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Chapter 1

Introduction

In this thesis we use several combinatorial optimization techniques to solve
the Generalized Minimum Spanning Tree problem. For an overview of gen-
eral combinatorial optimization techniques, we refer to the books of Nemhauser
and Wolsey [55], Papadimitriou and Steiglitz [57] and Schrijver [69].

In this chapter we present fundamental concepts of Combinatorial and Integer
optimization (Section 1.1), Polyhedral theory (Section 1.2) and Graph theory
(Section 1.3). We end the chapter with an outline of the thesis.
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1.1 Combinatorial and Integer Optimization

Combinatorial Optimization is the process of finding one or more best (op-
timal) solutions in a well defined discrete problem space, i.e. a space con-
taining a finite set of possible solutions, that optimizes a certain function, the
so-calledobjective function. The finite set of possible solutions can be de-
scribed by inequality and equality constraints, and by integrality constraints.
The integrality constraints force the variables to be integers. The set of points
that satisfy all these constraints is called the(feasible) solution set.

Such problems occur in almost all fields of management (e.g. finance, mar-
keting, production, scheduling, inventory control, facility location, etc.), as
well as in many engineering disciplines (e.g. optimal design of waterways
or bridges, design and analysis of data networks, energy resource-planning
models, logistic of electrical power generation and transport, etc). A survey
of applications of combinatorial optimization is given by Grötschel in [30].

Combinatorial Optimization models are often referred to as integer program-
ming models where some or all of the variables can take on only a finite
number of alternative possibilities.

In this thesis we consider combinatorial optimization problems for which the
objective function and the constraints are linear and the variables are integers.
These problems are calledinteger programming problems:

min cT x
(IP ) s.t. Ax ≤ b

x ∈ Zn

whereZn is the set of integraln-dimensional vectors,x = (x1, ..., xn) is an
integern-vector andc is an integern-vector. Furthermore, we letm denote
the number of inequality contraints,A an m× n matrix andb an m-vector.
If we allow some variablesxi to be continous instead of integer, i.e.xi ∈ R
instead ofxi ∈ Z, then we obtain amixed integer programming problem, de-
noted by (MIP). For convenience, we discuss integer linear programs that are
minimizationproblems withbinary variables, i.e. the integer variables are
restricted to values 0 or 1. In Chapter 3 we present several integer program-
ming and mixed integer programming models of the Generalized Minimum
Spanning Tree problem.
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Solving integer programming problems can be a difficult task. The difficulty
arises from the fact that unlike linear programming, where the feasible region
is a convex set, in integer problems one must search a lattice of feasible points
or, in the mixed integer case a set of disjoint halflines or line segments to find
an optimal solution. Therefore, unlike linear programming where, due to
the convexity of the problem, we can exploit the fact that any local solution
is a global optimum, integer programming problems may have many ”local
optima” and finding a global optimum to the problem requires one to prove
that a particular solution dominates all feasible points by arguments other than
the calculus-based derivative approaches of convex programming.

When optimizing combinatorial problems, there is always a trade-off between
the computational effort (and hence the running time) and the quality of the
obtained solution. We may either try to solve the problem to optimality with
an exact algorithm, or choose for anapproximationor heuristic algorithm,
which uses less running time but does not guarantee optimality of the solution.

1.1.1 Complexity theory

The first step in studying a combinatorial problem is to find out whether the
problem is ”easy” or ”hard”. Complexity theory deals with this kind of prob-
lem classification. In this subsection we summarize the most important con-
cepts of complexity theory. Most approaches are taken from the books men-
tioned before and from the book of Grötschel, Lov́asz and Schrijver [31].

An algorithm is a list of instructions that solves everyinstanceof a problem
in a finite number of steps. (This means also: the algorithm detects that the
problem instance has no solution).

The sizeof a problem is the amount of information needed to represent the
instance. The instance is assumed to be described (encoded) by a string of
symbols. Therefore, the size of an instance equals the number of symbols in
the string.

The running timeof a combinatorial optimization algorithm is measured by
an upper bound on the number of elementary arithmetic operations (adding,
subtracting, multiplying, dividing and comparing numbers) it needs for any
valid input, expressed as a function of the input size. Theinput is the data
used to represent a problem instance. If the input size is measured bys,
then the running time of the algorithm is expressed asO(f(s)), if there are
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constantsb ands0 such that the number of steps for any instance withs ≥ s0

is bounded from above bybf(s). We say that the running time of such an
algorithm is of orderf(s).

An algorithm is said to be apolynomial time algorithmwhen its running time
is bounded by a polynomial function,f(s). An algorithm is said to be anex-
ponential time algorithmwhen its running time is bounded by an exponential
function (e.g.O(2p(s))).

The theory of complexity concerns in the first place decision problems. Ade-
cision problemis a question that can be answered only by ”yes” or ”no”. For
example in the case of the integer programming problem (IP ) the decision
problem is:

Given an instance of (IP ) and an integerL is there a feasible
solutionx such thatcT x ≤ L?

For a combinatorial optimization problem we have the following: if one can
solve the decision problem efficiently, then one can solve the corresponding
opimization problem efficiently.

Decision problems that are solvable in polynomial time are considered to be
”easy” , the class of these problems is denoted byP. P includes for example
linear programming and the minimum spanning tree problem.

The class of decision problems solvable in exponential time is denoted by
EXP . Most combinatorial optimization problems belong to this class. If a
problem is inEXP \ P, then solving large instances of this problem will be
difficult. To distinguish between ”easy” and ”hard” problems we first describe
a class of problems that containsP.

The complexity classNP is defined as the class of decision problems that are
solvable by a so-callednon-deterministic algorithm. A decision problem is
said to be inNP if for any input that has a positive answer, there is a certifi-
cate from which the correctness of this answer can be derived in polynomial
time.

Obviously,P ⊆ NP holds. It is widely assumed thatP = NP is very un-
likely. The classNP contains a subclass of problems that are considered to
be the hardest problems inNP. These problems are calledNP-complete
problems. Before giving the definition of anNP-completedecision prob-
lem we explain the technique of polynomially transforming one problem into
another. LetΠ1 andΠ2 be two decision problems.
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Definition 1.1 A polynomial transformation is an algorithmA that, for ev-
ery instanceσ1 of Π1 produces in polynomial time an instanceσ2 of Π2 such
that the following holds: for every instanceσ1 ofΠ1, the answer toσ1 is ”yes”
if and only if the answer to instanceσ2 of Π2 is ”yes”. ¤

Definition 1.2 A decision problemΠ is calledNP-complete ifΠ is in NP
and every otherNP decision problem can be polynomially transformed into
Π. ¤

Clearly, if anNP-completeproblem can be solved in polynomial time, then
all problems inNP can be solved in polynomial time, henceP = NP. This
explains why theNP-completeproblems are considered to be the hardest
problems inNP. Note that polynomially transformability is a transitive re-
lation, i.e if Π1 is polynomially transformable toΠ2 andΠ2 is polynomially
transformable toΠ3, thenΠ1 is polynomially transformable toΠ3. Therefore,
if we want to prove that a decision problemΠ isNP-complete, then we only
have to show that

(i) Π is inNP.

(ii) Some decision problem already known to beNP-completecan be poly-
nomially transformed toΠ.

Now we want to focus on combinatorial optimization problems. Therefore
we extend the concept of polynomially transformability. LetΠ1 andΠ2 be
two problems (not necessarily decision problems).

Definition 1.3 A polynomial reduction from Π1 to Π2 is an algorithmA1

that, solvesΠ1 by using an algorithmA2 for Π2 as a subroutine such that, if
A2 were a polynomial time algorithm forΠ2, thenA1 would be a polynomial
time algorithm forΠ1. ¤

Definition 1.4 An optimization problemΠ is calledNP-hard if there exists
anNP-complete decision problem that can be polynomially reduced toΠ. ¤

Cearly, an optimization problem isNP-hard if the corresponding decision
problem isNP-complete. In particular, the Generalized Minimum Spanning
Tree problem isNP-hard (see Section 2.5).
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1.1.2 Heuristic and Relaxation Methods

As we have seen, once established that a combinatorial problem isNP-hard,
it is unlikely that it can be solved by a polynomial algorithm.

Finding good solutions for hard minimization problems in combinatorial op-
timization requires the consideration of two issues:

• calculation of an upper bound that is as close as possible to the opti-
mum;

• calculation of a lower bound that is as close as possible to the optimum.

General techniques for generating good upper bounds are essentially heuristic
methods such as Simulated Annealing, Tabu Search, Genetic Algorithms, etc.,
which we are going to consider in chapter 7 of the thesis. In addition, for any
particular problem, we may well have techniques which are specific to the
problem being solved.

On the question of lower bounds, we present in Chapter 5 the following tech-
niques:

• Linear Programming (LP) relaxation
In LP relaxation we take an integer (or mixed-integer) programming
formulation of the problem and relax the integrality requirement on the
variables. This gives a linear program which can either be solved ex-
actly using a standard algorithm (simplex or interior point); or heuristi-
cally (dual ascent). The solution value obtained for this linear program
gives a lower bound on the optimal solution to the original minimization
problem.

• Lagrangian relaxation
The general idea of Lagrangian relaxation is to ”relax” (dualize) some
(or all) constraints by adding them to the objective function using La-
grangian multipliers. Choosing ”good” values for the Lagrangian mul-
tipliers is of key importance in terms of quality of the lower bound
generated.

• Semidefinite programming (SDP) relaxation
Combinatorial optimization problems often involve binary (0,1 or +1,-
1) decision variables. These can be modelled using quadratic con-
straintsx2−x = 0, andx2 = 1, respectively. Using the positive semidef-
inite matrixX = xxT , we can lift the problem into a matrix space and
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obtain a Semidefinite Programming Relaxation by ignoring the rank one
restriction on X, see e.g. [49]. These semidefinite relaxations provide
tight bounds for many classes of hard problems and in addition can be
solved efficiently by interior-point methods.

The connection between heuristics and relaxations in the case of a minimiza-
tion problem can be summarized by the diagram of Figure 1.1.

Value

Optimal solution to the

problem (minimization)

Heuristics

Problem−specific

Semidefinite programming

Local search

Simulated annealing

Relaxations

Linear programming

Lagrangian

Figure 1.1: Connection between heuristics and relaxations

1.1.3 Dynamic programming

Dynamic programming is a decomposition technique that first decomposes
the problem into a nested family of subproblems. The solutions to the orig-
inal problem are obtained by either working backward from the end to the
beginning (backward dynamic programming) or forward from the beginning
to the end (forward dynamic programming).

Five characteristics can be distinguished that are common to dynamic pro-
gramming applications:

1. The problem can be divided intostagest, with a decisionrequired at
each stage.
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2. Each staget has a set ofstates{it} associated with it. At any stage, a
state holds all the information that is needed to make a decision.

3. The decision chosen at any stage determines how the state at the cur-
rent stage is transformed into the state at the next stage, as well as the
immediately earned reward or cost.

4. Given the current state, the optimal decision for each remaining stages
must not depend on previously reached states or previously chosen de-
cisions. This is the so-calledprinciple of optimalityfor dynamic pro-
gramming (Bellman, [3]).

5. If the states for the problem have been classified into one ofT stages,
there must be arecursionthat relates the cost or reward earned during
stagest, t + 1, ..., T to the cost or reward earned from stagest + 1, t +
2, ..., T .

Dynamic programming algorithms are computationally efficient, as long as
the state space does not become too large. However, when the state space be-
comes too large implementation problems may occur (e.g. insufficient com-
puter memory), or excessive computational time may be required to use dy-
namic programming to solve the problem. For more information about dy-
namic programming we refer to Bellman [3] and Dreyfus and Law [12].

1.2 Polyhedral theory

The theory we discuss in this section is derived from the the books of Schrijver
[69] and Gr̈otschel, Lov́asz and Schrijver [31].

Consider a set of pointsX = {x1, . . . , xk} ⊆ Rn and a vectorλ ∈ Rk. The
linear combinationx =

∑k
i=1 λix

i is anaffine combinationif
∑k

i=1 λi = 1,
andx is called aconvex combinationif in addition to

∑k
i=1 λi = 1 we have

λi ≥ 0. X is calledlinearly (affinely) independentif no point xi ∈ X can be
written as a linear (affine) combination of the other points inX.

A subsetS ⊆ Rn is convexif for every finite number of pointsx1, . . . , xk ∈ S
any convex combination of these points is a member ofS.

A nonempty setC ⊆Rn is called aconvex coneif λx+µy ∈C for all x, y ∈C
and for all real numbersλ,µ ≥ 0.
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A convex setP ⊆ Rn is apolyhedronif there exists anm× n matrixA and a
vectorb ∈ Rm such that

P = P (A, b) = {x ∈ Rn | Ax ≤ b}.
We callAx ≤ b asystem of linear inequalities.

A polyhedronP ⊆ Rn is boundedif there exist vectorsl, u ∈ Rn such that
l ≤ x ≤ u for all x ∈ P . A bounded polyhedron is called apolytope.

For our purposes, only rational polyhedra are of interest. A polyhedron is
rational if it is the solution set of a systemAx≤ b of linear inequalities, where
A andb are rational. From now on we will implicitly assume a polyhedron to
be rational.

A point x ∈ P is called avertexof P if x cannot be written as a convex
combination of other points inP .

Thedimensionof a polyhedronP ⊆ Rn is equal to the maximum number of
affinely independent points inP minus1. An implicit equalityof the system
Ax≤ b is an inequality

∑n
j=1 aijxj ≤ bi of that system such that

∑n
j=1 aijxj =

bi for all vectorsx ∈ P (A, b). For Ax ≤ b we denote the (sub)system of
implicit equalities byA=x ≤ b=. Let rank(A) denote therank of a matrix,
i.e., the maximum number of linearly independent row vectors. We have the
following standard result.

Theorem 1.1 The dimension of a polyhedronP (A, b) ⊆ Rn is equal ton−
rank(A=). ¤

A subsetH ⊆ Rn is called ahyperplaneif there exists a vectorh ∈ Rn and a
numberα ∈ R such that

H = {x ∈ Rn | hT x = α}.

A separating hyperplanefor a convex setS and vectory /∈ S is a hyperplane
given by a vectorh ∈Rn and a numberα ∈R such thathT x≤ α andhT y > α
holds for allx ∈ S.

Theseparation problemfor a polyhedronP ⊆ Rn is, given a vectorx ∈ Rn,
to decide whetherx ∈ P or not, and, ifx /∈ P , to find a separating hyperplane
for P andx. A separation algorithmfor a polyhedronP is an algorithm that
solves the separation problem forP .
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Linear programming(LP) deals with maximizing or minimizing a linear func-
tion over a polyhedron. IfP ⊆ Rn is a polyhedron andd ∈ Rn, then we call
the optimization problem

(LP ) max{dT x | x ∈ P}
a linear program. A vectorx ∈ P is called afeasible solutionof the linear
program andx∗ is called anoptimal solutionif x∗ is feasible anddT x∗ ≥ dT x
for all feasible solutionsx. We say that (LP ) is unboundedif for all λ ∈ R
there exists a feasible solutionx∗ ∈ P such thatdT x∗ ≥ λ, If (LP ) has no
optimal solution then it is either infeasible or unbounded.

The first polynomial time algorithm for LP is the so-calledellipsoid algo-
rithm, proposed by Khachiyan [43]. Although of polynomial running time,
the algorithm is impractical for LP. Nevertheless, it has extensive theoretical
applications in combinatorial optimization: the stable set problem on perfect
graphs for example can be solved in polynomial time using the ellipsoid al-
gorithm. Gr̈otschel, Ĺovasz and Schrijver [32] refined this method in such a
way that the computational complexity of optimizing a linear function over a
convex setS depends on the complexity of the separation problem forS. In
1984, Karmarkar [42] presented another polynomial time algorithm for LP.
His algorithm avoids the combinatorial complexity (inherent in the simplex
algorithm) of the vertices, edges and faces of the polyhedron by staying inside
the polyhedron. His algorithm lead to many other algorithms for LP based on
similar ideas. These algorithms are known asinterior point methods.

1.3 Graph theory

In this section we include some terminology for readers not familiar with
graph theory. For more details on graph theory we refer to the book of Bondy
and Murty [7].

A graphG is an ordered pair(V,E), whereV is a nonempty, finite set called
thenode setandE is a set of (unordered) pairs (i, j) with i, j ∈ V called the
edge set.

The elements ofV are callednodesand the elements ofE are callededges.
If e = (i, j) ∈ E we say that nodei and nodej areadjacent. In such a case
i andj are called theend pointsof e or incidentwith e. Furthermore, we say
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thate is incidentwith i andj. Two edges are calledadjacentif they have a
common incident node. A nodej for which there is an edge(i, j) ∈ E is a
neighborof i. The set of neighbors of a nodei is denoted byδ(i) and a node
with no neighbors is called anisolated node. ForU ⊆ V , we define thecutset,
denoted byδ(U) as follows:

δ(U) = { e = (i, j) ∈ E | i ∈ U, j /∈ U}
A multigraphis a graph with possibly more than one edge between two nodes.

We speak of aweightedgraph if aweight functionw : E →R is defined on the
edge setE of a graphG. The numberw(e) is theweightof an edgee ∈ E. (It
can usually be interpreted as a certain profit or cost.) Theweight of a subset
E ′ ⊆ E is equal to the sum of the weights of its edges and denoted byw(E ′).

A complete graphis a graph with an edge between every pair of nodes. The
complete graph onn nodes is denoted byKn.

A subgraphof G is a graphG′ = (V ′,E ′) with V ′ ⊆ V andE ′ ⊆ E. G′ is
called the subgraphinducedbyV ′, denoted byG|V ′, if E ′ = {(i, j)∈E | i, j ∈
V ′}. If V ′ ⊆ V then we letG\V ′ denote the graph obtained by removingV ′

(and the edges incident with nodes inV ′). If E ′ ⊆ E thenG\E ′ denotes the
graph obtained by removing the edges inE ′. We say that a graphG contains
a graphG′ if G hasG′ as subgraph.

A path from i to j is a graphP = (V,E) with a node set that can be or-
dered asv0, . . . , vn with v0 = i andvn = j such thatE = {(vk, vk+1) | k =
0, . . . , n− 1}. The nodesi andj are called theend pointsof the path andn is
the lengthof the path. We also writeP = v0v1 . . . vn.

A cycle is a graph for which the node set can be ordered asv0, . . . , vn such
thatE = {(vk, vk+1) | k = 0, . . . , n− 1} ∪ {(vn, v0)}. We denote a cycle onn
nodes byCn.

A graphG is calledconnectedif G contains a path fromi to j for each two
nodesi, j ∈ V . A componentG′ of G is a maximal connected subgraph of
G, i.e., if Ĝ is a connected subgraph ofG andG′ is a subgraph of̂G, then
Ĝ = G′. Thesize of a componentis its number of nodes. We denote the size
of a componentG′ by |G′|. A component is calledevenor odd if it has an
even respectively odd number of nodes.

A tree is a connected graphT that does not contain any cycle. A nodei ∈ V
is called aleafof a treeT = (V,E), if i has exactly one neighbor. Aforestis a
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graph (not necessarily connected) that does not contain any cycle. Aspanning
treeof G = (V,E) is a tree(V ′,E ′) with V ′ = V .

A node coverin a graphG = (V,E) is a subsetV ′ of V such that every edge
in E is incident with a node inV ′.

If the pairs(i, j) in the edge set of a graph are ordered, then we speak of
a directed graphor digraph and we call such an ordered pair(i, j) an arc.
In this case the edge set is usually denoted byA. The arca = (i, j) ∈ A is
an outcoming arcof nodei and is anincoming arcof nodej. The set of
outcoming arcs of a nodei is denoted byδ+(i) and the set of incoming arcs
of a nodei is denoted byδ−(i). To this end, call a subsetA

′
of A ans− t cut

if A
′
= δ+(U) for some subsetU of V satisfyings ∈ U andt /∈ U , where for

everyU ⊆ V , δ+(U) is defined as follows:

δ+(U) = { (i, j) ∈ A | i ∈ U, j /∈ U}

Let D = (V,A) be a directed graph and letr, s ∈ V . A functionf : A→ R is
called anr− s flow if

(i) f(a) ≥ 0 for eacha ∈ A,

(ii)
∑

a∈δ+(v)

f(a) =
∑

a∈δ−(v)

f(a) for eachv ∈ V \ {r, s}.

The value of anr− s flow f is, by definition:

value(f) :=
∑

a∈δ+(r)

f(a)−
∑

a∈δ−(r)

f(a).

So the value is the net amount of flow leavingr. It is also equal to the net
amount of flow enterings.

Let c : A→ R+, be acapacity function. We say that a flowf is underc if

f(a) ≤ c(a) for eacha ∈ A.

Themaximum flow problemnow is to find anr− s flow underc, of maximum
value. To formulate the so-called min-max relation, we define thecapacityof
a cutδ+(U) by
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c(δ+(U)) :=
∑

a∈δ+(U)

c(a).

Then the following result known asmax-flow min-cuttheorem, holds

Theorem 1.2 (Ford and Fulkerson (1956))
For any directed graphD = (V,A), r, s ∈ V , andc : A→ R+, the maximum
value of anr − s flow underc is equal to the minimum capacity of anr − s
cut:

max
f r−s flow

value(f) = min
δ+(U) r−s cut

c(δ+(U)).

¤

1.4 Outline of the thesis

In this thesis we apply several techniques of combinatorial optimization to
the Generalized Minimum Spanning Tree problemdenoted by GMST. This
combinatorial optimization problem was introduced by Myunget al. [54] and
finds many interesting applications.

In Chapter 2 we introduce the concept ofgeneralizationin the context of com-
binatorial optimization, describe the Minimum Spanning Tree problem which
is a special case of the Generalized Minimum Spanning Tree problem and
two efficient algorithms for constructing minimum spanning trees, namely,
Kruskal’s algorithm and Prim’s algorithm. Finally, we define the Generalized
Minimum Spanning Tree problem, present results regarding its complexity
and cases when the problem is solvable in polynomial time and applications.

Chapter 3 concentrates on several integer and mixed integer programming
formulations of the GMST problem. We compare the polyhedra defined by
the LP relaxations of these formulations. Based on a new formulation we give
a solution procedure which solves the problem to optimality for all numerical
instances considered in the related literature so far. Computational results are
reported for many instances of the problem.

Chapter 4 deals with approximation algorithms. We present an in-approxima-
bility result for the GMST problem: under the assumptionP 6= NP, there
is no approximation algorithm for the GMST problem. However, under the
following assumptions:
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• the graph has bounded cluster size,

• the cost function is strictly positive and satisfies the triangle inequality,
i.e. cij + cjk ≥ cik for all i, j, k ∈ V ,

we present a polynomial approximation algorithm for the GMST problem.

In Chapter 5 we discuss the basic theory of Lagrangian and semidefinite pro-
gramming relaxations and we study different possible dualizations for a gen-
eral 0-1 program.

In Chapter 6 we present an algorithm based on Lagrangian relaxation of a
bidirectional multicommodity flow formulation of the GMST problem. The
subgradient optimization algorithm is used to obtain lower bounds. Compu-
tational results are reported for many instances of the problem.

Chapter 7 deals with heuristic algorithms. We present the basic theory of local
search and other concepts underlying many modern heuristic techniques, such
as Simulated Annealing, Tabu Search Genetic Algorithms, etc., and we solve
the GMST problem with Simulated Annealing. Computational results are
reported.
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Chapter 2

The Generalized Minimum
Spanning Tree Problem

The aim of this chapter is to introduce the Generalized Minimum Spanning
Tree problem. In the first section we discuss the concept ofgeneralization
and provide a list of problems defined on graphs that have ageneralizedstruc-
ture. In the second section we describe the Minimum Spanning Tree problem
which is a special case of the Generalized Minimum Spanning Tree prob-
lem and two efficient algorithms for constructing minimum spanning trees,
namely, Kruskal’s algorithm and Prim’s algorithm. The next sections focus
on the GMST problem: we give the definition of the problem, present results
regarding its complexity and cases when the problem is solvable in polyno-
mial time and applications. As well as in the last section we present a variant
of the GMST problem.
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2.1 Generalized Combinatorial Optimization
Problems

In this section we present a list of problems defined on graphs that have a
generalizedstructure. We begin this section by introducing the concept of
generalization.

Given a graphG = (V,E) and a cost functionc : E → R, following the defi-
nition of Nemhauser and Wolsey [55], acombinatorial optimizationproblem
consists of determining among a finite set of feasible solutions those that min-
imize the cost function. If we letF be a family of subsets of the edge setE

and denote byc(F ) =
∑
e∈F

ce for F ⊆ E, a combinatorial optimization prob-

lem in its minimization form is:

min {c(F ) : F ∈ F}.

Classical combinatorial optimization problems can often begeneralizedin
a natural way by considering a related problem relative to a givenpartition
V = V1 ∪ V2 ∪ ...∪ Vm of the nodes intoclustersVk ⊆ V , k ∈ {1, ...,m} such
that the classical problem corresponds to the trivial partitionVk = {k} into
singletons.

For example,

- the Generalized Minimum Spanning Tree Problem

as introduced by Myung, Lee and Tcha [54] asks for a cost-minimal treeT
in G which spans exactly one nodeik ∈ Vk in each cluster. The Generalized
Minimum Spanning Tree Problem is the subject of this thesis. In what it fol-
lows we will present several results regarding its complexity, approximability,
solvability, etc.

- the Generalized Steiner Tree Problem

Given an complete undirected graphG = (V,E) and a subset of nodesS ⊆ V
such thatS is partitioned intom clusters and a positive cost function defined
on the edge setE, theGeneralized Steiner Tree Problemdenoted GSTP asks
for a minimum cost tree ofG that containsat leastone node from each cluster.
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The Generalized Steiner Tree problem was introduced by Reich and Wid-
mayer [65] and is also known as theGroup Steiner Tree Problemor theClass
Steiner Tree Problem.

- the Generalized Traveling Salesman Problem

Given an undirected graphG = (V,E) with the nodes partitioned intom clus-
ters and edges defined between nodes from different clusters with a positive
cost, thesymmetric Generalized Traveling Salesman Problemasks for a mini-
mum cost cycle that visitsexactlyone node in each cluster. This problem was
introduced by Henry-Labordere [36], Saskena [68] and Srivastava [72].

Consider the directed graphD = (V,A) obtained by replacing each edgee =
(i, j) ∈E by the opposite arcs(i, j) and(j, i) in A with the same weight as the
edge(i, j) ∈ E. The directed version of the Generalized Traveling Salesman
Problem called theasymmetric Generalized Traveling Salesman Problemwas
introduced by Laporte, Mercure and Nobert [46], [47] and asks for a minimum
cost oriented cycle that visits exactly one node from each cluster.

For more examples of generalized combinatorial optimization problems we
refer the reader to Feremans [17] and Dror and Haouari [13].

2.2 Minimum Spanning Trees

The aim of this section is to describe the well-known algorithms of Kruskal
and Prim for finding the minimum spanning tree.

Let G = (V,E) be a connected graph with a positive cost functionc ≥ 0
defined on the edge setE.

Definition 2.1 (Minimum spanning tree)
A minimum spanning tree (MST) ofG is a spanning treeT ∗ of G that has
minimal cost, i.e.,

c(E(T ∗)) = min {c(E(T )) | T is a spanning tree ofG} (2.1)

¤

Recall that a spanning tree is a connected subgraph ofG that has no cycles
and contains all nodesV .
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We present two efficient algorithms for constructing minimum spanning trees,
namely, Kruskal’s algorithm [45] and Prim’s algorithm [58].

Kruskal’s algorithm is also called thegreedy algorithm. Given a set of ob-
jects, the greedy algorithm attempts to find a feasible subset with minimum
objective value by repeatedly choosing an object of minimum cost among
the unchosen ones and adding it to the current subset provided the result-
ing subset is feasible. In particular, Kruskal’s algorithm works by repeatedly
choosing an edge of minimum cost among the edges not chosen so far, and
adding this edge to the ”current spanning forest” provided this does not create
a cycle. The algorithm terminates when the current spanning forest becomes
connected.

Kruskal’s Minimum Spanning Tree Algorithm

Input: A connected graphG = (V,E) with a positive cost function
on the edges.

Output: Edge setF ⊂ E of minimum spanning tree ofG.

F := ∅; (F is the edge set of the current spanning forest)
linearly order the edges inE according to nondecreasing cost;
let the ordering be:e1, e2, ..., e|E|;

for each edgeei, i = 1,2, ..., |E|, do
if F ∪ {ei} has no cycle
then F := F ∪ {ei}; (add the edge to the current forest)

if |F | = |V | − 1 then stopandoutput F ; end;
end; (if)

end; (for)

Theorem 2.1 Kruskal’s algorithm is correct and it finds a minimum spanning
tree. Its running time isO(|V ||E|).
Proof: See for example [55]. ¤

Remark 2.1 By using appropriate data structures, the running time of the
Kruskal’s algorithm can be improved toO(|E| log |V |). ¤
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Prim’s algorithm starts with a ”current tree”T that consists of a single node.
In each iteration, a minimum-cost edge in the ”boundary”δ(V (T )) of T is
added toT , and this is repeated tillT is a spanning tree.

Prim’s Minimum Spanning Tree Algorithm

Input: A connected graphG = (V,E) with a positive cost function
on the edges.

Output: Minimum spanning treeT = (S,F ) of G.

F := ∅; (F is the edge set of the current treeT )
S := {v}, wherev is an arbitrary node; (S is the node set ofT )

while S 6= T do
among all the edges having exactly one end inS, find an edge
(i, j) ∈ E of minimum cost;
F := F ∪ (i, j);
S := S ∪ ({i, j} \ S); (add the end node inV \ S)

end; (while)

Theorem 2.2 Prim’s algorithm is correct and it finds a minimum spanning
tree. Its running time isO(|V |2).
Proof: See for example [55]. ¤

Remark 2.2 By using the Fibonacci heaps data structure, the running time
of the Prim’s algorithm can be improved toO(|E|+ |V | log |V |). ¤

2.3 Definition of the GMST problem

The Generalized Minimum Spanning Tree Problemis defined on an undi-
rected graphG = (V,E) with the nodes partitioned intom node sets called
clusters. Let |V | = n andK = {1,2, ...,m} be the node index of the clusters.
Then,V = V1 ∪ V2 ∪ . . .∪ Vm andVl ∩ Vk = ∅ for all l, k ∈K such thatl 6= k.
We assume that edges are defined only between nodes belonging to different
clusters and each edgee = (i, j) ∈ E has a nonnegative costce.
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TheGeneralized Minimum Spanning Tree Problem, denoted by GMST is the
problem of finding a minimum cost tree spanning a subset of nodes which
includesexactlyone node from each cluster (see Figure 2.2 for a feasible
solution of the GMST problem). We will call a tree containing exactly one
node from each cluster ageneralized spanning tree.

The GMST problem was introduced by Myung, Lee and Tcha [54]. Fer-
emans, Labb́e and Laporte [18] present several integer formulations of the
GMST problem and compare them in terms of their linear programming re-
laxations, and in [19] they study the polytope associated with the GMST prob-
lem.

TheMinimum Spanning Tree Problemis a special case of the GMST problem
where each cluster has exactly one node. The MST problem can be solved
by a polynomial time algorithm, for instance the algorithm of Kruskal [45] or
the algorithm of Prim [58] as we have seen in the previous section. However,
as we will show the GMST problem isNP-hard.

Figure 2.1: A feasible solution for the GMST problem
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2.4 The GMST problem on trees

We present in this section a special case of the GMST problem: the case when
the graphG = (V,E) is a tree.

Garey and Johnson [21] have shown that for certain combinatorial optimiza-
tion problems, the simple structure of trees can offer algorithmic advantages
for efficiently solving them. Indeed, a number of problems that areNP-
complete, when are formulated on a general graph, become polynomially
solvable when the graph is a tree. Unfortunately, this is not the case for the
GMST problem. We will show that on trees the GMST problem isNP-hard.

Let us consider the case when the graphG = (V,E) is a tree. For any tree
T ⊂ G and nodei ∈ V setyi = 1 if i ∈ T and0 otherwise. We will regardG
as a rooted tree with rootr ∈ V . Let π(i) be the parent of nodei ∈ V \ {r}.
Since each edge joins some nodei and its parent, we can setei = (i, π(i)) and
ci = cei

= c(i,π(i)), for all i ∈ V \ {r}.
We can formulate the GMST problem onG with {r} = V1 forming a cluster
as the following integer linear program:

min
∑
i∈V

ciyi

s.t. y(Vk) = 1, ∀ k ∈K = {1, ...,m} (2.2)

yi ≤ yπ(i), ∀ i ∈ V \ {0} (2.3)

yi ∈ {0,1}, ∀ i ∈ V (2.4)

Constraints (2.2) assure that from every cluster we select a node. Constraints
(2.3) guarantee that the selected nodes form a tree.

The structure of this integer program is particulary simple because of the fact
that graphG is a tree. The general case (see Chapter 3) is more complicated.

To show that the GMST problem on trees isNP-hard we introduce the so-
calledset cover problemwhich is known to beNP-complete(see [21]).

Given a finite setX = {x1, ..., xa}, a collection of subsets,S1, ..., Sb ⊆X and
an integerk < |X|, theset cover problemis to determine whether there exists
a subsetY ⊆ X such that|Y | ≤ k and

Sc ∩ Y 6= ∅, ∀ c with 1 ≤ c ≤ b.
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We call such a setY aset coverfor X.

After a discussion with G. Woeginger we came with the following result:

Theorem 2.3 The Generalized Minimum Spanning Tree problem on trees is
NP-hard.

Proof: In order to prove that the GMST problem on trees isNP-hard it
is enough to show that there exists anNP-completeproblem that can be
polynomially reduced to GMST problem.

We consider the set cover problem for a given finite setX = {x1, ..., xa}, a
collection of subsets of X,S1, ..., Sb ⊆ X and an integerk < |X|.
We show that we can construct a graphG = (V,E) having a tree structure
such that there exists a set coverY ⊆ X, |Y | ≤ k if and only if there exists a
generalized spanning tree inG of cost at mostk.

The constructed graphG contains the followingm = a + b + 1 clusters
V1, ..., Vm:

• V1 consists of a single node denoted byr

• V2, ..., Va+1 node sets (corresponding tox1, x2, ..., xa ∈X) each of which
has two nodes: one ’expensive’ (see the construction of the edges) say
xi and one ’non-expensive’ saŷxi, for i = 2, ..., a , and

• b node sets,Va+2, ..., Vm with Vν = Sν−(a+1), for ν = a + 2, ...,m.

Edges inG are constructed as follows:

(i) Each ’expensive node’, sayxt of Vt for all t = 2, ..., a + 1, is connected
with r by an edge of cost 1 and each ’non-expensive’ node, sayx̂t of Vt

for all t = 2, ..., a + 1, is connected withr by an edge of cost 0.

(ii) Choose any nodej ∈ Vt for anyt ∈ {a + 2, ...,m}. SinceVt ⊂ X, then
j coincides with a node inX, sayj = xl. We construct an edge between
j and (the expensive node)xl ∈ Vl with l ∈ {2, ..., a}. The cost of the
edges constructed in this way is 0.

By construction the graphG = (V,E) has a tree structure.

Suppose now that there exists a generalized spanning tree inG of cost at most
k then by choosing
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Y := {xl ∈ X | the expensive vertexxl ∈ Vl+1 corresponding toxl is

a vertex of the generalized spanning tree inG}

we see thatY is a set cover ofX.

On the other hand, if there exists a set coverY ⊆ X, |Y | ≤ k then according
to the construction ofG there exists a generalized spanning tree inG of cost
at mostk.

¤

2.5 Complexity of the GMST problem

The following theorem due originally to Myung et al. [54] is an easy conse-
quence of Theorem 2.3.

Theorem 2.4 (Myung, Lee and Tcha [54])
The Generalized Minimum Spanning Tree problem isNP-hard.

¤

Remark 2.3 To show that the GMST problem isNP-hard, Myung, Lee and
Tcha [54] used the so-callednode cover problemwhich is known that isNP-
complete(see [21]) and showed that it can be polynomially reduced to GMST
problem. Recall that given a graphG = (V,E) and an integerk < |V |, the
node cover problemis to determine whether a graph has a setC of at mostk
nodes such that all the edges ofG are adjacent to at least one node ofC. We
call such a setC anode coverof G. ¤

2.6 Polynomially solvable cases of the GMST
problem

As we have seen the GMST problem isNP-hard. In this section we present
some cases when the GMST problem can be solved in polynomial time.

A special case in which the GMST problem can be solved in polynomial time
is the following:
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Remark 2.4 If |Vk|= 1, for all k = 1, ...,m then the GMST problem trivially
reduces to the classical Minimum Spanning Tree problem which can be solved
in polynomial time, by using for instance the algorithm of Kruskal or the
algorithm of Prim, presented in the first section of this chapter. ¤

Another case in which the GMST problem can be solved in polynomial time
is given in the following proposition:

Proposition 2.1 If the number of clustersm is fixed then the GMST problem
can be solved in polynomial time (in the number of nodesn).

Proof: We present a polynomial time procedure based on dynamic program-
ming which solves the GMST problem in this case.

We contract all the nodes from each cluster into one, resulting in a graph with
vertex set{V1, ..., Vm} which we assume to be complete.

Given a global spanning tree, i.e. a tree which spans the clusters, we use
dynamic programming in order to find the best (w.r.t. minimization of the
cost) generalized spanning tree.

Fix an arbitrary clusterVroot as the root of the global spanning tree and orient
all the edges away from vertices ofVroot according to the global spanning tree.

The ”subtree” rooted at a vertexv, v ∈ Vk with k ≤ m, denoted byT (v)
includes all the vertices reachable fromv under this orientation of the edges.
Thechildrenof v denoted byC(v) are all those verticesu with a directed edge
(v,u). Leaves of the tree have no children.

Let W (T (v)) denote the minimum weight of a generalized ”subtree” rooted
atv. We want to compute:

min
r∈Vroot

W (T (r)).

We give now the dynamic programming recursion to solve the subproblem
W (T (v)). The initialization is:

W (T (v)) = 0 if v ∈ Vk andVk is a leaf of the global spanning tree.

The recursion forv ∈ V an interior vertex is then as follows:
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W (T (v)) =
∑

l,C(v)∩Vl 6=∅
min
u∈Vl

{c(v,u) + W (T (u))},

where byc(v,u) we denoted the cost of the edge(v,u).

For computingW (T (v)), i.e. find the optimal solution of the subproblem
W (T (v)), we need to look at all the vertices from the clustersVl such that
C(v) ∩ Vl 6= ∅. Therefore for fixedv we have to check at mostn vertices.
So the overall complexity of this dynamic programming algorithm isO(n2),
wheren = |V |.
Notice that the above procedure leads to anO(mm−2n2) time exact algorithm
for GMST problem, obtained by trying all the global spanning trees, i.e. the
possible trees spanning the clusters, wheremm−2 represents the number of
distinct spanning trees of a completely connected undirected graph ofm ver-
tices given by Cayley’s formula [8].

¤

2.7 Applications of the GMST problem

The following two applications of the GMST problem in the real world were
described in [54]:

• Determining the location of the regional service centers.
There arem market segments each containing a given number of mar-
keting centers. We want to connect a number of centers by building
links. The problem is to find a minimum cost tree spanning a subset of
centers which includes exactly one from every market segment.

• Designing metropolitan area networks [24] and regional area networks
[59].
We want to connect a number of local area networks via transmission
links such as optical fibers. In this case we are looking for a minimum
cost tree spanning a subset of nodes which includes exactly one from
each local network. Then, such a network design problem reduces to a
GMST problem.
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2.8 A variant of the GMST problem

A variant of the GMST problem is the problem of finding a minimum cost
tree spanning a subset of nodes which includesat leastone node from each
cluster. In comparison with the GMST problem, in this case we define edges
between all the nodes ofV . We attach to each edgee ∈ E a nonnegative cost
ce .

We denote this variant of the GMST problem by L-GMST problem (where L
stands for Least) as in [17]. The L-GMST problem was introduced by Ihler,
Reich and Widmayer [40] as a particular case of theGeneralized Steiner Tree
Problemunder the nameClass Tree Problem.

In Figure 2.2 we present a feasible solution of the L-GMST problem.

Figure 2.2: A feasible solution for the L-GMST problem

Remark 2.5 For the particular case when the costs ofce of the edgese =
(i, j) with i, j ∈ Vk, k ∈ {1, ...,m} are zero then L-GMST problem becomes
the MST on the ”contracted graph” with vertex set{V1, ..., Vm} and the cost
of the (global) edges given by

C(Vk, Vl) = min{c(i, j) | i ∈ Vk, j ∈ Vl},
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for all 1 ≤ k < l ≤m. ¤

In [14], Dror, Haouari and Chaouachi provided five heuristic algorithms in-
cluding a genetic algorithm for the L-GMST problem and an exact method is
described in [17] by Feremans.

Dror, Haouari and Chaouachi in [14] used the L-GMST problem to solve an
important real life problem arising in desert environments: givenm parcels
having a polygonal shape with a given number of vertices and a source of
water the problem is to construct a minimal irrigation network (along edges
of the parcels) such that each of the parcels has at least one irrigation source.
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Chapter 3

Polyhedral aspects of the GMST
Problem

In this chapter we describe different integer programming formulations of the
GMST problem and we establish relationships between the polytopes of their
linear relaxations.

In the first Section 3.1 we introduce some notations which are common to all
formulations of the GMST problem. The next two sections contain formu-
lations of the GMST problem with an exponential number of constraints: in
Section 3.2 we present three formulations in the case of an undirected graph,
two of them already introduced by Myung, Lee and Tcha [54] and the corre-
sponding formulations for the directed graph are described in Section 3.3. The
last formulations contain a polynomial number of constraints: we present dif-
ferent flow formulations in Section 3.4 and finally in Section 3.5 we describe
a new formulation of the GMST problem based on distinguishing between
global and local connections. Based on this formulation we present in Sec-
tion 3.6 a solution procedure and computational results and we discuss the
advantages of our new approach in comparison with earlier methods. A con-
clusion follows in Section 3.7. Roughly, this chapter can be found in Popet
al. [60] and [61].
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3.1 Introduction

Given an undirected graphG = (V,E), for all S ⊆ V we define

E(S) = { e = (i, j) ∈ E | i, j ∈ S}
the subset of edges with the end nodes inS.

We consider the directed graphG
′
= (V,A) associated withG obtained by

replacing each edgee = (i, j) ∈ E by the opposite arcs(i, j) and(j, i) in A
with the same weight as the edge(i, j) ∈ E. We define

δ+(S) = { (i, j) ∈ A | i ∈ S, j /∈ S}
the subset of arcs leaving the setS,

δ−(S) = { (i, j) ∈ A | i /∈ S, j ∈ S}
the subset of arcs entering the setS, and

A(S) = { (i, j) ∈ A | i, j ∈ S}
the subset of arcs with the end nodes inS. For simplicity we writeδ−(i) and
δ+(i) instead ofδ−{(i)} andδ+{(i)}.
In order to model the GMST problem as an integer programming problem we
define the following binary variables:

xe = xij =





1 if the edgee = (i, j) ∈ E is included in the selected subgraph

0 otherwise

zi =





1 if the nodei is included in the selected subgraph

0 otherwise

wij =





1 if the arc(i, j) ∈ A is included in the selected subgraph

0 otherwise.
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We use the vector notationsx = (xij), z = (zi), w = (wij) and the notations

x(E
′
) =

∑

{i,j}∈E′
xij, for E

′ ⊆ E, z(V
′
) =

∑

i∈V ′
zi, for V

′ ⊆ V andw(A
′
) =

∑

(i,j)∈A
′
wij, for A

′ ⊆ A.

3.2 Formulations for the undirected problem

Let G = (V,E) be an undirected graph. A feasible solution to the GMST
problem can be seen as a cycle free subgraph withm− 1 edges, one node
selected from every cluster and connecting all the clusters. Therefore the
GMST problem can be formulated as the following 0-1 integer programming
problem:

min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈K = {1, ...,m} (3.1)

x(E(S)) ≤ z(S − i), ∀ i ∈ S ⊂ V,2 ≤ |S| ≤ n− 1 (3.2)

x(E) = m− 1 (3.3)

xe ∈ {0,1}, ∀ e ∈ E (3.4)

zi ∈ {0,1}, ∀ i ∈ V. (3.5)

For simplicity we used the notationS − i instead ofS \ {i}. In the above for-
mulation, constraints (3.1) guarantee that from every cluster we select exactly
one node, constraints (3.2) eliminate all the subtours and finally constraint
(3.3) guarantees that the selected subgraph hasm− 1 edges.

This formulation, introduced by Myung [54], is called thegeneralized subtour
elimination formulationsince constraints (3.2) eliminate all the cycles.

We denote the feasible set of the linear programming relaxation of this formu-
lation byPsub, where we replace the constraints (3.4) and (3.5) by0≤ xe, zi ≤
1, for all e ∈ E andi ∈ V .

We may replace the subtour elimination constraints (3.5) by connectivity con-
straints, resulting in the so-calledgeneralized cutset formulationintroduced
in [54]:
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min
∑
e∈E

cexe

s.t. (3.1), (3.3), (3.4), (3.5) and

x(δ(S)) ≥ zi + zj − 1, ∀ i ∈ S ⊂ V, j /∈ S (3.6)

where the setδ(S) was defined in Section 1.3.

We denote the feasible set of the linear programming relaxation of this for-
mulation byPcut .

Theorem 3.1 The following properties hold:
a) We havePsub ⊂ Pcut .
b) The polyhedraPcut andPsub may have fractional extreme points.

Proof:
a) (See also [17]) Let(x, z) ∈ Psub and i ∈ S ⊂ V and j /∈ S. SinceE =
E(S)∪ δ(S)∪E(V \ S), we get

x(δ(S)) = x(E)− x(E(S))− x(E(V \ S))

≥ z(V )− 1− z(S) + zi − z(V \ S) + zj = zi + zj − 1.

To show that the inclusion is strict we consider the following example pro-
vided by Magnanti and Wolsey in [51]:
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Figure 3.1: Example showing thatPsub ⊂ Pcut

In Figure 3.1 we consider five clustersV1, ..., V5 as singletons. The positive
valuesxij andzi are shown on the edges respectively on the nodes. It easy to
see that constraints (3.1), (3.3) and (3.6) are satisfied, while (3.2) is violated
for S = {3,4,5}.
b) To show thatPcut may have fractional extreme points we consider Figure
3.1 to have five singletons and we set the cost of the edges{1,2}, {1,3} and
{2,4} to 1 and the cost of the edges{3,4}, {4,5} and{3,5} to 0. Then the

cost of an optimal solution over thePcut is
3

2
.

In comparison to the MST problem, the polyhedronPsub, corresponding to the
linear programming relaxation of the generalized subtour elimination formu-
lation of the GMST problem, may have fractional extreme points. See Figure
3.2 for such an example.

3
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Figure 3.2: Example of a graph in whichPsub has fractional extreme points

In Figure 3.2 we consider the clustersV1 andV3 as singletons and the cluster
V2 to have two nodes. By setting the cost of the edges{1,3}, {1,4} and{2,4}
to 2 and the cost of the edges{1,2} and{3,4} to value1, we get a fractional

optimal solution overPsub given byx12 = x34 = 1, z1 = z4 = 1, z2 = z3 =
1

2
and all the other variables 0.

¤
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Our next model, the so-calledgeneralized multicut formulation, is obtained
by replacing simple cutsets by multicuts. Given a partition of the nodesV =
C0 ∪ C1 ∪ . . . ∪ Ck, we define the multicutδ(C0,C1, ...,Ck) to be the set of
edges connecting differentCi andCj. The generalized multicut formulation
for the GMST problem is:

min
∑
e∈E

cexe

s.t. (3.1), (3.3), (3.4), (3.5) and

x(δ(C0,C1, ...,Ck)) ≥
k∑

j=0

zij − 1, ∀ C0,C1, ...,Ck node partitions

of V and∀ ij ∈ Cj for j = 0,1, ..., k. (3.7)

Let Pmcut denote the feasible set of the linear programming relaxation of this
model. Clearly,Pmcut ⊆ Pcut. Generalizing the proof in the case of the mini-
mum spanning tree problem [51], we show that:

Proposition 3.1 Psub = Pmcut .

Proof: The proof ofPsub ⊆ Pmcut is analoguos to the proof ofPsub ⊆ Pcut.

Conversely, let(x, z) ∈ Pmcut , i ∈ S ⊂ V and consider the inequality (3.7)
with C0 = S and withC1, ...,Ck as singletons with union isV \ S. Then

x(δ(S,C1, ...,Ck)) ≥
k∑

j=0

zij − 1 = zi + z(V \ S)− 1,

wherei ∈ S ⊂ V. Therefore

x(E(S)) = x(E)− x(δ(S,C1, ...,Ck))

≤ z(V )− 1− zi − z(V \ S) + 1 = z(S − i).

¤
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3.3 Formulations for the directed problem

Consider the directed graphD = (V,A) obtained by replacing each edgee =
(i, j) ∈ E by the opposite arcs(i, j) and(j, i) in A with the same weight as
the edge(i, j) ∈ E. The directed version of the GMST problem introduced by
Myung et al. [54] and calledGeneralized Minimum Spanning Arborescence
problemis defined on the directed graphD = (V,A) rooted at a given cluster,
sayV1 without loss of generality, and consists of determining a minimum cost
arborescence which includes exactly one node from every cluster.

The two formulations that we are going to present in this section, were pre-
sented by Feremanset al. [18] under the names of directed cutset formulation,
respectively directed subpacking formulation.

We consider first adirected generalized cutset formulationof the GMST prob-
lem. In this model we consider the directed graphD = (V,A) with the cluster
V1 chosen as a root, without loss of generality, and we denoteK1 = K \ {1}.

min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m}
x(E) = m− 1

w(δ−(S)) ≥ zi, ∀ i ∈ S ⊆ V \ V1 (3.8)

wij ≤ zi , ∀ i ∈ V1, j /∈ V1 (3.9)

wij + wji = xe , ∀ e = (i, j) ∈ E (3.10)

x, z,w ∈ {0,1}. (3.11)

In this model constraints (3.8) and (3.9) guarantee the existence of a path
from the selected root node to any other selected node which includes only
the selected nodes.

Let Pdcut denote the projection of the feasible set of the linear programming
relaxation of this model into the(x, z)-space.

Another possible directed generalized cutset formulation considered by Myung
et al. in [54], was obtained by replacing (3.3) with the following constraints:

w(δ−(V1)) = 0 (3.12)

w(δ−(Vk)) ≤ 1, ∀ k ∈K1. (3.13)
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To show the above equivalence it is enough to use the following result proved
by Feremans, Labbé and Laporte [18].

Lemma 3.1 (Feremans, Labb́e and Laporte [18])
a) Constraints(3.1), (3.3), (3.8) and(3.10) imply

w(δ−(i)) = 0, ∀ i ∈ V1

w(δ−(i)) = zi, ∀ i ∈ V \ V1

b) Constraints(3.1), (3.8), (3.10), (3.12) and(3.13) imply (3.3).
¤

We introduced now a formulation of the GMST problem based on branchings.
Consider, as in the previous formulation, the digraphD = (V,A) with V1

chosen as the cluster root. We define thebranching modelof the GMST
problem to be:

min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m}
x(E) = m− 1

w(A(S)) ≤ z(S − i), ∀ i ∈ S ⊂ V,2 ≤ |S| ≤ n− 1 (3.14)

w(δ−(Vk)) = 1 , ∀ k ∈K1 (3.15)

wij + wji = xe , ∀ e = (i, j) ∈ E

x, z,w ∈ {0,1}.

Let Pbranch denote the projection of the feasible set of the linear programming
relaxation of this model into the(x, z)-space. Obviously,Pbranch ⊆ Psub .

The following result was established by Feremans [17]. We present a different
proof of the proposition.

Proposition 3.2 (Feremans [17])Pbranch = Pdcut ∩ Psub .

Proof: First we prove thatPdcut ∩ Psub ⊆ Pbranch .

Let (x, z) ∈ Pdcut ∩ Psub. Using Lemma 3.1, it is easy to see that constraint
(3.15) is satisfied. Therefore(x, z) ∈ Pbranch .
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We show thatPbranch ⊆ Pdcut ∩ Psub .

It is obvious thatPbranch ⊆ Psub , therefore it remains to showPbranch ⊆ Pdcut.

Let (x, z) ∈ Pbranch . For all i ∈ V1 andj /∈ V1 takeS = {i, j} ⊂ V . Then by
(3.14) we havewij + wji ≤ zi and this implies (3.9).

Now we show thatw(δ−(l)) ≤ zl, for l ∈ Vk, k ∈ K1.

TakeV l = {i∈ V |(i, l)∈ δ−(l)} andSl = V l∪{l}, thenw(δ−(l)) = w(A(Sl))
and chooseil ∈ V l.

1 =
∑

l∈Vk

w(δ−(l)) =
∑

l∈Vk

w(A(Sl)) ≤
∑

l∈Vk

z(Sl\il)

=
∑

l∈Vk

zl +
∑

l∈Vk

∑

j∈V l\il
zj = 1 +

∑

l∈Vk

∑

j∈V l\il
zj.

Therefore, for alll there is only oneil ∈ V l with zil 6= 0 and

w(δ−(l)) = w(A(Sl)) ≤ z(Sl\il) = zl.

For everyi ∈ S ⊂ V \V1

w(A(S)) =
∑
i∈S

w(δ−(i))−w(δ−(S)) ≤ z(S − i),

which implies that:

w(δ−(S)) ≥
∑
i∈S

w(δ−(i))− z(S) + zi

=
∑
i∈S


1−

∑

l∈Vk\{i}
w

(
δ− (l)

)

− z(S) + zi

≥
∑
i∈S


1−

∑

l∈Vk\{i}
zl


− z(S) + zi = z(S)− z(S) + zi = zi.

¤
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3.4 Flow based formulations

All the formulations that we have described so far have an exponential num-
ber of constraints. The formulations that we are going to consider next will
have only a polynomial number of constraints but an additional number of
variables. In order to give compact formulations of the GMST problem one
possibility is to introduce ’auxiliary’ flow variables beyond the natural binary
edge and node variables.

We wish to send a flow between the nodes of the network and view the edge
variablexe as indicating whether the edgee ∈ E is able to carry any flow or
not. We consider three such flow formulations: a single commodity model,
a multicommodity model and a bidirectional flow model. In each of these
models, although the edges are undirected, the flow variables will be directed.
That is, for each edge(i, j) ∈ E, we will have flow in the both directionsi to
j andj to i.

In thesingle commodity model, the source clusterV1 sends one unit of flow to
every other cluster. Letfij denote the flow on edgee = (i, j) in the direction
i to j. This leads to the following formulation:

min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m}
x(E) = m− 1
∑

e∈δ+(i)

fe −
∑

e∈δ−(i)

fe =

{
(m− 1)zi for i ∈ V1

−zi for i ∈ V \V1
(3.16)

fij ≤ (m− 1)xe, ∀ e = (i, j) ∈ E (3.17)

fji ≤ (m− 1)xe, ∀ e = (i, j) ∈ E (3.18)

fij, fji ≥ 0, ∀ e = (i, j) ∈ E (3.19)

x, z ∈ {0,1}.

In a discussion, Ravindra K. Ahuja drew my attention to this formulation of
the GMST problem.

In this model, the mass balance equations (3.16) imply that the network de-
fined by any solution(x, z) must be connected. Since the constraints (3.1)
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and (3.3) state that the network defined by any solution containsm− 1 edges
and one node from every cluster, every feasible solution must be a general-
ized spanning tree. Therefore, when projected into the space of the(x, z)
variables, this formulation correctly models the GMST problem.

We letPflow denote the projection of the feasible set of the linear program-
ming relaxation of this model into the(x, z)-space.

A stronger relaxation is obtained by considering multicommodity flows. This
directed multicommodity flow modelwas introduced by Myunget al. in [54].
In this model every node setk ∈ K1 defines a commodity. One unit of com-
modityk originates fromV1 and must be delivered to node setVk. Lettingfk

ij

be the flow of commodityk in arc(i, j) we obtain the following formulation:

min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m}
x(E) = m− 1

∑

a∈δ+(i)

fk
a −

∑

a∈δ−(i)

fk
a =





zi , i ∈ V1

−zi , i ∈ Vk

0 , i /∈ V1 ∪ Vk

, k ∈ K1 (3.20)

fk
ij ≤ wij, ∀ a = (i, j) ∈ A, k ∈ K1 (3.21)

wij + wji = xe , ∀ e = (i, j) ∈ E

fk
a ≥ 0, ∀ a = (i, j) ∈ A, k ∈K1 (3.22)

x, z ∈ {0,1}.

In [54], Myung et al. presented a branch and bound procedure to solve the
GMST problem. The computational efficiency of such a procedure depends
greatly upon how quickly it generates good lower and upper bounds. Their
lower bounding procedure was based on the directed multicommodity flow
model, since its linear programming relaxation not only provides a tight lower
bound but also has a nice structure based on which an efficient dual ascent al-
gorithm can be constructed. They developed also a heuristic algorithm which
finds a feasible solution for the GMST problem using the obtained dual solu-
tion. Later we compare their numerical results with ours.

We letPmcflow denote the projection of the feasible set of the linear program-
ming relaxation of this model into the(x, z)-space.
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Proposition 3.3 Pmcflow ⊆ Pflow .

Proof: Let (w,x, z, f) ∈ Pmcflow, then

0 ≤
∑

k∈K1

fk
ij ≤ |K1|wij ≤ (m− 1)xe.

With fij =
∑

k∈K1

fk
ij for everye = (i, j) ∈ E, we find

∑

e∈δ+(i)

fk
a −

∑

e∈δ−(i)

fk
a =

∑

k∈K1

(
∑

a∈δ+(i)

fk
a −

∑

a∈δ−(i)

fk
a )

=

{
(m− 1)zi for i ∈ V1

−zi for i ∈ V \V1.

¤

We obtain a closely related formulation by eliminating the variableswij. The
resulting formulation consists of constraints (3.1), (3.3), (3.20), (3.22) plus

fh
ij + fk

ij ≤ xe , ∀ h,k ∈ K1 and∀ e ∈ E (3.23)

We refer to this model as thebidirectional flow formulationof the GMST
problem and letPbdflow denote its set of feasible solutions in(x, z)-space.
Observe that since we have eliminated the variableswa in constructing the
bidirectional flow formulation, this model is defined on the undirected graph
G = (V,E), even though for each commodityk we permit flowsfk

ij andfk
ji

in both directions on edgee = (i, j).

In the bidirectional flow formulation, constraints (3.23) which we are called
the bidirectional flow inequalities, link the flow of different commodities
flowing in different directions on the edge(i, j). These constraints model
the following fact: in any feasible generalized spanning tree, if we eliminate
edge(i, j) and divide the nodes in two sets; any commodity whose associated
node lies in the same set as the root node set does not flow on edge(i, j); any
two commodities whose associated nodes both lie in the set without the root
both flow on edge(i, j) in the same direction. So, whenever two commodities
h andk both flow on edge(i, j), they both flow in the same direction and so
one offh

ij andfk
ij equals zero.
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Proposition 3.4 Pmcflow = Pbdflow .

Proof: If (w,x, z, f) ∈ Pmcflow , using (3.10) we have that

fh
ij + fk

ji ≤ wij + wji = xe , ∀ e = (i, j) ∈ E and∀ h,k ∈ K1.

On the other hand, assume that(x, z, f) ∈ Pbdflow . By (3.23)

max
h

fh
ij + max

k
fk

ji ≤ xe ∀ e = (i, j) ∈ E.

Hence we can choosew such thatmax
h

fh
ij ≤ wij andxe = wij + wji for all

e = (i, j) ∈ E. For example take

wij =
1

2
(xe + max

h
fh

ij −max
k

fk
ji).

Clearly,(w,x, z, f) ∈ Pmcflow .
¤

In Chapter 6, we present an algorithm based on a Lagrangian relaxation of
the bidirectional flow formulation of the GMST problem in order to obtain
”good” lower bounds.

We obtain another formulation, which we refer to as theundirected multi-
commodity flow model, by replacing the inequalities (3.21) by the weaker
constraints:

fk
ij ≤ xe , for everyk ∈K1 ande ∈ E.

3.5 Local-global formulation of the GMST prob-
lem

We present now a new formulation of the GMST problem. We shrink all
the vertices from each cluster into one. Our formulation aims at distinguish-
ing betweenglobal, i.e. inter-cluster connections, andlocal ones, i.e. con-
nections between nodes from different clusters. We introduce variablesyij

(i, j ∈ {1, ...,m}) to describe the global connections. Soyij = 1 if clusterVi

is connected to clusterVj andyij = 0 otherwise and we assume thaty rep-
resents a spanning tree. The convex hull of all these y-vectors is generally
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known as the spanning tree polytope (on the contracted graph with vertex set
{V1, ..., Vm} which we assume to be complete).

Following Yannakakis [78] this polytope, denoted byPMST , can be repre-
sented by the following polynomial number of constraints:

∑

{i,j}
yij = m− 1

yij = λkij + λkji, for 1 ≤ k, i, j ≤m andi 6= j (3.24)∑
j

λkij = 1, for 1 ≤ k, i, j ≤m andi 6= k (3.25)

λkkj = 0, for 1 ≤ k, j ≤m (3.26)

yij, λkij ≥ 0, for 1 ≤ k, i, j ≤m.

where the variablesλkij are defined for every triple of nodesk, i, j, with i 6=
j 6= k and their value for a spanning tree is:

λkij =





1 if j is the parent of i when we root the tree at k

0 otherwise.

The constraints (3.26) mean that an edge(i, j) is in the spanning tree if and
only if either i is the parent ofj or j is the parent ofi; the constraints (3.27)
mean that if we root a spanning tree atk then every node other than nodek
has a parent and finally constraints (3.28) mean that the rootk has no parent.

If the vectory describes a spanning tree on the contracted graph, the corre-
sponding best (w.r.t. minimization of the costs)local solutionx ∈ {0,1}|E|
can be obtained by one of the following two methods described in the next
subsections.

3.5.1 Local solution using dynamic programming

We use the same notations as in Proposition 2.1.

Given a global spanning tree, i.e. a tree which spans the clusters{V1, ..., Vm}
we want to compute:

min
r∈Vroot

W (T (r)),
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whereVroot is an arbitrary root of the global spanning tree and byW (T (v))
we denoted the minimum weight of the ”subtree” rooted atv, v ∈ V .

The dynamic programming recursion which solves the subproblemW (T (v))
is the same as in Proposition 2.1.

Remember that for computingW (T (v)), i.e. find the optimal solution of the
subproblemW (T (v)), we need to look at all the vertices from the clustersVl

such thatC(v) ∩ Vl 6= ∅. Therefore, for fixedv, we have to check at mostn
vertices. The overall complexity of the dynamic programming algorithm is
O(n2), wheren = |V |.

3.5.2 Local solution using integer linear programming

If the 0-1 vectory describes a spanning tree on the contracted graph, the
corresponding local solutionx ∈ {0,1}|E| that minimizes the costs can be
obtained by solving the following integer linear programming problem:

min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m}
x(Vl, Vr) = ylr, ∀ l, r ∈ K = {1, ...,m}, l 6= r

x(i, Vr) ≤ zi, ∀ r ∈ K,∀ i ∈ V \ Vr

xe, zi ∈ {0,1}, ∀ e = (i, j) ∈ E, ∀ i ∈ V,

wherex(Vl, Vr) =
∑

i∈Vl,j∈Vr

xij andx(i, Vr) =
∑
j∈Vr

xij .

For giveny, we denote the feasible set of the linear programming relaxation
of this program byPlocal(y). The following result holds:

Proposition 3.5 If y is the 0-1 incidence vector of a spanning tree of the
contracted graph then the polyhedronPlocal(y) is integral.

Proof: Suppose that the 0-1 vectory describes a spanning treeT of the con-
tracted graph, then in order to prove that the polyhedronPlocal(y) is integral
it is enough to show that every solution of the linear programming relaxation
can be written as a convex combination of solutions corresponding to span-
ning trees:(x, z) =

∑
λT (xT , zT ) .
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The proof is by induction on the support of x, denoted bysupp(x) and defined
as follows:

supp(x) := {xe | xe 6= 0, e ∈ E}.

Suppose that there is a global connection between the clustersVl andVr (i.e.
ylr = 1) then

1 = x(Vl, Vr) =
∑
i∈Vl

x(i, Vr) ≤
∑
i∈Vl

zi = 1,

which implies thatx(i, Vr) = zi .

We claim thatsupp(x) ⊆ E contains a tree connecting all clusters. Assume
the contrary and letT 1 ⊆ E be a maximal tree insupp(x). SinceT 1 does
not connect all clusters, there is some edge(l, r) with ylr = 1 such thatT 1 has
some vertexi ∈ Vl but no vertex inVr. Thenzi > 0, and thusx(i, Vr) = zi > 0,
soT 1 can be extended by somee = (i, j) with j ∈ Vr , a contradiction.

Now let xT 1
be the incidence vector ofT 1 and letα := min{xe | e ∈ T 1}. If

α = 1, thenx = xT 1
and we are done. Otherwise, letzT 1

be the vector which
haszT 1

i = 1 if T 1 coversi ∈ V andzT 1

i = 0 otherwise. Then

(x̂, ẑ) := ((1− α)−1(x− αxT 1

), (1− α)−1(z − αzT 1

))

is again inPlocal(y) and, by induction, it can be written as a convex combina-
tion of tree solutions. The claim follows.

¤

A similar argument shows that the polyhedronPlocal(y) is integral even in
the case when the 0-1 vectory describes a cycle free subgraph in the con-
tracted graph. If the 0-1 vectory contains a cycle of the contracted graph then
Plocal(y) is in general not integral. In order to show this consider the following
example:
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Figure 3.3: Example showing thatPlocal(y) may have fractional

extreme points

If the lines drawn in the above figure (i.e.,{1,3}, {2,4} etc.) have cost 1 and
all the other lines (i.e.,{1,4}, {2,3} etc.) have costM À 1, thenz ≡ 1

2
and

x ≡ 1
2

on the drawn lines is an optimal solution ofPlocal(y), showing that the
polyhedronPlocal(y) is not integral.

3.5.3 Local-global formulation of the GMST problem

The observations presented so far in Section 3.5 lead to our final formulation,
calledlocal-global formulationof the GMST problem as an 0-1 mixed integer
programming problem, where only the global variablesy are forced to be
integral:
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min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m}
x(E) = m− 1

x(Vl, Vr) = ylr, ∀ l, r ∈ K = {1, ...,m}, l 6= r

x(i, Vr) ≤ zi, ∀ r ∈K,∀ i ∈ V \ Vr

(P0) yij = λkij + λkji, ∀ 1 ≤ k, i, j ≤m andi 6= j∑
j

λkij = 1, ∀ 1 ≤ k, i, j ≤m andi 6= k

λkkj = 0, ∀ 1 ≤ k, j ≤m

λkij ≥ 0, ∀ 1 ≤ k, i, j ≤m

xe, zi ≥ 0, ∀ e = (i, j) ∈ E, ∀ i ∈ V

ylr ∈ {0,1}, ∀ 1 ≤ l, r ≤m.

This new formulation of the GMST problem was obtained by incorporating
the constraints characterizingPMST , with y ∈ {0,1}, into Plocal(y).

In the next section we present a solution procedure for solving the GMST
problem based on the local-global formulation and we report on our compu-
tational results for many instances of the problem.

3.6 Solution procedure and computational results

There are different ways to solve the GMST problem with the help of formu-
lation(P0). The first possibility is to consider the mixed integer program(P0)
and solve it directly (for example with CPLEX).

Secondly we considered the relaxation of(P0) obtained by choosing ran-
domly one clusterVk and rooting the global tree only at the rootk.
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min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈K = {1, ...,m}
x(E) = m− 1

x(Vl, Vr) = ylr, ∀ l, r ∈ K = {1, ...,m}, l 6= r

x(i, Vr) ≤ zi, ∀ r ∈K,∀ i ∈ V \ Vr

(P k
0 ) yij = λkij + λkji, ∀ 1 ≤ k, i, j ≤m andi 6= j, k fixed∑

j

λkij = 1, ∀ 1 ≤ k, i, j ≤m andi 6= k, k fixed

λkkj = 0, ∀ 1 ≤ k, j ≤m, k fixed

λkij ≥ 0, ∀ 1 ≤ k, i, j ≤m, k fixed

xe, zi ≥ 0, ∀ e = (i, j) ∈ E, ∀ i ∈ V

ylr ∈ {0,1}, ∀ 1 ≤ l, r ≤m.

If the optimal solution of this relaxation produces a generalized spanning tree,
then we have given the optimal solution of the GMST problem. Otherwise we
choose another root or add a second root and proceed in this way till we get
the optimal solution of the GMST problem. We call this procedure therooting
procedure.

It turned out that the lower bounds computed by solving the linear program-
ming relaxation of (Pk0) are comparable with the lower bounds given in [54],
but can be computed faster.

Upper bounds can be computed by solvingPlocal(y) for certain 0-1 vectory
corresponding to a spanning tree. (E.g., a minimum spanning tree w.r.t. the
edge weightsdlr = min{cij | i ∈ Vl, j ∈ Vr}.)
We compare the computational results for solving the problem using our root-
ing procedure with the computational results given by Myunget al. in [54].

According to the method of generating the edge costs, the problems generated
are classified into three types:

• structured Euclidean case

• unstructured Euclidean case
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• non-Euclidean case

For the instances in the structured Euclidean casem squares (clusters) are
”packed in a square” and in each of thesem clustersnc nodes are selected
randomly. The costs between nodes are the Euclidean distances between the
nodes. So in this model the clusters can be interpreted as physical clusters. In
the other models such an interpretation is not valid.

For the unstructured Euclidean casen = mnc nodes are generated randomly in
[0,100]2 with costs given by the Euclidean distances. But then the clusters are
choosen randomly among these points. Finally in the non-Euclidean model
the edge costs are randomly generated on[0,100].

Our algorithms have been coded in C and compiled with a HP-UX cc com-
piler. For solving the linear and mixed integer programming problems we
used CPLEX. The computational experiments were performed on a HP 9000/735
computer with a 125 Mhz processor and 144 Mb memory.

Tables 3.1, 3.2 and 3.3 show the computational results for the non-Euclidean,
unstructured Euclidean and structured Euclidean problems.
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Table 3.1: Computational Results for non-Euclidean problems
(average of five problems for each combination)

Pb. size Rooting Procedure Myung’s results [54]
m nc LB/OPT roots iter. CPU LB/OPT LB/UB CPU

8 3 100 1 1 0.07 100 - 0.05
4 100 1 1 0.09 96.1 - 0.57
6 100 1 1 0.14 94.3 - 3.25
10 100 1 1 0.69 94.9 - 17.68

10 3 100 1 1 0.10 89.1 - 0.05
4 100 1 2 0.32 99.2 - 2.13
6 100 1 1 0.76 87.8 - 3.25
10 100 1 1 3.53 91.3 - 17.68

12 3 100 1 1 0.17 89.6 - 6.00
4 100 1 1 0.21 92.8 - 7.63
6 100 2 3 5.61 91.3 - 54.98
10 100 1 2 14.57 - - -

15 3 100 1 1 0.29 89.0 - 17.45
4 100 1 1 0.73 - - -
6 100 1 1 5.99 - 86.2 7.65
10 100 2 2 40.53 - 82.7 18.25

18 3 100 1 1 0.57 95.3 - 38.83
6 100 1 1 9.45 - - -
10 100 1 2 193.81 - - -

20 3 100 2 3 3.82 - - -
6 100 1 1 1.46 - 81.4 13.7
10 100 1 2 407.64 - 77.5 35.8

25 3 100 1 2 21.68 - - -
6 100 1 1 25.12 - 80.5 44.4
8 100 1 2 306.69 - 81.0 76.8

30 3 100 1 1 4.01 - - -
6 100 2 2 84.05 - 74.3 45.2
8 100 1 1 341.16 - - -

40 3 100 2 3 71.64 - 84.1 36.5
4 100 1 2 1713.29 - 74.9 154.8
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Table 3.2: Computational Results for structured Euclidean problems
(average of five problems for each combination)

Pb. size Rooting Procedure Myung’s results [54]
m nc LB/OPT roots iter. CPU LB/OPT LB/UB CPU

8 3 100 1 1 0.05 - - -
4 100 2 3 0.09 - - -
6 100 2 3 0.15 - - -
10 100 2 3 0.85 - - -

10 3 100 2 3 0.06 - - -
4 100 3 4 0.20 - - -
6 100 3 4 0.54 - - -
10 100 3 4 2.39 - - -

12 3 100 2 3 0.21 - - -
4 100 3 4 0.42 - - -
6 100 3 4 1.12 - - -
10 100 3 4 5.43 - - -

15 3 100 3 4 0.72 - - -
4 100 3 4 0.95 - - -
6 100 4 5 3.80 - - -
8 100 4 5 29.73 - - -

18 3 100 4 5 1.68 - - -
6 100 4 5 18.25 - - -
8 100 4 5 55.24 - - -

20 3 100 4 5 3.70 - - -
6 100 5 6 20.18 - - -
8 100 5 6 97.31 - - -

25 3 100 4 5 18.67 - - -
6 100 4 5 198.63 - - -
8 100 4 5 325.76 - - -

30 3 100 4 5 46.34 - - -
4 100 4 5 51.33 - - -
6 100 4 5 301.86 - - -

40 3 100 4 5 141.28 - - -
4 100 4 5 283.72 - - -
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Table 3.3: Computational Results for unstructured Euclidean problems
(average of five problems for each combination)

Pb. size Rooting Procedure Myung’s results [54]
m nc LB/OPT roots iter. CPU LB/OPT LB/UB CPU

8 3 100 2 3 0.08 93.4 - 0.51
4 100 1 1 0.16 93.8 - 1.49
6 100 2 3 0.59 94.1 - 1.78
10 100 3 4 19.48 94.5 - 13.67

10 3 100 2 3 0.26 92.9 - 2.35
4 100 2 3 0.43 91.4 - 3.44
6 100 2 3 6.69 92.0 - 15.77
10 100 3 4 30.23 90.3 - 95.14

12 3 100 2 3 0.31 95.1 - 2.81
4 100 3 4 6.17 91.6 - 16.44
6 100 3 4 17.95 91.1 - 35.42
10 100 3 4 45.76 - - -

15 3 100 2 3 2.28 93.7 - 25.07
4 100 3 4 60.35 90.5 - 104.46
6 100 3 4 124.62 - - -
8 100 3 4 205.73 - 86.2 7.29

18 3 100 4 5 15.12 - - -
6 100 4 5 128.63 - - -
8 100 4 5 259.24 - - -

20 3 100 4 5 80.92 - - -
6 100 4 5 150.72 - 83.8 9.36
8 100 4 5 397.31 - 80.8 21.67

25 3 100 4 5 98.63 - - -
6 100 4 5 259.33 - 82.2 34.78
8 100 4 5 477.86 - 74.6 23.46

30 3 100 4 5 136.34 - - -
4 100 4 5 367.28 - 85.5 29.55
6 100 4 5 509.36 - 81.0 52.17

40 3 100 4 5 277.39 - 88.2 22.44
4 100 4 5 453.78 - 79.6 57.76
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The first two columns in the tables give the number of clusters (m) and the
number of nodes per cluster (nc). The next four columns describe our rooting
procedure and contain: (LB/OPT) the lower bounds obtained as a percentage
of the optimal value of the GMST problem, (roots) the number of root clusters
and (iter.) the number of mixed integer programs necessary to find the optimal
solution and (CPU) the computation time in seconds for solving the GMST
problem to optimality. The last columns give the numerical results reported
by Myunget al. in [54]. The numerical results in [54] were obtained based
on the dual of the linear programming relaxation of the multicommodity flow
formulation. These columns evaluate the lower bounds obtained as a percent-
age of the optimal objective value, respectively the lower bounds obtained as
a percentage of the upper bounds and finally the computation time is shown
in the last column. In the last three columns ’-’ means that this information is
not provided in [54].

As can be seen, in all the problems that we considered, the optimal solution
of the GMST problem has been found by using our rooting procedure. These
numerical experiences with the new formulation of the GMST problem are
very promising.

The computational results so far could indicate that the exponential growth
of the computation time for solving the GMST problem to optimality is mod-
erate in comparison with the growth of computation time for solving the full
problem directly, for example with CPLEX.

Finishing the thesis we became aware of the branch and cut numerical results
provided by Feremans [17]. In comparison with our numerical results, in
[17] in about 75% of the considered instances the optimal value of the GMST
problem is obtained, but the computing times spent by the branch and cut
code are in general larger than the times spent by the rooting procedure code.

3.7 Concluding remarks

We have provided several integer and mixed integer programming formula-
tions for the GMST problem and established relationships between the poly-
topes of their linear relaxations.

Based on one of the new formulations that we introduced, i.e. the local-
global formulation of the GMST problem, we present a new solution pro-
cedure called rooting procedure. Computational results show that the rooting
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procedure performs better in comparison with earlier methods. For all the in-
stances of the problem that we considered, the optimal solution of the GMST
problem has been found by using our solution procedure.
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Chapter 4

Approximation Algorithms

Throughout this chapter we will distinguish between so-calledpositive re-
sults which establish the existence of some approximation algorithms, and
so-callednegative resultswhich disprove the existence of good approximation
results for some combinatorial optimization problems under the assumption
thatP 6= NP.

We start with some basic results of the approximation theory. In Section 4.2
we focus on positive results in the area of approximation: design and analysis
of polynomial time approximation algorithms. We present in Section 4.3 an
in-approximability result for the GMST problem. Finally, in the last section of
this chapter, under special assumptions, we give an approximation algorithm
for the GMST problem with bounded cluster size. Roughly, the last section
can be found in Pop, Kern and Still [62].
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The basic results presented in the first two sections follow the descriptions of
Goemans [27] and Schuurman and Woeginger [70].

4.1 Introduction

Many of the optimization problems we would like to solve areNP-hard.
Therefore it is very unlikely that these problems could be solved by a polyno-
mial-time algorithm. However, these problems still have to be solved in prac-
tice. In order to do that, we have to relax some of the requirements. There are
in general, three different possibilities.

• Superpolynomial-time algorithms: Even though an optimization prob-
lem isNP-hard, there are ”good” and ”not so good” algorithms for
solving it exactly. To the ”not so good” algorithms certainly belong
most of the simple enumeration methods where one would enumerate
all the feasible solutions and then choose the one with the optimal value
of the objective function. Such methods have very high time complex-
ity. Among the ”good” algorithms belong methods likebranch-and-
boundwhere an analysis of the problem at hand is used to discard most
of the feasible solutions before they are even considered. These ap-
proaches allow one to obtain exact solutions of reasonably large prob-
lem instances, but their running time still depends exponentially on the
size of the problem.

• Average-case polynomial-time algorithms: For some problems, it
is possible to have algorithms which require superpolynomial-time on
only a few instances and for the other instances run in polynomial time.
A famous example is theSimplex Methodfor solving problems in Lin-
ear Programming.

• Approximation Algorithms: We may also relax the requirement of
obtaining an exact solution of the optimization problem and content
ourselves with a solution which is ”not too far” from the optimum. This
is partially justified by the fact that, in practice, it is usually enough to
obtain a solution that is slightly sub-optimal.

Clearly, there are good approximation algorithms and bad ones as well. What
we need is some means of determining the quality of an approximation algo-
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rithm and a way of comparing different algorithms. There are a few criteria
to consider:

Average-case performance:One has to consider some probability distribu-
tion on the set of all possible instances of a given problem. Based on this
assumption, an expectation of the performance can then be found. Results of
this kind strongly depend on the choice of the initial distribution and do not
provide us any information about the performance on a particular instance.

Experimental performance: This approach is based on running the algo-
rithm on a few ”typical” instances. It has been used mostly to compare per-
formance of several approximation algorithms. Of course the result depend
on the choice of the ”typical” instances and may vary from experiment to
experiment.

Worst-case performance: This is usually done by establishing upper and
lower bounds for approximate solutions in terms of the optimum value. In
case of minimization problems, we try to establish upper bounds, in case of
maximization problems, one wants to find lower bounds.

The advantage of the worst-case bounds on the performance of approximation
algorithms is the fact that given any instance of the optimization problem, we
are guaranteed that the approximate solution stays within these bounds. It
should also be noted that approximation algorithms usually output solutions
much closer to the optimum than the worst-case bounds suggest. Thus it is
of independent interest to see how tight the bounds on the performance of
each algorithm are; that is, how bad the approximate solution can really get.
This is usually done by providing examples of specific instances for which
the approximate solution is very far from the optimum solution.

Establishing worst-case performance bounds for even simple algorithms of-
ten requires a very deep understanding of the problem at hand and the use
of powerful theoretical results from areas like linear programming, combina-
torics, graph theory, probability theory, etc.

We consider anNP-hard optimization problem for which as we have seen
it is difficult to find the exact optimal solution within polynomial time. At
the expense of reducing the quality of the solution by relaxing some of the
requirements, we can often get considerable speed-up in the complexity. This
leads us to the following definition:

Definition 4.1 (Approximation algorithms)
Let X be a minimization problem andα > 1. An algorithmAPP is called
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an α-approximation algorithm for problemX, if for all instancesI of X it
delivers in polynomial time a feasible solution with objective valueAPP (I)
such that

APP (I) ≤ αOPT (I), (4.1)

where byAPP (I) and OPT (I) we denoted the values of an approximate
solution and that of an optimal solution for instanceI, respectively.

¤

The valueα is called theperformance guaranteeor theworst case ratioof the
approximation algorithmAPP . The closerα is to 1 the better the algorithm
is.

4.2 Positive Results: the Design of the Approxi-
mation Algorithms

Positive results in the area of approximation concern the design and analysis
of polynomial time approximation algorithms. This section concentrates on
such positive results; we will outline the main strategy.

Assume that we need to find an approximation algorithm for anNP-hardop-
timization problemX. How shall we proceed? We will concentrate on min-
imization problems, but the ideas apply equally well to maximization prob-
lems.

In what follows, given an instanceI of an optimization problem and some al-
gorithm for its approximation, we will denote byOPT = OPT (I) the value
of an optimum solution and byAPP = APP (I) the value of the solution out-
put by the approximation algorithm. We are interested in anα-approximation
algorithm, i.e. an algorithmAPP such that

APP ≤ αOPT.

RelatingAPP to OPT directly can be difficult. Therefore instead we try
to find a lower bound denoted byLB for the optimal solution satisfying the
following conditions:

1. LB ≤ OPT
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2. APP ≤ αLB.

Consider now the following optimization problem:

OPT = min
x∈S

f(x).

A lower bound onOPT can be obtained by so-calledrelaxation. Consider
the following related optimization problem:

LB = min
x∈R

g(x).

Definition 4.2 (Lower bound)

LB is called a lower bound onOPT and the optimization problem is called
a relaxation of the original problem if the following two conditions hold:

S ⊆ R

g(x) ≤ f(x) for all x ∈ S.

¤

The above conditions imply the following:

LB = min
x∈R

g(x) ≤ min
x∈S

f(x) = OPT.

showing thatLB is a lower bound onOPT .

Many combinatorial optimization problems can be formulated as integer or
mixed integer programs and the linear programming relaxations of this pro-
grams provide a lower bound for the optimal solution. Later we show how to
use a linear programming relaxation of an integer programming formulation
of the GMST problem to get anα-approximation algorithm for the GMST
problem with bounded cluster size.

There are two main techniques to derive an approximately optimal solution
from a solution of the relaxed problem:

1. Rounding
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The idea is to solve the linear programming relaxation and then convert the
fractional solution obtained into an integral solution. The approximation guar-
antee is establish by comparing the costs of the integral and fractional solu-
tions.

Therefore we find an optimal solutionx∗ to the relaxation and ”round”x∗ ∈R
to an elementx

′ ∈ S. Then prove thatf(x
′
) ≤ αg(x∗) which implies that

f(x
′
) ≤ αLB ≤ αOPT.

Often randomization is helpful. In this casex∗ ∈ R is randomly rounded
to some elementx

′ ∈ S so thatE[f(x
′
)] ≤ αg(x∗). These algorithms can

sometimes be derandomized, in which case one finds anx
′′

such thatf(x
′′
)≤

E[f(x
′
)].

An example where the rounding technique is applied, is the Minimum Weight
Vertex Cover Problem, result due to Hochbaum [38].

2. Primal-Dual

We consider the linear programming relaxation of the primal program. This
method constructs iteratively an integer solution to the primal program and a
feasible solution to the dual program,max{h(y) : y ∈ D}. The approxima-
tion guarantee is establish by comparing the two solutions.

The weak duality property of the relaxation implies:

max{h(y) : y ∈ D} ≤min{g(x) : x ∈ R}
We constructx ∈ S from y ∈ D such that:

f(x) ≤ αh(y) ≤ αh(ymax) ≤ αg(xmin) ≤ αOPT.

Notice thaty can be any element ofD, not necessarily an optimal solution to
the dual.

More details about primal-dual technique can be found in [1] and [75].

4.3 A negative result for the GMST problem

For some hard combinatorial optimization problems it is possible to show
that they don’t have an approximation algorithm unlessP = NP . In order
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to give a result of this form it is enough to show that the existence of anα-
approximation algorithm would allow one to solve some decision problem,
known to beNP-complete, in polynomial time.

Applying this scheme to the GMST problem we obtain an in-approximability
result. This result is a different formulation in terms of approximation algo-
rithms of a result provided by Myunget al. [54] which says that even finding
a near optimal solution for the GMST problem isNP-hard. Our proof is
slightly different to the proof provided in [54].

Theorem 4.1 Under the assumptionP 6= NP, there is noα-approximation
algorithm for the GMST problem.

Proof: Assume that there exists anα-approximation algorithmAPP for the
GMST problem, whereα is a real number greater than or equal to 1. This
means that

APP (I) ≤ αOPT (I),

for every instanceI, whereOPT (I) andAPP (I) are the values of the opti-
mal solution and of the solution found by the algorithmAPP , respectively.

Then, we will show thatAPP also solves the node-cover problem for a given
graphG = (V,E) and an integerk such thatk < |V |. This result contradicts
the assumption thatP 6= NP.

We construct a graphG
′
= (V

′
,E

′
) and the edge cost function such that the

algorithmAPP finds a feasible solution with a value no greater thanα times
the optimal cost if and only if G contains C, whereC is a node cover ofG,
i.e. a subset ofV such that all the edges ofG are adjacent to at least one node
of C.

The graphG
′

contains the followingm = |E| + k + 1 node sets (clusters),
V
′
1 , ..., V

′
m:

• V
′
1 consists of a single node denoted byr,

• V
′
2 , ..., V

′
k+1 are identical node sets, each of which has|V | nodes corre-

sponding to the nodes ofV , and

• |E| node sets,V
′
k+2, ..., V

′
m, each of which contains a single node corre-

sponding to an edgee ∈ E.
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Edges inG
′
are constructed as follows:

(i) Each node ofV
′
t for all t = 2, ..., k + 1 is connected tor by an edge.

The set consisting of these edges is denoted byE
′
1.

(ii) Let i be a node ofV
′
t for any t ∈ {2, ..., k + 1} and j be a node of

V
′
t for any t ∈ {k + 2, ...,m}. Then, an edge is constructed betweeni

andj if the edge ofG corresponding toj is incident to the node ofG
corresponding toi, and letE

′
2 denote the set of those edges.

(iii) We also construct an edge betweeni andj even though the edge ofG
corresponding toj is not incident to the node ofG corresponding toi,
and we letE

′
3 denote the set of those edges.

We letE
′
= E

′
1 ∪E

′
2 ∪E

′
3.

The cost of each edge is defined as follows:

cij =





0 for all i, j ∈ E
′
1

1 for all i, j ∈ E
′
2

(|E|+ 1)α for all i, j ∈ E
′
3.

We claim thatG containsC if and only if

APP (I) ≤ α|E|,
where instanceI corresponds toG

′
and its cost function.

Note that there always exists a generalized spanning tree inG
′
: all the clusters

different from the identical clustersV
′
2 , ..., V

′
k+1 have only one node and if we

selectk nodes fromV
′
2 , ..., V

′
k+1 , one node from each cluster such that each

node ofC is included, then thesek nodes together with the remaining nodes
selected always uniquely form a generalized spanning tree ofG

′
using edges

in E
′
1 ∪E

′
2 , by the definition ofG

′
.

Suppose now thatG
′
contains a generalized spanning tree and letC be a set

of distinct nodes selected from the clusters,V
′
2 , ..., V

′
k+1 in the tree, thenC is

a node cover ofG.

Therefore, we showed that a generalized spanning tree only using edges in
E
′
1 ∪E

′
2 exists inG

′
if and only if G contains a node coverC.
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If G containsC, thenOPT (I) = |E|. Moreover, ifG does not containC,
then any generalized spanning tree ofG

′
should use at least one edge inE

′
3

and thus

OPT (I) ≥ |E| − 1 + α(|E|+ 1) > α|E|.
In particular ifG contains a node coverC then the approximation algorithm
APP will produce a solution with value

APP (I) ≤ α|E| = αOPT (I),

i.e. the solution does not use any edge fromE
′
3 andAPP identifies a node

cover.
¤

However, under further assumptions, in the next section we present a positive
result for the GMST problem.

4.4 An Approximation Algorithm for Bounded
Cluster Size

As we have seen in the previous section there exists noα-approximation al-
gorithm for the GMST problem under the assumptionP 6= NP.

However under the following assumptions:

A1: the graph has bounded cluster size, i.e.|Vk| ≤ ρ, for all k = 1, ...m

A2: the cost function is strict positive and satisfies the triangle inequality,
i.e. cij + cjk ≥ cik for all i, j, k ∈ V ,

a polynomial approximation algorithm for the GMST problem is possible.

In this section under the above assumptions we present an approximation al-
gorithm for the GMST problem with performance ratio 2ρ. The approxima-
tion algorithm is constructed following the ideas of Slavik [71] where the
Generalized Traveling Salesman Problem and Group Steiner Tree Problem
have been treated.
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4.4.1 An integer programming formulation of the GMST
problem

We consider the following integer programming formulation of the GMST
problem:

Problem IP1:

Z1 = min
∑
e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m} (4.2)

x(δ(S)) ≥ zi, ∀ i ∈ S, ∀S ⊂ V such that for (4.3)

some clusterVk, with k ∈ K, S ∩ Vk = ∅
x(E) = m− 1 (4.4)

xe ∈ {0,1}, ∀ e ∈ E (4.5)

zi ∈ {0,1}, ∀ i ∈ V. (4.6)

We used here the standard notations introduced in Section 3.1.

In the above formulation condition (4.2) guarantees that a feasible solution
contains exactly one vertex from every cluster. Condition (4.3) guarantees that
any feasible solution induces a connected subgraph. Condition (4.4) simply
assures that any feasible solution hasm− 1 edges and due to the fact that the
cost function is strictly positive this constraint is redundant.

Consider now the linear programming relaxation of the integer programming
formulation of the GMST problem. In order to do that, we simply replace
conditions (4.5) and (4.6) in IP1 by new conditions:

0 ≤ xe ≤ 1, for all e ∈ E, (4.7)

0 ≤ zi ≤ 1, for all i ∈ V. (4.8)

4.4.2 An Approximation Algorithm for the GMST problem

We assume that the assumptions A1 and A2 hold.

The algorithm for approximating the optimal solution of the GMST problem
is as follows:
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Algorithm ”Approximate the GMST problem”

Input: A complete graphG = (V,E) with strictly positive cost function
on the edges satisfying the triangle inequality, and with the nodes
partitioned into the clustersV1, ..., Vm with bounded size,|Vk| ≤ ρ.

Output: A treeT ⊂ G spanning some verticesW
′ ⊂ V which includes ex-

actly one vertex from every cluster, that approximates the optimal
solution to the GMST problem.

1. Solve the linear programming relaxation of the problem IP1 and let
(z∗, x∗,Z∗1 ) = ((z∗i )n

i=1, (x
∗
e)e∈E ,Z∗1 ) be the optimal solution.

2. SetW ∗ =
{

i ∈ V |z∗i ≥ 1
ρ

}
and considerW

′ ⊂ W ∗, with the prop-

erty thatW
′

has exactly one vertex from each cluster, and find a
minimum spanning treeT ⊂ G on the subgraphG

′
generated by

W
′
.

3. OutputAPP = cost(T ) and the generalized spanning treeT .

Even though the linear programming relaxation of the problem IP1 has ex-
ponentially many constraints, it can still be solved in polynomial time ei-
ther using the ellipsoid method with a min-cut max-flow oracle [32] or using
Karmarkar’s algorithm [42] since the linear programming relaxation can be
formulated ”compactly” (the number of constraints polynomially bounded)
using flow variables see Section 3.4.

4.4.3 Auxiliary results

We start this subsection with a result established by Goemans and Bertsimas
[29] and calledparsimonious property.

Given a complete undirected graphG = (V,E). We associate with each edge
(i, j) ∈E a costcij and for any pair(i, j) of vertices, letrij be the connectivity
requirement betweeni andj (rij is assumed to be symmetric, i.e.rij = rji).
A network is calledsurvivableif it has at leastrij edge disjoint paths between
any pair(i, j) of vertices.

Thesurvivable network design problemconsists in finding the minimum cost
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survivable network. This problem can be formulated by the following integer
program:

(IP∅(r)) IZ∅(r) = min
∑
e∈E

cexe

s.t. x(δ(S)) ≥ max
(i,j)∈δ(S)

rij, S ⊂ V, S 6= ∅ (4.9)

0 ≤ xe, e ∈ E,

xe integral, e ∈ E.

We denote byIZ∅(r) the optimal value of the above integer program. Let
(P∅(r)) denote the linear programming relaxation of(IP∅(r)) obtained by
dropping the integrality restrictions and letZ∅(r) be its optimal value.

By definition the degree of vertexi ∈ V is dx(i) = x(δ(i)), for any feasible
solutionx, either to(IP∅(r)) or to (P∅(r)). Because of constraints (4.9) for
S = {i}, the degree of vertexi is at least equal tomax

j∈V \{i}
rij. If dx(i) =

max
j∈V \{i}

rij , then we say thatx is parsimoniousat vertexi. If we impose

that the solutionx is parsimonious at all the vertices of a setD ⊆ V , we get
some interesting variations of(IP∅(r)) and(P∅(r)), denoted by(IPD(r)) and
(PD(r)) respectively. The formulation of(IPD(r)) as an integer program is:

(IPD(r)) IZD(r) = min
∑
e∈E

cexe

s.t. x(δ(S)) ≥ max
(i,j)∈δ(S)

rij, S ⊂ V, S 6= ∅
x(δ(i)) = max

j∈V \{i}
rij, i ∈ D, D ⊆ V

0 ≤ xe, e ∈ E

xe integral, e ∈ E.

We denote byIZD(r) the optimal value of the above integer program. Let
(PD(r)) denote the linear programming relaxation of(IPD(r)) obtained by
dropping the integrality restrictions and letZD(r) be its optimal value.

Theorem 4.2 (parsimonious property, Goemans and Bertsimas [29])
If the costscij satisfy the triangle inequality, then

Z∅(r) = ZD(r)
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for all subsetsD ⊆ V. ¤

The proof of this theorem is based on a result on connectivity properties of
Eulerian multigraphs, due to Lovász [50].

Let nowW ⊂ V and consider the following linear program:

Problem LP2:

Z∗
2(W ) = min

∑
e∈E

cexe

s.t. x(δ(S)) ≥ 1, S ⊂ V, s.t.W ∩ S 6= ∅ 6= W \ S(4.10)

x(δ(i)) = 0, i ∈ V \W, (4.11)

0 ≤ xe ≤ 1, e ∈ E. (4.12)

Replacing constraints (4.12) with the integrality constraintsxe ∈ {0,1}, the
formulation obtained is the formulation of the minimum tree spanning the
subset of nodesW ⊂ V .

Consider the following relaxation of the problem LP2.

Problem LP3:

Z∗
3(W ) = min

∑
e∈E

cexe

s.t. x(δ(S)) ≥ 1, S ⊂ V, s.t.W ∩ S 6= ∅ 6= W \ S

0 ≤ xe, e ∈ E. (4.13)

Thus we omitted constraint (4.11) and relaxed constraint (4.12).

The following result is a straightforward consequence of the parsimonius
property, if we chooserij = 1, if i, j ∈W , and 0 otherwise, andD = V \W .

Lemma 4.1 The optimal solution values to problems LP2 and LP3 are the
same, that is

Z∗
2(W ) = Z∗

3(W ).

¤
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Consider the following problem:

Problem IP4:

Z4 = min
∑
e∈E

cexe

s.t. x(δ(S)) ≥ 1, S ⊂ V, s.t.S 6= ∅ 6= V (4.14)

xe ∈ {0,1}, e ∈ E. (4.15)

Clearly, it is the integer programming formulation of the MST (minimum
spanning tree) problem. Let LP4 be the LP relaxation of this formulation,
that is, we simply replace the constraint (4.15) by the constraint0 ≤ xe ≤ 1,
for all e ∈ E.

Denote byZ∗
4 the value of the optimal solution of the LP4. The following

known result for minimum spanning trees holds:

Proposition 4.1

LT (V ) ≤ (2− 2

|V |)Z
∗
4 ,

whereLT (V ) denotes the cost of the minimum spanning tree on V.

Proof: See for example [71]. ¤

Let W ⊂ V , then Proposition 4.1 can be easily modified to obtain:

Proposition 4.2

LT (W ) ≤ (2− 2

|W |)Z
∗
2(W ).

Proof: Let (xe) be a feasible solution to LP2. Ife /∈ E(W ) = {(i, j) | i, j ∈
W} impliesxe = 0 and using Proposition 4.1 we prove the inequality. ¤

4.4.4 Performance Bounds

Let (z∗, x∗,Z∗
1) = ((z∗i )

n
i=1, (x

∗
e)e∈E,Z∗

1) be the optimal solution to the linear
programming relaxation of the GMST problem. Define

x̂e = ρx∗e
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ẑi =





1 if z∗i ≥
1

ρ

0 otherwise.

W ∗ =

{
i ∈ V | z∗i ≥

1

ρ

}
= {i ∈ V | ẑi = 1}. Because we need only one

vertex from every cluster we delete extra vertices fromW ∗ and consider
W

′ ⊂ W ∗ such that|W ′| = m andW
′

consists of exactly one vertex from
every cluster.

Since LP1 is the linear programming relaxation of the problem IP1, we have

Z∗
1 ≤ Z1.

Now let us show that(x̂e)e∈E is a feasible solution to LP3 withW = W
′
.

Indeed,̂xe ≥ 0 for all e ∈ E, hence condition (4.13) is satisfied. LetS ⊂ V
be such thatW

′ ∩ S 6= ∅ 6= W
′ \ S and choose somei ∈W

′ ∩ S. Hencêzi =
1 andz∗i ≥ 1

ρ
. Then we have

x̂(δ(S)) =
∑

e∈δ(S)

x̂e = ρ
∑

e∈δ(S)

x∗e ≥ ρz∗i ≥ ρ
1

ρ
= 1,

by definition ofx̂e and the fact that the(x∗e) solve LP1. Hence the(x̂e) satisfy
constraint (4.10) in LP3.

Therefore, for the algorithmAPP on page 65

APP = LT (W
′
) ≤ (2− 2

|W ′|)Z
∗
2(W

′
) = (2− 2

|W ′|)Z
∗
3(W

′
)

≤ (2− 2

|W ′ |)
∑
e∈E

cex̂e = (2− 2

|W ′|)ρ
∑
e∈E

cex
∗
e = (2− 2

|W ′|)ρZ∗
1

≤ (2− 2

|W ′ |)ρZ1 = (2− 2

|W ′|)ρOPT.

And sinceW
′ ⊂ V , that is, m =|W ′| ≤ |V | = n, we have proved the following.
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Theorem 4.3 The performance ratio of the algorithm ”Approximate GMST
problem” for approximating the optimum solution to the GMST problem sat-
isfies:

APP

OPT
≤ (2− 2

n
)ρ.

¤

In what follows we generalize the algorithm ”Approximate GMST problem”
and its analysis to the case when, in addition to the costcij associated with
each edgee = (i, j) ∈ E, there is a cost, saydi , associated with each vertex
i ∈ V .

In this case the GMST problem can be formulated as the following integer
program:

OPT = min
∑
e∈E

cexe +
∑
i∈V

dizi

s.t. (4.2)− (4.6).

Suppose that(x, z) is an optimal solution. Then the optimal valueOPT of
this integer program consists of two parts:

LOPT :=
∑
e∈E

cexe andVOPT :=
∑
i∈V

dizi.

Under the same assumptions A1 and A2, the algorithm for approximating the
optimal solution of the GMST problem in this case, is as follows:

1. Solve the linear programming relaxation of the previous integer pro-
gram and let(z∗, x∗) = ((z∗i )n

i=1, (x
∗
e)e∈E) be the optimal solution.

2. SetW ∗ =
{

i ∈ V |z∗i ≥ 1
ρ

}
and considerW

′ ⊂ W ∗ with the prop-

erty thatW
′

has exactly one vertex from each cluster, and find a
minimum spanning treeT ⊂ G on the subgraphG

′
generated by

W
′
.

3. OutputAPP = ecost(T ) + vcost(T ) and the generalized spanning
treeT .
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where byecost(T ) andvcost(T ) we denoted the cost of the treeT with re-
spect to the edges, respectively to the nodes.

Regarding the performance bounds of this approximation algorithm, using the
same auxiliary results and defining(x̂e, ẑi) as we did at the beginning of this
subsection, the following inequalities hold:

LT (W
′
) ≤ ρ(2− 2

n
)LOPT ,

V T (W
′
) ≤ ρVOPT ,

whereLT (W
′
), V T (W

′
) denote the cost of the treeT spanning the nodes of

W
′

with respect to the edges, respectively to the nodes and as beforeW
′ ⊂

W ∗ =

{
i ∈ V | z∗i ≥

1

ρ

}
, such that|W ′| = m andW

′
consists of exactly one

vertex from every cluster.

For the approximation algorithm proposed in this case, the following holds:

APP = LT (W
′
) + V T (W

′
) ≤ ρ(2− 2

n
)LOPT + ρVOPT

≤ ρ(2− 2

n
)(LOPT + VOPT ) = ρ(2− 2

n
)OPT.

4.5 Concluding remarks

We have distinguished between so-called positive results and negative results
in the area of approximation algorithms.

We presented an in-approximability result: there is noα-approximation al-
gorithm for the GMST problem unlessP = NP. However, under special
assumptions (see Section 4.4) we give an approximation algorithm for the
GMST problem.
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Chapter 5

Linear Programming, Lagrangian
and Semidefinite Relaxations

As was remarked in Chapter 1 of this thesis, finding good solutions for hard
minimization problems in combinatorial optimization requires the considera-
tion of two issues:

• calculation of an upper bound that is as close as possible to the opti-
mum;

• calculation of a lower bound that is as close as possible to the optimum.

General techniques for generating good upper bounds are essentially heuristic
methods which we are going to consider in Chapter 7 of the thesis. In addition,
for any particular problem, we may well have techniques which are specific
to the problem being solved.

To obtain lower bounds, one well-known technique is Linear Programming
(LP) relaxation. In LP relaxation we take an integer (or mixed-integer) pro-
gramming formulation of the problem and relax the integrality requirement
on the variables. This gives a linear program which can either be:

• solved exactly using a standard algorithm (simplex or interior point); or

• solved heuristically (dual ascent).

The solution value obtained for this linear program gives a lower bound on
the optimal value of the original minimization problem.
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Another well-known technique to find lower bounds is Lagrangian relaxation.
The general idea is to ”relax” (dualize) some (or all) constraints by adding
them to the objective function using Lagrangian multipliers. Choosing values
for the Lagrangian multipliers is of key importance in terms of quality of the
lower bound generated.

Semidefinite programming (SDP) is currently a very exciting and active area
of research. Combinatorial optimization problems often involve binary (0,1 or
+1,-1) decision variables. These can be modelled using quadratic constraints
x2 − x = 0, andx2 = 1, respectively. Using the positive semidefinite matrix
relationshipX = xxT , we can lift the problem into matrix space and obtain
a Semidefinite Programming Relaxation by ignoring the rank 1 restriction on
X, see e.g. [49]. These semidefinite relaxations provide tight bounds for
many classes of hard problems and in addition can be solved efficiently by
interior-point methods.
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5.1 Lagrangian Relaxation

5.1.1 Basic principles

The description of this section follows the presentations of Bertsimas and
Tsitsiklis [5] and Faigleet al. [16].

We consider the following optimization problem:

z∗1 = min {f(x) | g(x) ≤ 0, h(x) ≤ 0, x ∈ X} (5.1)

Dualizing the constraintsg(x) ≤ 0 with Lagrangian multipliersλ, λ ≥ 0,
yields the lower bound forz∗1

L(λ) = min
x∈X

{f(x) + λT g(x) | h(x) ≤ 0}. (5.2)

Here the functionL (function of λ) is calledLagrangian dual function(or
just dual function). Since the dual function is the pointwise minimum of a
family of affine functions,L(λ) is concave, even when the problem (5.1) is
not convex.

The best bound of this type arises from the solution of theLagrangian dual
problem

max
λ≥0

L(λ). (5.3)

The difference between the optimal value of problems (5.1) and (5.3) is called
duality gap, which is always a nonnegative number. We prove this last result
in Theorem 5.1, in the special case of integer linear programming.

The crucial question is which constraints to dualize. The more constraints
are dualized, the weaker the bound becomes. On the other hand, dualizing
more constraints facilitates the computation ofL(λ). In the extreme case, if
all constraints are dualized, the computation ofL(λ) has no side constraints
to consider. There is a trade off between the quality of the bounds we obtain
and the effort necessary for their computation. Generally, one would dualize
only the ”nasty” constraints, i.e. those that are difficult to deal with directly.

Held and Karp [33], [34] were the first to apply the idea of Lagrangian relax-
ation to integer linear programs. Assume we are given an integer program of
the form
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z∗IP = min {cT x | Ax ≥ b, Bx ≥ d, x ∈ Zn} (5.4)

for given integral matrices A, B and vectors b, c, d and letz∗IP be the optimum
value of (5.4). Dualizing the constraintsb−Ax ≤ 0 with multipliersu ≥ 0
yields the lower bound

L(u) = min {cT x + uT (b−Ax) | Bx ≥ d, x ∈ Zn}
= uT b + min {(cT − uT A)x | Bx ≥ d, x ∈ Zn}

for z∗IP and thus the Lagrangian dual problem is

z∗D = max
u≥0

L(u). (5.5)

where byz∗D we denoted the optimal value of the Lagrangian dual problem.

The following general result holds (cf. e.g. [16]):

Theorem 5.1 We havez∗D ≤ z∗IP .

Proof: Let x∗ denote the optimal solution to (5.4). Thenb− Ax∗ ≤ 0 and
therefore

L(u) ≤ cT x∗ + uT (b−Ax∗) ≤ cT x∗ = z∗IP

for all u ≥ 0, and therefore

z∗D = max
u≥0

L(u) ≤ z∗IP .

¤

The previous theorem represents the weak duality theory of integer program-
ming. Unlike common linear programming, linear integer programming does
not have a strong duality theorem.

We next investigate the quality of the boundz∗D in comparison to the one
provided by the linear programming relaxation

z∗LP = min {cT x | Ax ≥ b, Bx ≥ d}, (5.6)

which we obtain by dropping the integrality constraintsx ∈ Zn.

The following general result holds (cf. e.g. [16]):
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Theorem 5.2 We havez∗LP ≤ z∗D .

Proof: The proof follows from the fact that the Lagrangian dual of a linear
program equals the linear programming dual. We obtain the inequality by
applying linear programming duality twice:

z∗D = max
u≥0

L(u)

= max
u≥0

{uT b + min{(cT − uT A)x | Bx ≥ d, x ∈ Zn}}
≥ max

u≥0
{uT b + min{(cT − uT A)x | Bx ≥ d}}

= max
u≥0

{uT b + max{dT v | vT B = c− uT A, v ≥ 0}}
= max{uT b + vT d | uT A + vT B = c, u ≥ 0 v ≥ 0}
= min {cT x | Ax ≥ b, Bx ≥ d} = z∗LP .

¤

Remark 5.1 As the proof of Theorem 5.2 shows,z∗LP = z∗D holds if and only
if the integrality constraintx ∈ Zn is redundant in the Lagrangian dual prob-
lem definingz∗D. In this case, the Lagrangian is said to have theintegrality
property, cf [23]. ¤

It turns out that solving the Lagrangian dual problem amounts to maximizing
a ”piecewise linear” function of a certain type. We say that a functionf :
Rn → R is piecewise linear concaveif f is obtained as a minimum of a finite
number of affine functionsfi : Rn → R (see Figure 5.2).
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Figure 5.2: f(u) = min{fi(u) | 1 ≤ i ≤ k}

5.1.2 Solving the Lagrangian dual

In this subsection, we outline the subgradient method for computing the best
possible lower boundL(u∗) and solving the Lagrangian dual

z∗D = max
u≥0

L(u).

We start with some definitions:

Definition 5.1 Let f be a concave function onRn. A vectorγ such that

f(x) ≤ f(x) + γT (x− x),

for all x ∈ Rn, is called asubgradient of f at x. The set of all subgradients
of f atx is denoted by∂f(x) and is called thesubdifferential of f atx. ¤

If the function f is differentiable atx, then it can be verified that∂f(x) con-
tains only one element: the gradient of f atx, i.e. ∂f(x) = {∇T f(x)}.
The Lagrangian functionL(u) is subdifferentiable everywhere, i.e., for all
u ≥ 0 there exists a subgradient ofL(u) at u. For every optimal solutionxu

of L(u), the vectorb−Axu is a subgradient ofL atu:
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L(u) = cT xu + uT (b−Axu)

≤ cT xu + uT (b−Axu)

= cT xu + uT (b−Axu) + (b−Axu)
T (u− u)

= L(u) + (b−Axu)
T (u− u).

Any other subgradient is a convex combination of these subgradients (cf [5]).
It is clear thatu∗ is an optimal solution of the Lagrangian dual problem if and
only if 0 ∈ ∂L(u∗).

Remark 5.2 It can be shown that if the Lagrangian problemL(u) can be
solved in polynomial time for eachu ≥ 0, then the Lagrangian dual problem
can be solved in polynomial time (see, Schrijver [69], p. 368) ¤

Calculating the exact value may cost too much time, although it might be done
in polynomial time. Therefore, one often only approximates the optimal solu-
tion of the Lagrangian dual problem. The subgradient method is an algorithm
that is used very often in practice to approximate the value of the Lagrangian
dual.

The subgradient optimization algorithm

1. Choose a starting pointu1 ≥ 0 and a sequenceθk; let k = 1.

2. Givenuk, choose a subgradientγk ∈ ∂L(uk). If γk = 0, thenuk is
an optimal solution and the algorithm stops. Else defineuk+1 by

uk+1 = ProjU (uk + θkγ
k).

3. If a stopping criterion is satisfied, then stop. Else setk ← k + 1 and
goto Step 2.

In Step 2, because we want to haveuk+1 ≥ 0, we project the resulting vector
uk+1 onto the set of feasible multipliersU = {u ≥ 0} and obtain

uk+1 = ProjU(uk + θkγ
k),

79



whereθk is a positive stepsize parameter.

Often a limit on the number of iterations is used as a stopping criterion. The
maximum number of iterations is determined by practical experiments. The
convergence of the subgradient method depends essentially on the procedure
of choosing the step sizesθk. The appropriate choice of the step size is a del-
icate problem both in theory and practice. It can be proved that the sequence
of best values generated by the subgradient optimization algorithm

Lk := max {L(ui) : i = 1, ..., k}
converges to the maximum value ofL(·), for any stepsize sequenceθk such
that

lim
k→∞

θk = 0 and

∞∑

k=0

θk =∞

(see [37]). An example of such a sequence isθk = 1
k

. However, this leads
to slow convergence, and other choices for the step sizes, which are more
efficient in practice, often are used. An example is

θk = θ0α
k, k = 1,2, ...,

whereα is a scalar satisfying0 < α < 1. A more sophisticated and popular
rule is to let

θk =
ẑD −L(uk)

‖γk‖2
αk,

whereα satisfies0 < α < 1 andẑD is an appropriate estimate of the optimal
valuez∗D.

5.2 Semidefinite Programming

Semidefinite programming (SDP) is an extension of the linear programming
(LP). In comparison to standard LP the vectors are replaced by matrix vari-
ables and nonnegativity elementwise is replaced by positive semidefiniteness.
In addition, LP and SDP are special cases of the conic programming (CP)
problem:
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min < c,x >
s.t. Ax = b

x ∈ K,

whereK is a convex cone (K + K ⊆K andαK ⊆K, ∀α ≥ 0), A is a linear
operatorA : Rn → Rm, vectorsc ∈ Rn, b ∈ Rm and<,> is an inner product
onRn. LetSn denote the set ofn× n symmetric matrices .

LP is obtained withK = Rn
+ (the non-negative orthant) whereas SDP is ob-

tained by lettingK = P (the cone of positive semidefinite matrices). The
cone of positive semidefinite matrices induces a partial order on the setSn,
called theLöwner partial order

for A,B ∈ Sn A º B if A−B ∈ P
This is the origin of the notationA º 0 for positive semidefinite matrices.

We now discuss in more detail the similarities and differences between LP
and SDP.

5.2.1 Geometry

The geometry of polyhedral sets developed for linear programming can be
extended to semidefinite programming. This was studied as early as 1948 by
Bohnenblust [6] and later by Taussky [73] and also Barker and Carlson [2].

Some results similar to LP are: the SDP cone isselfpolar , i.e.

P = P+ := {Y | X • Y ≥ 0, ∀X ∈ P},
whereX • Y = Trace XY is the trace inner product. In the spaceRn, by
definition the trace inner product is the usual inner product, i.e.x • y = xT y.

Also,P ishomogeneous, i.e. for anyX,Y ∈ int(P), there exists an invertible
linear operatorA that leavesP invariant andA(X) = Y (see [76]).

5.2.2 Duality and Optimality Conditions

Extensions of the optimality conditions and duality theory from linear pro-
gramming to semidefinite programming appeared in [4]. However, unlike the
LP case, strong duality theorems require a Slater-type constraint qualification.

81



This Slater-type constraint qualification means strict feasibility, i.e., there ex-
ists a feasible point in the interior ofP (see Definition 5.2).

Now, consider the typical primal semidefinite program

min C •X
(PSDP ) s.t. A(X) = b

X º 0,

whereC ∈ Sn, b ∈ Rm, andA : Sn → Rm, is a linear operator, i.e. the
components are defined as

(A(X))i = Ai •X = bi,

for some given symmetric matricesAi.

In order to derive the dual of this program we need the adjoint operator ofA.
By definition, it is the operatorAT : Rm → Sn, satisfying

A(X) • y = X •AT (y), ∀X ∈ Sn, ∀y ∈ Rm,

where by definition,A(X) • y =AT (X)y, i.e. in theRm space the trace inner
product is the usual inner product.

Since,

A(X) • y =
m∑

i=1

yi Trace(AiX) = Trace(X
m∑

i=1

yiAi) = X •
m∑

i=1

yiAi,

we obtain

AT (y) =
m∑

i=1

yiAi.

For constructing the dual we use a Lagrangian approach. The primal equality
constraints are lifted into the objective by means of a Lagrange multiplier
y ∈ Rm so that the primal problem readsminXº0 maxy∈Rm C •X + yT (b−
A(X)). The dual of the (PSDP) is obtained by interchanging min and max,

min
Xº0

max
y∈Rm

C •X + yT (b−A(X)) ≥ max
y∈Rm

min
Xº0

yT b + (C −AT (y)) •X.
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The construction implies that the right hand side value cannot exceed the value
of the primal problem (see, e.g., Rockafellar [66], Lemma 36.1). For the
maximum on the right hand side to be finite, the inner minimization over
X º 0 must remain finite for somêy ∈ Rm. This requiresC −AT (ŷ) to be
positive semidefinite. We write this condition by introducing a slack matrix
Z,

max bT y
(DSDP ) s.t. AT y + Z = C

y ∈ Rm, Z º 0.

This is the standard formulation of the dual semidefinite program to (PSDP).

The gap between a dual feasible solution(y,Z) and a primal feasible solution
X is

Trace CX − bT y = Trace(AT y + Z)X −A(X) • y = Trace ZX ≥ 0.

This shows that the duality gap is always nonnegative. The last inequality
follows from the following well-known lemma:

Lemma 5.1 LetA,B ∈ Sn, A,B º 0. ThenA •B ≥ 0. MoreoverA •B = 0
if and only ifAB = 0.

Proof: AB = 0 directly impliesA • B = Trace (AB) = 0. To prove the
converse, consider the transformation ofA,B º 0 to diagonal form

A =
n∑

i=1

αiqiq
T
i , B =

n∑
j=1

βjvjv
T
j ,

whereqi, vj are the orthonormal eigenvectors andαi, βj the corresponding
eigenvalues ofA,B. Then withA •B = Trace (AB) we find usingαiβj ≥ 0

A •B =
n∑

i,j=1

αiβj(qiq
T
i vjv

T
j ) =

n∑
i,j=1

αiβj(v
T
j qiq

T
i vj) =

n∑
i,j=1

αiβj(q
T
i vj)

2 ≥ 0

Moreover,A •B = 0 impliesαiβj(q
T
i vj)

2 = 0 or αiβj(q
T
i vj) = 0 for all i, j

and then
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AB =
n∑

i,j=1

αiβjqiq
T
i vjv

T
j =

n∑
i,j=1

αiβj(q
T
i vj)(qiv

T
j ) = 0.

¤

In the following we state that the gap between optimal primal and dual objec-
tive value is guaranteed to be zero (i.e. strong duality holds) if at least one of
(PSDP) and (DSDP) has a strictly feasible point.

Definition 5.2 A point X is strictly feasible for (PSDP) if it is feasible for
(PSDP) and satisfiesX Â 0 (i.e. X is positive definite).
A pair (y,Z) is strictly feasible for (DSDP) if it is feasible for (DSDP) and
satisfiesZ Â 0 (i.e. Z is positive definite). ¤

Theorem 5.3 (Strong Duality)
Assume that there exists a strictly feasible solution(ŷ, Ẑ) for (DSDP) and let

p∗ = min {C •X | A(X) = b, X º 0} and

d∗ = max {bT y | AT (y) + Z = C, Z º 0}.
Thenp∗ = d∗ and ifp∗ is finite it is attained for someX ∈ {X º 0 | A(X) =
b}.
Proof: See for example [76] or [63]. ¤

The optimality conditions for (PSDP) and (DSDP) are

AT (y) + Z −C = 0 dual feasibility
b−A(X) = 0 primal feasibility
XZ = 0 complementary slackness
X,Z º 0.

X, (y,Z) satisfying these conditions are called a primal-dual optimal pair,Z
is the (dual) slack variable. In the case that complementary slackness may
fail, the variables are called a primal-dual feasible pair. Feasible solutionsX
andZ satisfying the last equality constraint are calledcomplementary. The
complementary slackness constraint can be written in the equivalent formZ •
X = 0 (conform Lemma 5.1). The above conditions imply a zero duality gap
since
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Trace ZX = Trace(C −AT y)X = Trace CX − yT b.

If we perturb the complementary slackness condition,

ZX = µI, µ > 0,

then we get the optimality conditions for a log-barrier problem (see [67]).
These are the equations that are used in interior-point methods. However,
unlike linear programming there is an interesting subtle complication. One
cannot apply Newton’s method directly, sinceZX is not necessarily symmet-
ric (i.e. XZ 6= ZX), and so we end up with an overdetermined system of
equations. There are various ways of modifying this system in order to get
good search directions, see e.g. [53], [74]. Many of these directions work very
well in practice. The algorithms that currently work well are the primal-dual
interior-point algorithms.

5.3 Lagrangian duality for quadratic programs

The material introduced in Sections 5.1 and 5.2 will be used now to apply
Lagrange duality to quadratic optimization problems. The remaining of this
chapter follows closely the paper of Lemaréchal and Oustry [48]. In addi-
tion at page 93, we have added a comparison of the lower bounds obtained
by linear and complete dualizations with the bounds given by the linear pro-
gramming relaxation.

5.3.1 Dualizing a quadratic problem

We start with a well-know lemma, which will be used throughout this chapter:

Lemma 5.2 (Schur’s Lemma)
For Q ∈ Sp, P ∈ Sn and ST = (s1, ..., sp) ∈ Rn×p the following two state-
ments are equivalent:

i) The matrix

(
P ST

S Q

)
is positive definite (respectively positive semidefi-

nite).
ii) The matricesQ and P − ST Q†S are both positive definite (respectively
positive semidefinite) andsi ∈ R(Q), for i = 1, ..., p; these last range condi-
tions are automatically satisfied whenQ Â 0 (thenR(Q) = Rp).
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In the above lemma we denoted byQ† the pseudo-inverse of the matrixQ.

Givenm + 1 quadratic functions defined onRn:

qj(x) := xT Qjx + bT
j x + cj, j = 0, ...,m, (5.7)

with Qj ∈ Sn, bj ∈ Rn andcj ∈ R, for j = 0, ...,m; we assumec0 = 0. We
consider the quadratic problem

min
x∈Rn

q0(x),

s.t. qj(x) = 0, j = 1, ...,m . (5.8)

Dualizing the costraints (5.8) with Lagrangian multipliersu ∈ Rm yields the
following Lagrangian dual function:

L(u) = min
x∈Rn

{xT Q(u)x + b(u)T x + c(u)},

whereQ(u) := Q0 +
m∑

j=1

ujQj, b(u) := b0 +
m∑

j=1

ujbj, c(u) :=
m∑

j=1

ujcj = cT u.

The dual problem is to maximizeL. In fact the Lagrangian dual function can
be computed explicitly:

Proposition 5.1 (Lemaŕechal and Oustry [48])

L(u) =

{
c(u)− 1

4
b(u)T Q(u)†b(u) if Q(u) º 0 andb(u) ∈ R(Q(u)),

−∞ otherwise.

whereQ† is the pseudo-inverse ofQ andR(Q) is the range (column space)
of Q.

Proof: The proof comes directly from the theory regarding the infimum of a
quadratic function (see [48]). ¤

86



We want to compute the best lower bound and hence to solve the Lagrangian
dualmax

u
L(u), which we reformulate as follows (withu ∈ Rm andr ∈ R):

max
u

L(u) = max
u,r

{r | L(u) ≥ r}
= max

u,r
{r | xT Q(u)x + b(u)T x + c(u) ≥ r, ∀x ∈ Rn}

= max
u,r

{r | (1, xT )

(
c(u)− r 1

2
b(u)T

1
2
b(u) Q(u)

)(
1
x

)
≥ 0, ∀x ∈ Rn}

= max
u,r

{r |
(

c(u)− r 1
2
b(u)T

1
2
b(u) Q(u)

)
º 0}.

Therefore the dual problem is equivalent to the following SDP problem with
variablesu ∈ Rm andr ∈ R:

max
u∈Rm,r∈R r

s.t.

(
c(u)− r 1

2
b(u)T

1
2
b(u) Q(u)

)
º 0. (5.9)

Applying duality again to the semidefinite problem (5.9) which is the same
with bidualizing the quadratic problem (5.8). we obtain that the dual of (5.9),
i.e., bidual of (5.8) is:

min Q0 •X + bT
0 x, X ∈ Sn, x ∈ Rn

(SDP ) s.t. Qj •X + bT
j x + cj = 0, j = 1, ...,m(

1 xT

x X

)
º 0.

Applying the weak duality theory twice, we see that

val(5.8) ≥ val(5.9) ≤ val(SDP ),

where byval(·) we denote the optimal value of an optimization problem (·).
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5.3.2 The lifting procedure

There exists a strong similarity between the quadratic problem (5.8) and the
semidefinite program denoted by (SDP) these two problems differ by the in-
troduction of the new variableX.

Using Schur’s Lemma, (SDP) can be written in the equivalent form:

min Q0 •X + bT
0 x, X ∈ Sn, x ∈ Rn

s.t. Qj •X + bT
j x + cj = 0, j = 1, ...,m (5.10)

X º xxT .

This new form gives us a direct interpretation of (SDP) without passing by
the intermediate problem (5.9):

- A quadratic formxT Qx can equivalently be written as

xT Qx = Qx • x = Q • xxT .

- By settingX := xxT , the quadratic problem (5.8) can be written as

min Q0 •X + bT
0 x, X ∈ Sn, x ∈ Rn

s.t. Qj •X + bT
j x + cj = 0, j = 1, ...,m (5.11)

X = xxT .

- In this last formulation of the quadratic problem (5.8), everything is linear
except the last constraint, which is nonconvex.

- Relax this last constraintX = xxT to X º xxT , which is now convex with
respect to(x,X).

The above procedure calledlifting procedurewas introduced in [49] in the
context of 0-1 programming.

Summarizing in terms of duality gaps the merits of the relaxations introduced
in this subsection we have:

val(5.9) ≤ val(SDP ) = val(5.10) ≥ val(5.8).
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The first inequality is weak duality between (5.9) and its dual (SDP). The
equality is Schur’s Lemma. The last inequality holds because the feasible
domain in (5.10) is larger than in (5.8).

It is worth to mentione that the first inequality often holds as an equality (for
example if an appropriate constraint qualification is satisfied).

5.4 Application to 0-1 programming

Consider the following combinatorial optimization problem:

min cT x

s.t. Ax = b (5.12)

x2
i − xi = 0, i = 1, ..., n.

In this program the boolean constraintsxi ∈ {0,1}, i = 1, ..., n were mod-
elled using the quadratic constraintsx2

i − xi = 0, i = 1, ..., n, and are the only
quadratic constraints.

Folllowing [48] we present three possible dualizations for the above 0-1 pro-
gram and compare the optimal values of the corresponding Lagrangian dual
problems.

5.4.1 Linear dualization

The first possibility is to lift the linear constraints into the objective by means
of a Lagrange multiplieru ∈ Rm. This kind of dualization is called linear
dualization. We obtain the following Lagrangian problem:

L1(u) = min
x∈{0,1}n

{cT x + uT (Ax− b)}.

This minimization overX = {0,1}n is trivial, the result is a piecewise linear
dual function:

L1(u) =
n∑

i=1

min {0, (c + AT u)i} − bT u. (5.13)

MaximizingL1 is therefore a nonsmooth optimization problem, which can be
done by a number of methods, see e.g. [37].
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5.4.2 Complete dualization

Another possible dualization consists in takingX = Rn and in dualizing all
the constraints: the linear as well as the boolean ones. This dualization, which
is called complete dualization, produces another Lagrangian problem, which
now depends on two dual variables(u, v) ∈ Rm ×Rn:

L2(u, v) = min
x∈Rn

{cT x + uT (Ax− b) +
n∑

i=1

vi(x
2
i − xi)}

= min
x∈Rn

{(c + AT u− v)T x + xT D(v)x} − bT u.

HereD(v) denotes the diagonal matrix constructed from the vectorv.

Minimizing the above Lagrangian with respect tox (on the wholeRn) can be
done using elementary calculations and we obtain:

L2(u, v) = −bT u +
n∑

i=1

Li(u, vi),

where

Li(u, vi) =





−(c + AT u− v)2
i

4vi

if vi > 0

0 if vi = 0 and(c + AT u)i = 0
−∞ otherwise.

Theorem 5.4 (Lemaŕechal and Oustry [48])
The linear and complete dualizations produce the same duality gap. More
precisely:

L1(u) = max
v∈Rn

L2(u, v). (5.14)

¤

Therefore the complete dualization is of moderate interest as compared to
linear dualization: it increases the number of dual variables and produces a
more complicated dual function, all this without improving the duality gap.
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Remark 5.3 Applying the lifting procedure to (5.12), we obtain

min
X∈Sn

cT d(X),

s.t. Ad(X) = b, j = 1, ...,m (5.15)

X − d(X)d(X)T º 0,

whered(X) is the vector obtained by extracting the diagonal ofX ∈ Rn×n.
Despite the appearances, this is a linear program inRn: X plays no role
except through the diagonal, therefore we can setXij = 0, for i 6= j, and
replaced(X) byx ∈ Rn. The semidefinite constraint becomes

X − xxT º 0⇔ xi ≥ x2
i , i = 1, ..., n⇔ 0 ≤ xi ≤ 1, i = 1, ..., n.

¤

In addition to the results obtained in [48], applying the results from Subsection
5.3, we were able to compare the linear programming relaxation bound of
(5.12) with the bounds provided by the linear and complete dualizations:

val(5.12) ≥ val(5.15) = val(LP ) ≥ max
u,v

L2(u, v).

whereval(LP ) denotes the optimal value of the linear programming relax-
ation of problem (5.12). Using Theorems 5.2 and 5.4, we have

val(5.12) ≥ val(5.15) = val(LP ) = max
u,v

L2(u, v) = max
u

L1(u).

This last result shows that the best bounds obtained using linear and com-
plete dualizations are equal to the optimal value of the linear programming
relaxation.

5.4.3 Boolean dualization

A third possibility for (5.12) is to dualize the boolean constraints. Then the
corresponding dual function is the optimal value of the problem

L3(v) = min
Ax=b

{(c− v)T x + xT D(v)x}. (5.16)

We will call this dualization scheme boolean dualization. Before computing
L3(v), we check that this complication is worth the effort.
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Theorem 5.5 (Lemaŕechal and Oustry [48])
There holdsmax

v
L3(v) ≥ max

u,v
L2(u, v) = max

u
L1(u).

Proof: The equality is Theorem 5.3. The inequality is a general result: when
more constraints are dualized, the duality gap can only increase (see for ex-
ample [16]). ¤

We want to computemaxv L3(v). If b /∈R(A) (i.e. Ax = b has no solution in
Rn) thenval(5.12) = +∞ andmaxv L3(v) = +∞; so there is no duality gap.
We therefore assume thatb = Ax̂ for somex̂ ∈ Rn. Assumem′ = rank(A)
(i.e. the rank of A), letZ be a matrix withn−m′ columns that form a basis
of N (A), whereN (A) denote the null space of A. Thus

Ax = b with x ∈ Rn ⇐⇒ x = x̂ + Zy with y ∈ Rn−m′
,

so that (5.12) is equivalent to the following problem iny

min cT Zy + cT x̂,

s.t. yT ZT
i Ziy + (2x̂T

i − 1)Ziy + x̂2
i − x̂i = 0, i = 1, ..., n . (5.17)

HereZi ∈ Rn−m′
denotes theith row ofZ.

Theorem 5.6 (Lemaŕechal and Oustry [48])
The dual valuemaxv L3(v), associated with (5.12), (5.16), is the value of the
SDP problem

max r

s.t.

(
ĉ(v)− r 1

2
b̂(v)T

1
2
b̂(v) Q(v)

)
º 0, (5.18)

where

ĉ(v) := x̂T D(v)x̂ + (c− v)T x̂,

b̂(v) := 2D(v)x̂ + c− v,
Q(v) := ZD(v)ZT .

¤
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5.4.4 Inequality constraints

Suppose that the general optimization problem (5.12) contains inequality con-
straints; say

min cT x

s.t. Ax ≤ b (5.19)

xi ∈ {0,1} i = 1, ..., n

or even a mixture of equalities and inequalities.

The new formulation of the general optimization problem (5.19) does not
affect the linear dualization. The only change is that the dual problem now
has positivity constraints and becomesmaxu≥0 L1(u); but the duality gap still
corresponds to replacing{0,1} by [0,1].

Remark 5.4 Due to the general result: the more constraints are dualized,
the weaker the bound becomes, one possibility to obtain a better lower bound
than the bound provided by the linear dualization is to dualize just some of the
linear constraints. One would dualize only the constraints that are difficult to
deal with directly. ¤

The complete dualization is also unaffected. Theu-part of the dual variables
is again constrained toRm

+ , and we again obtain a scheme equivalent to linear
dualization:

Theorem 5.7 (Lemaŕechal and Oustry [48])
For (5.20), linear and complete dualizations produce the same duality gap.

¤

By contrast, the boolean dualization breaks down: the dual fuction becomes

min
Ax≤b

{(c− v)T x + xT D(v)x}.

SinceD(v) has no reason to be positive semidefinite, the above problem is a
difficult nonconvex problem.

Therefore the boolean dualization can treat only equality constraints; as for
the inequalities, they have to be treated by a linear strategy.
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5.5 Concluding remarks

We presented three possible dualizations of 0-1 programming problem (con-
taining only equality constraints): linear, complete and boolean dualizations
and we compared the bounds obtained using these dualizations with the bound
provided by the linear programming relaxation.

We showed that the bounds obtained by linear and complete dualizations are
equal to the optimal value of the linear programming relaxation of the initial
0-1 program. In addition the bounds obtained by using boolean dualization
may be better.

The results obtained for linear and complete dualizations hold also in the case
when the initial 0-1 program contains inequality constraints, but break down
in the case of boolean dualization. Therefore the boolean dualization can treat
only equality constraints; as for the inequalities, they have to be treated by a
linear strategy.
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Chapter 6

Solving the GMST problem with
Lagrangian Relaxation

As we have seen in the previous chapter, we may obtain better lower bounds
than the bound provided by linear and complete dualizations if we dualize
only the ”nasty” linear constraints, i.e. the constraints that are difficult to deal
with directly.

In this chapter we present an algorithm to obtain ”good” lower bounds (bet-
ter than the bounds provided by the LP relaxation) for the GMST problem.
The algorithm is based on a Lagrangian relaxation of a bidirectional multi-
commodity flow formulation of the problem. The subgradient optimization
algorithm is used to obtain lower bounds. Computational results are reported
for many instances of the problem.

95



6.1 A strong formulation of the GMST problem

In Section 3.4, we proposed a mixed integer programming formulation of the
GMST problem, called thebidirectional multicommodity flow formulation.
In that model a clusterV1 ⊂ V is chosen to be thesourceoffering |K| − 1 =
m− 1 commodities, one demanded by each of the remainingm− 1 clusters.
Variablesfk

ij, (i, j) ∈ A and k = 1, ...,m − 1 indicate the flow amount of
commodityk going through the arc(i, j). Binary variablesxij, with (i, j) ∈E
andzi, with i ∈ V control the inclusion (xij = 1) or not (xij = 0) of edge(i, j),
respectively the inclusion (zi = 1) or not (zi = 0) of nodei in the solution. The
GMST problem can be formulated as follows:

min
∑

(i,j)∈E

cijxij

s.t. fk
ij + fk

′

ji ≤ xe, ∀ e = (i, j) ∈ E, ∀ k, k
′ ∈K1 (6.1)

x(E) = m− 1 (6.2)

z(Vk) = 1, ∀ k ∈ K = {1, ...,m} (6.3)∑

(i,j)∈A

fk
ij ≥ zi, ∀ k ∈ K1, ∀ i ∈ V1 (6.4)

∑

(j,i)∈A

fk
ji ≥ zi, ∀ k ∈ K1, ∀ i ∈ Vk (6.5)

∑

(i,j)∈A

fk
ij −

∑

(h,i)∈A

fk
hi ≥ 0, ∀ k ∈K1, ∀ i ∈ V \ (V1 ∪ Vk) (6.6)

fk
ij ∈ {0,1}, ∀ k ∈ K1, ∀ (i, j) ∈ A (6.7)

xij, zi ∈ {0,1}, ∀ (i, j) ∈ E, ∀ i ∈ V. (6.8)

Constraints (6.1) allow a non-zero flowfk
ij or fk

′
ji of commodity k or k

′

through an edgee = (i, j) only if the latter is included in the solution. Con-
straints (6.2) and (6.3) guarantee that any feasible solution hasm− 1 edges
and contains exactly one vertex from every cluster. Equations (6.4), (6.5) and
(6.6), for a givenk ∈ K1, are the network flow equations for the problem of
sending a flow of value1 from clusterV1 to clusterVk. Note here that in this
program we implicitly setfk

ij = 0, ∀ k ∈ K1, ∀ (i, j) ∈ A with j ∈ V1 (i.e.
delete all the arcs in clusterV1).
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6.2 Defining a Lagrangian problem

We relax equations (6.4), (6.5) and (6.6) in a Lagrangian fashion. Lettik (≥ 0,
∀ i /∈ V1 ∪ Vk, ∀ k ∈ K1) be the Lagrange multipliers corresponding to (6.6),
t
(1)
ik (≥ 0, ∀ i ∈ V1, ∀ k ∈ K1) be the Lagrange multipliers corresponding

to (6.4) and lett(k)
ik (≥ 0, ∀ i ∈ Vk, ∀ k ∈ K1) be the Lagrange multipliers

corresponding to (6.5).

Then the coefficientCk
ij of fk

ij in the objective function of the Lagrangian dual
program is given by

Ck
ij =





−t
(1)
ik − t

(k)
jk if i ∈ V1 andj ∈ Vk

−tik − t
(k)
jk if i /∈ V1 ∪ Vk andj ∈ Vk

−t
(1)
ik + tjk if i ∈ V1 andj /∈ V1 ∪ Vk

−tik + tjk if i /∈ V1 ∪ Vk andj /∈ V1 ∪ Vk

0 otherwise,

the coefficient ofzi, pi is given by

pi =





m∑

k=2

t
(1)
ik if i ∈ V1

m∑

k=2

t
(k)
ik if i ∈ Vk,

and the Lagrangian dual program is:

min
∑

(i,j)∈E

cijxij +
∑

(i,j)∈A

∑

k∈K1

Ck
ijf

k
ij +

∑
i∈V

pizi

s.t. fk
ij + fk

′

ji ≤ xe, ∀ e = (i, j) ∈ E, ∀ k, k
′ ∈K1

x(E) = m− 1

z(Vk) = 1, ∀ k ∈ K = {1, ...,m}
fk

ij ∈ {0,1}, ∀ k ∈ K1, ∀ (i, j) ∈ A

xij, zi ∈ {0,1}, ∀ (i, j) ∈ E, ∀ i ∈ V.

From constraint (6.1), it is simple to deduce that the best contribution to the
dual objective function is given by:
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bij := cij +
∑

k∈K1

min{0,Ck
ij,C

k
ji}

and therefore the Lagrangian dual program becomes:

min
∑

(i,j)∈E

bijxij +
∑
i∈V

pizi

x(E) = m− 1

z(Vk) = 1, ∀ k ∈K = {1, ...,m}
xij, zi ∈ {0,1}, ∀ (i, j) ∈ E, ∀ i ∈ V.

Let (Xij), (Zi), (F k
ij), represent the optimum values of(xij), (zi), (fk

ij) in
the solution of the Lagrangian dual program; then the optimal value of the
Lagrangian dual programZD (a lower bound on the optimal solution of the
GMST problem) is given by:

ZD =
∑

{i,j}∈E

bijXij +
∑
i∈V

piZi.

6.3 The Subgradient Procedure

As we have seen in the previous chapter, choosing values for the Lagrangian
multipliers is of key importance in terms of quality of lower bound generated
by solving the Lagrangian dual problem.

In this section we use the subgradient method in an attempt to maximize the
lower bounds obtained from the Lagrangian relaxation of the GMST problem.
The procedure is as follows:

• Step 1.Set the initial values for the Lagrangian multipliers:

t
(1)
ik = 0, ∀ i ∈ V1, ∀ k ∈ K1,

t
(k)
ik = 0, ∀ i ∈ Vk, ∀ k ∈ K1,
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tik = 0, ∀ i /∈ V1 ∪ Vk, ∀ k ∈K1,

and initializeZUB, the upper bound of the problem (e.g. from some
heuristic for the problem).

• Step 2.Solve the Lagrangian dual program with the current set of mul-
tipliers and let the solution beZD, (Xij), (Zi), (F k

ij).

• Step 3. If the Lagrangian solution(Xij), (Zi), (F k
ij) is a feasible so-

lution to the original problem then updateZUB, the upper bound on
the problem corresponding to a feasible solution, accordingly. Up-
dateZmax at each subgradient iteration usingZmax = max{Zmax,ZD},
whereZmax denotes the maximum lower bound found over all subgra-
dient iterations. InitiallyZmax = −∞.

• Step 4. Stop if ZUB = Zmax since thenZUB is the optimal solution,
else go to Step 5.

• Step 5.Calculate the subgradients

H
(1)
ik = Zi −

∑

(i,j)∈A

F k
ij, ∀ i ∈ V1, ∀ k ∈ K1

H
(k)
ik = Zi −

∑

(j,i)∈A

F k
ji, ∀ i ∈ Vk, ∀ k ∈ K1

Hik =
∑

(j,i)∈A

F k
ji −

∑

(i,j)∈A

F k
ij,∀ i /∈ V1 ∪ Vk, ∀ k ∈ K1.

• Step 6.Define a step sizeT by

T = α
(ZUB −ZD)

‖H‖ ,

where0 < α ≤ 2, and‖H‖ is defined by
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‖H‖ =
∑
i∈V1

∑

k∈K1

(H
(1)
ik )2 +

∑
i∈Vk

∑

k∈K1

(H
(k)
ik )2 +

∑

i/∈V1∪Vk

∑

k∈K1

(Hik)
2.

This step size depends upon the gap between the current lower bound
ZD and the upper boundZUB and the user defined parameterα with
‖H‖ being a scaling factor.

• Step 7.Update the Lagrange multipliers by

t
(1)
ik = max{0, t(1)

ik + TH
(1)
ik }, ∀ i ∈ V1, ∀ k ∈ K1,

t
(k)
ik = max{0, t(k)

ik + TH
(k)
ik }, ∀ i ∈ Vk, ∀ k ∈K1,

tik = max{0, tik + THik}, ∀ i /∈ V1 ∪ Vk, ∀ k ∈K1,

• Step 8.Go to Step 2 to resolve the Lagrangian dual program with this
new set of multipliers unless a stopping criterium is met.

Optimal solution to the problem

value

Z

Upper bounds

(feasible solutions)

Lower bounds

Z max

UB
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Figure 6.1: Subgradient optimization

Figure 6.1 illustrates the situation during the subgradient iterations. As shown
in this figure, we plot the lower bound found at each subgradient iteration on
the value line. The best (maximum) of these lower bounds isZmax.

Initially we setα = 2. If Zmax is not improved (i.e. increased) in the lastN
subgradient iterations with the current value ofα then we halveα. Based on
experimenting (computationally) with different values ofN , it seems to be
reasonable to choose the valueN = 30.

In our experiments we setZUB = ZOPT , whereZOPT is the optimal value of
the GMST problem calculated using the rooting procedure (see Section 3.6).

6.4 Computational Results

We used the same classes of instances as in Subsection 3.6. According to the
method of generating the edge costs, the problems generated are classified
into three types:

• structured Euclidean case

• unstructured Euclidean case

• non-Euclidean case.

For the instances in the structured Euclidean casem squares (clusters) are
”packed in a square” and in each of thesem clustersnc nodes are selected
randomly. The costs between nodes are the Euclidean distances between the
nodes. So in this model the clusters can be interpreted as physical clusters. In
the other models such an interpretation is not valid.

For the unstructured Euclidean casen = mnc nodes are generated randomly in
[0,100]2 with costs given by the Euclidean distances. But then the clusters are
choosen randomly among these points. Finally in the non-Euclidean model
the edge costs are randomly generated on[0,100].

Our computational experiments were performed on a HP 9000/735 computer
with a 125 Mhz processor and 144 Mb memory. Our Lagrangian relaxation
scheme is written in C and compiled with a HP-UX cc compiler.
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Table 6.1: Computational Results for unstructured Euclidean problems

Problem # subgradient
number m nc OPT LB Gap(%) CPU(s) iterations

1 8 3 90 89.998 0 0.09 25
2 4 88 87.996 0 0.12 30
3 6 60 59.999 0 0.43 65
4 8 46 45.941 0.13 36.93 160
5 10 45 44.953 0.10 48.18 180
6 10 3 108 107.998 0 7.08 35
7 4 91 90.976 0.03 16.14 50
8 6 85 84.972 0.03 20.73 65
9 8 67 66.951 0.07 41.83 125
10 10 62 61.943 0.09 55.27 140
11 12 3 116 115.947 0.05 13.03 45
12 4 107 106.916 0.08 24.94 75
13 6 89 88.836 0.18 78.53 150
14 8 75 74.759 0.32 174.43 275
15 15 3 135 134.987 0.01 13.72 30
16 4 124 123.985 0.01 16.91 45
17 6 96 95.899 0.11 72.88 105
18 8 91 90.869 0.14 134.29 175
19 18 3 153 152.991 0.01 15.29 40
20 4 132 131.985 0.01 25.65 45
21 6 127 126.909 0.07 84.28 110
22 8 112 111.849 0.14 204.12 215
23 20 3 175 174.981 0.01 16.39 35
24 4 147 146.972 0.02 44.71 75
25 6 129 128.959 0.04 65.78 95
26 8 108 107.795 0.19 220.43 200
27 25 3 182 181.975 0.01 23.79 60
28 4 159 158.969 0.02 61.55 90
29 6 142 141.893 0.08 92.37 125
30 8 127 126.825 0.14 289.78 250
31 30 3 196 195.926 0.04 41.27 75
32 4 174 173.889 0.06 101.35 150

102



Table 6.2: Computational Results for structured Euclidean problems

Problem # subgrad.
number m nc OPT LB Gap(%) CPU(s) iterations

1 8 3 983 982.998 0 0.08 25
2 4 966 965.993 0 0.18 30
3 6 960 959.988 0 0.49 65
4 8 934 933.953 0.01 36.91 160
5 10 922 921.949 0.01 48.72 180
6 10 3 1251 1250.998 0 7.23 35
7 4 1243 1242.980 0 16.59 50
8 6 1240 1239.975 0 20.93 65
9 8 1225 1224.956 0 41.98 125
10 10 1208 61.943 0 55.31 140
11 12 3 1616 1615.951 0 14.63 45
12 4 1545 1544.908 0.01 25.76 75
13 6 1487 1486.841 0.01 78.96 150
14 8 1458 1457.745 0.02 174.81 275
15 15 3 1977 1976.985 0 14.79 30
16 4 1966 1965.981 0 18.85 45
17 6 1946 1945.909 0 75.81 105
18 8 1932 1931.899 0.01 138.77 175
19 18 3 2384 2383.992 0 17.16 40
20 4 2365 2364.985 0 27.70 45
21 6 2352 2351.904 0 89.22 110
22 8 2338 2337.863 0.01 225.08 215
23 20 3 2765 2764.972 0 17.32 35
24 4 2741 2740.968 0 46.81 75
25 6 2728 2727.956 0 69.77 95
26 8 2709 2708.797 0.01 231.48 200
27 25 3 3112 3111.967 0 24.72 60
28 4 3094 3093.958 0 64.51 90
29 6 3075 3074.795 0.01 97.38 125
30 8 3058 3057.715 0.01 298.89 250
31 30 3 3478 3477.832 0 52.13 75
32 4 3452 3451.787 0.01 138.96 150
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Table 6.3: Computational Results for non-Euclidean problems

Problem # subgradient
number m nc OPT LB Gap(%) CPU(s) iterations

1 8 3 28 27.998 0.01 0.05 25
2 4 19 18.996 0.02 0.11 25
3 6 11 10.995 0.05 0.42 65
4 8 13 12.952 0.37 35.02 150
5 10 9 8.953 0.52 40.12 175
6 10 3 29 28.998 0.01 7.03 35
7 4 24 23.986 0.06 15.01 50
8 6 16 15.985 0.09 20.17 65
9 8 12 11.956 0.37 40.73 110
10 10 11 10.941 0.54 43.28 120
11 12 3 34 33.999 0 12.25 45
12 4 21 20.998 0.01 24.73 75
13 6 20 19.866 0.67 76.28 150
14 8 14 13.759 1.75 172.32 250
15 10 12 11.825 1.48 177.23 275
16 15 3 28 27.996 0.01 12.89 30
17 4 25 24.993 0.01 15.23 45
18 6 19 18.967 0.17 70.12 105
19 8 15 14.823 1.19 135.95 180
20 10 14 13.792 1.46 142.37 210
21 18 3 34 33.994 0.02 14.61 45
22 4 34 33.995 0.01 21.75 40
23 6 22 21.974 0.07 83.27 110
24 8 18 17.921 0.14 165.38 200
25 10 17 16.823 0.14 171.82 215
26 20 3 37 36.989 0.03 16.78 35
27 4 28 27.972 0.10 43.66 75
28 6 27 26.982 0.07 59.23 85
29 8 19 18.899 0.53 201.83 175
30 10 19 18.792 1.11 200.25 180
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Problem # subgradient
number m nc OPT LB Gap(%) CPU(s) iterations

31 25 3 46 45.978 0.05 51.29 75
32 4 35 34.981 0.05 60.07 80
33 6 24 23.829 0.72 169.23 180
34 8 24 23.779 0.93 202.78 230
35 30 3 43 42.969 0.07 53.21 75
36 4 32 31.978 0.07 63.72 80
37 6 29 23.852 0.62 174.55 170
38 8 29 28.872 0.44 209.33 220
39 40 3 44 43.967 0.08 82.51 80
40 4 41 40.915 0.21 101.73 90

Each line corresponds to an instance. The first column is the problem num-
ber. The next two columns give the number of clustersm and the number of
nodes per clusternc. The fourth column (OPT) contains the optimal value of
the GMST problem found by using the rooting procedure (see Section 3.6).
The fifth column (LB) gives the lower bound obtained using the subgradi-
ent method. The next column (GAP %) gives the gap in percentage defined
by 100(OPT − LB)/LB. The last two columns give the CPU time and the
number of subgradient iterations necessary to find the lower bound.

Comparing these results with the lower bounds provided by the LP relaxation
of the GMST problem (we did numerical experiments which are not given
here, solving the LP relaxation of the GMST problem by CPLEX), the lower
bounds obtained using our Lagrangian relaxation scheme are in general better.

Remark 6.1 Here our experiments were made by settingZUP = ZOPT , where
ZOPT is the optimal value of the GMST problem calculated using the rooting
procedure (see Section 3.6). In practice the optimal valueZOPT is unknown,
therefore we only may have an upper boundZUP ≈ ZOPT . But numerical
experiments have shown that even in this case the quality of the gap is main-
tained. The values of the gap in percentage in the special non-Euclidean case
m = 15 andnc = 6, using different upper bounds, are reported in the next
table. ¤
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m nc OPT UB Gap(%) CPU(s) # subgrad. iterations

15 6 19 - 0.17 70.12 105
15 6 - 19.5 0.19 70.33 105
15 6 - 20 0.20 70.67 105
15 6 - 21 0.23 71.09 105

The first two columns give the number of clustersm and the number of nodes
per clusternc. The third column (OPT) contains the optimal value of the
GMST problem found by using the rooting procedure (see Section 3.6). The
forth column (UB) gives the upper bound. The next column (GAP %) gives
the gap in percentage defined by100(UB −LB)/LB. The last two columns
give the CPU time and the number of subgradient iterations.

6.5 Concluding remarks

We presented a Lagrangian relaxation of a bidirectional multicommodity flow
formulation of the GMST problem. The subgradient optimization algorithm
was used to obtain lower bounds.

Computational experiments (by settingZUP = ZOPT ) show that using our
Lagrangian relaxation scheme are in general better than the lower bounds
provided by the linear programming relaxation of the GMST problem. This
result holds even in the case when we may have available an upper bound
ZUP ≈ ZOPT .
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Chapter 7

Heuristic Algorithms

The techniques described in this chapter are the ones which are known by
the term heuristics, i.e. techniques which seek near-optimal solutions at a
reasonable computational cost without being able to guarantee optimality, or
even in many cases to state how close to optimality a particular solution is.

In the first sections we present some basic theory of heuristic algorithms and
local search. In Section 7.4 we present the Simulated Annealing algorithm.
Finally, in the last section we solve the GMST problem with Simulated An-
nealing.
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7.1 Introduction

We have mentioned that many combinatorial optimization problems areNP-
hard [21], and the theory ofNP-completeness has reduced hopes thatNP-
hardproblems can be solved within polynomially bounded computation times.
Nevertheless, sub-optimal solutions are sometimes easy to find. Consequently,
there is much interest in approximation and heuristic algorithms that can find
near optimal solutions within reasonable running time.

In mathematical programming, aheuristic methodor heuristic for short is a
procedure that determines good or near-optimal solutions to an optimization
problem. As opposed to exact methods, heuristics carry no guarantee that an
optimal solution will be found.

Practically, for many realistic optimization problems good solutions can be
found efficiently, and heuristics are typically among the best strategies in
terms of efficiency and solution quality for problems of realistic size and com-
plexity. Heuristics can be classified as eitherconstructive(greedy) or aslocal
searchheuristics. The former are typically one-pass algorithms whereas the
latter are strategies ofiterative improvement. We will be concerned exclu-
sively with local search heuristics here.

Useful references on heuristic methods can be found in Osman and Laporte
[56] and Reeves [64].

7.2 Local and global optima

The following concepts are taken from [57].

Definition 7.1 An instance of an optimization problem is a pair (S, c),
whereS is any set, the domain of feasible points;c is the cost function

c : S → R

The problem is to find ans ∈ S for which

c(s) ≤ c(y) for all y ∈ S.

Such a point is calledglobally optimal solution to the given instance or,
when no confusion can rise, simply anoptimal solution. ¤
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Given a feasible points ∈ S in a particular problem, it is useful in many
situations to define a setN(s) of points that are ”close” in some sense to the
points.

Definition 7.2 Given an optimization problem with instances(S, c), a neigh-
bourhood is a mapping

N : S → 2S

defined for each instance. ¤

In many combinatorial problems, there are quite natural choices forN sug-
gested by the structure ofS. It is often possible to find a solutions which is
best in the sense that there is nothing better in its neighbourhoodN(S).

Definition 7.3 Given an instance(S, c) of an optimization problem a neigh-
bourhoodN , a feasible solutions ∈ S is calledlocally optimal with respect
to N if

c(s) ≤ c(g) for all g ∈ N(s).

¤

7.3 Local Search

In the next two sections we present the basic theory of local search and simu-
lated annealing. We follow the description of Reeves [64].

Local search (LS) is a term for the extremely simple concept underlying many
modern heuristic techniques, such as Simulated Annealing, Tabu Search and
Genetic Algorithms.

Suppose that we have a minimization problem over a set of feasible solutions
S and a cost functionc : S → R. The optimal solution could be obtained by
calculatingc(s) for eachs ∈ S and selecting the minimum. This method is
impracticable when the setS is big which is the case of the most real-life
problems. Local search overcomes this difficulty by searching only a small
subset of the solution space. This is achieved by defining a neighbourhood
structure on the solution space and searching the neighbourhood of the cur-
rent solution for an improvement. If there is no neighbour which results in an
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improvement to the cost function, the current solution is taken as an approx-
imation to the optimum. If an improvement is found, the current solution is
replaced by the improvement and the process is repeated.

Therefore the local search process can be described as follows:

Local search for a problem with solution spaceS, cost functionc
and neighbourhood structureN

1. Select a starting solutions0 ∈ S;

2. Repeat
Selects such thatc(s) < c(s0) by a suitable method;
Replaces0 by s;

Until c(s) > c(s0) for all s ∈ N(s0).

s0 is the approximation of the optimal solution.

A central problem for local search is the occurence oflocal optima, i.e. nodes
in the search space where no neighbour strictly improves over the current node
in terms of the cost function, but which are not global optima. Many strate-
gies have been proposed that address the problem of how to overcome the
local optima. In many cases, non-improving local moves are admitted based
on a probabilistic decision or based on the history of the search. To obtain
guiding principles for designing effective optimization strategies, a number
of conceptual meta-level strategies have been employed with local search.
These strategies are referred to asmetaheuristic, a term introduced by Glover
[25].

In contrast to individual heuristic algorithms that are designed to solve a spe-
cific problem, metaheuristics are strategic problem solving frameworks that
can be adapted to solve a wide variety of problems. A metaheuristic frame-
work includes a set of problem-solving principles that are sometimes based
on natural or physical processes, and a set of control parameters. Applica-
tion of a metaheuristic stategy to a specific problem involves choosing, and
sometimes fine-tuning, these parameters.

Metaheuristic methods are not normally expected to outperform specialized
heuristics on a problem. Their main purpose is to deal with difficult problems
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for which no specialized algorithm is known. However, some studies have
demonstrated that certain metaheuristics perform as well or better than special
heuristics for some well-known difficult problems such as traveling salesman,
graph partitioning and facility layout problems.

The most important metaheuristics for optimization are given in the follow-
ing:

Simulated Annealing, introduced for optimization by Kirkpatricket al. [44]
in 1983. The central idea is to accept a candidate move that increases the so-
lution quality based on a probabilistic decision. During the time of the search,
the probability of acceptance of deteriorating moves is decreased according
to a givenannealing schedule.

Genetic Algorithmswere invented by Holland and model optimization as an
evolutionary process. The strategy is to have a pool of ”chromosomes” and
iteratively apply the principles of mutation, mating and selection to attain
”survival of the fittest” [39]. Genetic algorithms extend the basic local search
scheme to populations of solutions.

Tabu Searchwas first suggested by Glover [25] and uses information based on
the history of the search [26]. It has been succesfully applied to obtain optimal
or sub-optimal solutions for many combinatorial optimization problems such
as scheduling, time-tabling, travelling salesman, etc.. The central idea is the
use of adaptive memory to overcome local optima by driving the search to
different parts of the search space (diversification) or back to promising parts
(intensification).

Artificial Neural Networksmake use of the metaphor of the neuron and are
organized in network structures. The network of nodes is iteratively modi-
fied by adjusting the interconnections between neurons according to various
schemes [77].

For particular application problems, the metaheuristics require concrete im-
plementation and their success varies for different application domains.
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7.4 Simulated Annealing

7.4.1 Introduction

The ideas that form the basis of simulated annealing were first published by
Metropoliset al. [52] in 1953 as an algorithm to simulate the cooling of ma-
terial in a heat bath, a process known as annealing. If solid material is heated
past its melting point and then cooled back into a solid state, the structural
properties of the cooled solid depend on the rate of cooling. The annealing
process can be simulated by regarding the material as a system of particles.
Essentially, Metropolis’ algorithm simulates the change in energy of the sys-
tem during the cooling process, as it converges to a steady ’frozen’ state.
Kirkpatrick et al. [44] and Cerny [9] suggested that this type of simulation
could be used to search the feasible solutions of an optimization problem.
Their approach can be regarded as a variant of the local search technique.

In the case of a minimization problem the local search employ a descent strat-
egy, in which the search always moves in a direction of improvement. How-
ever, such a strategy often results in convergence to a local rather than a global
optimum.

In order to overcome the local optima, in the simulated annealing heuristic
non-improving local moves are allowed, but their frequency is governed by a
probability function which changes as the algorithm progresses.

The inspiration for this form of control was Metropolis’ work in statistical
thermodynamics. The laws of thermodynamics state that at temperatureT ,
the probability of an increase in energy of magnitudeδE is given by

p(δE) = exp(−δE/kT ) (7.1)

wherek is a physical constant known as Boltzmann’s constant.

Metropolis’ simulation generates a perturbation and calculates the resulting
energy change. If energy has decreased the system moves to this new state.
If energy has increased, the new state is accepted according to the probability
given in Equation 7.1. The process is repeated for a predetermined number of
iterations at each temperature, after which the temperature is decreased until
the system freezes into a steady state.

Kirkpatrick et al. [44] and Cerny [9] independently showed that Metropolis’
algorithm could be applied to optimization problems by mapping the elements
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of the physical cooling process onto the elements of a combinatorial optimiza-
tion problem as shown in the following table:

Thermodynamic simulation Combinatorial optimization
System states Feasible solutions

Energy Cost
Change of state Change of solution

Temperature Control parameter
Frozen state Heuristic solution

Therefore any local search algorithm can be converted into an annealing al-
gorithm by sampling the neighbourhoods randomly and allowing the accep-
tance of an inferior solution with respect to cost minimization according to the
probability given in Equation 7.1. The level of acceptance then depends on
the magnitude of the increase in the cost function and the current temperature.

7.4.2 The annealing algorithm

As we have seen the main disadvantage of local search is its likelihood of
finding a local, rather than global, optimum. By allowing some non-imroving
local moves in a controlled manner, simulated annealing overcomes this prob-
lem. The annealing algorithm can be stated as follows:

Simulated annealing for a minimization problem with solution spaceS,
objective function c and neighbourhood structureN
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Select a starting solutions0 ∈ S, an initial temperatureT0 > 0 and a
temperature reduction functionα;

Repeat
Repeat

Randomly selects ∈ N(s0) and computeδ = c(s)− c(s0);
If δ < 0
thens0 = s
else generate randomp uniformly in the range(0,1);
if p < exp(−δ/T ) thens0 = s

Until iterationcount = L;
SetT = α(T );
Until stopping condition is true.

s0 is the approximation of the optimal solution.

HereL represents the number of repetitions at each temperature, i.e. the num-
ber of randomly chosen candidate solutions in the neighborhood of the current
solution that are evaluated.

At each stage,L randomly chosen candidate solutions in the neighborhood
of the current solution are evaluated. If a candidate solution improves on
the current solution, it is accepted. Otherwise, it is accepted with a proba-
bility p(T, δ) = exp(−δ/T ), which depends on the control parameterT (the
temperature in the physical equivalent) and the amountδ by which a move
worsens the current solution. This relation ensures that the probability of ac-
cepting a move to a very poor solution is very small. At the completition
of each stage, the temperatureT is reduced at cooling rater. Given a rel-
atively high temperatureT at the beginning of the process, the probability
of accepting non-improving moves is fairly high. As the process continues,
the temperature decreases and non-improving moves become less likely. The
search is continued until there is some evidence to suggest that there is a very
low probability of improving on the best solution found so far. At this stage,
the system is said to be frozen.

The algorithm given is very general, and a number of decisions must be made
in order to implement it for the solution of a particular problem. These can be
divided into two categories:
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• generic decisions which are concerned with parameters of the annealing
algorithm itself. These include factors such as the initial temperature,
the cooling schedule (governed by the parameterL, i.e. number of
repetitions and the choice of the temperature reduction functionα) and
the stopping condition.

• problem specific decisions and involves the choice of the space of feasi-
ble solutions, the form of the cost function and the neighborhood struc-
ture employed.

Simulated annealing has the advantage that it is simple in concept and im-
plementation. The procedure improves on descent methods by reducing the
probability of getting stuck at a poor but locally optimal solution. Simulated
annealing has been applied successfully to many hard optimization problems;
see e.g., the bibliography by Osman and Laporte [56].

Since Kirkpatrick’s original paper there has been much research into the the-
oretical convergence of the annealing algorithm. The theoretical results are
based on the fact that the behavior of the simulated annealing algorithm can
be modelled using Markov chains (see e.g. [5]).

7.5 Solving the GMST problem with Simulated
Annealing

7.5.1 The local-global formulation of the GMST problem

In order to solve the GMST problem with simulated annealing we use the
local-global formulation of the problem (see Section 3.5), which arises from
distinguishing betweenglobal, i.e., inter-cluster connections, andlocal ones.
We introduced the variablesyij (i, j ∈ {1, ...,m}) to describe the global con-
nections:yij = 1 if clusterVi is connected to clusterVj andyij = 0 otherwise
and we assumed thaty represents a spanning tree. The convex hull of all these
y-vectors is generally known as the spanning tree polytope on the contracted
graph with vertex set{V1, ..., Vm} (which we assume to be complete) and can
be represented by the following constraints:
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∑

{i,j}
yij = m− 1

yij = λkij + λkji, for 1 ≤ k, i, j ≤m andi 6= j∑
j

λkij = 1, for 1 ≤ k, i, j ≤m andi 6= k

λkkj = 0, for 1 ≤ k, j ≤m

yij, λkij ≥ 0, for 1 ≤ k, i, j ≤m.

where the variablesλkij were defined in Section 3.5.

We have seen that if the 0-1 vectory describes a spanning tree on the con-
tracted graph, the corresponding best (w.r.t. minimization of the cost) ”local
solution” x ∈ {0,1}|E| can be obtained as we have shown in Section 3.5 by
using dynamic programming or by solving the following 0-1 programming
problem:

min
∑

{i,j}∈E

cijxij

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m}
x(Vl, Vr) = ylr, ∀ l, r ∈ K = {1, ...,m}, l 6= r

x(i, Vr) ≤ zi, ∀ r ∈ K,∀ i ∈ V \ Vr

xij, zi ∈ {0,1}, ∀ {i, j} ∈ E, ∀ i ∈ V.

In Proposition 3.5 we showed that the polyhedronPlocal(y), i.e. the feasi-
ble set of the linear programming relaxation of the previous 0-1 program, is
integral.

Feasible solutions for the GMST problem can be computed by solvingPlocal(y)
for certain 0-1 vectory corresponding to spanning trees. (E.g., minimum
spanning trees w.r.t. the edge weightsdlr := min{cij | i ∈ Vl, j ∈ Vr}.)

7.5.2 Generic decisions

The generic decisions involve the choice of the following parameters:

• initial value of the control parameter,T0;
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• final value of the control parameter,Tf (stopping criterion);

• the number of repetitions at each temperature;

• decrement of the control parameter.

In our implementation of the simulated annealing algorithm for the GMST
problem we chose the following cooling schedule:

1. Initial value of the control parameter, T0.
Following Johnsonet al. [41] we determineT0 by calculating the aver-
age increase in costδ+, for a number of random transitions, and findT0

from

χ0 = exp(−δ+/T0) (7.2)

Equation 7.2 leads to the following choice forT0:

T0 =
δ+

ln(χ−1
0 )

(7.3)

whereχ0 = 0.8 is a given acceptance rate.

2. Final value of the control parameter.
A stop criterion, determining the final value of the control parameter, is
either by fixing the number of valuesTk, for which the algorithm is to
be executed or based on the argument that execution of the algorithm
can be terminated if the improvement in cost, to be expected in the case
of continuing execution of the algorithm is small.

3. Number of repetitions at each temperature.
The number of iterations at each temperature which is related to the
size of the neighbourhoods may vary from temperature to temperature.
It is important to spend a long time at lower temperatures to ensure that
a local optimum has been fully explored. Therefore we increased the
value ofL arithmetically (by adding a constant factor).

4. Decrement of the control parameter.
We used the following decrement rule:
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α(T ) = rT (7.4)

wherer is a constant smaller than but close to 1, called the cooling rate.
We used, as in [41],r = 0.95. This corresponds to a fairly slow cooling.

7.5.3 Problem specific decisions

The space of feasible solutions and the form of the cost function are given
in the definition of the GMST problem. Therefore it remains to present a
neighbourhood structure.
If the problem consists ofm clusters, by Cayley’s formula [8] we know that
the total number of global spanning trees (i.e. trees connecting the clusters) is
equal tomm−2. All these possibilities of global trees form the solution space.

As we have seen feasible solutions to the GMST problem can be computed
by solvingPlocal(y), for any 0-1 vectory corresponding to spanning trees.

In Figure 7.1 we present an initial global solution in the case when the GMST
problem consists ofm = 8 clusters.
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Figure 7.1: An initial global solution

A k-neighbourhoodof any given global spanning tree is defined by those trees
obtained by removingk links and replacing them by a different set ofk links
in such a way to maintain the feasibility, i.e. a global spanning tree.
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We consider the casek = 1. For example if we remove the edge connecting
the clustersV2 andV4.
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Figure 7.2: After edge removal
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Figure 7.3: A neighbouring tree
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There are several possibilities of reconnecting the two resulting sections to
form a valid global tree, for example by connectingV1 with V4 or V2 with V5,
etc. All these possibilities of reconnecting give the size of the neighbourhood.

SolvingPlocal(y) with the vectory corresponding to the current neighbouring
tree we get a feasible solution for the GMST problem.

Therefore the combination of the definition of feasible solution and neigh-
bourhood structure appears to be a good candidate for annealing.

7.5.4 A computational example

Our computational experiment was performed on a HP 9000/735 computer
with a 125 Mhz processor and 144 Mb memory. The Simulated Annealing
scheme is written in C and compiled with a HP-UX cc compiler. For solving
the linear programming problems we used CPLEX.

We consider the GMST problem withm = 10 clusters andn = 3 nodes per
cluster as an illustration of the simulated annealing method.

We start with the temperatureT0 = 100. The cooling rater = 0.95 will be
used to reduce the temperature in each stage, andL = 50 moves evaluated
in each stage. Table 7.1 shows the first twelve iterations of the simulated
annealing procedure.
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Table 7.1

current best
sol. swap δ p ∈ U [0; 1] exp−

δ
T solution solution

0 - - - - - 228 228
1 (V5, V9) (V1, V9) -66 - - 152 152
2 (V3, V10) (V3, V8) 46 0.05 0.63 198 152
3 (V7, V9) (V4, V7) -45 0.05 1.57 153 152
4 (V1, V6) (V1, V8) -18 0.05 1.20 135 135
5 (V6, V8) (V5, V6) -9 0.05 1.09 126 126
6 (V9, V10) (V5, V10) -31 0.05 1.36 95 95
7 (V5, V10) (V4, V10) 7 0.41 0.93 102 95
8 (V1, V9) (V2, V9) -14 0.41 1.15 88 88
9 (V2, V3) (V2, V5) 16 0.98 0.85 104 88
10 (V2, V3) (V2, V6) 8 0.63 0.92 96 88
11 (V4, V10) (V2, V10) 22 0.02 0.80 118 88
12 (V2, V6) (V2, V7) -1 0.02 1.01 117 88

The first column is the solution number. The second column ”swap” gives the
global connection that is removed and the new global connection that main-
tains the feasibility. Next column give the cost of the moveδ, the probability
of accepting a movep ∈ U [0; 1], whereU [0; 1] denote a uniform distribution
between 0 and 1 from which random numbers are drawm, the value ofexp−

δ
T ,

the current solution and the best solution.

The first move is to replace the connection of the clusters(V5, V9) with (V1, V9).
The cost of this move isδ = −66, therefore improving and is accepted auto-
matically. The cost of the second move isδ = 46. Since it is not an improving
move, a random number is generated, herep = 0.05 < 0.63 = exp−

−46
100 =

exp−
δ
T , and the move is accepted. The next four moves are downhill (i.e.

improving) moves and are automatically accepted. The seventh move is not
an improving move, a random number is generated, herep = 0.41 < 0.93 =

exp−
−7
100 = exp−

δ
T , and the move is accepted. The eighth move is improving,

and is automatically accepted. The nineth move, again an uphill move, is re-
jected since the random number drawnp = 0.98 > 0.85 = exp−

−16
100 = exp−

δ
T .

The next two moves are not improving moves, but are accepted because
p < exp−

δ
T . Finally the last move is an improving move and is accepted

automatically.
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It is important to observe the large number of non-improving moves that are
accepted in the first stage. In the second stage, the temperature control pa-
rameterT is reduced toT = 0.95(100) = 95. This will reduce the probability
of accepting non-improving moves by five percent. In later stages,T will
become almost zero and nonimproving moves will be very unlikely to be ac-
cepted at all.

It is generally agreed that, relative to special purpose heuristics and other
metaheuristics, simulated annealing requires long runs to reach good solu-
tions. Choices of the control parameters and the stopping rule determine the
computational effort.
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[19] C. Feremans, M. Labbé and G. Laporte,Polyhedral Analysis of the Gen-
eralized Minimum Spanning Tree Problem, Technical Report IS-MG
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Summary

Classical combinatorial optimization problems can often be generalized in a
natural way by considering a related problem relative to a given partition of
the nodes into clusters.

We study various relaxation and heuristic techniques in the special case of
the so-called Generalized Minimum Spanning Tree (GMST) problem. In the
GMST problem given an undirected graph with nodes partitioned into clus-
ters and edges defined between nodes belonging to different clusters with a
nonnegative cost, we search for a minimum cost tree spanning a subset of
nodes which includes exactly one node from each cluster. This problem was
introduced by Myung, Lee and Tcha [54], they also proved that the problem
is NP-hard. The last result is a direct consequence of one of our results in
which we prove that the GMST problem on trees isNP-hard. We present
also two cases when the GMST problem is solvable in polynomial time.

We present new integer and mixed integer programming formulations for the
GMST problem and we compare them in terms of their linear programming
relaxations with the formulations already proposed in the literature.

Based on a new formulation of the problem called local-global formulation,
we present a new solution procedure. Our procedure called rooting proce-
dure is compared with the procedures developed by Myunget al. [54] and
by Feremans [17]. For all instances of the problem that we considered, the
optimal solution of the GMST problem has been found. As far as we know,
our method is the second method, after Feremans [17], which solves instances
with more than 120 nodes to optimality, but the computing times spent by the
branch and cut code proposed in [17] are in general larger than the times spent
by our rooting procedure code.

We compare the bound provided by the linear programming relaxation of a
general 0-1 programming problem with the bounds obtained by considering
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the linear, complete and boolean dualizations suggested in [48]. We apply
the theoretical results obtained to the GMST problem. In the Lagrangian
relaxation that we considered, a set of inequalities in the bidirectional mul-
ticommodity flow formulation of the problem is dualized and added to the
objective function. We used the subgradient optimization algorithm to obtain
lower bounds. Computational results are reported for many instances of the
problem.

We distinguish in Chapter 4 between so-called positive and negative results
in the area of approximation algorithms. We present an in-approximability
result: there is noα-approximation algorithm for the GMST problem unless
P = NP . Our result is a formulation in terms of approximation algorithms
of a result of Myunget al. [54]. However, under special assumptions (see
Section 4.4) we give an approximation algorithm for the GMST problem.

In the last chapter of this thesis we present basic theory of heuristic algorithms
and local search and solve the GMST problem with Simulated Annealing.
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