
Computers in Human Behavior, Vol. 6, pp. 273-289, 1990 0747-5632490 $3.00 + .00
Printed in the U.S.A. All rights reserved. Copyright © 1990 Pergamon Press plc

Automation and Schema Acquisition in
Learning Elementary Computer

Programming: Implications for the Design
of Practice

Jeroen J. G. Van Merri#nboer and
Fred G. W. C. Paas

University of Twente

Abstract m Two complementary processes may be distinguished in learning a complex
cognitive skill such as computer programming. First, automation offers task-specific proce-
dures that may directly control programming behavior, second, schema acquisition offers
cognitive structures that provide analogies in new problem situations. The goal of this
paper is to explore what the nature of these processes can teach us for a more effective
design of practice. The authors argue that conventional training strategies in elementary
programming provide little guidance to the learner and offer little opportunities for mind-
ful abstraction, which results in suboptimal automation and schema acquisition. Practice is
considered to be most beneficial to learning outcomes and transfer under strict conditions,
in particular, a heavy emphasis on the use of worked examples during practice and the
assignment of programming tasks that demand mindful abstraction from these examples.

INTRODUCTION

Computer programming at an elementary level is rapidly becoming a part of the
high school curriculum. However, there is much evidence for low learning
outcomes after relatively short elementary programming courses of 10-50 lessons
(Linn, 1985; Pea & Kurland, 1984). After these courses, most students still have an
incomplete or incorrect mental model of the working of a computer (DuBoulay,
1986; Pea, 1986), a fragile knowledge base related to the basic commands and

Requests for reprints should be addressed to Jeroen J.G. van Merri~nboer, University of Twente,
Depamnent of Instructional Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands.

273

274 Van Merri~nboer and Pacts

syntax of the programming language (Perkins & Martin, 1986; Putnam, Sleeman,
Baxter & Kuspa, 1986; Sleeman, Putnam, Baxter & Kuspa, 1986), a serious lack of
programming language templates or programming plans (Dalbey & Linn, 1985),
and ill-developed procedural skills, such as for planning the solution or testing and
debugging the program (Kurland, Pea, Clement & Mawby, 1986).

Thus, students do not learn to program very well in these e lementary
programming courses and most teachers are reasonably satisfied if the students at
least acquire a vague notion of what programming is like and what it may be used
for. Given these low leaming outcomes, it is not surprising that most research on
far transfer effects of elementary computer programming to other domains, or,
more generally, an impact on higher level cognitive skills, yielded negative results
(e.g., see Goodyear, 1987).

The goal of this article is to present instructional design principles that may
augment learning outcomes and increase the possibility that transfer effects at least
occur within the programming domain. This goal is subject to some restrictions.
First, the design principles are limited to elementary computer programming in
schools, where the target group mainly consists of prenovices and the available
instructional time is severely limited. Second, and more important, the design
principles are limited to the design of practice. The great majority of research on
teaching elementary programming pertains to the presentation of particular
information that is considered to be relevant to performance of the programming
skill, such as the explicit teaching of concrete computer models (Mayer, 1981,
1982), programming language templates (Soloway, 1985), and debugging models
(McCoy Carver & Klahr, 1986). Whereas such research certainly is valuable, an
important claim of this article is that more attention should be paid to the
conditions under which the programming skills are actually practiced.

The structure of this discourse is as follows. In section two, automation and
schema acquisition are described as two prevalent processes in learning elementary
computer programming and their demands to effective practice as well as their
effects on learning outcomes and transfer are discussed. In section three, the major
shortcomings of current programming instruction are identified and instructional
design principles are presented that do meet the requirements to practice of both
automation and schema acquisition and thus may improve learning outcomes and
increase the possibility that transfer effects occur within the programming domain.
In particular, this paper will focus a heavy emphasis on the use of worked
examples during practice and the assignment of programming tasks that demand
mindful abstraction from these examples. Finally, section four contains a
discussion of the proposed approach and its inclusion in programming curricula,
and a reflection on its main implications for teaching programming.

LEARNING COMPUTER PROGRAMMING

Learning computer programming means both learning procedures to accomplish
various goals and learning the information that is relevant to these procedures. As a
first observation, expert programmers can perform many procedures without
noticeable effort because they are able to respond in a highly reflexive manner to
abstract features of problems. However, their skill clearly is more than the sum of
its automatic parts; when experts are confronted with new programming problems
for which they have no automatic procedures available, they can rely on an

Elementary computer programming 275

enormous amount of programming knowledge that may be used by more general
problem solving methods to reach a solution. Thus, besides the development of
automatic procedures, the acquisition of highly structured knowledge, or schemata,
plays a significant role in learning a skill like computer programming. In the next
sections, the processes of automation and schema acquisition, their implications for
the design of practice, and their effects on learning outcomes and transfer will be
further elaborated.

Automation

Automation leads to highly task-specific procedures that may directly control
programming behavior. In current cognitive research, such procedures are usually
referred to as productions or condition-action pairs. The conditions specify various
problem specifications or particular programming goals; the actions can be to
embellish the problem specification, to set new subgoals, or to write or change
programming code. As a result of the availability of task-specific procedures,
experts can almost automatically reformulate and decompose familiar problems in
subproblems that have known solutions, and they can effortlessly generate
programming code to reach low-level goals, such as printing values, doing loops,
or making decisions (Anderson, Farrell, & Sauers, 1984).

The development of automatic processing. The development of task-specific
procedures is a lengthy process, that may be seen as a transition from controlled to
automatic processing (Shiffrin and Schneider 1977; Schneider & Shiffrin, 1977). In
the early stage of learning a complex cognitive skill, the learner usually receives
information about the skill that may be used by general procedures, or "weak"
problem solving methods, to generate behavior. The generality of those procedures
refers to the fact that they make no reference to any particular knowledge domain;
instead, they are able to interpret a wide range of newly acquired information to
generate behavior. Such controlled processing has the advantage of flexibility
because a learner can be circumspect about the behavioral implications of using the
newly acquired knowledge. However, performance is low because controlled pro-
cessing has the disadvantage that it works slowly and it may lead to serious errors
due to processing overload.

Anderson (1983, 1987) identified knowledge compilation as an important
process to make the transition from controlled to automatic processing possible.
With practice, knowledge compilation creates procedures that eventually may
directly control programming behavior. Knowledge compilation both includes the
incorporation of newly acquired knowledge in new task-specific procedures and
the "chunking" of procedures that consistently follow each other in solving
particular problems. Knowledge compilation produces a considerable speedup in
performance and implies a reduction of processing load because newly acquired
knowledge need no longer be retrieved from memory and held active to be
interpreted by more general procedures.

Complete automatic processing may be reached as learning proceeds further
through a tuning process that strengthens the task-specific procedures with every
successful application, so that situation-driven procedures become available that
directly control programming behavior. Automatic processing works fast, with
minimal errors, and with low demands on processing capacity so that cognitive
resources become available for other aspects of the task. However, automatic

276 Van Merri~nboer and Paas

processing may be disadvantageous as well because there is the ever present
danger of action slips to occur if particular stimulus input triggers nonintended
procedures (Norman, 1981).

Automation and the design of practice. As automation is the result of practice,
skills can only be acquired by doing them. This principle of "learning by doing"
has some important implications for the design of practice. First, an expert programmer
is believed to have available tens of thousands of highly task-specific procedures (e.g.,
Brooks, 1977). The development of such a broad range of highly task-specific
procedures, which underlies flexibility in programming behavior on a high
performance level, requires lengthy training as well as a high variation in training.

Second, the detailed procedural knowledge is likely to be highly implicit and not
easily verbalized, so that teachers may have difficulty explicating such knowledge.
An effective alternative way to communicate the knowledge and to shorten the
training for automation of the skill is the use of worked examples. In this respect,
Anderson et al. (1984) and Pirolli and Anderson (1985) reported that students
made a highly selective use of instructional materials during practice. In particular,
they used concrete examples of problem solutions that were similar to the solution
of the problem at hand and that had the form of concrete computer programs.
Students used these worked examples as a kind of concrete schemata to map their
new solutions. The key to this use of worked examples is interpreting the example
by general procedures and mapping it onto the current knowledge of programming
to create new solutions. Such interpretation of worked examples is a powerful tool
in guiding programming behavior. But most importantly, the information that
comes from the worked examples may be incorporated, or compiled, into new task-
specific procedures. Thus, the use of worked examples initially bridges the gap
between current knowledge and programming behavior and facilitates the
development of task-specific procedures and, eventually, automation.

Automation and transfer. With regard to the effects of automation on transfer, a
distinction must be made between near and far transfer. Mayer and Greeno (1972)
introduced this distinction to indicate the extent of similarity between the new
setting and the original training setting. For the purposes of this paper, near transfer
is defined as transfer of programming skills within the programming domain, such
as the ability to solve new programming problems; far transfer is def'med as the
transfer of programming skills outside the programming domain, such as the ability
to apply learned top-down design techniques in writing an essay. This distinction is
closely related to the issue of context-dependent versus context-independent
strategies in programming (Perkins & Salomon, 1989), because far transfer
assumes an excessive decontextualization of acquired skills. The present article is
limited to near transfer, that is, to the transfer of skills within the context of
programming.

Automation may explain such transfer by the overlap of task-specific procedures
that were learned in the original task but that are also applicable in performing the
transfer task. In fact, this explanation is closely related to the associationist theory
of identical elements (Thorndike & Woodworth, 1901), which claimed that transfer
from one task to another would only occur when both tasks shared identical
elements. Whereas it never became clear what exactly was meant by identical
elements, it was usually interpreted to mean something like stimulus-response
pairs. In current cognitive research, the identical elements are usually interpreted in
terms of productions (e.g., Singley & Anderson, 1985, 1988). The availability of

Elementary computer programming 277

automatic procedures predicts transfer in so far as the procedures that are learned in
the training task are identical to the procedures that are needed for performing the
transfer task. Salomon and Perkins (1987) refer to this transfer mechanism, which
results from extensive practice and automation, as low-road transfer. It is limited
by the triggering stimuli that will activate automated performance and hence
requires varied practice to reach transfer.

In increasingly further transfer within the programming domain, there is a
decreasing overlap of task-specific procedures between the original task and the
transfer task. Thus, automation cannot directly explain the ability to solve new, not
previously encountered--aspects of--programming problems. However, automatic
processing of certain aspects of the task makes very low demands on processing
capacity, so that cognitive resources become available for other controlled
processes that may lead to such transfer. This side-effect of automation can be
argued to be particularly important for a problem-solving intensive task such as
computer programming. The interpretation of schemata that provide analogies for
solving new problem situations is a good example of a form of controlled
processing that may occur due to automation, and lead to further transfer within the
programming domain. This process will be discussed in the next section.

Schema acquisition

Schemata can be conceptualized as cognitive structures that allow particular
objects, events, or activities to be assigned to general categories. Thus, schemata
provide general knowledge that can be applied to particular cases. Due to the
availability of schemata, expert programmers are not only able to fluently perform
familiar programming tasks by the use of highly task-specific procedures, but also to
interpret unfamiliar situations in terms of their generalized knowledge. For instance,
they may rely upon a good notion of the working of the computer to make their
programs more efficient, their clear view of the design process in program development
to guide their programming behavior, and their extensive knowledge base of
programming plans to improve their problem decomposition and program composition.

The acquisition of several kinds of schemata is also relevant to learning
elementary computer programming (Rist, 1989). For instance, a general design
schema should be developed to provide abstract knowledge concerning the
processes involved in generating a good design and its overall structure (e.g.,
Jeffries, Turner, Polson & Atwood, 1981). The design schema may then be used
recursively to generate a decomposition of the problem into more and more
detailed modules in a process of "stepwise refinement", which leads to a top-down,
breadth first expansion of the solution. The design process continues until
programming code has been identified for each of the subproblems.

Programming plans are generally considered to be a particularly important kind
of schemata to acquire in elementary computer programming (Ehrlich & Soloway,
1984; Soloway, 1985). These programming plans are learned programming
language templates, or stereotyped sequences of computer instructions, that form a
hierarchy of generalized knowledge. High-level programming language templates
(such as a general input-process-output plan) may be applied to a very wide range
of programming problems, whereas medium level templates (such as a looping
structure with an initialization above the loop) and low-level templates (such as a
statement to print the value of a variable) are applicable to increasingly smaller
ranges of (sub)problems. Thus, programming plans provide, within the

278 Van Merri~nboer and Paas

programming domain, a hierarchy of increasingly context dependent strategies that
may guide a process of "templating" in the creation of solutions to posed problems.
In our discussion of schema acquisition, we mainly focus on the learning of such
programming language templates during practice.

The development of schemata. In the prenovice stage of learning programming,
the learner has neither task-specific procedures nor useful cognitive schemata
available. Thus, the learner has to apply very general, weak problem solving
methods to perform the programming task. As discussed in the previous section, a
result of practice is that task-specific procedures are compiled that will
significantly increase performance on subsequent problems. But in addition, and
often simultaneously, schemata may be acquired that offer analogies, or abstract
categories of problems and solutions, that may guide subsequent problem solving
behavior.

Learning processes may either create new schemata or adjust existing schemata
to make them more in tune with experience. For example, inductive processes can
be described (e.g., Carbonell, 1984, 1986) that either extend or restrict the range of
applicability of schemata. A more generalized schema may be produced if a set of
successful solutions is available for a class of related problems, so that a schema
may be created that abstracts away from the details; a more specific schema may
be produced if a set of failed solutions is available for a class of related problems,
so that particular conditions may be added to the schema which restrict its range of
use. Recent research points out that such schema acquisition is a form of controlled
processing, that is, it is subject to strategic control (e.g., Anderson, 1987; Proctor &
Reeve, 1988). Consequently, compared to automation, which slowly develops and
is mainly a function of the amount of practice, the acquisition of schemata such as
programming plans may rapidly occur but requires the investment of effort, or,
conscious attention and mindful abstraction from the learner.

After useful schemata have been developed, they may be used as analogies to
generate behavior in new, unfamiliar problem situations. Obviously, this will often
be the case if no task-specific, automated procedures are available (i.e., triggered
by cues in the current situation). The use of analogy can best be conceptualized as
a kind of mapping process (e.g., Anderson & Thompson, in press). As discussed in
the previous section, students may use worked examples as a kind of concrete
schemata to map their new solutions; in interpreting cognitive schemata, the key to
the use of the schema is interpreting it by general procedures and mapping it onto
the current knowledge of the situation to create a new solution (Hesketh, Andrews
& Chandler, 1989). Thus, novices compare the current problem situation to
information available in worked examples; with increasing expertise, the current
problem situation can be compared with cognitive schemata retrieved from
memory. As discussed before, such controlled processing has the advantage of
flexibility, but it has the disadvantage that it works slowly and it may lead to errors
due to processing overload.

If analogy repeatedly leads to the desired solutions, the schemata themselves
may eventually be compiled into task-specific procedures that apply to particular
classes of related problems and that directly produce the effect of the analogy
without making reference to schemata. For instance, if a general design schema is
repeatedly used to decompose a certain class of problems in subproblems in a
process of stepwise refinement, the decomposition process for this class of
problems may be automated. And likewise, if the application of a particular
programming language template repeatedly leads to the desired solution for a

Elementary computer programming 279

certain class of subproblems, this template may be compiled into problem-specific
procedures that are automatically applied when confronted with subsequent similar
subproblems.

Schema acquisition and the design of practice. The assumption that the
acquisition of schemata is often the result of mindful abstraction from concrete
problems and their solutions has some important implications for the design of
instruction. First, it is clear that the confrontation with a wide range of different
problems and solutions to these problems, that will often have the form of actual
computer programs or worked examples, is important to give inductive processes
the opportunity to build, generalize, or specialize schemata. Obviously, mindful
abstraction is not possible if there are no concrete objects, events, or activities to
abstract away from. For instance, to develop a hierarchy of programming plans
students must be confronted with a wide range of programs that demonstrate the
use of programming language templates.

Second, there is evidence that mindful abstraction is an effortful process that
requires the conscious attention of the learner. This leads to the additional
implication that one should provoke this mindful decontextualization and
generalization. Whereas Salomon and Perkins (1987) have stressed this point, they
are not very specific about how exactly to provoke mindful abstraction in
instructional materials. Instead, they focus on the role of the teacher, and remark
that "... mindful abstraction is facilitated by a high teacher-student ratio, socratic
interaction with the learners, and a great sensitivity on the part of the teacher for
the ebb and flow of enthusiasm and understanding in the individual student..." (p.
164).

Schema acquisition and transfer. Acquired schemata may explain transfer by the
presence of relevant knowledge from other problem solving situations and in
particular, on how that knowledge is organized in schemata. Indeed, the quality of
the induced schemata has been found to be highly predictive of subsequent transfer
performance (e.g., Gick & Holyoak, 1983). In fact, this explanation is closely
related to the gestalt theory of structural understanding, which claimed that
transfer from one task to another is achieved by arranging learning situations so
that a learner can gain insight into the problem to be solved. Bartlett (1932) first
elaborated this view in his schema theory, which predicts that transfer will occur if
one can relate the present problem to existing schemata, that is, to concepts and
ideas in memory. Interpreting the selected schema and reorganizing the new
situation according to this particular schema is, again, a form of controlled
processing. Thus, both the acquisition of schemata and their use in transfer tasks
requires effort and conscious attention from the learner. Salomon and Perkins
(1987) refer to this transfer mechanism, which results from mindful abstraction
from one situation and application to another, as high road transfer.

In increasingly further transfer within the programming domain, the overlap of
task-specific procedures that were learned in the original task and are also
applicable in the transfer task decreases. As a result, the availability of relevant
schemata that may offer useful analogies becomes increasingly important in
reaching further transfer (Jelsma, van Merri~nboer, & Bijlstra, in press). A central
empirical question concerns how these analogies are noticed and then applied to
generate solutions to the new transfer problems. Spontaneously noticing the
analogy is often a prerequisite for successful transfer in realistic problem
situations. But, in learning schemata, it may help to explicitly state that a schema is

280 Van Merri~nboer and Paas

also applicable in certain transfer situations; then, cues may be added to the schema
that will facilitate its activation in these particular situations.

To summarize, automation and schema acquisition both play an important role in
learning computer programming. The automation of procedures requires extensive
varied practice, is facilitated by the availability of worked examples, and provides
identical elements that may help to solve familiar aspects of new programming
problems; furthermore, in solving a particular programming problem the
availability of task-specific procedures frees up processing resources that may be
devoted to various controlled processes. The acquisition of schemata, such as a
general design schema or programming plans, requires mindful abstraction,
presupposes the confrontation with a well-chosen range of problems and their
solutions (i.e., worked examples), and provides analogies that may guide
subsequent behavior in solving unfamiliar aspects of new programming problems.

TEACHING COMPUTER PROGRAMMING

In the previous section, it was argued that automation and schema acquisition make
their own demands to the design of practice in teaching computer programming.
With regard to these requirements, three instructional design principles can be
formulated:

1. To facilitate automation, extensive varied practice should be provided;
2. To facilitate schema acquisition, mindful abstraction from examples should be

provoked, and
3. To facilitate both automation and schema acquisition, worked examples

should be directly available during practice.

All three instructional principles can be considered to be important to reach
higher learning outcomes and near transfer. First, note that principles 1 and 2 need
not be compatible. In teaching programming, one can give full priority to
automation, full priority to schema acquisition, or priority to automation of certain
aspects of the task and schema acquisition for other aspects of the task. In the
following, the authors will advocate the middle road to transfer. Second, the
authors will argue that principle 3, which claims that useful worked examples
should always be available during practice, is largely neglected in current
programming instruction and may--at least partly----explain low learning outcomes
and, especially, the lack of ability to solve new programming problems (near
transfer). Finally, this paper will discuss some more specific guidelines to provoke
mindful abstraction, based on the assumption that a heavy emphasis on the use of
worked examples is provided in the instruction.

The Middle Road to Transfer

One may stress the importance of automation and extensive varied practice in
learning computer programming. But obviously, in elementary high school
programming courses there is nei ther occasion for extensive practice
(approximately. 100- 500 hours to reach mastery level, Anderson, 1982; Kurland,
Mawby & Cahir, 1984), nor for much task variation within practice. Given this

Elementary computer programming 281

contradiction, for example de Corte and Verschaffel (1986) are moving away from
a concern of programming. They argue that learning to program requires a time
commitment that is out of the question in educational settings. Instead, they
advocate a shift in attention to more constraining, quicker-to-leam general purpose
application packages.

On the other hand, one may stress the role of schema acquisition and mindful
abstraction. Salomon and Perkins (1987) argue, like de Corte and Verschaffel, that
extensive varied practice to mastery or near automaticity, which they call the low
road to transfer, is an inconvenient road to learning to program because automation
is a slow process and the available time in school settings is severely limited. But
instead, they argue that schema acquisition by mindful abstraction, which they call
the high road to transfer, does offer opportunities to reach near transfer of
programming skills and even to harvest general cognit ive benefits from
programming instruction. Obviously, students will stick to controlled processing
when they generate their programs by interpreting schemata, that is, by using
analogy; but in school settings this certainly is a more realistic goal to strive for
than automation because schema acquisition may more rapidly occur.

Given the presented framework, the authors propose the middle road to transfer
and claim that automation of the more familiar aspects of the programming task is
of great importance in learning to program because it frees up processing resources
that may be devoted to both the acquisition of n ew schemata and the interpretation
of existing schemata. These processes are necessary to perform the unfamiliar
aspects of the task. Thus, in solving a new programming problem the situation will
be as follows. First, familiar aspects of the task (i.e., those aspects that are
consistent over problem situations), such as proceeding in the programming
environment, choosing the correct basic commands and applying syntactic rules
can be performed by task-specific procedures. These procedures can be applied
fast, without errors, and with little or no demands on processing capacity. Second,
new aspects of the task can be solved by the use of analogy. Schemata such as
programming plans (learned programming language templates) should be available
to help to find a solution and these schemata can be interpreted thanks to
processing resources that are freed up by automation of the more familiar aspects
of the programming task.

In conclusion, automation should be seen as a process that is complementary to
schema acquisition because it facilitates problem solving by analogy by freeing up
the required cognitive resources. In addition, the authors fully subscribe that the
provocation of mindful abstraction is important to reach schema acquisition and
thus increase the possibility that near transfer effects occur. In other words, well-
designed practice should provide extensive training of basic skills, but under strict
conditions that vigorously promote the acquisition of schemata. In the following
sections, the authors claim that a heavy use of worked examples during practice
supports both automation and schema acquisition, and that the provocation of
mindful abstraction is considerably simplified if such examples are the central
component in programming instruction.

The Neglected Use of Worked Examples

The conventional way to teach computer programming is to present stereotyped
sequences of instructional materials and problems. Typically, students are offered
(a) a small amount of new programming language features along with some

282 Van Merri~nboer and Paas

syntactic details, (b) a small number of illustrative problems and solutions in the
form of computer programs that demonstrate the use of the new material, and (c) a
relatively large number of programming problems for which students have to
generate new computer programs.

From research in other domains, it is known that this traditional procedure
used to enhance problem solving skills, that is, extensive practice on many
conventional problems, is relatively ineffective. This evidence has been
obtained both from solving puzzle problems (Mawer & Sweller, 1982; Sweller,
1983; Sweller & Levine, 1982; Sweller, Mawer & Howe, 1982) and from
solving mathematical problems (Owen & Sweller, 1985; Sweller & Cooper,
1985; Sweller, Mawer & Ward, 1983). In particular, the lack of guidance and
modelling during problem solving seems to impose a high processing load
which may result in either directing the attention away from those aspects of
the task that are important in learning or in completely losing ones way
(Sweller, 1988). In addition, such ineffective practice and cognitive overload
may eventually lead to decreased motivation and a further impairment of
performance.

In the view of the authors, this undesirable situation can also be observed in
most elementary computer programming courses. First, low learning outcomes and
the lack of ability to solve new programming problems clearly demonstrate the
ineffectiveness of current programming instruction. Second, high processing load
during elementary computer programming and its negative effects on learning has
been frequently reported (see, Anderson & Jeffries, 1985). And finally, the
presentation of illustrative problems and their solutions in isolation from practice
has been argued to be highly ineffective (Van MerriEnboer & Krammer, 1987).
During problem solving, students have to search for examples that fit in with their
solution and they must turn back leaves, looking for examples analogous to the
solution. This is a difficult task as students cannot be sure that a useful example is
available; sometimes an example at In-st glance looks similar to the solution of the
problem at hand but in fact it cannot be mapped correctly, which may result in
serious mistakes.

Obviously, more effective practice should reduce processing load and redirect
attention to those aspects of the task that facilitate learning. A heavy use of worked
examples, which are directly available during practice and that provide a solution
with a format that is similar to the format of the desired solution to the posed
problem, may be the key to achieving this goal. Whereas, to the author's
knowledge, no research is available in the field of computer programming, Cooper
and Sweller (1987) reported that the simultaneous presentation of worked
examples and problems in learning mathematical problem solving had a
facilitating effect on automation as well as schema acquisit ion. In their
experimental design, one group first received some illustrative examples and
then a set of conventional problems; the other group received the same
problems, but each problem was accompanied with an identical format problem
that had the solution written out in a manner similar to that of the illustrative
examples in the other group. The direct availability of useful worked examples
during practice was found to be far more effective than the conventional use of
illustrative examples. In particular, the use of worked examples shortened the
acquisition phase, reduced the number of errors made during acquisition, and
improved both near and far transfer performance.

Concluding, the main claim of this paper in regards to the design of practice in
elementary computer programming is that during practice useful worked examples,

Elementary computer programming 283

which have the form of correct, well-structured programs with a format similar to
that of the desired solution, should be directly available. As several other authors
have argued on various grounds, the use of such worked examples has not been
taken seriously enough in current programming instruction (e.g., Dalbey,
Toumiaire, & Linn, 1985; Pea, 1986). In this respect, the authors fully agree with
Lieberman (1986), who proposes that examples of correct solutions should be the
kernel of well-designed practice. First, students can use such examples as
blueprints to map their new solutions, which supports automation. And second,
students may generalize from the examples to learn new programming principles,
design techniques and, in particular, programming plans or programming language
templates so that they also support schema acquisition. In addition, the direct
coupling of practice with worked examples will make it easier for the teacher to
articulate his or her expertise, because by presenting the students selected worked
examples the-- for the greater part-- taci t knowledge, which is difficult to
verbalize, may be implicitly conveyed. And finally, the use of worked examples
during practice might simplify the provocation of mindful abstraction; at least,
students are continuously confronted with materials they can abstract away from.

How to Provoke Mindful Abstraction ?

In the previous section, the authors argued that a heavy use of worked examples
during practice might be essential to reach more effective programming instruction.
However, the presentation of worked examples alone will often not be sufficient,
because the use of these examples as blueprints to map new solutions as well as the
generalization of certain aspects of the examples requires the voluntary investment
of effort, or the conscious attention, from the learner. In experimental studies, such
as that of Cooper and Sweller (1987), learners will often be highly motivated and
inclined to invest mental effort. However, in typical school settings one often has
to deliberately provoke mindful abstraction. Thus, it is particularly important to
focus on the question "how do we get the learners to thoroughly study the worked
examples, and abstract away from their details?".

As a first observation, it should be obvious that a good teacher always points out
what is, and what is not important about the worked examples. As Anderson,
Boyle, Corbett and Lewis (1986) as well as Lieberman (1986) pointed out, the
worked examples should be annotated with information about what they are
supposed to illustrate. As programming plans, or learned programming language
templates, are a particularly important kind of schemata to acquire during
programming instruction (Ehrlich & Soloway, 1984; Soloway, 1985), it may be
desirable to annotate the examples by explicitly referring to the newly-to-learn
templates they use. In addition, one should explicitly state the situations to which
the demonstrated principles or techniques might transfer to increase the chance that
this transfer actually occurs (Gick & Holyoak, 1983). Only then, contextual cues
may be added to the schemata that increase the likelihood that the appropriate
schema is found and can be applied in the transfer situation.

A further, and in the opinion of the authors, particularly powerful route to
provoke mindful abstraction is the use of programming assignments that require
both the generation of code and a thorough study of worked examples. An obvious
method to reach this goal is to confront the students with useful worked examples
that have to be completed; the examples have the form of incomplete, but well-
structured, understandable computer programs. Then, the students actually have to

284 Van Merri~nboer and Paas

design and generate programming code and they extensively train basic skills such
as proceeding in the programming environment, choosing the correct basic
commands and applying syntactic rules, which is seen as essential to the
acquisition of programming skill according to the proposed middle-road to transfer.
But furthermore, the students are required to study the worked examples carefully
because there is a direct, natural bond between examples and practice: They cannot
correctly finish an assignment without understanding the program that has to be
completed. Provided that the incomplete programs are well-chosen, that is, contain
elements that are also relevant to completing them (e.g., the incomplete program
contains a certain looping structure that is also necessary to correctly complete it),
this method can be expected to facilitate both automation, because the students have
blueprints available to map their new--partial--solutions, and schema acquisition,
because they are forced to mindful abstraction from the incomplete programs.

In two studies that compared the effectiveness of these so-called "completion
assignments" with conventional assignments (i.e., solving programming problems),
higher learning outcomes for program construction tests were found for students
who worked on the completion assignments (van Merri nboer, in press; van Merri8
nboer & de Croock, 1989). The completion assignments that were used always
consisted of a programming problem and a partial solution to this problem that was
presented on-line, together with three components: (a) information on the language
features and templates used in the partial solution and information on the situations
in which those templates are useful, (b) questions on the structure and the workings
of the incomplete program, and (c) task instructions to run, complete or change the
incomplete program. Figure 1 presents a--shortened and simplified-- example of
a completion assignment to indicate its different components. The higher leaming
outcomes after working on the completion assignments could be well explained by
a better application of programming language templates during the construction of
new computer programs, indicating superior schema acquisition.

Finally, it should be noted that a heavy use of worked examples during practice
in such a way that mindful abstraction is provoked places constraints on the
sequence and variability of those examples. Whereas it goes beyond the scope of
this article to elaborate these aspects, some important guidelines are the following.
Obviously, a sequence of worked examples should start with simple examples and
build to more complex examples. This will enable the students to initially acquire
relatively simple schemata that are applicable to a wide range of problems, and
subsequently develop more specialized schemata that may handle more exceptional
cases. Furthermore, the sequence of worked examples should be varied in such a
way that the differences and the similarities of one situation and solution to other,
related situations and solutions is clarified to the students. For example, when and
how to use a WHILE loop in a program should be clearly contrasted to when and
how to use a REPEAT UNTIL. And to conclude, in the opinion of the authors it is
self-evident that the amount of worked examples should be as high as possible,
provided that they are directly coupled to practice and presented in such a way that
they provoke mindful abstraction.

DISCUSSION

This paper offered a description of two learning processes that may be considered
to be particularly important in learning elementary computer programming.

Pr
ob

le
m

 S
pe

ci
fi

ca
ti

on

W
ri

te
 a

 p
ro

g
ra

m
 t

o
dr

aw
 a

 s
er

ie
s

o
f

a
pr

e-
sp

ec
if

ie
d

nu
m

be
r

o
f

sq
ua

re
s.

 T
he

 t
ot

al

le
ng

th
 o

f
th

e
se

ri
es

 m
us

t
be

 1
00

 u
ni

ts
.

E
xa

m
pl

es
 o

f
de

si
re

d
ou

tp
ut

 a
re

:

~ 20

2a

20

2O

20

ss
.s

ss

,s

a
a
.
~

Pa
rt

ia
l

So
lu

ti
on

0
0

1
0

 P
R

O
C

se

ri
e

sl
0

0
(n

u
m

b
e

r)

0
0

2
0

ri

g
h

t(
9

0
)

0
0

3
0

F

O
R

 c
o

u
n

t1

:=

1
T

O
 n

u
m

b
er

 D
O

0
0

4
0

fo

rw
a

rd
(1

0
0

/n
u

m
b

e
r)

0
0

5
0

Ig

N
D

F
O

R
 c

o
u

n
t

1

0
0

6
0

 E
N

D
P

R
O

C

se
ri

e
s1

0
0

In
fo

rm
at

io
n

T
h

e
pa

rt
ia

l
so

lu
ti

on

pr
es

en
ts

an

ot
he

r
ex

am
pl

e
on

th

e
us

e
o

f
th

e
F

O
R

-l
oo

p.

R
em

em
b

er
 t

ha
t

it
 s

ho
ul

d
be

 u
se

d
in

 c
as

e
yo

u
w

an
t

to
 r

ep
ea

t
on

e
or

 m
or

e
pr

og
ra

m

li
ne

s
a

fi
xe

d
n

u
m

b
er

 o
f

ti
m

es
:

•
In

 p
re

vi
ou

s
pr

og
ra

m
s,

 f
ix

ed
 m

ea
n

t
a

co
ns

ta
nt

n

u
m

b
er

 o
f

ti
m

es
 (

e.
g.

,
4

or

65
).

•
In

 t
he

 p
re

se
nt

ed
 p

ar
ti

al
 s

ol
ut

io
n,

fi

xe
d

m
ea

ns
 a

 n
u

m
b

er
 o

f
ti

m
es

 t
ha

t
is

 p
re

-

sp
ec

if
ie

d
as

 a
n

ar
g

u
m

en
t

to
 t

he
 p

ro
ce

du
re

-c
al

l.

Q
ue

st
io

n(
s)

T
h

e
pr

oc
ed

ur
e-

ca
ll

 s
er

ie
sl

O
0(

5)

on
 t

he
 p

ar
ti

al
 s

ol
ut

io
n

yi
el

ds
:

a.

on
e

sq
ua

re
 w

it
h

si
de

 l
en

gt
hs

 o
f

20
 u

ni
ts

b.

on
e

sq
ua

re
 w

it
h

si
de

 l
en

gt
hs

 o
f

10
0

un
it

s

c.

on
e

li
ne

 w
it

h
a

le
ng

th
 o

f
10

0
un

it
s

d.

on
e

li
ne

 w
it

h
a

le
ng

th
 o

f
50

0
un

it
s

T
as

k

In
st

ru
ct

io
n(

s)

1.

L
o

ad

th
e

pa
rt

ia
l

so
lu

ti
on

fr

om

di
sk

an

d
ob

se
rv

e
it

s
ou

tp
ut

fo

r
di

ff
er

en
t

pr
oc

ed
ur

e-
ca

ll
s.

2.

C
om

pl
et

e
th

e
pr

og
ra

m
 t

o
m

ee
t

th
e

g
iv

en
 p

ro
bl

em
 s

pe
ci

fi
ca

ti
on

.

rq
 !

Fi
gu

re
 1

. A
 s

im
pl

ifi
ed

 e
xa

m
pl

e
of

 a
 c

om
pl

et
io

n
as

si
gn

m
en

t,
us

in
g

th
e

pr
og

ra
m

m
in

g
la

ng
ua

ge
 C

om
al

-8
0

(C
hr

is
te

ns
en

, 1
98

2)
.

286 Van Merrin~boer and Pacts

A u t o m a t i o n leads to task-spec i f ic p rocedures that may direct ly control
programming behavior; schema acquisition offers cognitive structures, such as
programming plans, that provide analogies in new problem situations. Based on the
analysis of these leaming processes, the authors argued that traditional practice,
that is, solving many conventional programming problems after receiving some
illustrative examples, is ineffective in terms of learning outcomes and transfer.
Well-designed practice should provide extensive training of basic skills, but under
strict conditions that vigorously promote the acquisition of schemata.

It was claimed that useful worked examples should always be available during
practice, and that effortful, mindful abstraction from these examples should be
provoked both by annotation of the examples and, in particular, by having the
students to finish incomplete programs that concurrently serve as worked
examples. These requirements to practice are easily met in a programming
curriculum that may be labeled the reading approach (e.g., Deimel & Moffat,
1982). Four phases are distinguished in this curriculum. In the first phase, students
run working programs, observe their behavior and evaluate their strengths and
weaknesses. In the second phase, students are actually introduced to well-
structured programs; their primary activities in this phase are reading and hand
tracing of programs. During the third phase, students are confronted with
complet ion assignments: They amplify and modify existing programs and
practice both design and coding aspects on a modest scale. Only after students
have reached a reasonable level of proficiency, they generate programs on their
own and continue practicing basic design techniques and structured coding. For
a comprehensive evaluation of this curriculum and its contrasts with other
prevai l ing in t roductory p rog ramming curr icula, see van Merr i~nboer &
Krammer (1987).

Whereas the present article focussed on near transfer, or the ability to solve new
programming problems, the framework has also some clear implications for
reaching far transfer effects to other domains, that is, for the development of
context independent strategies. In far transfer situations, the overlap of task-
specific procedures with the original task heavily decreases so that the importance
of acquired schemata increases (Jelsma et al., in press). Consequently, the
provocation of mindful abstraction is particularly important to develop context
independent strategies. In addition, it should explicitly be stated to the students that
the leamed techniques might transfer to an expressly named domain, so that cues
become available in the acquired schemata that may activate them in the new
context. For example, if one teaches students top-down design techniques in
elementary programming, it should explicitly be stated that these techniques are
also useful in writing an essay to be able to reach transfer to this domain.

But obviously, even as a top-down design schema has been acquired, and cues
are available that may activate it when writing an essay, there is no warrant that the
desired far transfer effects will actually occur. Just like schema acquisition, the
interpretation of schemata is a controlled process that requires the investment of
effort. As in near transfer, the learner will only be able to do so if the more familiar
aspects of the task are automated; then, processing resources are available that may
be devoted to mapping the top-down design schema to the new essay-writing
context. If, on the other hand, students still have difficult ies with writing
grammatically correct sentences, the chance that transfer effects occur is low
because no processing resources will be available to interpret the top-down design
schema. And in addition, even as these cognitive resources are available, the
students must be willing to invest effort or, simply stated, they must be willing to

Elementary computer programming 287

do their best to apply the learned skills in the new context. In conclusion, the
proposed instructional principles are believed to increase the likelihood that--both
near and far transfer effects occur, but they can never guarantee such transfer
because motivation eventually plays a crucial role in the learning and transfer of
computer programming skills.

Finally, the authors are completely aware of the fact that the proposed approach
to teaching elementary programming has far-reaching implications for designing
elementary programming courses. Nowadays, there are almost no courses available
which offer practice that is directly coupled to useful worked examples and
explicitly provokes mindful abstraction from these examples. Much strenuous
work will have to be done to design and implement such courses, because the good
teaching of programming heavily depends on the laborious art of selecting and
sequencing good examples to present to the students. However, given the
disappointing learning outcomes and the lack of transfer effects of current
programming instruction, this investment is believed to be worth while. It is the
author's f'u'rn conviction that it is high time to seriously reconsider the traditional
approach to teaching programming.

REFERENCES

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369-406.

Anderson, J. R. (1983). The architecture of cognition. Cambridge: Harvard University Press.

Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method problem solutions.
Psychological Review, 94, 192- 210.

Anderson, J. R., Boyle, C. F., Corbett, A., & Lewis, M. (1986). Cognitive modelling and intelligent
tutoring (Tech. Rep. No. ONR-86-1). Pittsburgh, PA: Carnegie Mellon University.

Anderson, J. R., & Thompson, R. (in press). Use of analogy in a production system architecture. In S.
Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning. Cambridge: Cambridge
University Press.

Anderson, J. R. Farrell, R., & Sauers, R. (1984). Learning to program in LISP. Cognitive Science, 8,
87-129.

Anderson, J.R., & Jeffries, R. (1985). Novice LISP errors: Undetected losses of information from
working memory. Human-Computer Interaction, 1, 107-131.

Bartlett, E C. (1932). Remembering. Cambridge, England: Cambridge University Press.

Brooks, R. (1977). Towards a theory of the cognitive processes in computer programming.
International Journal of Man-Machine Studies, 9, 737-751.

Carbonell, J. G. (1984). Learning by analogy: Formulating and generalizing plans from past
experience. In R. S. Michalsky, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An
artificial intelligence approach. Vol. 1 (pp. 137-161). Berlin: Springer-Verlag.

Carbonell, J. G. (1986). Derivational analogy: A theory of reconstructive problem solving and
expertise acquisition. In R. S. Michalsky, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning:
An artificial intelligence approach. Vol. 2 (pp. 371-392). Los Altos, CA: Morgan Kaufman
Publishers.

Christensen, B. R. (1982). Beginning Comal. Chichester: Ellis Horwood.

Cooper, G., & Sweller, J. (1987). Effects of schema acquisition and rule automation on mathematical
problem-solving transfer. Journal of Educational Psychology, 4, 347-362.

Dalbey, J., & Lima, M. C. (1985). The demands and requirements of computer programming: A
literature review. Journal of Educational Computing Research, 1,253-274.

288 Van Merri~nboer and Paas

Dalbey, J., Toumiaire, E, & Linn, M. C. (1985). Making programming instruction cognitively
demanding: An intervention study (ACCCEL report). Berkeley: University of Califomia, Lawrence
Hall of Science.

Deimel, L. E., & Moffat, D. V. (1982). A more analytical approach to teaching the introductory
programming course. In J. Smith and M. Schuster (Eds.), Proceedings of the NECC (pp. 114-118).
Columbia: The University of Missouri.

De Corte, E., & Verschaffel, L. (1986). Effects of computer experience on children's thinking skills.
Journal of Structural Learning, 9, 161-174.

DuBoulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing
Research, 2, 57-73.

Ehrlich, K., & Soloway, E. (1984). An empirical investigation of the tacit plan knowledge in
programming. In J. Thomas & M. L. Schneider (Eds.), Human factors in computer systems (pp. 113-
133). Norwood, NJ: Ablex Publishing Corp.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive
Psychology, 15, 1-38.

Goodyear, P. (1987). Sources of difficulty in assessing the cognitive effects of learning to program.
Journal of Computer Assisted Learning, 3, 214-223.

Hesketh, B., Andrews, S., & Chandler, P. (1989). Opinion---Training for transferable skills: The role
of examples and schema. ETTI, 26, 156-165.

Jeffries, R., Turner, A. A., Poison, P. G., & Atwood, M. E. (1981). The processes involved in
designing software. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 255-284).
Hillsdale, NJ: Edbaum Associates.

Jelsma, O., Van Merd~nboer, J. J. G., & Bijlstra, J. P. (in press). The ADAPT design model: Towards
instructional control of transfer. Instructional Science.

Kurland, D. M., Mawby, R., & Cahir, N. (1984). The development of programming expertise in
adults and children. In M. Kurland (Ed.), Developmental studies of computer programming skills
(Tech. Rep. 29). New York: Bank Street College.

Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1986). A study of the development of
programming ability and thinking skills in high school students. Journal of Educational Computing
Research, 2, 429-458.

Lieberman, H. (1986). An example based environment for beginning programmers. Instructional
Science, 14, 277-299.

Linn, M. C. (1985). The cognitive consequences of programming instruction in classrooms.
Educational Researcher, 14, 14-29.

Mawer, R., & Sweller, J. (1982). The effects of subgoal density and location on learning during
problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8, 252-259.

Mayer, R. E. (1981). The psychology of how novices learn computer programming. Computing
Surveys, 13, 121-141.

Mayer, R. E. (1982). Contributions of cognitive science and related research in learning to the design
of computer literacy curricula. In R. Seidel, R. Anderson, & B. Hunter (Eds.), Computer literacy (pp.
129-159). New York: Academic Press.

Mayer, R. E., & Greeno, J. G. (1972). Structural differences between learning outcomes produced by
different instructional methods. Journal of Educational Psychology, 63, 165-173.

McCoy Carver, S., & Klahr, D. (1986). Assessing children's LOGO debugging skills with a formal
model. Journal of Educational Computing Research, 2, 487-525.

Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88, 1-15.

Owen, E., & Sweller, J. (1985). What do students learn while solving mathematical problems?
Journal of Educational Psychology, 77, 272-284.

Pea, R. D. (1986). Language-independent conceptual 'bugs' in novice programming. Journal of
Educational Computing Research, 2, 25-36.

Elementary computer programming 289

Pea, R. D., & Kurland, M. (1984). On the cognitive effects of learning computer programming. New
Ideas in Psychology, 2, 131-168.

Perkins, D. N., & Martin, F. (1986). Fragile knowledge and neglected strategies in novice
programmers. In E. Soloway & S. Iyengar (Eds.), Empirical studies of programmers (pp. 213- 229).
Norwood, NJ: Ablex.

Perkins, D. N., & Salomon, G. (1989). Are cognitive skills context-bound? Educational Researcher,
18, 16-25.

Pirolli, P. L., & Anderson, J. R. (1985). The role of learning from examples in the acquisition of
re, cursive programming skills. Canadian Journal of Psychology, 3, 240-272.

Proctor, R. W., & Reeve, T. G. (1988). The acquisition of task-specific productions and modification
of declarative representations in spatial-precueing tasks. Journal of Experimental Psychology:
General, 117, 182-196.

Pumam, R. T., Sleeman, D., Baxter, J. A., & Kuspa, L. K. (1986). A summary of misconceptions of
high school BASIC programmers. Journal of Educational Computing Research, 2, 459-471.

Rist, R. S. (1989). Schema creation in programming. Cognitive Science, 13, 389-414.

Salomon, G., & Perkins, D. N. (1987). Transfer of cognitive skills from programming: When and
how? Journal of Educational Computing Research, 3, 149-169.

Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I.
Detection, search, and attention. Psychological Review, 84, 1-66.

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II.
Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127-190.

Singley, M. K., & Anderson, J. R. (1985). The transfer of text-editing skill. International Journal of
Man-Machine Studies, 22,403-423.

Singley, M. K., & Anderson, J. R. (1988). A keystroke analysis of learning and transfer in text
editing. Human Computer Interaction, 3, 223-274.

Sleeman, D., Putnam, R. T., Baxter, J. A., & Kuspa, L. K. (1986). Pascal and high school students: A
study of errors. Journal of Educational Computing Research, 2, 5-24.

Soloway, E. (1985). From problems to programs via plans: The content and structure of knowledge
for introductory LISP programming. Journal of Educational Computing Research, 1, 157-172.

Sweller, J. (1983). Control mechanisms in problem solving. Memory and Cognition, 11, 32-40.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12,
257-285.

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving
in algebra. Cognition and Instruction, 2, 59-89.

Sweller, J., & Levine, M. (1982). Effects of goal specificity on means-ends analysis and learning.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 8, 463-474.

Sweller, J., Mawer, R., & Howe, W. (1982). Consequences of history-cued and means-ends strategies
in problem solving. American Journal of Psychology, 95, 455-483.

Sweller, J., Mawer, R., & Ward, M. (1983). Development of expertise in mathematical problem
solving. Journal of Experimental Psychology: General, 112, 634-656.

Thomdike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental function
upon the efficiency of other functions. Psychological Review, 8, 247-261.

Van Merd~nboer, J. J. G. (in press). Strategies for programming instruction in high school: Program
completion vs. program generation. Journal of Educational Computing Research, 6.

Van Merd~nboer, J. J. G., & De Croock, M. B. M. (1989, September). Strategies for computer-based
programming instruction: Program completion vs. program generation. Paper presented at the Third
European Conference for Research on Leaming and Instruction (EARLI), Madrid, Spain.

Van Merri~nboer, J. J. G., & Krammer, H. P. M. (1987). Instructional strategies and tactics for the
design of introductory computer programming courses in high school. Instructional Science, 16, 251-
285.

