrenof v denoted by”(v) are all those verticeswith a directed edge
(v,u). Leaves of the tree have no children.

Let W(T'(v)) denote the minimum weight of a generalized "subtree” rooted
atv. We want to compute:

min W(T'(r)).

7€Vroot

We give now the dynamic programming recursion to solve the subproblem
W (T (v)). The initialization is:

W(T(v)) =0 if v € V, andV} is a leaf of the global spanning tree

The recursion for € V an interior vertex is then as follows:
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W(Tw)= Y min {c(v, u) +W(T'(u))},

ueV
1,C(v)NV, 20

where byc(v, u) we denoted the cost of the edgeu).

For computingiV (T'(v)), i.e. find the optimal solution of the subproblem
W (T'(v)), we need to look at all the vertices from the clustérsuch that
C(v) NV, # 0. Therefore for fixedv we have to check at most vertices.
So the overall complexity of this dynamic programming algorithr®{s?),
wheren = |V]|.

Notice that the above procedure leads ta@Hm™2n?) time exact algorithm
for GMST problem, obtained by trying all the global spanning trees, i.e. the
possible trees spanning the clusters, wher& 2 represents the number of
distinct spanning trees of a completely connected undirected graphvef-
tices given by Cayley’s formula [8].

O

2.7 Applications of the GMST problem

The following two applications of the GMST problem in the real world were
described in [54]:

e Determining the location of the regional service centers.
There aren market segments each containing a given number of mar-
keting centers. We want to connect a number of centers by building
links. The problem is to find a minimum cost tree spanning a subset of
centers which includes exactly one from every market segment.

¢ Designing metropolitan area networks [24] and regional area networks
[59].
We want to connect a number of local area networks via transmission
links such as optical fibers. In this case we are looking for a minimum
cost tree spanning a subset of nodes which includes exactly one from
each local network. Then, such a network design problem reduces to a
GMST problem.
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2.8 A variant of the GMST problem

A variant of the GMST problem is the problem of finding a minimum cost
tree spanning a subset of nodes which inclualeleastone node from each
cluster. In comparison with the GMST problem, in this case we define edges
between all the nodes &f. We attach to each edge= £ a nonnegative cost

Ce -

We denote this variant of the GMST problem by L-GMST problem (where L
stands for Least) as in [17]. The L-GMST problem was introduced by Ihler,
Reich and Widmayer [40] as a particular case of@eneralized Steiner Tree
Problemunder the nam€lass Tree Problem

In Figure 2.2 we present a feasible solution of the L-GMST problem.

Figure 2.2: A feasible solution for the L-GMST problem

Remark 2.5 For the particular case when the costscobf the edges =
(1,7) with 4,5 € Vi, k € {1,...,m} are zero then L-GMST problem becomes
the MST on the "contracted graph” with vertex 4éf, ..., V;,} and the cost
of the (global) edges given by

C(Ve, Vi) = minfc(i, j) | i € Vi, j € Vi},
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foralll <k <l<m. O

In [14], Dror, Haouari and Chaouachi provided five heuristic algorithms in-
cluding a genetic algorithm for the L-GMST problem and an exact method is
described in [17] by Feremans.

Dror, Haouari and Chaouachi in [14] used the L-GMST problem to solve an
important real life problem arising in desert environments: giveparcels
having a polygonal shape with a given number of vertices and a source of
water the problem is to construct a minimal irrigation network (along edges
of the parcels) such that each of the parcels has at least one irrigation source.
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Chapter 3

Polyhedral aspects of the GMST
Problem

In this chapter we describe different integer programming formulations of the
GMST problem and we establish relationships between the polytopes of their
linear relaxations.

In the first Section 3.1 we introduce some notations which are common to all
formulations of the GMST problem. The next two sections contain formu-
lations of the GMST problem with an exponential number of constraints: in
Section 3.2 we present three formulations in the case of an undirected graph,
two of them already introduced by Myung, Lee and Tcha [54] and the corre-
sponding formulations for the directed graph are described in Section 3.3. The
last formulations contain a polynomial number of constraints: we present dif-
ferent flow formulations in Section 3.4 and finally in Section 3.5 we describe
a new formulation of the GMST problem based on distinguishing between
global andlocal connections. Based on this formulation we present in Sec-
tion 3.6 a solution procedure and computational results and we discuss the
advantages of our new approach in comparison with earlier methods. A con-
clusion follows in Section 3.7. Roughly, this chapter can be found indRop

al. [60] and [61].
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3.1 Introduction
Given an undirected grapghl = (V, E), for all S C V we define
E(S)={e=(i,j)e Ei,je S}

the subset of edges with the end nodesS'in

We consider the directed gragh = (V, A) associated with; obtained by
replacing each edge= (i,j) € E by the opposite arcg, j) and(j,7) in A
with the same weight as the ed@ej) € E. We define

07(S)={(i.j)eAlieS j¢S}

the subset of arcs leaving the $&t

0-(S)={(,j)eAli ¢S, jeS}

the subset of arcs entering the setand

A(S) ={(i,j) e Ali,j €S}

the subset of arcs with the end nodesSinFor simplicity we writed~(¢) and
07 (i) instead of—{(i)} andot{(4)}.

In order to model the GMST problem as an integer programming problem we
define the following binary variables:

1 if the edge: = (i, 7) € F isincluded in the selected subgraph
Te = Tij =
0 otherwise

{ 1 if the nodei is included in the selected subgraph
2 =

0 otherwise

1 if the arc(i, j) € Aisincluded in the selected subgraph
Wi =
0 otherwise.
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We use the vector notations= (z;;), 2 = (%), w = (w;;) and the notations
z(E') = Z zi;, for B CE, 2(V') = Zz“ for V' C V andw(A') =
{i.j}eE’ iev’
Z w;j, for A" C A.

(i,j)eA’

3.2 Formulations for the undirected problem

Let G = (V, F) be an undirected graph. A feasible solution to the GMST
problem can be seen as a cycle free subgraph with 1 edges, one node
selected from every cluster and connecting all the clusters. Therefore the
GMST problem can be formulated as the following 0-1 integer programming
problem:

min E Coe

ceE
st. z(Vp) =1, Vke K={1,..,m} (3.1)
r(E(S)) <z(8—1i),VieScV,2<|5<n—-1 (3.2)
z(E)=m-—1 (3.3)
x. €{0,1}, Vee £ (3.4)
z €40,1}, VielV. (3.5)

For simplicity we used the notatigh— i instead ofS' \ {i}. In the above for-
mulation, constraints (3.1) guarantee that from every cluster we select exactly
one node, constraints (3.2) eliminate all the subtours and finally constraint
(3.3) guarantees that the selected subgrapmhasl edges.

This formulation, introduced by Myung [54], is called theneralized subtour
elimination formulatiorsince constraints (3.2) eliminate all the cycles.

We denote the feasible set of the linear programming relaxation of this formu-
lation by P,,;,, where we replace the constraints (3.4) and (3.5) by, z; <
1,foralle € Eandi e V.

We may replace the subtour elimination constraints (3.5) by connectivity con-
straints, resulting in the so-callegbneralized cutset formulatiantroduced
in [54]:
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min 5 Coe

eck
st (3.1),(3.3),(3.4), (3.5) and

where the sef(S) was defined in Section 1.3.

We denote the feasible set of the linear programming relaxation of this for-
mulation byP,,; .

Theorem 3.1 The following properties hold:
a) We haveP,,, C P..; -
b) The polyhedra’.,; and P,,, may have fractional extreme points.

Proof:
a) (See also [17]) Letz,z) € Py, andi € S C V andj ¢ S. SinceE =
E(S)US(S)UE(V\S), we get

2(0(9)) = x(E) —x(E(5)) —z(E(V\S9))
> 2(V)=1—2(8)+2z—2(V\S)+z =2z+z—1

To show that the inclusion is strict we consider the following example pro-
vided by Magnanti and Wolsey in [51]:

1 1
@ 1/2 @ 1
1/2 1/2 1




Figure 3.1: Example showing thab,,, C P..;

In Figure 3.1 we consider five clustevs, ..., V5 as singletons. The positive
valuesz;; andz; are shown on the edges respectively on the nodes. It easy to
see that constraints (3.1), (3.3) and (3.6) are satisfied, while (3.2) is violated
for S = {3,4,5}.

b) To show thatP.,; may have fractional extreme points we consider Figure
3.1 to have five singletons and we set the cost of the efipeg, {1,3} and
{2,4} to 1 and the cost of the edg€8,4}, {4,5} and{3,5} to 0. Then the

cost of an optimal solution over the.; is 3"

In comparison to the MST problem, the polyhedi@p,, corresponding to the
linear programming relaxation of the generalized subtour elimination formu-
lation of the GMST problem, may have fractional extreme points. See Figure
3.2 for such an example.

Lo\

LfE
01

\%
2

Figure 3.2: Example of a graph in whicl,,,;, has fractional extreme points

In Figure 3.2 we consider the clustérsandVj as singletons and the cluster
V5 to have two nodes. By setting the cost of the edge8}, {1,4} and{2,4}

to 2 and the cost of the edgé¢s, 2} and{3, 4} to valuel, we get a fractional

. . . 1
optimal solution ovelP,,, givenbyzs =234 =1,21 =24 = 1, 20 = 23 =

2
and all the other variables 0.
O



Our next model, the so-callegeneralized multicut formulatigns obtained
by replacing simple cutsets by multicuts. Given a partition of the nddes
CoUCy U...UCY%, we define the multicué(Cy, C, ..., Cy) to be the set of
edges connecting differedt; andC;. The generalized multicut formulation
for the GMST problem is:

min Zce:z:e
ecEFR
s.t. (3.1),(3.3),(3.4),(3.5) and
k
z(6(Co, C4, ..., Ck)) > ZZ%' -1,V Cy, (4, ...,C, node partitions
7=0

of Vandvi; € C;forj=0,1,...,k.  (3.7)

Let P,...; denote the feasible set of the linear programming relaxation of this
model. Clearly,P,,... C P..;. Generalizing the proof in the case of the mini-
mum spanning tree problem [51], we show that:

Proposition 3.1 P, = Prcut -

Proof: The proof ofP,,;, C P,,..; IS analoguos to the proof @f,, C P.,;.

Conversely, le{z,2) € Pt , © € S C V and consider the inequality (3.7)
with Cy = S and with(, ..., C, as singletons with union 8\ S. Then

k

=0
where; € S C V. Therefore

z(E(S)) = z(F)—xz(6(S,Cy,...,Ck))
< 2(V)=1—2z—2(V\S)+1=2(5—1).
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3.3 Formulations for the directed problem

Consider the directed gragh = (V, A) obtained by replacing each edge-

(1,7) € E by the opposite arc§, j) and(j,4) in A with the same weight as
the edgd, j) € E. The directed version of the GMST problem introduced by
Myung et al. [54] and calleeneralized Minimum Spanning Arborescence
problemis defined on the directed gragh= (V, A) rooted at a given cluster,
sayV; without loss of generality, and consists of determining a minimum cost
arborescence which includes exactly one node from every cluster.

The two formulations that we are going to present in this section, were pre-
sented by Feremarms al. [18] under the names of directed cutset formulation,
respectively directed subpacking formulation.

We consider first directed generalized cutset formulatiofthe GMST prob-
lem. In this model we consider the directed grdphk- (1, A) with the cluster
V1 chosen as a root, without loss of generality, and we deRgte: K \ {1}.

min g Cee

ecE
st. z(Vp) =1, Vke K=A{1,...m}

z(E)=m-—1

w(0™(9)) > z, VieSCV\W (3.8)

wij < 2, VieVi,j¢ W (3.9)

Wij + W) = Te Ve=(i,j) € E (3.10)

z,z,w € {0,1}. (3.11)

In this model constraints (3.8) and (3.9) guarantee the existence of a path
from the selected root node to any other selected node which includes only
the selected nodes.

Let P,..; denote the projection of the feasible set of the linear programming
relaxation of this model into ther, z)-space.

Another possible directed generalized cutset formulation considered by Myung
et al. in [54], was obtained by replacing (3.3) with the following constraints:

W@ (V) = 0 (3.12)
1, VkeK,. (3.13)



To show the above equivalence it is enough to use the following result proved
by Feremans, Laliband Laporte [18].

Lemma 3.1 (Feremans, Labband Laporte [18])
a) Constraintg3.1), (3.3), (3.8) and (3.10) imply

w0~ (7)) = 0, VieW
w0 (i) = =, VieV\W

b) Constraintg3.1), (3.8), (3.10), (3.12) and(3.13) imply (3.3).
U

We introduced now a formulation of the GMST problem based on branchings.
Consider, as in the previous formulation, the digrdph= (1, A) with V}
chosen as the cluster root. We define thranching modebf the GMST
problem to be:

ccE

st. z(Vy) =1, Vke K={1,..,m}
r(E)=m—1
w(A(S)) < 2(S—i),VieScV,2<|S|<n—-1 (3.14)
w0~ (V) =1, VkekK (3.15)
Wij + Wj; = Te Ve=(i,j) € F
x,z,w € {0,1}

Let P,,....r, denote the projection of the feasible set of the linear programming
relaxation of this model into ther, z)-space. ObviousIyPy,anen € Paup -

The following result was established by Feremans [17]. We present a different
proof of the proposition.

Proposition 3.2 (Feremans [17])Py,anch = Piewt N Psup -

Proof: First we prove that,..; N Py, € Poranch -

Let (z,2) € Pt N P Using Lemma 3.1, it is easy to see that constraint
(3.15) is satisfied. Therefofe;, ) € Pyranch -
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We show thaTPbranch - Pdcut N Psub .
It is obvious thatP,, ..., € Py , therefore it remains to show, gnen, € Picws-

Let (z,2) € Pyrancn - FOralli € Vy andy ¢ V) takeS = {i,j} C V. Then by
(3.14) we havew;; + w;; < z; and this implies (3.9).

Now we show thatv(6~ (1)) < z, forl € Vi, k € K.

TakeV!={i e V|(i,l) €6 (1)} andS' = VU {1}, thenw(5~ (1)) = w(A(S))
and choose, € V..

1= S w@ @)=Y wAs) <3 25"\

leVy, leVvy, leVy
levy eV jeVing leVy jeVig

Therefore, for all there is only one;, € V! with z;, # 0 and

w(6™ (1)) = w(A(S") < 2(S"ir) =
Forevery; € S C V\V;

=Y w(d (@) —w(d(5)) < 2(S — ),

€S
which implies that:
w6 (S) = Y w(0 (i) — 2(5) + z
€S
= Z 1— Z w (6~ ()| —2(9) + 2
€S | 1eVi\{i)

(]

1— Z zl] —2(S) 4+ 2z = 2(S) — 2(S) + z; = 2.

i€s | 1evi\@)
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3.4 Flow based formulations

All the formulations that we have described so far have an exponential num-
ber of constraints. The formulations that we are going to consider next will
have only a polynomial number of constraints but an additional number of
variables. In order to give compact formulations of the GMST problem one
possibility is to introduce 'auxiliary’ flow variables beyond the natural binary
edge and node variables.

We wish to send a flow between the nodes of the network and view the edge
variablex. as indicating whether the edgec E is able to carry any flow or

not. We consider three such flow formulations: a single commodity model,
a multicommodity model and a bidirectional flow model. In each of these
models, although the edges are undirected, the flow variables will be directed.
That is, for each edgg, j) € E, we will have flow in the both directionsto

j andj to.

In thesingle commodity modghe source clustér; sends one unit of flow to
every other cluster. Lef;; denote the flow on edge= (i, j) in the direction

110 7. This leads to the following formulation:

min E Cee

e€E
st. z(Vp) =1, Vke K={1,..,m}

z(E)=m-—1

DD IS R L
e€dt (i) e€d—(7)
fij < (m =1z, Ve=(i,j) € E (3.17)
fii < (m— 1)z, Ve=(i,j) € E (3.18)
fijs f5i >0, Ve=(i,j) € FE (3.19)
z,z € {0,1}.

In a discussion, Ravindra K. Ahuja drew my attention to this formulation of
the GMST problem.

In this model, the mass balance equations (3.16) imply that the network de-
fined by any solution(z, z) must be connected. Since the constraints (3.1)
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and (3.3) state that the network defined by any solution containsl edges

and one node from every cluster, every feasible solution must be a general-
ized spanning tree. Therefore, when projected into the space df:thé
variables, this formulation correctly models the GMST problem.

We let Py, denote the projection of the feasible set of the linear program-
ming relaxation of this model into the:, z)-space.

A stronger relaxation is obtained by considering multicommodity flows. This
directed multicommaodity flow modehs introduced by Myungt al. in [54].

In this model every node séte K; defines a commodity. One unit of com-
modity & originates froml/; and must be delivered to node $&t Letting {;

be the flow of commodity: in arc (i, j) we obtain the following formulation:

min E Coe

eelR
sit. z(Vy) =1, Vke K={1,..,m}
z(E)=m—1
z eV
o= > fi=q —u i€V .k € K, (3.20)
aes+ (i) acs— (i) 0 ,i¢gV UV,
< wy, Va=(i,j) €A, ke K, (3.21)
wij + Wi = Te Ve=(i,j) € FE
fk>o, Va=(i,j) €A keK, (3.22)
z,z €{0,1}

In [54], Myung et al. presented a branch and bound procedure to solve the
GMST problem. The computational efficiency of such a procedure depends
greatly upon how quickly it generates good lower and upper bounds. Their
lower bounding procedure was based on the directed multicommodity flow
model, since its linear programming relaxation not only provides a tight lower
bound but also has a nice structure based on which an efficient dual ascent al-
gorithm can be constructed. They developed also a heuristic algorithm which
finds a feasible solution for the GMST problem using the obtained dual solu-
tion. Later we compare their numerical results with ours.

We let P,,.. 110, denote the projection of the feasible set of the linear program-
ming relaxation of this model into the:, z)-space.
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Proposition 3.3 P, fiow € Priow -

Proof: Let (w,z, 2, f) € P fiow, then

0< D fh < |Ki|wy < (m— 1)z,

keK,

With f;; = Z fw for everye = (i,7) € E, we find

keK1
D= = D) =D
e€dt (i) e€d— (i) keK1 acdt(4) a€d~ (1)

B (m—1)z for i€V
- —z; for ieV\V.

g

We obtain a closely related formulation by eliminating the variablgsThe
resulting formulation consists of constraints (3.1), (3.3), (3.20), (3.22) plus

Lt fi<az.,VhkeK andVee E (3.23)

We refer to this model as thieidirectional flow formulationof the GMST
problem and letP,4,,, denote its set of feasible solutions (m, z)-space.
Observe that since we have eliminated the variablgsn constructing the
bidirectional flow formulation, this model is defined on the undirected graph
G = (V, F), even though for each commoditywe permit flows ’“ and k

in both directions on edge= (i, 7).

In the bidirectional flow formulation, constraints (3.23) which we are called
the bidirectional flow inequalities, link the flow of different commodities
flowing in different directions on the edde, j). These constraints model
the following fact: in any feasible generalized spanning tree, if we eliminate
edge(i, 7) and divide the nodes in two sets; any commodity whose associated
node lies in the same set as the root node set does not flow orfieggeny

two commodities whose associated nodes both lie in the set without the root
both flow on edgéi, j) in the same direction. So, whenever two commodities

h andk both flow on edgéi, j), they both flow in the same direction and so
one of f: and f}* equals zero.
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Proposition 3.4 P,.cio0w = Prafiow -
Proof: If (w,x,z2, f) € Pucfiow » USiNg (3.10) we have that

bt fE <witwi=a., Ve=(i,j) € EandV¥ h,k € K.

7

On the other hand, assume thatz, f) € Pision - BY (3.23)
max i’}—l—m}gxfﬁ <z, Ve=(i,j) € E.

Hence we can choose such thatm}?x f[; < w;; andz, = w;; + wj; for all
e = (i,j) € E. For example take

1
Wij = 5(% + m}?XfZ} —max ﬁ-)-

Clearly,(w,z, z, f) € Pucfiow -
Ol

In Chapter 6, we present an algorithm based on a Lagrangian relaxation of
the bidirectional flow formulation of the GMST problem in order to obtain
"good” lower bounds.

We obtain another formulation, which we refer to as thnelirected multi-
commodity flow modgby replacing the inequalities (3.21) by the weaker
constraints:

I <., foreveryk € K, ande € E.

3.5 Local-global formulation of the GMST prob-
lem

We present now a new formulation of the GMST problem. We shrink all
the vertices from each cluster into one. Our formulation aims at distinguish-
ing betweerglobal, i.e. inter-cluster connections, afmtal ones, i.e. con-
nections between nodes from different clusters. We introduce varighles
(i, € {1,...,m}) to describe the global connections. &p= 1 if clusterV;

is connected to clustér; andy;; = 0 otherwise and we assume thatep-
resents a spanning tree. The convex hull of all these y-vectors is generally
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known as the spanning tree polytope (on the contracted graph with vertex set
{V1, ..., Vin} which we assume to be complete).

Following Yannakakis [78] this polytope, denoted By, s, can be repre-
sented by the following polynomial number of constraints:

Zyij = m—1

Yii = Mkij + Agji, for1 <k,i,j <mandi # j (3.24)

Yo = 1L forl <kij<mandi#k  (3.25)
j
Mekj = 0, forl1<k,j<m (3.26)
Yijs Meij = 0, forl <k,i,j<m.

where the variables,;; are defined for every triple of nodés:, j, with i #
j # k and their value for a spanning tree is:

1 if jis the parent of i when we root the tree at k
Akij =
0 otherwise.

The constraints (3.26) mean that an edgeg) is in the spanning tree if and
only if eitheri is the parent ofi or j is the parent of; the constraints (3.27)
mean that if we root a spanning treekathen every node other than node
has a parent and finally constraints (3.28) mean that thekrbas no parent.

If the vectory describes a spanning tree on the contracted graph, the corre-
sponding best (w.r.t. minimization of the costsgal solutionz € {0, 1}/7!

can be obtained by one of the following two methods described in the next
subsections.

3.5.1 Local solution using dynamic programming

We use the same notations as in Proposition 2.1.

Given a global spanning tree, i.e. a tree which spans the clydters., V,,, }
we want to compute:

min W(T(r)),

r€Vroot
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whereV,,,: is an arbitrary root of the global spanning tree and/By7’(v))
we denoted the minimum weight of the "subtree” rooted,at € V.

The dynamic programming recursion which solves the subprobl&ffi(v))
is the same as in Proposition 2.1.

Remember that for computirid’ (7'(v)), i.e. find the optimal solution of the
subproblemV (T'(v)), we need to look at all the vertices from the clustérs
such thatC(v) NV, # (. Therefore, for fixed), we have to check at most
vertices. The overall complexity of the dynamic programming algorithm is
O(n?), wheren = |V|.

3.5.2 Local solution using integer linear programming

If the 0-1 vectory describes a spanning tree on the contracted graph, the
corresponding local solution € {0, 1}/l that minimizes the costs can be
obtained by solving the following integer linear programming problem:

min E Coe

ecelk

st. z2(Vi) =1, Vke K={1,..,m}
z(Vi, Vi) = v, Vire K={l,...,m}, l#r
x(i,V;) < 2, Vre KVieV\V,

Te, 2z € {0, 1}, Ve=(i,j) € E, Vi€V,

wherez(Vi,V,) = > ayandz(i,V;) = .

1€V, jeVy JEV,
For giveny, we denote the feasible set of the linear programming relaxation
of this program byP,,..;(y). The following result holds:

Proposition 3.5 If y is the 0-1 incidence vector of a spanning tree of the
contracted graph then the polyhedréh,.;(y) is integral.

Proof: Suppose that the 0-1 vectgrescribes a spanning tréeof the con-
tracted graph, then in order to prove that the polyhedrgn,(y) is integral

it is enough to show that every solution of the linear programming relaxation
can be written as a convex combination of solutions corresponding to span-
ning trees:x,z) = > Ar(xr, 27) .
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The proof is by induction on the support of X, denotedsbyp(x) and defined
as follows:

supp(x) := {z. | x. #0, e € E}.

Suppose that there is a global connection between the clustarsl V. (i.e.
yi- = 1) then

L=z(Vi,V,) =) a(i,V,) <> z=1,

1€V i€V

which implies that:(:,V,) = z; .

We claim thatsupp(z) C E contains a tree connecting all clusters. Assume
the contrary and lef! C E be a maximal tree isupp(x). SinceT' does
not connect all clusters, there is some e¢ige) with y;, = 1 such thafl™ has
some vertex € V; but no vertex ir¥/,.. Thenz; > 0, and thuse(z,V,.) = z; > 0,
soT"! can be extended by some-= (i, ) with j € V, , a contradiction.

Now letz”" be the incidence vector @' and leto := min{z, | e € T'}. If
o =1, thenz = 27" and we are done. Otherwise, k€t be the vector which
hasz!" = 1if T" coversi € V andz!" = 0 otherwise. Then

@2)=((1-a) z—az"),1-a) Y z—az"))

is again inP,,.,;(y) and, by induction, it can be written as a convex combina-
tion of tree solutions. The claim follows.
O

A similar argument shows that the polyhedréy..;(y) is integral even in
the case when the 0-1 vectgrdescribes a cycle free subgraph in the con-
tracted graph. If the 0-1 vectgrcontains a cycle of the contracted graph then
Poeai(y) isin general notintegral. In order to show this consider the following
example:
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Figure 3.3: Example showing thak,,..;(y) may have fractional

extreme points

If the lines drawn in the above figure (i.¢1,3}, {2,4} etc.) have cost 1 and
all the other lines (i.e{1,4}, {2,3} etc.) have cosd/ > 1, thenz =  and
r = 5 on the drawn lines is an optimal solution Bf,...;(y), showing that the
polyhedronP,,..;(y) is not integral.

3.5.3 Local-global formulation of the GMST problem

The observations presented so far in Section 3.5 lead to our final formulation,
calledlocal-global formulatiorof the GMST problem as an 0-1 mixed integer
programming problem, where only the global variableare forced to be
integral:
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min E Cee

ccE

st. z2(Vy) =1, Vke K={1,..,m}
z(EF)=m-—1
x(Vi,Vy) =y, Vire K={1,...m}, 1 #r
2(i,V;) < =, VreKYieV\V,

(Py) Vi = Mij + i V1< ki j <mandi#j

> =1, V1<k,ij<mandi#k
j
g = 0, V1<kj<m
Akij = 0, V1<kij<m
Te,2i >0, Ve=(i,j) e E,VieV
yir € {0,1}, V1i<lr<m.

This new formulation of the GMST problem was obtained by incorporating
the constraints characteriziig s, with y € {0, 1}, into Pycq(y).

In the next section we present a solution procedure for solving the GMST
problem based on the local-global formulation and we report on our compu-
tational results for many instances of the problem.

3.6 Solution procedure and computational results

There are different ways to solve the GMST problem with the help of formu-
lation (Fy). The first possibility is to consider the mixed integer prog«dty)
and solve it directly (for example with CPLEX).

Secondly we considered the relaxation (@) obtained by choosing ran-
domly one cluste¥/, and rooting the global tree only at the rdot
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min E Cee

ecE
st. z(Vp) =1, Vke K={1,..,m}
z(E)=m-—1
t(Vi. Vi) = i Vire K={1,...,m}, l#r
(i, V,) < 2, Vre KYieV\V,
(Py) Yij = Akij + Akjis V1<k,ij<mandi+#j, kfixed
> i =1, V1<k,ij<mandi+k, kfixed
J
Aij = 0, V1<k,j<m, kfixed
Akij = 0, V1<k,i,j<m, kfixed
Te,2i 2 0, Ve=(i,j) € E,VieV
yir € 10,1}, V1<lr<m.

If the optimal solution of this relaxation produces a generalized spanning tree,
then we have given the optimal solution of the GMST problem. Otherwise we
choose another root or add a second root and proceed in this way till we get
the optimal solution of the GMST problem. We call this proceduredlbéng
procedure

It turned out that the lower bounds computed by solving the linear program-
ming relaxation of (P) are comparable with the lower bounds given in [54],
but can be computed faster.

Upper bounds can be computed by solvifig..;(y) for certain 0-1 vectoy
corresponding to a spanning tree. (E.g., @ minimum spanning tree w.r.t. the
edge weightsl,, = min{¢;; | i € V},j € V,.}.)

We compare the computational results for solving the problem using our root-
ing procedure with the computational results given by Myangl. in [54].

According to the method of generating the edge costs, the problems generated
are classified into three types:

e structured Euclidean case

e unstructured Euclidean case
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e non-Euclidean case

For the instances in the structured Euclidean casgquares (clusters) are
"packed in a square” and in each of theseclustersn,. nodes are selected
randomly. The costs between nodes are the Euclidean distances between the
nodes. So in this model the clusters can be interpreted as physical clusters. In
the other models such an interpretation is not valid.

For the unstructured Euclidean case mn. nodes are generated randomly in
[0,100]% with costs given by the Euclidean distances. But then the clusters are
choosen randomly among these points. Finally in the non-Euclidean model
the edge costs are randomly generate¢Dot00].

Our algorithms have been coded in C and compiled with a HP-UX cc com-
piler. For solving the linear and mixed integer programming problems we
used CPLEX. The computational experiments were performed on a HP 9000/735
computer with a 125 Mhz processor and 144 Mb memory.

Tables 3.1, 3.2 and 3.3 show the computational results for the non-Euclidean,
unstructured Euclidean and structured Euclidean problems.
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Table 3.1: Computational Results for non-Euclidean problems
(average of five problems for each combination)

Pb. size Rooting Procedure Myung’s results [54]
m | n. | LB/OPT | roots| iter. | CPU | LB/OPT | LB/UB | CPU
8| 3 100 1 1 0.07 100 - 0.05
4 100 1 1 0.09 96.1 - 0.57
6 100 1 1 0.14 94.3 - 3.25
10 100 1 1 0.69 94.9 - 17.68
10| 3 100 1 1 0.10 89.1 - 0.05
4 100 1 2 0.32 99.2 - 2.13
6 100 1 1 0.76 87.8 - 3.25
10 100 1 1 3.53 91.3 - 17.68
12| 3 100 1 1 0.17 89.6 - 6.00
4 100 1 1 0.21 92.8 - 7.63
6 100 2 3 5.61 91.3 - 54.98
10 100 1 2 14.57 - - -
15| 3 100 1 1 0.29 89.0 - 17.45
4 100 1 1 0.73 - - -
6 100 1 1 5.99 - 86.2 | 7.65
10 100 2 2 40.53 - 82.7 |18.25
18| 3 100 1 1 0.57 95.3 - 38.83
6 100 1 1 9.45 - - -
10 100 1 2 | 193.81 - - -
20| 3 100 2 3 3.82 - - -
6 100 1 1 1.46 - 81.4 | 13.7
10 100 1 2 407.64 - 775 | 35.8
25| 3 100 1 2 21.68 - - -
6 100 1 1 25.12 - 805 | 444
8 100 1 2 | 306.69 - 81.0 | 76.8
30| 3 100 1 1 4.01 - - -
6 100 2 2 84.05 - 74.3 | 45.2
8 100 1 1 341.16 - - -
40| 3 100 2 3 71.64 - 84.1 | 36.5
4 100 1 2 | 1713.29 - 749 | 154.8
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Table 3.2: Computational Results for structured Euclidean problems
(average of five problems for each combination)

Pb. size Rooting Procedure Myung’s results [54]
m | n. | LB/OPT | roots| iter. | CPU | LB/OPT | LB/UB | CPU
8| 3 100 1 1 0.05 - - -
4 100 2 3 0.09 - - -
6 100 2 3 0.15 - - -
10 100 2 3 0.85 - - -
10| 3 100 2 3 0.06 - - -
4 100 3 4 0.20 - - -
6 100 3 4 0.54 - - -
10 100 3 4 2.39 - - -
12| 3 100 2 3 0.21 - - -
4 100 3 4 0.42 - - -
6 100 3 4 1.12 - - -
10 100 3 4 5.43 - - -
15| 3 100 3 4 0.72 - - -
4 100 3 4 0.95 - - -
6 100 4 5 3.80 - - -
8 100 4 5 | 29.73 - - -
18| 3 100 4 5 1.68 - - -
6 100 4 5 | 18.25 - - -
8 100 4 5 | 55.24 - - -
20| 3 100 4 5 3.70 - - -
6 100 5 6 | 20.18 - - -
8 100 5 6 | 97.31 - - -
25| 3 100 4 5 | 18.67 - - -
6 100 4 5 |198.63 - - -
8 100 4 5 |325.76 - - -
30| 3 100 4 5 | 46.34 - - -
4 100 4 5 | 51.33 - - -
6 100 4 5 |301.86 - - -
40| 3 100 4 5 |141.28 - - -
4 100 4 5 | 283.72 - - -
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Table 3.3: Computational Results for unstructured Euclidean problems
(average of five problems for each combination)

Pb. size Rooting Procedure Myung’s results [54]
m | n. | LB/OPT | roots| iter. | CPU | LB/OPT| LB/UB | CPU
8| 3 100 2 3 0.08 93.4 - 0.51
4 100 1 1 0.16 93.8 - 1.49
6 100 2 3 0.59 94.1 - 1.78
10 100 3 4 | 1948 | 945 - 13.67
10| 3 100 2 3 0.26 92.9 - 2.35
4 100 2 3 0.43 914 - 3.44
6 100 2 3 6.69 92.0 - 15.77
10 100 3 4 | 30.23| 90.3 - 95.14
12| 3 100 2 3 0.31 95.1 - 2.81
4 100 3 4 6.17 91.6 - 16.44
6 100 3 4 | 1795| 911 - 35.42
10 100 3 4 | 45.76 - - -
15| 3 100 2 3 2.28 93.7 - 25.07
4 100 3 4 | 60.35| 90.5 - 104.46
6 100 3 4 | 124.62 - - -
8 100 3 4 | 205.73 - 86.2 7.29
18| 3 100 4 5 15.12 - - -
6 100 4 5 |128.63 - - -
8 100 4 5 |259.24 - - -
20| 3 100 4 5 | 80.92 - - -
6 100 4 5 |150.72 - 83.8 9.36
8 100 4 5 [397.31 - 80.8 | 21.67
25| 3 100 4 5 | 98.63 - - -
6 100 4 5 |259.33 - 82.2 | 34.78
8 100 4 5 | 477.86 - 74.6 | 23.46
30| 3 100 4 5 |136.34 - - -
4 100 4 5 |367.28 - 85.5 | 29.55
6 100 4 5 | 509.36 - 81.0 | 52.17
40| 3 100 4 5 |277.39 - 88.2 | 22.44
4 100 4 5 | 453.78 - 79.6 | 57.76
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The first two columns in the tables give the number of clustersgnd the
number of nodes per cluster . The next four columns describe our rooting
procedure and contain: (LB/OPT) the lower bounds obtained as a percentage
of the optimal value of the GMST problem, (roots) the number of root clusters
and (iter.) the number of mixed integer programs necessary to find the optimal
solution and (CPU) the computation time in seconds for solving the GMST
problem to optimality. The last columns give the numerical results reported
by Myunget al. in [54]. The numerical results in [54] were obtained based
on the dual of the linear programming relaxation of the multicommodity flow
formulation. These columns evaluate the lower bounds obtained as a percent-
age of the optimal objective value, respectively the lower bounds obtained as
a percentage of the upper bounds and finally the computation time is shown
in the last column. In the last three columns ’-* means that this information is
not provided in [54].

As can be seen, in all the problems that we considered, the optimal solution
of the GMST problem has been found by using our rooting procedure. These
numerical experiences with the new formulation of the GMST problem are
very promising.

The computational results so far could indicate that the exponential growth
of the computation time for solving the GMST problem to optimality is mod-
erate in comparison with the growth of computation time for solving the full
problem directly, for example with CPLEX.

Finishing the thesis we became aware of the branch and cut numerical results
provided by Feremans [17]. In comparison with our numerical results, in
[17] in about 755 of the considered instances the optimal value of the GMST
problem is obtained, but the computing times spent by the branch and cut
code are in general larger than the times spent by the rooting procedure code.

3.7 Concluding remarks

We have provided several integer and mixed integer programming formula-
tions for the GMST problem and established relationships between the poly-
topes of their linear relaxations.

Based on one of the new formulations that we introduced, i.e. the local-
global formulation of the GMST problem, we present a new solution pro-
cedure called rooting procedure. Computational results show that the rooting
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procedure performs better in comparison with earlier methods. For all the in-
stances of the problem that we considered, the optimal solution of the GMST
problem has been found by using our solution procedure.
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Chapter 4

Approximation Algorithms

Throughout this chapter we will distinguish between so-capleditive re-
sultswhich establish the existence of some approximation algorithms, and
so-callechegative resulterhich disprove the existence of good approximation
results for some combinatorial optimization problems under the assumption
thatP £ N'P.

We start with some basic results of the approximation theory. In Section 4.2
we focus on positive results in the area of approximation: design and analysis
of polynomial time approximation algorithms. We present in Section 4.3 an
in-approximability result for the GMST problem. Finally, in the last section of
this chapter, under special assumptions, we give an approximation algorithm
for the GMST problem with bounded cluster size. Roughly, the last section
can be found in Pop, Kern and Still [62].
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The basic results presented in the first two sections follow the descriptions of
Goemans [27] and Schuurman and Woeginger [70].

4.1 Introduction

Many of the optimization problems we would like to solve aveP-hard.
Therefore it is very unlikely that these problems could be solved by a polyno-
mial-time algorithm. However, these problems still have to be solved in prac-
tice. In order to do that, we have to relax some of the requirements. There are
in general, three different possibilities.

e Superpolynomial-time algorithms: Even though an optimization prob-
lem is NP-hard, there are "good” and "not so good” algorithms for
solving it exactly. To the "not so good” algorithms certainly belong
most of the simple enumeration methods where one would enumerate
all the feasible solutions and then choose the one with the optimal value
of the objective function. Such methods have very high time complex-
ity. Among the "good” algorithms belong methods likeanch-and-
boundwhere an analysis of the problem at hand is used to discard most
of the feasible solutions before they are even considered. These ap-
proaches allow one to obtain exact solutions of reasonably large prob-
lem instances, but their running time still depends exponentially on the
size of the problem.

e Average-case polynomial-time algorithms: For some problems, it
is possible to have algorithms which require superpolynomial-time on
only a few instances and for the other instances run in polynomial time.
A famous example is th8implex Methodor solving problems in Lin-
ear Programming.

e Approximation Algorithms: We may also relax the requirement of
obtaining an exact solution of the optimization problem and content
ourselves with a solution which is "not too far” from the optimum. This
is partially justified by the fact that, in practice, it is usually enough to
obtain a solution that is slightly sub-optimal.

Clearly, there are good approximation algorithms and bad ones as well. What
we need is some means of determining the quality of an approximation algo-
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rithm and a way of comparing different algorithms. There are a few criteria
to consider:

Average-case performanceOne has to consider some probability distribu-
tion on the set of all possible instances of a given problem. Based on this
assumption, an expectation of the performance can then be found. Results of
this kind strongly depend on the choice of the initial distribution and do not
provide us any information about the performance on a particular instance.

Experimental performance: This approach is based on running the algo-
rithm on a few "typical” instances. It has been used mostly to compare per-
formance of several approximation algorithms. Of course the result depend
on the choice of the "typical” instances and may vary from experiment to
experiment.

Worst-case performance: This is usually done by establishing upper and
lower bounds for approximate solutions in terms of the optimum value. In
case of minimization problems, we try to establish upper bounds, in case of
maximization problems, one wants to find lower bounds.

The advantage of the worst-case bounds on the performance of approximation
algorithms is the fact that given any instance of the optimization problem, we
are guaranteed that the approximate solution stays within these bounds. It
should also be noted that approximation algorithms usually output solutions
much closer to the optimum than the worst-case bounds suggest. Thus it is
of independent interest to see how tight the bounds on the performance of
each algorithm are; that is, how bad the approximate solution can really get.
This is usually done by providing examples of specific instances for which
the approximate solution is very far from the optimum solution.

Establishing worst-case performance bounds for even simple algorithms of-
ten requires a very deep understanding of the problem at hand and the use
of powerful theoretical results from areas like linear programming, combina-
torics, graph theory, probability theory, etc.

We consider anVP-hard optimization problem for which as we have seen

it is difficult to find the exact optimal solution within polynomial time. At
the expense of reducing the quality of the solution by relaxing some of the
requirements, we can often get considerable speed-up in the complexity. This
leads us to the following definition:

Definition 4.1 (Approximation algorithms)
Let X be a minimization problem and > 1. An algorithmAPP is called
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an a-approximation algorithm for problenX, if for all instances/ of X it
delivers in polynomial time a feasible solution with objective val.ieP (1)
such that

APP(I) < aOPT(I), (4.1)

where byAPP(I) and OPT(I) we denoted the values of an approximate
solution and that of an optimal solution for instanterespectively.
O

The valuex is called theperformance guarantear theworst case ratiof the
approximation algorithmd PP. The closen is to 1 the better the algorithm
IS.

4.2 Positive Results: the Design of the Approxi-
mation Algorithms

Positive results in the area of approximation concern the design and analysis
of polynomial time approximation algorithms. This section concentrates on
such positive results; we will outline the main strategy.

Assume that we need to find an approximation algorithm fok/@+hard op-
timization problemX. How shall we proceed? We will concentrate on min-
imization problems, but the ideas apply equally well to maximization prob-
lems.

In what follows, given an instanceof an optimization problem and some al-
gorithm for its approximation, we will denote WiyP7T = OPT(I) the value
of an optimum solution and by PP = AP P(I) the value of the solution out-
put by the approximation algorithm. We are interested in-approximation
algorithm, i.e. an algorithml P P such that

APP < aOPT.

Relating APP to OPT directly can be difficult. Therefore instead we try
to find a lower bound denoted byB for the optimal solution satisfying the
following conditions:

1. LB<OPT
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2. APP < aLB.
Consider now the following optimization problem:
OPT = iy f(z).

A lower bound onOPT can be obtained by so-calledlaxation Consider
the following related optimization problem:

LB = min g(z).

Definition 4.2 (Lower bound)

LB is called a lower bound oW PT and the optimization problem is called
a relaxation of the original problem if the following two conditions hold:

R

C
< f(x)forall x € S.

g9(z)

The above conditions imply the following:

LB =ming(x) < min f(z) = OPT.

TER z€eSs

showing thatZ B is a lower bound o PT'.

Many combinatorial optimization problems can be formulated as integer or
mixed integer programs and the linear programming relaxations of this pro-
grams provide a lower bound for the optimal solution. Later we show how to
use a linear programming relaxation of an integer programming formulation
of the GMST problem to get an-approximation algorithm for the GMST
problem with bounded cluster size.

There are two main techniques to derive an approximately optimal solution
from a solution of the relaxed problem:

1. Rounding
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The idea is to solve the linear programming relaxation and then convert the
fractional solution obtained into an integral solution. The approximation guar-
antee is establish by comparing the costs of the integral and fractional solu-
tions.

Therefore we find an optimal solutiari to the relaxation and "round* € R
to an element’ € S. Then prove thaf (z') < ag(x*) which implies that
f(z') <aLB < aOPT.

Often randomization is helpful. In this casé € R is randomly rounded
to some element’ € S so thatE[f(z')] < ag(x*). These algorithms can
sometimes be derandomized, in which case one finds aoch thatf (z") <

B[f(z)).

An example where the rounding technique is applied, is the Minimum Weight
Vertex Cover Problem, result due to Hochbaum [38].

2. Primal-Dual

We consider the linear programming relaxation of the primal program. This
method constructs iteratively an integer solution to the primal program and a
feasible solution to the dual programgaz {h(y) : y € D}. The approxima-

tion guarantee is establish by comparing the two solutions.

The weak duality property of the relaxation implies:
maz{h(y) :y € D} <min{g(z):z € R}
We construct: € S fromy € D such that:

f(2) < ah(y) < ah(Ymaz) < @g(Tmin) < aOPT.

Notice thaty can be any element dp, not necessarily an optimal solution to
the dual.

More details about primal-dual technique can be found in [1] and [75].

4.3 A negative result for the GMST problem

For some hard combinatorial optimization problems it is possible to show
that they don’t have an approximation algorithm unl@ss- NP. In order
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to give a result of this form it is enough to show that the existence ef-an
approximation algorithm would allow one to solve some decision problem,
known to be\N"P-completein polynomial time.

Applying this scheme to the GMST problem we obtain an in-approximability
result. This result is a different formulation in terms of approximation algo-
rithms of a result provided by Myunet al. [54] which says that even finding

a near optimal solution for the GMST problemA§P-hard. Our proof is
slightly different to the proof provided in [54].

Theorem 4.1 Under the assumptio® # NP, there is nox-approximation
algorithm for the GMST problem.

Proof: Assume that there exists anapproximation algorithmd P P for the
GMST problem, wherey is a real number greater than or equal to 1. This
means that

APP(I) < aOPT(I),

for every instancd, whereOPT'(I) and APP(I) are the values of the opti-
mal solution and of the solution found by the algoritah#® P, respectively.

Then, we will show thatd P P also solves the node-cover problem for a given
graphG = (V, E) and an integek such that: < |V|. This result contradicts
the assumption tha® # NP.

We construct a grapt’ = (V', E') and the edge cost function such that the
algorithm AP P finds a feasible solution with a value no greater thaimes
the optimal cost if and only if G contains C, whefkis a node cover of7,

i.e. a subset oF such that all the edges 6f are adjacent to at least one node
of C.

The graphG’ contains the followingn = |E| 4+ k + 1 node sets (clusters),
‘/1/’ ) V/ .

e V/ consists of a single node denotedihy

e V,,....V, ., are identical node sets, each of which hidsnodes corre-
sponding to the nodes &f, and

e |E| node setsV;_,, ..., V,,, each of which contains a single node corre-

oy Vi

sponding to an edge€ FE.
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Edges inG" are constructed as follows:

(i) Each node of/; for all t = 2,...,k + 1 is connected ta by an edge.
The set consisting of these edges is denote&by

(i) Let: be a node ofi; for anyt € {2,....,k 4+ 1} and;j be a node of
V, foranyt € {k+2,...,m}. Then, an edge is constructed between
andj if the edge ofG corresponding tg is incident to the node afr
corresponding t, and letE), denote the set of those edges.

(i) We also construct an edge betweeamdj even though the edge ¢f
corresponding tg is not incident to the node a@F corresponding to,
and we letZ; denote the set of those edges.

We letE' = E, U E, U E;.
The cost of each edge is defined as follows:
0 foralli,j € E|

Cij = 1 for all 1,] € E;
(|E|+1)a foralli,j € Ej.

We claim thatGG containsC' if and only if

APP(I) < o|B|,
where instancé corresponds t6" and its cost function.

Note that there always exists a generalized spanning t@e @l the clusters
different from the identical clustefs,, ..., V,, ; have only one node and if we
selectk nodes fromV;, ..., V;,, , one node from each cluster such that each
node ofC' is included, then theske nodes together with the remaining nodes
selected always uniquely form a generalized spanning trég uoking edges

in B, U E, , by the definition o’

Suppose now thak’ contains a generalized spanning tree and’léte a set
of distinct nodes selected from the clustdrs, ..., v, , in the tree, ther€' is
a node cover of5.

Therefore, we showed that a generalized spanning tree only using edges in
E| U E, exists inG" if and only if G contains a node cover.
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If G containsC, thenOPT(I) = |E|. Moreover, ifG does not contairt,
then any generalized spanning treetfshould use at least one edgefif
and thus
OPT(I) > |E| -1+ a(|E|+1) > a|E].
In particular if G contains a node covér then the approximation algorithm
AP P will produce a solution with value
APP(I) < a|E| =aOPT (1),

i.e. the solution does not use any edge frémand AP P identifies a node
cover.
O

However, under further assumptions, in the next section we present a positive
result for the GMST problem.

4.4  An Approximation Algorithm for Bounded
Cluster Size

As we have seen in the previous section there exists-approximation al-
gorithm for the GMST problem under the assumptig: NP.

However under the following assumptions:

Al: the graph has bounded cluster size, fii@] < p, forallk =1,..m

A2: the cost function is strict positive and satisfies the triangle inequality,
i.e. Cij -+ Cik > Cik for all i,j, keV,

a polynomial approximation algorithm for the GMST problem is possible.

In this section under the above assumptions we present an approximation al-
gorithm for the GMST problem with performance ratip. 2ZT'he approxima-

tion algorithm is constructed following the ideas of Slavik [71] where the
Generalized Traveling Salesman Problem and Group Steiner Tree Problem
have been treated.
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4.4.1 An integer programming formulation of the GMST
problem

We consider the following integer programming formulation of the GMST
problem:

Problem IP1:

71 = min Zcexe
eckE

st. z(Vp) =1, Vke K={1,..,m} (4.2)
z(6(S)) > z;, Vie S, VS C V such that for (4.3)
some clusteb}, withk € K, SNV, =)

r(E)=m-—1 (4.4)
z. € {0,1}, Vee L (4.5)
z €40,1}, VieV. (4.6)

We used here the standard notations introduced in Section 3.1.

In the above formulation condition (4.2) guarantees that a feasible solution
contains exactly one vertex from every cluster. Condition (4.3) guarantees that
any feasible solution induces a connected subgraph. Condition (4.4) simply
assures that any feasible solution has- 1 edges and due to the fact that the
cost function is strictly positive this constraint is redundant.

Consider now the linear programming relaxation of the integer programming
formulation of the GMST problem. In order to do that, we simply replace
conditions (4.5) and (4.6) in IP1 by new conditions:

0 < x,
0 < z

(2

1, foralle € E, 4.7)
1, forallie V. (4.8)

IN A

4.4.2 An Approximation Algorithm for the GMST problem

We assume that the assumptions A1 and A2 hold.

The algorithm for approximating the optimal solution of the GMST problem
is as follows:
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Algorithm "Approximate the GMST problem”

Input: A complete graphG = (V, E) with strictly positive cost function
on the edges satisfying the triangle inequality, and with the nodes
partitioned into the clusterg, ..., V,,, with bounded sizdVy| < p.

Output: AtreeT C G spanning some verticd®' c V which includes ex-
actly one vertex from every cluster, that approximates the optimal
solution to the GMST problem.

1. Solve the linear programming relaxation of the problem IP1 and let
(2%, 2%, Z7) = (1), (2})eck, Z7) be the optimal solution.
2. SetW* = {z eVizr > %} and considefV’ ¢ W*, with the prop-

erty thatT¥' has exactly one vertex from each cluster, and find a
minimum spanning tre§” C G on the subgraplty’ generated by
w'.

3. OutputAPP = cost(T') and the generalized spanning tfEe

Even though the linear programming relaxation of the problem IP1 has ex-
ponentially many constraints, it can still be solved in polynomial time ei-
ther using the ellipsoid method with a min-cut max-flow oracle [32] or using
Karmarkar’s algorithm [42] since the linear programming relaxation can be
formulated "compactly” (the number of constraints polynomially bounded)
using flow variables see Section 3.4.

4.4.3 Auxiliary results

We start this subsection with a result established by Goemans and Bertsimas
[29] and calledpbarsimonious property

Given a complete undirected graph= (V, E'). We associate with each edge
(i,7) € E acost;; and for any paifi, j) of vertices, let;; be the connectivity
requirement betweehandj (r;; is assumed to be symmetric, i.g; = rj;).

A network is calledsurvivableif it has at least;; edge disjoint paths between
any pair(i, j) of vertices.

Thesurvivable network design probletonsists in finding the minimum cost
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survivable network. This problem can be formulated by the following integer
program:

(IPy(r)) IZy(r) = min Zcexe

eck

st x(6(S)) > max 1y, SCV,S#0(4.9)
(4,5)€6(5)

0 <=, ec kb,
x, integral ec E.

We denote byl Zy(r) the optimal value of the above integer program. Let
(Py(r)) denote the linear programming relaxation (éf7(r)) obtained by
dropping the integrality restrictions and I&§(r) be its optimal value.

By definition the degree of vertexe V' is d,.(i) = z((7)), for any feasible
solutionz, either to(/ Py(r)) or to (Py(r)). Because of constraints (4.9) for
S = {i}, the degree of vertex is at least equal tOrréz%?}nj. If d.(i) =
JE i

n‘q/a\mic}rij , then we say that is parsimoniousat vertex:. If we impose
VIS i
that the solution: is parsimonious at all the vertices of a getC V', we get
some interesting variations 6f P;(r)) and(FPy(r)), denoted by ! Pp(r)) and
(Pp(r)) respectively. The formulation @f Pp(r)) as an integer program is:

(IPp(r)) IZp(r)= min Zcexe

eckE

sit. x(6(S)) > max 1y, SCV, S#0

-~ (19)€5(8)

z(6(1)) :jg/e\tﬁ}mj, ieD, DCV

0 <z, eck
x. integral ec FE.

We denote byl 7, (r) the optimal value of the above integer program. Let
(Pp(r)) denote the linear programming relaxation(é#,(r)) obtained by
dropping the integrality restrictions and I8}, (r) be its optimal value.

Theorem 4.2 (parsimonious property, Goemans and Bertsimas [29])
If the costs:;; satisfy the triangle inequality, then

Zo(r) = Zp(r)
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for all subsetsD C V. O

The proof of this theorem is based on a result on connectivity properties of
Eulerian multigraphs, due to Laez [50].
Let nowWW C V and consider the following linear program:

Problem LP2:

Z3(W) = min Zce:ce

eck

st. z(0(9)>1,SCV,stWnS#D+W)\S(4.10)
z(6(1)) =0, i€ V\W, (4.11)
0<z. <1, ecE. (4.12)

Replacing constraints (4.12) with the integrality constraint& {0,1}, the
formulation obtained is the formulation of the minimum tree spanning the
subset of nodeB’” C V.

Consider the following relaxation of the problem LP2.

Problem LP3;:

Z;(W) = min Zcexe

eckE
st. x(6(8)>1,SCV,stWNS#APAW\S
0 <z, ec k. (4.13)

Thus we omitted constraint (4.11) and relaxed constraint (4.12).
The following result is a straightforward consequence of the parsimonius
property, if we choose;; = 1, if i, j € W, and 0 otherwise, an® = V' \ IV'.

Lemma 4.1 The optimal solution values to problems LP2 and LP3 are the
same, that is
Zy(W) = Zz(W).
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Consider the following problem:

Problem 1P4:
Z4 = min Zce:pe
eeE
st. x(6(5)>1, SCV,st.S#0#£V (4.14)
z. € {0,1}, ec k. (4.15)

Clearly, it is the integer programming formulation of the MST (minimum
spanning tree) problem. Let LP4 be the LP relaxation of this formulation,
that is, we simply replace the constraint (4.15) by the constéaift, < 1,
foralle € E.

Denote byZ; the value of the optimal solution of the LP4. The following
known result for minimum spanning trees holds:

Proposition 4.1
2

-7
Vi
whereL” (V') denotes the cost of the minimum spanning tree on V.

L'(V) < (2 Zy,
Proof: See for example [71]. O
LetW C V, then Proposition 4.1 can be easily modified to obtain:

Proposition 4.2

T 2 *
ET(W) < (2 ) Z5 (V).

Proof: Let (z.) be a feasible solution to LP2. ¢f¢ E(W) = {(i,7) | i,j €
W} impliesz, = 0 and using Proposition 4.1 we prove the inequality. [

4.4.4 Performance Bounds

Let (z*,2*, Z7) = ()", (2})ecr, Z7) be the optimal solution to the linear

=1

programming relaxation of the GMST problem. Define
T = px,
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. 1
1ifz>—

)
he

0 otherwise.

1
w* = {@ eVi]z> —} ={ieV |z =1}. Because we need only one
p

vertex from every cluster we delete extra vertices froiti and consider
W' c W* such tha{i’’'| = m andW’ consists of exactly one vertex from
every cluster.

Since LP1 is the linear programming relaxation of the problem IP1, we have
Z7 < Zy.

Now let us show thafz,).c is a feasible solution to LP3 withl” = 17",
Indeed,z. > 0 for all e € E, hence condition (4.13) is satisfied. L&tC V/
be such thatV’' NS # () # W'\ S and choose somiec W' N S. Hencez; =
1 andz; > ;l) . Then we have

Zﬂie pZ:c > pz! >p1:1

ecd(S) ecd(S P

by definition ofz, and the fact that théx?) solve LP1. Hence ther,) satisfy
constraint (4.10) in LP3.

Therefore, for the algorithml PP on page 65

2 2

APP = LTWHY<(2- Z(WH)=(2- Zi (W'
W) <( ‘W|) W) =( ,W’) W)
2 2
< (2_ /) Ce/fe_ 2 - /0 CefL' = - )pZ*
> he> w7
2
< 2= )pZ1=(2— ——7)pOPT.

And sincelV’ C V, thatis, m=W’'| < |V| = n, we have proved the following.
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Theorem 4.3 The performance ratio of the algorithm "Approximate GMST
problem” for approximating the optimum solution to the GMST problem sat-
isfies:

g

In what follows we generalize the algorithm "Approximate GMST problem”
and its analysis to the case when, in addition to the cgsissociated with
each edge = (i,j) € E, there is a cost, say; , associated with each vertex
1eV.

In this case the GMST problem can be formulated as the following integer
program:

OPT = min Z CeTe + Z d;z;

ecE eV

st (4.2) — (4.6).

Suppose thatz, z) is an optimal solution. Then the optimal val@e’T' of
this integer program consists of two parts:

Lopr := Z ceTe andVopr := Z dZ;.

eclE S

Under the same assumptions Al and A2, the algorithm for approximating the
optimal solution of the GMST problem in this case, is as follows:

1. Solve the linear programming relaxation of the previous integer pro-
gram and letz*, z*) = ((2])I", (z})ec k) be the optimal solution.

2. SetW™* = {z eVl > %} and considefV’ c W* with the prop-

erty that’?' has exactly one vertex from each cluster, and find a
minimum spanning tred’ C G on the subgrapl@y generated by
w'.

3. OutputAPP = ecost(T') + vcost(T') and the generalized spanning
treeT.
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where byecost(T') andvcost(T') we denoted the cost of the tréewith re-
spect to the edges, respectively to the nodes.

Regarding the performance bounds of this approximation algorithm, using the
same auxiliary results and definitig., z;) as we did at the beginning of this
subsection, the following inequalities hold:

2

L"(W') < p(2- E)LOPT7

VI(W') < pVorr,
whereL”(W"), VT(W') denote the cost of the tréé spanning the nodes of
W' with respect to the edges, respectively to the nodes and as béfore
1 , / :
We=sieV |z > —} , such thati¥'| = m andl/" consists of exactly one
P
vertex from every cluster.

For the approximation algorithm proposed in this case, the following holds:

/ / 2
APP = LTW)H)+VIW) <p2— E)LOPT + pVopr

2 2
< p2- ﬁ)(LOPT +Vorr) =p(2 - E)OPT-

4.5 Concluding remarks

We have distinguished between so-called positive results and negative results
in the area of approximation algorithms.

We presented an in-approximability result: there iscrapproximation al-
gorithm for the GMST problem unlesB = N'P. However, under special
assumptions (see Section 4.4) we give an approximation algorithm for the
GMST problem.
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Chapter 5

Linear Programming, Lagrangian
and Semidefinite Relaxations

As was remarked in Chapter 1 of this thesis, finding good solutions for hard
minimization problems in combinatorial optimization requires the considera-
tion of two issues:

e calculation of an upper bound that is as close as possible to the opti-
mum;

e calculation of a lower bound that is as close as possible to the optimum.

General techniques for generating good upper bounds are essentially heuristic
methods which we are going to consider in Chapter 7 of the thesis. In addition,
for any particular problem, we may well have techniques which are specific
to the problem being solved.

To obtain lower bounds, one well-known technique is Linear Programming
(LP) relaxation. In LP relaxation we take an integer (or mixed-integer) pro-
gramming formulation of the problem and relax the integrality requirement
on the variables. This gives a linear program which can either be:

e solved exactly using a standard algorithm (simplex or interior point); or

¢ solved heuristically (dual ascent).

The solution value obtained for this linear program gives a lower bound on
the optimal value of the original minimization problem.
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Another well-known technique to find lower bounds is Lagrangian relaxation.
The general idea is to "relax” (dualize) some (or all) constraints by adding
them to the objective function using Lagrangian multipliers. Choosing values
for the Lagrangian multipliers is of key importance in terms of quality of the
lower bound generated.

Semidefinite programming (SDP) is currently a very exciting and active area
of research. Combinatorial optimization problems often involve binary (0,1 or
+1,-1) decision variables. These can be modelled using quadratic constraints
r? —x =0, andz? = 1, respectively. Using the positive semidefinite matrix
relationshipX = xz7, we can lift the problem into matrix space and obtain

a Semidefinite Programming Relaxation by ignoring the rank 1 restriction on
X, see e.g. [49]. These semidefinite relaxations provide tight bounds for
many classes of hard problems and in addition can be solved efficiently by
interior-point methods.

74



5.1 Lagrangian Relaxation

5.1.1 Basic principles

The description of this section follows the presentations of Bertsimas and
Tsitsiklis [5] and Faigleet al. [16].

We consider the following optimization problem:

2y =min {f(z) | g(z) <0, h(z) <0, z € X'} (5.1)

Dualizing the constraintg(xz) < 0 with Lagrangian multipliers\, A\ > 0,
yields the lower bound fot;

L(\) = min {f(z) + A"g(z) | h(z) < 0}. (5.2)

Here the functionL (function of \) is calledLagrangian dual functior{or
just dual function). Since the dual function is the pointwise minimum of a
family of affine functions,L(\) is concave, even when the problem (5.1) is
not convex.

The best bound of this type arises from the solution oflthgrangian dual
problem

max L(N). (5.3)
The difference between the optimal value of problems (5.1) and (5.3) is called
duality gap which is always a honnegative number. We prove this last result
in Theorem 5.1, in the special case of integer linear programming.

The crucial question is which constraints to dualize. The more constraints
are dualized, the weaker the bound becomes. On the other hand, dualizing
more constraints facilitates the computation/gf\). In the extreme case, if

all constraints are dualized, the computation.0fA) has no side constraints

to consider. There is a trade off between the quality of the bounds we obtain
and the effort necessary for their computation. Generally, one would dualize
only the "nasty” constraints, i.e. those that are difficult to deal with directly.

Held and Karp [33], [34] were the first to apply the idea of Lagrangian relax-
ation to integer linear programs. Assume we are given an integer program of
the form
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Zip=min {c'x | Ax > b, Bv >d, v € Z"} (5.4)

for given integral matrices A, B and vectors b, ¢, d andjgtbe the optimum
value of (5.4). Dualizing the constrainis— Ax < 0 with multipliersu > 0
yields the lower bound

L(u) = min{c"z +u’(b— Az)| Bx > d, x € Z"}
u'b+min {(¢"' —u'A)x | Bxr >d, v € Z"}
for 27, and thus the Lagrangian dual problem is
2} = mgch(u). (5.5)
where byz}, we denoted the optimal value of the Lagrangian dual problem.
The following general result holds (cf. e.g. [16]):

Theorem 5.1 We haver}, < zjp .

Proof: Let z* denote the optimal solution to (5.4). Thén- Az* < 0 and
therefore

L(u) < cTo* +ul (b— Ax*) < Ta* = 25p
for all w > 0, and therefore

2n = rngé(L(u) < zip .
u>

g

The previous theorem represents the weak duality theory of integer program-
ming. Unlike common linear programming, linear integer programming does
not have a strong duality theorem.

We next investigate the quality of the bounf] in comparison to the one
provided by the linear programming relaxation

2fp=min {c'x | Ax > b, Bx > d}, (5.6)

which we obtain by dropping the integrality constraints Z.".
The following general result holds (cf. e.g. [16]):

76



Theorem 5.2 We have; , < 27}, .

Proof: The proof follows from the fact that the Lagrangian dual of a linear
program equals the linear programming dual. We obtain the inequality by
applying linear programming duality twice:

2z, = max L(u)
uz

= Iglg({UTb +min{(c" —u'A)x | Bt >d, v € Z"}}
> Igééq{uTb +min{(c" — v’ A)zx | Bx > d}}

= Téé{{uTb +max{d’v |v'B=c—u"A v>0}}
= m;X{uTb+de]uTA+vTB:c, u>0v>0}
= min {c"x | Ax > b, Bx > d} = 2} p.

4

Remark 5.1 As the proof of Theorem 5.2 shows;,, = 27, holds if and only

if the integrality constraint € Z" is redundant in the Lagrangian dual prob-
lem definingz},. In this case, the Lagrangian is said to haveittiegrality
property; cf [23]. O

It turns out that solving the Lagrangian dual problem amounts to maximizing
a "piecewise linear” function of a certain type. We say that a funcfian

R™ — R is piecewise linear concavef is obtained as a minimum of a finite
number of affine functiong; : R — R (see Figure 5.2).
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f(u)

Figure 5.2:  f(u) = min{f;(u) | 1 <i <k}

5.1.2 Solving the Lagrangian dual
In this subsection, we outline the subgradient method for computing the best
possible lower bound.(v*) and solving the Lagrangian dual

2p = max L(u).
uz

We start with some definitions:

Definition 5.1 Let f be a concave function @&". A vectory such that

f@) < f@) +9"(x-T),

for all z € R", is called asubgradientof f atz. The set of all subgradients
of fat is denoted by f (Z) and is called thesubdifferential of fatz. O

If the function f is differentiable at, then it can be verified thatf(z) con-
tains only one element: the gradient of fiati.e. 0 f (7) = {V' f()}.

The Lagrangian functiori.(u) is subdifferentiable everywhere, i.e., for all
u > 0 there exists a subgradient 6fu) atu. For every optimal solution
of L(u), the vectomh — Az is a subgradient of atu:
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Lu) = c'z,+u"(b— Ax,)

cwg +ul (b— Axy)

= lag+u’(b— Arg) + (b— Azg)" (u — )
= L@ + (b— Arg)" (u — 7).

IA

Any other subgradient is a convex combination of these subgradients (cf [5]).
It is clear thatu* is an optimal solution of the Lagrangian dual problem if and
only if 0 € OL(u*).

Remark 5.2 It can be shown that if the Lagrangian probldnw) can be
solved in polynomial time for each > 0, then the Lagrangian dual problem
can be solved in polynomial time (see, Schrijver [69], p. 368) 0

Calculating the exact value may cost too much time, although it might be done
in polynomial time. Therefore, one often only approximates the optimal solu-

tion of the Lagrangian dual problem. The subgradient method is an algorithm
that is used very often in practice to approximate the value of the Lagrangian
dual.

The subgradient optimization algorithm
1. Choose a starting point' > 0 and a sequenag,; letk = 1.

2. Givenu”, choose a subgradient € dL(u"). If 4* = 0, thenu" is
an optimal solution and the algorithm stops. Else deiifie' by

Mt = Projy (uf + 6,7%).

3. If a stopping criterion is satisfied, then stop. Elsetset- k + 1 and
goto Step 2.

In Step 2, because we want to hae! > 0, we project the resulting vector
u**1 onto the set of feasible multipliefs = {« > 0} and obtain

uFtl = ProjU(uk + Hkvk),
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wheref,, is a positive stepsize parameter.

Often a limit on the number of iterations is used as a stopping criterion. The
maximum number of iterations is determined by practical experiments. The
convergence of the subgradient method depends essentially on the procedure
of choosing the step sizés. The appropriate choice of the step size is a del-
icate problem both in theory and practice. It can be proved that the sequence
of best values generated by the subgradient optimization algorithm

Ly :=max {L(u"): i=1,...k}

converges to the maximum value bf-), for any stepsize sequenég such
that

lim 6, =0 and Z@k:oo
k=0

k—o00
(see [37]). An example of such a sequencé,is= % . However, this leads

to slow convergence, and other choices for the step sizes, which are more
efficient in practice, often are used. An example is

Op = Opa®, k=1,2, ...,

wherea is a scalar satisfying < o < 1. A more sophisticated and popular
rule is to let

A~ . L k
ek — <D - (QU )C(k,
[oddl
wherea satisfied) < o < 1 andzp is an appropriate estimate of the optimal
valuez7,.

5.2 Semidefinite Programming

Semidefinite programming (SDP) is an extension of the linear programming

(LP). In comparison to standard LP the vectors are replaced by matrix vari-

ables and nonnegativity elementwise is replaced by positive semidefiniteness.
In addition, LP and SDP are special cases of the conic programming (CP)

problem:

80



min <c¢,x >
s.t. Az = b
x € K,

whereK is a convex cone + K C K andaK C K, Ya > 0), Ais alinear
operatord : R* — R™, vectorsc € R”, b € R™ and<, > is an inner product
onRR". LetS™ denote the set of x n symmetric matrices .

LP is obtained with' = R} (the non-negative orthant) whereas SDP is ob-
tained by lettingK’ = P (the cone of positive semidefinite matrices). The
cone of positive semidefinite matrices induces a partial order on th8'set
called theLéwner partial order

forA, BeS" A>Bif A-BeP

This is the origin of the notatiod > 0 for positive semidefinite matrices.

We now discuss in more detail the similarities and differences between LP
and SDP.

5.2.1 Geometry

The geometry of polyhedral sets developed for linear programming can be
extended to semidefinite programming. This was studied as early as 1948 by
Bohnenblust [6] and later by Taussky [73] and also Barker and Carlson [2].

Some results similar to LP are: the SDP conexi¢polar, i.e.

P=Pt.={Y|XeY >0, VX € P},

where X e Y = Trace XY is the trace inner product. In the spake, by
definition the trace inner product is the usual inner productzisey = 27y.

Also, P is homogeneous, i.e. foranyX,Y € int(P), there exists an invertible
linear operatorA that leaves? invariant andA4(X) = Y (see [76]).

5.2.2 Duality and Optimality Conditions

Extensions of the optimality conditions and duality theory from linear pro-
gramming to semidefinite programming appeared in [4]. However, unlike the
LP case, strong duality theorems require a Slater-type constraint qualification.
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This Slater-type constraint qualification means strict feasibility, i.e., there ex-
ists a feasible point in the interior & (see Definition 5.2).

Now, consider the typical primal semidefinite program

min CeX
(PSDP) st. AX)=b
X =0,

whereC' € 8", b € R™, and A : S" — R™, is a linear operator, i.e. the
components are defined as
for some given symmetric matrices.
In order to derive the dual of this program we need the adjoint operatdr of
By definition, it is the operatad” : R™ — S, satisfying

AX)ey=Xeo A (y), VX € 8", Yy € R™,

where by definitionA(X) ey = AT (X)y, i.e. in theR™ space the trace inner
product is the usual inner product.

Since,

AX) ey = Zyz Trace(A; X) = Trace(X ZyZAZ) =Xe ZyiAi,
i=1

i=1 i=1

we obtain

AT(Z/) = Z YiA.
i=1

For constructing the dual we use a Lagrangian approach. The primal equality
constraints are lifted into the objective by means of a Lagrange multiplier
y € R™ so that the primal problem readsin x» o max,cgm C' ® X + y” (b —
A(X)). The dual of the (PSDP) is obtained by interchanging min and max,

. T > : T AT )
?égigﬂ%%C-Xw (b A(X))_;gﬂggr)?égy b+ (C—A(y) e X
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The construction implies that the right hand side value cannot exceed the value
of the primal problem (see, e.g., Rockafellar [66], Lemma 36.1). For the
maximum on the right hand side to be finite, the inner minimization over
X = 0 must remain finite for somg € R™. This require<C' — A7 (j) to be
positive semidefinite. We write this condition by introducing a slack matrix
Z,

max bly
(DSDP) st. ATy+Z=C
yeR™ Z>0.

This is the standard formulation of the dual semidefinite program to (PSDP).

The gap between a dual feasible solutign) and a primal feasible solution
X is
Trace CX — by = Trace(ATy + Z)X — A(X) ey = Trace ZX > 0.

This shows that the duality gap is always nonnegative. The last inequality
follows from the following well-known lemma:

Lemmab5.1 LetA, Be S, A, B~ 0. ThenAe B > 0. MoreoverAe B =10
if and only if AB = 0.

Proof: AB = 0 directly impliesA e B = Trace (AB) = 0. To prove the
converse, consider the transformationfB > 0 to diagonal form

A=) ag], B=) B,
i=1 j=1

whereg;,v; are the orthonormal eigenvectors andg; the corresponding
eigenvalues ofl, B. Then withA e B = T'race (AB) we find usingy; 3; > 0

AeB = Z Oéiﬁj(QiqiTUjUjT) = Z aiﬁj(”f%@?%‘) = Z aiﬁj(q;[vj)Q >0

1,7=1 1,7=1 1,7=1

Moreover,A e B = () implies «;8;(g] v;)? = 0 or a;3;(q} v;) = 0 for all 4, j
and then
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AB = Z OéiﬁjQiQiTUjU]T = Z Oéiﬁj(qiTUj)(QiU]T) =0.

ij=1 ij=1

g

In the following we state that the gap between optimal primal and dual objec-
tive value is guaranteed to be zero (i.e. strong duality holds) if at least one of
(PSDP) and (DSDP) has a strictly feasible point.

Definition 5.2 A point X is strictly feasible for (PSDP) if it is feasible for
(PSDP) and satisfiex” > 0 (i.e. X is positive definite).

A pair (y, Z) is strictly feasible for (DSDP) if it is feasible for (DSDP) and
satisfies” > 0 (i.e. Z is positive definite). O

Theorem 5.3 (Strong Duality) )
Assume that there exists a strictly feasible solufiarZ) for (DSDP) and let

p* = min{CeX | AX)=0b, X >0} and
d = max{b"y| AT (y)+Z2=C, Z =0}

Thenp* = d* and if p* is finite it is attained for som& € {X > 0| A(X) =
b}.
Proof: See for example [76] or [63]. O

The optimality conditions for (PSDP) and (DSDP) are

AT(Y)+Z —-C = 0 dual feasibility

b— A(X) = 0 primal feasibility
X7 = 0 complementary slackness
X,Z = 0.

X, (y, Z) satisfying these conditions are called a primal-dual optimal gair,

is the (dual) slack variable. In the case that complementary slackness may
fail, the variables are called a primal-dual feasible pair. Feasible solutions
and Z satisfying the last equality constraint are calsanplementary The
complementary slackness constraint can be written in the equivalentferm

X =0 (conform Lemma 5.1). The above conditions imply a zero duality gap
since
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Trace ZX = Trace(C — ATy) X = Trace CX —y"b.
If we perturb the complementary slackness condition,

ZX =ul, u>0,

then we get the optimality conditions for a log-barrier problem (see [67]).
These are the equations that are used in interior-point methods. However,
unlike linear programming there is an interesting subtle complication. One
cannot apply Newton’s method directly, Sing& is not necessarily symmet-

ric (i.,e. XZ # ZX), and so we end up with an overdetermined system of
equations. There are various ways of modifying this system in order to get
good search directions, see e.g. [53], [74]. Many of these directions work very
well in practice. The algorithms that currently work well are the primal-dual
interior-point algorithms.

5.3 Lagrangian duality for quadratic programs

The material introduced in Sections 5.1 and 5.2 will be used now to apply
Lagrange duality to quadratic optimization problems. The remaining of this
chapter follows closely the paper of Lergahal and Oustry [48]. In addi-

tion at page 93, we have added a comparison of the lower bounds obtained
by linear and complete dualizations with the bounds given by the linear pro-
gramming relaxation.

5.3.1 Dualizing a quadratic problem

We start with a well-know lemma, which will be used throughout this chapter:

Lemma 5.2 (Schur's Lemma)
For Q € 8?, P € S" and ST = (s4,...,s,) € R™? the following two state-
ments are equivalent:

. (P ST
i) The matrlx( s ©

) is positive definite (respectively positive semidefi-

nite).

ii) The matricesQ and P — STQ'S are both positive definite (respectively
positive semidefinite) and € R(Q), fori = 1, ..., p; these last range condi-
tions are automatically satisfied whéh- 0 (thenR(Q) = RP).
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i

In the above lemma we denoted ©Y the pseudo-inverse of the matiix

Givenm + 1 quadratic functions defined d&r':
¢;(z) := xTij—l—bJTx—i-cj, ji=0,..,m, (5.7)

with Q; € 8", b; € R" and¢; € R, for j = 0,...,m; we assume, = 0. We
consider the quadratic problem

min - go(),

st. ¢i(x)=0,j=1,...,m. (5.8)

Dualizing the costraints (5.8) with Lagrangian multipliers R™ yields the
following Lagrangian dual function:

L(u) = min {z7Q(u)z + b(u)"x + c(u)},

z€ER™

whereQ(u) := Qo+ Zuij, b(u) := b+ Zujbj, c(u) == Zujcj =clu.
j=1 j=1

j=1
The dual problem is to maximize. In fact the Lagrangian dual function can
be computed explicitly:

Proposition 5.1 (Lemagchal and Oustry [48])

—00 otherwise

L) {c(u)—ibmm(u)%(u) f Q(u) = 0 andi(u) € R(Q()),

whereQ' is the pseudo-inverse ¢f and R(Q) is the range (column space)

of Q.

Proof: The proof comes directly from the theory regarding the infimum of a
guadratic function (see [48]). O
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We want to compute the best lower bound and hence to solve the Lagrangian
dualmax L(u), which we reformulate as follows (with € R™ andr € R):

max L(u) = max {r| L(u) >r}

u

= max {r |27 Q(uw)x +b(u)" 'z + c(u) > r, Vo € R"}

_ %xmu,ﬂ)( ) %Q(u) )(;)zo vz € R}
— max {7/ (C(_“)_T ) ) - 0}.

Therefore the dual problem is equivalent to the following SDP problem with
variablesu € R™ andr € R:

weRmreR |
c(u) —r b(u)?
o (W) e

Applying duality again to the semidefinite problem (5.9) which is the same
with bidualizing the quadratic problem (5.8). we obtain that the dual of (5.9),
i.e., bidual of (5.8) is:

min Qe X +blz, XeS" xeR”
(SDP) s.t. Q]—OX—H)}FQ:—I—C]-:O, 1=1,..m

1 27
(1) =0
Applying the weak duality theory twice, we see that
val(5.8) > wval(5.9) < wval(SDP),

where byval(-) we denote the optimal value of an optimization probleyn (
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5.3.2 The lifting procedure

There exists a strong similarity between the quadratic problem (5.8) and the
semidefinite program denoted by (SDP) these two problems differ by the in-
troduction of the new variabl& .

Using Schur’'s Lemma, (SDP) can be written in the equivalent form:

min Qoe X +blz, X €S", z € R"
st. QeX+bxt+c;=0,j=1..,m (5.10)
X = zal.
This new form gives us a direct interpretation of (SDP) without passing by
the intermediate problem (5.9):

- A quadratic formz” Qx can equivalently be written as

TQr=Qrexr=0Qexzt.

- By settingX := xz7, the quadratic problem (5.8) can be written as

min Qpe X +blr, X €S", v € R"
st. QeX+bxt+c;=0j=1..,m (5.11)
X =za?.
- In this last formulation of the quadratic problem (5.8), everything is linear
except the last constraint, which is nonconvex.

- Relax this last constrailt = zz” to X > zz”, which is now convex with
respect tqz, X).

The above procedure calléikting procedurewas introduced in [49] in the
context of 0-1 programming.

Summarizing in terms of duality gaps the merits of the relaxations introduced
in this subsection we have:

val(5.9) < val(SDP) = val(5.10) > val(5.8).
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The first inequality is weak duality between (5.9) and its dual (SDP). The
equality is Schur's Lemma. The last inequality holds because the feasible
domain in (5.10) is larger than in (5.8).

It is worth to mentione that the first inequality often holds as an equality (for
example if an appropriate constraint qualification is satisfied).

5.4 Application to 0-1 programming

Consider the following combinatorial optimization problem:

min ¢’z

st. Ar=0b (5.12)

2 _ L
r; —x; =0, 1=1,...,n.

In this program the boolean constraintse {0,1}, i = 1,...,n were mod-
elled using the quadratic constraints— z; =0, i = 1, ...,n, and are the only
guadratic constraints.

Folllowing [48] we present three possible dualizations for the above 0-1 pro-
gram and compare the optimal values of the corresponding Lagrangian dual
problems.

5.4.1 Linear dualization

The first possibility is to lift the linear constraints into the objective by means
of a Lagrange multiplier: € R™. This kind of dualization is called linear
dualization. We obtain the following Lagrangian problem:

Ly(u) = a:e%irll}" {c"z +u" (Ax —b)}.

This minimization overt’ = {0, 1}" is trivial, the result is a piecewise linear
dual function:

Ly(u) =Y min {0, (c+ A"u);} — b u. (5.13)
=1
Maximizing L, is therefore a nonsmooth optimization problem, which can be
done by a number of methods, see e.g. [37].
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5.4.2 Complete dualization

Another possible dualization consists in takitig= R™ and in dualizing alll

the constraints: the linear as well as the boolean ones. This dualization, which
is called complete dualization, produces another Lagrangian problem, which
now depends on two dual variables v) € R™ x R":

Lo(u,v) = ggﬁ@ﬂn{c r+u’ (Az —b +ZU11‘ —x;)}

= min {(c+ ATu—v) :E+:UTD( Jr} — o'

TER™

Here D(v) denotes the diagonal matrix constructed from the vector

Minimizing the above Lagrangian with respectitgon the wholeR™) can be
done using elementary calculations and we obtain:

Loy(u,v) = —bTu+ZL (u,v;),

where
ATu—0)?
(et 4“ U i >0
_ Uj
Li(u,v;) = 0 if v; =0and(c+ ATu); =0
—00 otherwise

Theorem 5.4 (Lemagchal and Oustry [48])
The linear and complete dualizations produce the same duality gap. More
precisely:

Li(u) = max Ls(u,v). (5.14)

vER”

O
Therefore the complete dualization is of moderate interest as compared to
linear dualization: it increases the number of dual variables and produces a

more complicated dual function, all this without improving the duality gap.
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Remark 5.3 Applying the lifting procedure to (5.12), we obtain

min ¢’ d(X),
Xesn
s.t. ( )=b,j=1,. (5.15)

()()EO,

whered(X) is the vector obtained by extracting the diagonal®dfc R™*".

Despite the appearances, this is a linear prograniRft X plays no role
except through the diagonal, therefore we can Xet= 0, for i # j, and
replaced(X) by z € R". The semidefinite constraint becomes

X—xxTEO{:)xin?, 1=1,.ne0<y,<1,1=1,...,n
O

In addition to the results obtained in [48], applying the results from Subsection
5.3, we were able to compare the linear programming relaxation bound of
(5.12) with the bounds provided by the linear and complete dualizations:

val(5.12) > val(5.15) = val(LP) > max Lo(u,v).

whereval(LP) denotes the optimal value of the linear programming relax-
ation of problem (5.12). Using Theorems 5.2 and 5.4, we have

val(5.12) > val(5.15) = val(LP) = max Lo(u,v) = max L;(u).

This last result shows that the best bounds obtained using linear and com-
plete dualizations are equal to the optimal value of the linear programming
relaxation.

5.4.3 Boolean dualization

A third possibility for (5.12) is to dualize the boolean constraints. Then the
corresponding dual function is the optimal value of the problem

Ls(v) = E;lg {(c—v)'z+2"D(v)x}. (5.16)

We will call this dualization scheme boolean dualization. Before computing
Ls(v), we check that this complication is worth the effort.
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Theorem 5.5 (Lemagchal and Oustry [48])
There holdsnax L3(v) > max Lo(u,v) = max L (u).

Proof: The equality is Theorem 5.3. The inequality is a general result: when
more constraints are dualized, the duality gap can only increase (see for ex-
ample [16]). O

We want to computenax, L3(v). If b ¢ R(A) (i.e. Ax = b has no solution in
R™) thenval(5.12) = 400 andmax, L;3(v) = +o0; so there is no duality gap.
We therefore assume thiat= Az for somez € R". Assumem’ = rank(A)
(i.e. the rank of A), letZ be a matrix withn — m’ columns that form a basis
of N(A), whereN (A) denote the null space of A. Thus

Ar =b withz e R" <= 2z =i+ Zy withy e R"™,
so that (5.12) is equivalent to the following problemyin

min ¢’ Zy + 'z,
st. y'ZZy+ 22 — 1) Zw+ 22 —3,=0,i=1,...,n. (5.17)
HereZ; € R denotes théth row of Z.

Theorem 5.6 (Lemagchal and Oustry [48])
The dual valuenax, L3(v), associated with (5.12), (5.16), is the value of the
SDP problem

max r
where

e(v) 2'D)z + (¢ —v)'z,

b(v) = 2D(W)E+c—u,

Qv) = ZD)ZT
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5.4.4 Inequality constraints

Suppose that the general optimization problem (5.12) contains inequality con-
straints; say

min ¢’z

st. Axr<b (5.19)
T; € {071} 1= 1,...,n

or even a mixture of equalities and inequalities.

The new formulation of the general optimization problem (5.19) does not
affect the linear dualization. The only change is that the dual problem now
has positivity constraints and becomesx,~ L (u); but the duality gap still
corresponds to replacing, 1} by [0, 1].

Remark 5.4 Due to the general result: the more constraints are dualized,
the weaker the bound becomes, one possibility to obtain a better lower bound
than the bound provided by the linear dualization is to dualize just some of the
linear constraints. One would dualize only the constraints that are difficult to
deal with directly. O

The complete dualization is also unaffected. Theart of the dual variables
is again constrained R, and we again obtain a scheme equivalent to linear
dualization:

Theorem 5.7 (Lemagchal and Oustry [48])
For (5.20), linear and complete dualizations produce the same duality gap.
U

By contrast, the boolean dualization breaks down: the dual fuction becomes

/rglg% {(c—=v)Tz+2"D(v)r}.

SinceD(v) has no reason to be positive semidefinite, the above problem is a
difficult nonconvex problem.

Therefore the boolean dualization can treat only equality constraints; as for
the inequalities, they have to be treated by a linear strategy.
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5.5 Concluding remarks

We presented three possible dualizations of 0-1 programming problem (con-
taining only equality constraints): linear, complete and boolean dualizations
and we compared the bounds obtained using these dualizations with the bound
provided by the linear programming relaxation.

We showed that the bounds obtained by linear and complete dualizations are
equal to the optimal value of the linear programming relaxation of the initial
0-1 program. In addition the bounds obtained by using boolean dualization
may be better.

The results obtained for linear and complete dualizations hold also in the case
when the initial 0-1 program contains inequality constraints, but break down
in the case of boolean dualization. Therefore the boolean dualization can treat
only equality constraints; as for the inequalities, they have to be treated by a
linear strategy.
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Chapter 6

Solving the GMST problem with
Lagrangian Relaxation

As we have seen in the previous chapter, we may obtain better lower bounds
than the bound provided by linear and complete dualizations if we dualize
only the "nasty” linear constraints, i.e. the constraints that are difficult to deal
with directly.

In this chapter we present an algorithm to obtain "good” lower bounds (bet-
ter than the bounds provided by the LP relaxation) for the GMST problem.
The algorithm is based on a Lagrangian relaxation of a bidirectional multi-
commodity flow formulation of the problem. The subgradient optimization
algorithm is used to obtain lower bounds. Computational results are reported
for many instances of the problem.
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6.1 A strong formulation of the GMST problem

In Section 3.4, we proposed a mixed integer programming formulation of the
GMST problem, called théidirectional multicommodity flow formulation
In that model a cluste¥; C V' is chosen to be thsourceoffering | K| — 1 =

— 1 commodities, one demanded by each of the remaining1 clusters.
Varlables r. (i,j) € Aandk = 1,..,m — 1 indicate the flow amount of
commodityk going through the arg, 7). Binary variables;;;, with (i, j) € E
andz;, with ¢ € V' control the inclusions;; = 1) or not (z;; = 0) of edge(i, 5 ),
respectively the inclusion(= 1) or not (z; = 0) of nodei in the solution. The
GMST problem can be formulated as follows:

E Cijxij

(i,5)€EE

st fh+ ’; <z, VYe=(i,j)eE, Vkk €k, (6.1)
z(EF)=m-—1 (6.2)
(vk)—1 Ve K={1,..,m} (6.3)
S otz Vke Ky, VieW (6.4)
(i,5)eA
Stz Vke K, VieV, (6.5)
(j)eA
D= =0 VEEK, VieV\(iUW) (6.6)
zg)eA (hy3)eA
£ eqo0,1}, Vike K, V(i,j)eA (6.7)
Lij, 24 S {0, 1}, 4 (l,j) S E, VieV. (68)

Constraints (6.1) allow a non-zero floyﬁ[;. or 1 " of commodity & or &’
through an edge = (i, 7) only if the latter is included in the solution. Con-
straints (6.2) and (6.3) guarantee that any feasible solutiomhad edges

and contains exactly one vertex from every cluster. Equations (6.4), (6.5) and
(6.6), for a givenk € K, are the network flow equations for the problem of
sending a flow of valué from clusterV; to clusterV,.. Note here that in this
program we implicitly setf)s =0,V k € K, ¥ (i,j) € A with j € V; (i.e.
delete all the arcs in clustéﬁ)
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6.2 Defining a Lagrangian problem

We relax equations (6.4), (6.5) and (6.6) in a Lagrangian fashion.;,Let 0,
Vié¢ ViUV, Vk € K7) be the Lagrange multipliers corresponding to (6.6),
211 (>0,Vie Vl, V k € K;) be the Lagrange multipliers corresponding

to (6.4) and Ietzt (>0,VieV, VEke K;) be the Lagrange multipliers
corresponding to (6.5).

Then the coefﬁmenﬂ’C of k in the objective function of the Lagrangian dual
program is given by

() Y ifie Vi andj € 4
—ti —tly) ifi¢ VUV, andj € V;
Chi = W+t fieViandjg¢ ViUl
—ti+t, figViuViandj ¢ ViUV,
{ 0 otherwise

the coefficient ok;, p; is given by

Yo ifiew
k;?

Sy ifie v,
k=2

and the Lagrangian dual program is:

Z CijTij + Z chk k—I—ZpZzZ

(i,5)EE (4,7)€EAkEK: eV

st fE+ ’3<xe, Ve=(i,j)e E,Vkk €K,
z(E)=m-—1
z2(Vi) =1, Vke K=A{1,...m}
re{0,1}, Vke K, V(i,j)€eA

Tij, 7 € {0,1}, V(i,j)e E,VieV.

From constraint (6.1), it is simple to deduce that the best contribution to the
dual objective function is given by:
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bij =Gy + Z mln{O CZ,C’c}

keK,

and therefore the Lagrangian dual program becomes:

Z bmxzy + szzz

(i,J)€E eV

z(E)=m-—1

(Vo) =1, VikeK=1{1,.,m}
zij, 2 €{0,1},  V(i,j)€EE,VieV.

Let (Xi;), (Z:), (F}), represent the optimum values @f;;), (z), (f) in

the solution of the Lagrangian dual program; then the optimal value of the
Lagrangian dual prograi, (a lower bound on the optimal solution of the
GMST problem) is given by:

Zp = Z bi;j Xij + Zpizi

{ij}eE i€V

6.3 The Subgradient Procedure
As we have seen in the previous chapter, choosing values for the Lagrangian

multipliers is of key importance in terms of quality of lower bound generated
by solving the Lagrangian dual problem.

In this section we use the subgradient method in an attempt to maximize the
lower bounds obtained from the Lagrangian relaxation of the GMST problem.
The procedure is as follows:

e Step 1.Set the initial values for the Lagrangian multipliers:
t=0,VieW, Vke K,

tW —0,Vie Vi, VieK,
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tikZO,Vi§é‘/1UVk,VkEK1,

and initialize Z; 5, the upper bound of the problem (e.g. from some
heuristic for the problem).

Step 2.Solve the Lagrangian dual program with the current set of mul-
tipliers and let the solution b&p, (X;;), (Z;), (Fj;).

Step 3. If the Lagrangian solutioni.X;;), (Z;), (F}) is a feasible so-
lution to the original problem then updat&;z, the upper bound on
the problem corresponding to a feasible solution, accordingly. Up-
dateZ,,.. at each subgradient iteration usifig,, = max{ 7,4z, Zp },
whereZ,, .. denotes the maximum lower bound found over all subgra-
dient iterations. InitiallyZ,,,, = —oc.

Step 4. Stop if Zyg = Z,,.. Since thenZ g is the optimal solution,
else go to Step 5.

Step 5.Calculate the subgradients

HY =2z,— Y F:. VieWVkek

(i,5)€A

HY =7Z,— Y Fi  VieW, Vkek

(jB)EA
Hy= Y Fi— Y FEVi¢gWUV, VkeK,.
(J)eA (3,7)€A

e Step 6.Define a step sizé by

(Zus — Zp)

T=« ,
IH |l

where0 < a < 2, and|| H|| is defined by
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1 =SS @m? 3 S mD?+ YN )

ieV] ke Kq i€V keKy i¢V1UVk ke K,

This step size depends upon the gap between the current lower bound
Zp and the upper bound; s and the user defined parametewith
|| H|| being a scaling factor.

e Step 7.Update the Lagrange multipliers by
t%) = max{0,t\) + THP}, Vie Vi, Vk e K,
% = max{0,t" + THIY, Vie Vi, Vi € Ky,
tiw = max{0,t; + THy}, Vi g ViUV, V€ Ky,

e Step 8.Go to Step 2 to resolve the Lagrangian dual program with this
new set of multipliers unless a stopping criterium is met.

Upper bounds velue
(feasible solutions)

—+ Zus

Optimal solution to the problen

- Z

max

Lower bounds —
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Figure 6.1: Subgradient optimization

Figure 6.1 illustrates the situation during the subgradient iterations. As shown
in this figure, we plot the lower bound found at each subgradient iteration on
the value line. The best (maximum) of these lower bounds,js..

Initially we seta = 2. If Z,,,, IS not improved (i.e. increased) in the last

subgradient iterations with the current valuenothen we halver. Based on
experimenting (computationally) with different values /8f it seems to be
reasonable to choose the valive= 30.

In our experiments we sét; 3 = Zppr, WhereZopr is the optimal value of
the GMST problem calculated using the rooting procedure (see Section 3.6).

6.4 Computational Results

We used the same classes of instances as in Subsection 3.6. According to the
method of generating the edge costs, the problems generated are classified
into three types:

e structured Euclidean case
e unstructured Euclidean case
e non-Euclidean case

For the instances in the structured Euclidean casgquares (clusters) are
"packed in a square” and in each of theseclustersn,. nodes are selected
randomly. The costs between nodes are the Euclidean distances between the
nodes. So in this model the clusters can be interpreted as physical clusters. In
the other models such an interpretation is not valid.

For the unstructured Euclidean case mn,. nodes are generated randomly in

[0, 100]? with costs given by the Euclidean distances. But then the clusters are
choosen randomly among these points. Finally in the non-Euclidean model
the edge costs are randomly generate¢Don0o].

Our computational experiments were performed on a HP 9000/735 computer
with a 125 Mhz processor and 144 Mb memory. Our Lagrangian relaxation
scheme is written in C and compiled with a HP-UX cc compiler.
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Table 6.1: Computational Results for unstructured Euclidean problems

Problem # subgradient
number| m | n. | OPT LB Gap(%)| CPU(s)| iterations
1 8 | 3| 90 | 89.998 0 0.09 25
2 4 | 88 | 87.996 0 0.12 30
3 6 | 60 | 59.999 0 0.43 65
4 8 | 46 | 45941 | 0.13 36.93 160
5 10| 45 | 44953 | 0.10 48.18 180
6 10| 3 | 108 | 107.998 0 7.08 35
7 4 | 91 | 90.976 | 0.03 16.14 50
8 6 | 85 | 84.972| 0.03 20.73 65
9 8 | 67 | 66.951| 0.07 41.83 125
10 10| 62 | 61.943| 0.09 55.27 140
11 12| 3 | 116 | 115.947| 0.05 13.03 45
12 4 | 107 | 106.916/ 0.08 24.94 75
13 6 | 89 | 88.836| 0.18 78.53 150
14 8 | 75 | 74759 | 0.32 | 174.43 275
15 15| 3 | 135 | 134.987| 0.01 13.72 30
16 4 | 124 | 123.985| 0.01 16.91 45
17 6 | 96 | 95.899| 0.11 72.88 105
18 8| 91 | 90.869 | 0.14 | 134.29 175
19 18| 3 | 153 | 152.991| 0.01 15.29 40
20 4 | 132 | 131.985/ 0.01 25.65 45
21 6 | 127 | 126.909, 0.07 84.28 110
22 8 | 112 | 111.849| 0.14 204.12 215
23 20| 3 | 175 | 174.981| 0.01 16.39 35
24 4 | 147 | 146.972| 0.02 4471 75
25 6 | 129 | 128.959| 0.04 65.78 95
26 8 | 108 | 107.795| 0.19 | 220.43 200
27 25| 3 | 182 | 181.975/ 0.01 23.79 60
28 4 | 159 | 158.969| 0.02 61.55 90
29 6 | 142 | 141.893| 0.08 92.37 125
30 8 | 127 | 126.825/ 0.14 | 289.78 250
31 30| 3 | 196 | 195.926/ 0.04 41.27 75
32 4 | 174 | 173.889| 0.06 | 101.35 150
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Table 6.2: Computational Results for structured Euclidean problems

Problem # subgrad.
number| m | n. | OPT LB Gap(%)| CPU(s)| iterations
1 8 | 3 | 983 | 982.998 0 0.08 25
2 4 | 966 | 965.993 0 0.18 30
3 6 | 960 | 959.988 0 0.49 65
4 8 | 934 | 933.953| 0.01 36.91 160
5 10| 922 | 921.949| 0.01 48.72 180
6 10| 3 | 1251 | 1250.998 0 7.23 35
7 4 | 1243| 1242.980 0 16.59 50
8 6 | 1240| 1239.975 0 20.93 65
9 8 | 1225| 1224.956 0 41.98 125
10 10| 1208| 61.943 0 55.31 140
11 12| 3 | 1616| 1615.951 0 14.63 45
12 4 | 1545| 1544.908, 0.01 25.76 75
13 6 | 1487| 1486.841) 0.01 78.96 150
14 8 | 1458 | 1457.745] 0.02 | 174.81 275
15 15| 3 | 1977 | 1976.985 0 14.79 30
16 4 | 1966| 1965.981 0 18.85 45
17 6 | 1946 | 1945.909 0 75.81 105
18 8 | 1932| 1931.899| 0.01 | 138.77 175
19 18| 3 | 2384 | 2383.992 0 17.16 40
20 4 | 2365| 2364.985 0 27.70 45
21 6 | 2352 | 2351.904 0 89.22 110
22 8 | 2338 | 2337.863] 0.01 | 225.08 215
23 20| 3 | 2765| 2764.972 0 17.32 35
24 4 | 2741 | 2740.968 0 46.81 75
25 6 | 2728 | 2727.956 0 69.77 95
26 8 | 2709 | 2708.797| 0.01 | 231.48 200
27 25| 3 | 3112| 3111.967 0 24.72 60
28 4 | 3094 | 3093.958 0 64.51 90
29 6 | 3075| 3074.795| 0.01 97.38 125
30 8 | 3058 | 3057.715] 0.01 | 298.89 250
31 30| 3 | 3478| 3477.832 0 52.13 75
32 4 | 3452 | 3451.787, 0.01 | 138.96 150
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Table 6.3: Computational Results for non-Euclidean problems

Problem # subgradient
number| m | n. | OPT| LB Gap(%) | CPU(s)| iterations
1 8 | 3| 28 |27.998| 0.01 0.05 25
2 4 | 19 |18.996| 0.02 0.11 25
3 6 | 11 | 10.995/ 0.05 0.42 65
4 8 | 13 |12.952| 0.37 35.02 150
5 10| 9 8.953 | 0.52 40.12 175
6 10| 3 | 29 | 28.998| 0.01 7.03 35
7 4 | 24 | 23.986| 0.06 15.01 50
8 6 | 16 | 15.985| 0.09 20.17 65
9 8 | 12 | 11.956| 0.37 40.73 110
10 10| 11 | 10.941| 0.54 43.28 120
11 12| 3 | 34 | 33.999 0 12.25 45
12 4 | 21 |20.998| 0.01 24.73 75
13 6 | 20 | 19.866| 0.67 76.28 150
14 8 | 14 | 13.759| 1.75 | 172.32 250
15 10| 12 | 11.825/ 1.48 | 177.23 275
16 15| 3 | 28 | 27.996| 0.01 12.89 30
17 4 | 25 |24.993| 0.01 15.23 45
18 6 | 19 |18.967| 0.17 70.12 105
19 8 | 15 |14.823] 1.19 | 135.95 180
20 10| 14 | 13.792| 1.46 142.37 210
21 18| 3 | 34 | 33.994| 0.02 14.61 45
22 4 34 | 33.995| 0.01 21.75 40
23 6 | 22 |21.974| 0.07 83.27 110
24 8 | 18 |17.921| 0.14 | 165.38 200
25 10| 17 | 16.823] 0.14 171.82 215
26 20| 3 | 37 |36.989| 0.03 16.78 35
27 4 | 28 | 27.972| 0.10 43.66 75
28 6 | 27 | 26.982| 0.07 59.23 85
29 8 | 19 |18.899| 0.53 | 201.83 175
30 10| 19 | 18.792| 1.11 | 200.25 180
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Problem # subgradient
number| m | n. | OPT| LB Gap(%)| CPU(s)| iterations
31 25| 3 | 46 | 45.978| 0.05 51.29 75
32 4 | 35 |34.981| 0.05 60.07 80
33 6| 24 |23.829] 0.72 | 169.23 180
34 8| 24 |23.779] 0.93 | 202.78 230
35 30| 3| 43 |42.969| 0.07 53.21 75
36 4 | 32 |31.978] 0.07 63.72 80
37 6| 29 |23.852| 0.62 | 174.55 170
38 8| 29 |28.872| 0.44 | 209.33 220
39 40| 3 | 44 |43.967| 0.08 82.51 80
40 4 | 41 |40.915| 0.21 | 101.73 90

Each line corresponds to an instance. The first column is the problem num-
ber. The next two columns give the number of clusterand the number of
nodes per clustet,.. The fourth column (OPT) contains the optimal value of
the GMST problem found by using the rooting procedure (see Section 3.6).
The fifth column (LB) gives the lower bound obtained using the subgradi-
ent method. The next column (GAP %) gives the gap in percentage defined
by 100(OPT — LB)/LB. The last two columns give the CPU time and the
number of subgradient iterations necessary to find the lower bound.

Comparing these results with the lower bounds provided by the LP relaxation
of the GMST problem (we did numerical experiments which are not given
here, solving the LP relaxation of the GMST problem by CPLEX), the lower
bounds obtained using our Lagrangian relaxation scheme are in general better.

Remark 6.1 Here our experiments were made by settfags = Zo p, Where

Zopr Is the optimal value of the GMST problem calculated using the rooting
procedure (see Section 3.6). In practice the optimal valie, is unknown,
therefore we only may have an upper boutidr ~ Zopr. But numerical
experiments have shown that even in this case the quality of the gap is main-
tained. The values of the gap in percentage in the special non-Euclidean case
m = 15 andn. = 6, using different upper bounds, are reported in the next
table. O
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| m | n.| OPT| UB | Gap(%)| CPU(s)| # subgrad. iterations

15|/ 6 | 19 - 0.17 70.12 105
15| 6 - | 19.5] 0.19 70.33 105
15| 6 - 20 0.20 70.67 105
15| 6 - 21 0.23 71.09 105

The first two columns give the number of clustersand the number of nodes
per clustern.. The third column (OPT) contains the optimal value of the
GMST problem found by using the rooting procedure (see Section 3.6). The
forth column (UB) gives the upper bound. The next column (GAP %) gives
the gap in percentage defined y0(UB — LB)/LB. The last two columns
give the CPU time and the number of subgradient iterations.

6.5 Concluding remarks

We presented a Lagrangian relaxation of a bidirectional multicommodity flow
formulation of the GMST problem. The subgradient optimization algorithm
was used to obtain lower bounds.

Computational experiments (by settity » = Zopr) show that using our
Lagrangian relaxation scheme are in general better than the lower bounds
provided by the linear programming relaxation of the GMST problem. This
result holds even in the case when we may have available an upper bound
Zyp = Zopr-
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Chapter 7

Heuristic Algorithms

The techniques described in this chapter are the ones which are known by
the term heuristics, i.e. techniques which seek near-optimal solutions at a
reasonable computational cost without being able to guarantee optimality, or
even in many cases to state how close to optimality a particular solution is.

In the first sections we present some basic theory of heuristic algorithms and
local search. In Section 7.4 we present the Simulated Annealing algorithm.
Finally, in the last section we solve the GMST problem with Simulated An-
nealing.
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7.1 Introduction

We have mentioned that many combinatorial optimization problema/dre

hard [21], and the theory ofV'’P-completeness has reduced hopes Ma-
hardproblems can be solved within polynomially bounded computation times.
Nevertheless, sub-optimal solutions are sometimes easy to find. Consequently,
there is much interest in approximation and heuristic algorithms that can find
near optimal solutions within reasonable running time.

In mathematical programming,teeuristic methodr heuristicfor short is a
procedure that determines good or near-optimal solutions to an optimization
problem. As opposed to exact methods, heuristics carry no guarantee that an
optimal solution will be found.

Practically, for many realistic optimization problems good solutions can be
found efficiently, and heuristics are typically among the best strategies in
terms of efficiency and solution quality for problems of realistic size and com-
plexity. Heuristics can be classified as eitbenstructivggreedy) or asocal
searchheuristics. The former are typically one-pass algorithms whereas the
latter are strategies aferative improvement We will be concerned exclu-
sively with local search heuristics here.

Useful references on heuristic methods can be found in Osman and Laporte
[56] and Reeves [64].

7.2 Local and global optima

The following concepts are taken from [57].

Definition 7.1 An instance of an optimization problemis a pair (5,¢),
whereS is any set, the domain of feasible pointss the cost function

c:S—R

The problem is to find am € S for which

c(s) <c(y) forallyesS.

Such a point is calledjlobally optimal solution to the given instance or,
when no confusion can rise, simply aptimal solution. O
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Given a feasible point € S in a particular problem, it is useful in many
situations to define a séf(s) of points that are "close” in some sense to the
point s.

Definition 7.2 Given an optimization problem with instandes c), aneigh-
bourhood is a mapping

N:S—2°

defined for each instance. O

In many combinatorial problems, there are quite natural choiced/feug-
gested by the structure 6f. It is often possible to find a solutionwhich is
best in the sense that there is nothing better in its neighbourNgsd.

Definition 7.3 Given an instancésS, ¢) of an optimization problem a neigh-
bourhoodN, a feasible solution € S is calledlocally optimal with respect
to N if

c(s) <c(g) forall g € N(s).

7.3 Local Search

In the next two sections we present the basic theory of local search and simu-
lated annealing. We follow the description of Reeves [64].

Local search (LS) is a term for the extremely simple concept underlying many
modern heuristic techniques, such as Simulated Annealing, Tabu Search and
Genetic Algorithms.

Suppose that we have a minimization problem over a set of feasible solutions
S and a cost function : S — R. The optimal solution could be obtained by
calculatinge(s) for eachs € S and selecting the minimum. This method is
impracticable when the sét is big which is the case of the most real-life
problems. Local search overcomes this difficulty by searching only a small
subset of the solution space. This is achieved by defining a neighbourhood
structure on the solution space and searching the neighbourhood of the cur-
rent solution for an improvement. If there is no neighbour which results in an
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improvement to the cost function, the current solution is taken as an approx-
imation to the optimum. If an improvement is found, the current solution is
replaced by the improvement and the process is repeated.

Therefore the local search process can be described as follows:

Local search for a problem with solution spaceS, cost functionc
and neighbourhood structure N

1. Select a starting solutiosy € .S,

2. Repeat
Selects such that(s) < ¢(sp) by a suitable method,;
Replacesg by s;
Until ¢(s) > ¢(sp) forall s € N(so).

sg is the approximation of the optimal solution.

A central problem for local search is the occurencoél optima i.e. nodes

in the search space where no neighbour strictly improves over the current node
in terms of the cost function, but which are not global optima. Many strate-
gies have been proposed that address the problem of how to overcome the
local optima. In many cases, non-improving local moves are admitted based
on a probabilistic decision or based on the history of the search. To obtain
guiding principles for designing effective optimization strategies, a number
of conceptual meta-level strategies have been employed with local search.
These strategies are referred ta@staheuristica term introduced by Glover

[25].

In contrast to individual heuristic algorithms that are designed to solve a spe-
cific problem, metaheuristics are strategic problem solving frameworks that
can be adapted to solve a wide variety of problems. A metaheuristic frame-
work includes a set of problem-solving principles that are sometimes based
on natural or physical processes, and a set of control parameters. Applica-
tion of a metaheuristic stategy to a specific problem involves choosing, and
sometimes fine-tuning, these parameters.

Metaheuristic methods are not normally expected to outperform specialized
heuristics on a problem. Their main purpose is to deal with difficult problems
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for which no specialized algorithm is known. However, some studies have
demonstrated that certain metaheuristics perform as well or better than special
heuristics for some well-known difficult problems such as traveling salesman,
graph partitioning and facility layout problems.

The most important metaheuristics for optimization are given in the follow-
ing:

Simulated Annealingntroduced for optimization by Kirkpatrickt al. [44]

in 1983. The central idea is to accept a candidate move that increases the so-
lution quality based on a probabilistic decision. During the time of the search,
the probability of acceptance of deteriorating moves is decreased according
to a givenannealing schedule

Genetic Algorithmsvere invented by Holland and model optimization as an
evolutionary process. The strategy is to have a pool of "chromosomes” and
iteratively apply the principles of mutation, mating and selection to attain
"survival of the fittest” [39]. Genetic algorithms extend the basic local search
scheme to populations of solutions.

Tabu Searchvas first suggested by Glover [25] and uses information based on
the history of the search [26]. It has been succesfully applied to obtain optimal
or sub-optimal solutions for many combinatorial optimization problems such
as scheduling, time-tabling, travelling salesman, etc.. The central idea is the
use of adaptive memory to overcome local optima by driving the search to
different parts of the search space (diversification) or back to promising parts
(intensification).

Artificial Neural Networksmake use of the metaphor of the neuron and are
organized in network structures. The network of nodes is iteratively modi-
fied by adjusting the interconnections between neurons according to various
schemes [77].

For particular application problems, the metaheuristics require concrete im-
plementation and their success varies for different application domains.
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7.4 Simulated Annealing

7.4.1 Introduction

The ideas that form the basis of simulated annealing were first published by
Metropoliset al. [52] in 1953 as an algorithm to simulate the cooling of ma-
terial in a heat bath, a process known as annealing. If solid material is heated
past its melting point and then cooled back into a solid state, the structural
properties of the cooled solid depend on the rate of cooling. The annealing
process can be simulated by regarding the material as a system of particles.
Essentially, Metropolis’ algorithm simulates the change in energy of the sys-
tem during the cooling process, as it converges to a steady 'frozen’ state.
Kirkpatrick et al. [44] and Cerny [9] suggested that this type of simulation
could be used to search the feasible solutions of an optimization problem.
Their approach can be regarded as a variant of the local search technique.

In the case of a minimization problem the local search employ a descent strat-
egy, in which the search always moves in a direction of improvement. How-
ever, such a strategy often results in convergence to a local rather than a global
optimum.

In order to overcome the local optima, in the simulated annealing heuristic
non-improving local moves are allowed, but their frequency is governed by a
probability function which changes as the algorithm progresses.

The inspiration for this form of control was Metropolis’ work in statistical
thermodynamics. The laws of thermodynamics state that at tempefi@ture
the probability of an increase in energy of magnitddeis given by

p(0F) = exp(—0E/kT) (7.1)
wherek is a physical constant known as Boltzmann’s constant.

Metropolis’ simulation generates a perturbation and calculates the resulting
energy change. If energy has decreased the system moves to this new state.
If energy has increased, the new state is accepted according to the probability
given in Equation 7.1. The process is repeated for a predetermined number of
iterations at each temperature, after which the temperature is decreased until
the system freezes into a steady state.

Kirkpatrick et al. [44] and Cerny [9] independently showed that Metropolis’
algorithm could be applied to optimization problems by mapping the elements
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of the physical cooling process onto the elements of a combinatorial optimiza-
tion problem as shown in the follow

ing table:

Thermodynamic simulatiof

n Combinatorial optimization

System states
Energy
Change of state
Temperature
Frozen state

Feasible solutions
Cost
Change of solution
Control parameter
Heuristic solution

Therefore any local search algorithm can be converted into an annealing al-
gorithm by sampling the neighbourhoods randomly and allowing the accep-
tance of an inferior solution with respect to cost minimization according to the
probability given in Equation 7.1. The level of acceptance then depends on
the magnitude of the increase in the cost function and the current temperature.

7.4.2 The annealing algorithm

As we have seen the main disadvantage of local search is its likelihood of
finding a local, rather than global, optimum. By allowing some non-imroving
local moves in a controlled manner, simulated annealing overcomes this prob-
lem. The annealing algorithm can be stated as follows:

Simulated annealing for a minimization problem with solution spaces,
objective function ¢ and neighbourhood structure N
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Select a starting solutiosy € S, an initial temperatur&, > 0 and a
temperature reduction functiern

Repeat
Repeat
Randomly select € N (sp) and computé = c(s) — ¢(so);
If6 <0
thensg = s
else generate randopruniformly in the rang€0, 1);
if p<exp(—4d/T)thensg=s
Until sterationcount = L;
SetT = «o(T);
Until stopping condition is true.

s is the approximation of the optimal solution.

HereL represents the number of repetitions at each temperature, i.e. the num-
ber of randomly chosen candidate solutions in the neighborhood of the current
solution that are evaluated.

At each stage/ randomly chosen candidate solutions in the neighborhood
of the current solution are evaluated. If a candidate solution improves on
the current solution, it is accepted. Otherwise, it is accepted with a proba-
bility p(T,0) = exp(—4d/T), which depends on the control paramétethe
temperature in the physical equivalent) and the amaéumg which a move
worsens the current solution. This relation ensures that the probability of ac-
cepting a move to a very poor solution is very small. At the completition

of each stage, the temperatufeis reduced at cooling rate Given a rel-
atively high temperaturd at the beginning of the process, the probability

of accepting non-improving moves is fairly high. As the process continues,
the temperature decreases and non-improving moves become less likely. The
search is continued until there is some evidence to suggest that there is a very
low probability of improving on the best solution found so far. At this stage,
the system is said to be frozen.

The algorithm given is very general, and a number of decisions must be made
in order to implement it for the solution of a particular problem. These can be
divided into two categories:
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e generic decisions which are concerned with parameters of the annealing
algorithm itself. These include factors such as the initial temperature,
the cooling schedule (governed by the paraméter.e. number of
repetitions and the choice of the temperature reduction funefj@nd
the stopping condition.

e problem specific decisions and involves the choice of the space of feasi-
ble solutions, the form of the cost function and the neighborhood struc-
ture employed.

Simulated annealing has the advantage that it is simple in concept and im-
plementation. The procedure improves on descent methods by reducing the
probability of getting stuck at a poor but locally optimal solution. Simulated
annealing has been applied successfully to many hard optimization problems;
see e.g., the bibliography by Osman and Laporte [56].

Since Kirkpatrick’s original paper there has been much research into the the-
oretical convergence of the annealing algorithm. The theoretical results are
based on the fact that the behavior of the simulated annealing algorithm can
be modelled using Markov chains (see e.g. [5]).

7.5 Solving the GMST problem with Simulated
Annealing

7.5.1 The local-global formulation of the GMST problem

In order to solve the GMST problem with simulated annealing we use the
local-global formulation of the problem (see Section 3.5), which arises from
distinguishing betweeglobal, i.e., inter-cluster connections, alotal ones.

We introduced the variables; (i,j € {1,...,m}) to describe the global con-
nections:y;; = 1 if clusterV; is connected to clustér; andy;; = 0 otherwise

and we assumed thatepresents a spanning tree. The convex hull of all these
y-vectors is generally known as the spanning tree polytope on the contracted
graph with vertex sefV;, ..., V,,,} (which we assume to be complete) and can
be represented by the following constraints:
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Zyij = m—1

{i.d}
Yij = Mkij + Mg, for1 < k,i,j <mandi # j
M = 1, for 1< k,i,j <mandi # k
J
Mekj = 0, forl1 <k,j<m
Yij, Akij = 0, for1 <k,i,j <m.

where the variables;;; were defined in Section 3.5.

We have seen that if the 0-1 vectgidescribes a spanning tree on the con-
tracted graph, the corresponding best (w.r.t. minimization of the cost) "local
solution” z € {0, 1}‘E| can be obtained as we have shown in Section 3.5 by
using dynamic programming or by solving the following 0-1 programming
problem:

min E Cij T4

{ijteE

st. z2(Vy) =1, Vke K={1,...m}
z(Vi, V) = yir, Vijre K={1,..m}, l#r
x(i,V;) < z, Vre K,\VieV\V,

Cllij,ZiE{O,l}, V{Z,j}GE, VieV.

In Proposition 3.5 we showed that the polyhed®@..;(v), i.e. the feasi-
ble set of the linear programming relaxation of the previous 0-1 program, is
integral.

Feasible solutions for the GMST problem can be computed by soRjing(v)
for certain 0-1 vectory corresponding to spanning trees. (E.g., minimum
spanning trees w.r.t. the edge weigtlts:= min{c;; | i € V}, j € V,.}.)

7.5.2 Generic decisions

The generic decisions involve the choice of the following parameters:

e initial value of the control parametéry;
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e final value of the control parametér; (stopping criterion);
¢ the number of repetitions at each temperature;

e decrement of the control parameter.

In our implementation of the simulated annealing algorithm for the GMST
problem we chose the following cooling schedule:

1. Initial value of the control parameter, Tj.
Following Johnsoret al. [41] we determiné; by calculating the aver-
age increase in cost’, for a number of random transitions, and fifid
from

Yo = exp(—d"/Tp) (7.2)

Equation 7.2 leads to the following choice ffy:

5-!—
Th = ——
" ln(xY)

wherey, = 0.8 is a given acceptance rate.

(7.3)

2. Final value of the control parameter.
A stop criterion, determining the final value of the control parameter, is
either by fixing the number of valuésg,, for which the algorithm is to
be executed or based on the argument that execution of the algorithm
can be terminated if the improvement in cost, to be expected in the case
of continuing execution of the algorithm is small.

3. Number of repetitions at each temperature
The number of iterations at each temperature which is related to the
size of the neighbourhoods may vary from temperature to temperature.
It is important to spend a long time at lower temperatures to ensure that
a local optimum has been fully explored. Therefore we increased the
value of L arithmetically (by adding a constant factor).

4. Decrement of the control parameter
We used the following decrement rule:
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a(T)=rT (7.4)

wherer is a constant smaller than but close to 1, called the cooling rate.
We used, as in [41}; = 0.95. This corresponds to a fairly slow cooling.

7.5.3 Problem specific decisions

The space of feasible solutions and the form of the cost function are given
in the definition of the GMST problem. Therefore it remains to present a
neighbourhood structure.

If the problem consists af: clusters, by Cayley’s formula [8] we know that

the total number of global spanning trees (i.e. trees connecting the clusters) is
equal tom™2. All these possibilities of global trees form the solution space.

As we have seen feasible solutions to the GMST problem can be computed
by solving P...:(v), for any 0-1 vectoy corresponding to spanning trees.

In Figure 7.1 we present an initial global solution in the case when the GMST
problem consists af: = 8 clusters.

V.

2

V.

7

V,

6

Figure 7.1: An initial global solution

A k-neighbourhoof any given global spanning tree is defined by those trees
obtained by removing links and replacing them by a different setiofinks
in such a way to maintain the feasibility, i.e. a global spanning tree.
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We consider the cage= 1. For example if we remove the edge connecting
the clusterd’, andV.

<
<

<
<

Figure 7.3: A neighbouring tree
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There are several possibilities of reconnecting the two resulting sections to
form a valid global tree, for example by connectivigwith V, or V5 with V5,
etc. All these possibilities of reconnecting give the size of the neighbourhood.

Solving P,..q:(y) with the vectory corresponding to the current neighbouring
tree we get a feasible solution for the GMST problem.

Therefore the combination of the definition of feasible solution and neigh-
bourhood structure appears to be a good candidate for annealing.

7.5.4 A computational example

Our computational experiment was performed on a HP 9000/735 computer
with a 125 Mhz processor and 144 Mb memory. The Simulated Annealing
scheme is written in C and compiled with a HP-UX cc compiler. For solving
the linear programming problems we used CPLEX.

We consider the GMST problem witth = 10 clusters and: = 3 nodes per
cluster as an illustration of the simulated annealing method.

We start with the temperatufg = 100. The cooling rate- = 0.95 will be

used to reduce the temperature in each stage,/andh0 moves evaluated

in each stage. Table 7.1 shows the first twelve iterations of the simulated
annealing procedure.
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Table 7.1

\ current| best
sol. swap d | peU0;1] exp‘% solution| solution
0 - - - - - 228 228
1| (Vs, Vo) | (Wi, V) | -66 - - 152 152
2 | (V5,Vio) | (Va,Vs) | 46| 0.05 0.63 | 198 152
3 | (Vi,Vo) | (Va,V7) | -45| 0.05 157 | 153 152
4 | B, Ve) | (Vi,Vs) [-18] 0.05 120 | 135 135
5 | (Vo,Vs) | (V5, V) | -9 0.05 1.09 | 126 126
6 | (Vo,Vio) | (V5,Vio) | -31| 0.05 1.36 95 95
7 | (Vs,Vio) | (Vi,Vio) | 7 0.41 093 | 102 95
8 | (Vi,Vo) | (Va,Ve) | -14| 0.41 1.15 88 88
9 | (Va,V3) | (Vo,V5) | 16 0.98 0.85 104 88
10 | (Va,V3) | (Va,Ve) | 8 0.63 0.92 96 88
11 | (Vi,Vio) | (Va, Vig) | 22 0.02 0.80 | 118 88
12 | Vo, V) | (Va,V2) | -1 0.02 1.01 | 117 88

The first column is the solution number. The second column "swap” gives the
global connection that is removed and the new global connection that main-
tains the feasibility. Next column give the cost of the méyéhe probability

of accepting a move € U|[0; 1], whereU|0; 1] denote a uniform distribution
between 0 and 1 from which random numbers are drawm, the vatu@of“,

the current solution and the best solution.

The first move is to replace the connection of the clugtersi;y) with (V;, V5).

The cost of this move i§ = —66, therefore improving and is accepted auto-
matically. The cost of the second move&is- 46. Since it is not an improving
move, a random number is generated, here 0.05 < 0.63 = exp oo —

exp 5;", and the move is accepted. The next four moves are downhill (i.e.
improving) moves and are automatically accepted. The seventh move is not
an |mprovmg move, a random number is generated, herd).41 < 0.93 =

exp” 10 = = exp -7, and the move is accepted. The eighth move is improving,
and is automatlcally accepted. The nineth move, again an uphill move is re-
jected since the random number drawsa 0.98 > 0.85 = exp ™ 00 = exp 7

The next two moves are not improving moves, but are accepted because
p < exp‘%. Finally the last move is an improving move and is accepted
automatically.
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It is important to observe the large number of non-improving moves that are
accepted in the first stage. In the second stage, the temperature control pa-
rameter! is reduced td" = 0.95(100) = 95. This will reduce the probability

of accepting non-improving moves by five percent. In later stagewill
become almost zero and nonimproving moves will be very unlikely to be ac-
cepted at all.

It is generally agreed that, relative to special purpose heuristics and other
metaheuristics, simulated annealing requires long runs to reach good solu-
tions. Choices of the control parameters and the stopping rule determine the
computational effort.
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bounded, 9
rational, 9

polynomial reduction, 5

polynomially transformable, 5

polytope, 9

positive semidefinite, 6
primal-dual methods, 64
principle of optimality, 8

Q

guadratic function, 91

R
range of a matrix, 91



rank of a matrix, 9
relaxation, 63
Lagrangian, 6
linear programming, 6
semidefinite programming, 6
root, 25
rooting procedure, 52
rounding, 63
running time, 3

S

Schur’'s Lemma, 92
semidefinite programming, 86
separation

algorithm, 9

problem, 9
set cover, 25

problem, 25
Simulated Annealing, 119
single commodity model, 42
size, 3
Slater-type constraint qualification,

88

solution

feasible, 10

local, 3

optimal, 10

sub-optimal, 116
strong duality theorem, 90
subdifferential, 84
subgradient, 84

optimization algorithm, 85
subgraph, 11

induced, 11
survivable network design problem,

70

T
Tabu Search, 119
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trace
inner product, 87
tree, 11
minimum spanning, 18
rooted, 25
spanning, 12

U
undirected
graph, 20
multicommodity flow model, 45
undirected cluster subpacking for-
mulation, 46

V
vertex, 9

w
weak duality theorem, 82
worst-case ratio, 62



Summary

Classical combinatorial optimization problems can often be generalized in a
natural way by considering a related problem relative to a given partition of
the nodes into clusters.

We study various relaxation and heuristic techniques in the special case of
the so-called Generalized Minimum Spanning Tree (GMST) problem. In the
GMST problem given an undirected graph with nodes partitioned into clus-
ters and edges defined between nodes belonging to different clusters with a
nonnegative cost, we search for a minimum cost tree spanning a subset of
nodes which includes exactly one node from each cluster. This problem was
introduced by Myung, Lee and Tcha [54], they also proved that the problem
is N'P-hard. The last result is a direct consequence of one of our results in
which we prove that the GMST problem on trees\ig?-hard. We present

also two cases when the GMST problem is solvable in polynomial time.

We present new integer and mixed integer programming formulations for the
GMST problem and we compare them in terms of their linear programming
relaxations with the formulations already proposed in the literature.

Based on a new formulation of the problem called local-global formulation,
we present a new solution procedure. Our procedure called rooting proce-
dure is compared with the procedures developed by Myetra. [54] and

by Feremans [17]. For all instances of the problem that we considered, the
optimal solution of the GMST problem has been found. As far as we know,
our method is the second method, after Feremans [17], which solves instances
with more than 120 nodes to optimality, but the computing times spent by the
branch and cut code proposed in [17] are in general larger than the times spent
by our rooting procedure code.

We compare the bound provided by the linear programming relaxation of a
general 0-1 programming problem with the bounds obtained by considering

133



the linear, complete and boolean dualizations suggested in [48]. We apply
the theoretical results obtained to the GMST problem. In the Lagrangian
relaxation that we considered, a set of inequalities in the bidirectional mul-
ticommodity flow formulation of the problem is dualized and added to the
objective function. We used the subgradient optimization algorithm to obtain
lower bounds. Computational results are reported for many instances of the
problem.

We distinguish in Chapter 4 between so-called positive and negative results
in the area of approximation algorithms. We present an in-approximability
result: there is na-approximation algorithm for the GMST problem unless

P = NP. Our result is a formulation in terms of approximation algorithms
of a result of Myunget al. [54]. However, under special assumptions (see
Section 4.4) we give an approximation algorithm for the GMST problem.

In the last chapter of this thesis we present basic theory of heuristic algorithms
and local search and solve the GMST problem with Simulated Annealing.
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