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Abstract m Two complementary processes may be distinguished in learning a complex 
cognitive skill such as computer programming. First, automation offers task-specific proce- 
dures that may directly control programming behavior, second, schema acquisition offers 
cognitive structures that provide analogies in new problem situations. The goal of this 
paper is to explore what the nature of these processes can teach us for a more effective 
design of practice. The authors argue that conventional training strategies in elementary 
programming provide little guidance to the learner and offer little opportunities for mind- 
ful abstraction, which results in suboptimal automation and schema acquisition. Practice is 
considered to be most beneficial to learning outcomes and transfer under strict conditions, 
in particular, a heavy emphasis on the use of worked examples during practice and the 
assignment of programming tasks that demand mindful abstraction from these examples. 

INTRODUCTION 

Computer programming at an elementary level is rapidly becoming a part of the 
high school curriculum. However,  there is much  evidence  for low learning 
outcomes after relatively short elementary programming courses of 10-50 lessons 
(Linn, 1985; Pea & Kurland, 1984). After these courses, most students still have an 
incomplete or incorrect mental model of the working of a computer (DuBoulay, 
1986; Pea, 1986), a fragile knowledge base related to the basic commands and 
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syntax of the programming language (Perkins & Martin, 1986; Putnam, Sleeman, 
Baxter & Kuspa, 1986; Sleeman, Putnam, Baxter & Kuspa, 1986), a serious lack of 
programming language templates or programming plans (Dalbey & Linn, 1985), 
and ill-developed procedural skills, such as for planning the solution or testing and 
debugging the program (Kurland, Pea, Clement & Mawby, 1986). 

Thus, students do not learn to program very well in these e lementary 
programming courses and most teachers are reasonably satisfied if the students at 
least acquire a vague notion of what programming is like and what it may be used 
for. Given these low leaming outcomes, it is not surprising that most research on 
far transfer effects of elementary computer programming to other domains, or, 
more generally, an impact on higher level cognitive skills, yielded negative results 
(e.g., see Goodyear, 1987). 

The goal of this article is to present instructional design principles that may 
augment learning outcomes and increase the possibility that transfer effects at least 
occur within the programming domain. This goal is subject to some restrictions. 
First, the design principles are limited to elementary computer programming in 
schools, where the target group mainly consists of prenovices and the available 
instructional time is severely limited. Second, and more important, the design 
principles are limited to the design of practice. The great majority of research on 
teaching elementary programming pertains to the presentation of particular 
information that is considered to be relevant to performance of the programming 
skill, such as the explicit teaching of concrete computer models (Mayer, 1981, 
1982), programming language templates (Soloway, 1985), and debugging models 
(McCoy Carver & Klahr, 1986). Whereas such research certainly is valuable, an 
important claim of this article is that more attention should be paid to the 
conditions under which the programming skills are actually practiced. 

The structure of this discourse is as follows. In section two, automation and 
schema acquisition are described as two prevalent processes in learning elementary 
computer programming and their demands to effective practice as well as their 
effects on learning outcomes and transfer are discussed. In section three, the major 
shortcomings of current programming instruction are identified and instructional 
design principles are presented that do meet the requirements to practice of both 
automation and schema acquisition and thus may improve learning outcomes and 
increase the possibility that transfer effects occur within the programming domain. 
In particular, this paper will focus a heavy emphasis on the use of worked 
examples during practice and the assignment of programming tasks that demand 
mindful abstraction from these examples. Finally, section four contains a 
discussion of the proposed approach and its inclusion in programming curricula, 
and a reflection on its main implications for teaching programming. 

LEARNING COMPUTER PROGRAMMING 

Learning computer programming means both learning procedures to accomplish 
various goals and learning the information that is relevant to these procedures. As a 
first observation, expert programmers can perform many procedures without 
noticeable effort because they are able to respond in a highly reflexive manner to 
abstract features of problems. However, their skill clearly is more than the sum of 
its automatic parts; when experts are confronted with new programming problems 
for which they have no automatic procedures available, they can rely on an 
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enormous amount of programming knowledge that may be used by more general 
problem solving methods to reach a solution. Thus, besides the development of 
automatic procedures, the acquisition of highly structured knowledge, or schemata, 
plays a significant role in learning a skill like computer programming. In the next 
sections, the processes of automation and schema acquisition, their implications for 
the design of practice, and their effects on learning outcomes and transfer will be 
further elaborated. 

Automation 

Automation leads to highly task-specific procedures that may directly control 
programming behavior. In current cognitive research, such procedures are usually 
referred to as productions or condition-action pairs. The conditions specify various 
problem specifications or particular programming goals; the actions can be to 
embellish the problem specification, to set new subgoals, or to write or change 
programming code. As a result of the availability of task-specific procedures, 
experts can almost automatically reformulate and decompose familiar problems in 
subproblems that have known solutions, and they can effortlessly generate 
programming code to reach low-level goals, such as printing values, doing loops, 
or making decisions (Anderson, Farrell, & Sauers, 1984). 

The development of automatic processing. The development of task-specific 
procedures is a lengthy process, that may be seen as a transition from controlled to 
automatic processing (Shiffrin and Schneider 1977; Schneider & Shiffrin, 1977). In 
the early stage of learning a complex cognitive skill, the learner usually receives 
information about the skill that may be used by general procedures, or "weak" 
problem solving methods, to generate behavior. The generality of those procedures 
refers to the fact that they make no reference to any particular knowledge domain; 
instead, they are able to interpret a wide range of newly acquired information to 
generate behavior. Such controlled processing has the advantage of flexibility 
because a learner can be circumspect about the behavioral implications of using the 
newly acquired knowledge. However, performance is low because controlled pro- 
cessing has the disadvantage that it works slowly and it may lead to serious errors 
due to processing overload. 

Anderson (1983, 1987) identified knowledge compilation as an important 
process to make the transition from controlled to automatic processing possible. 
With practice, knowledge compilation creates procedures that eventually may 
directly control programming behavior. Knowledge compilation both includes the 
incorporation of newly acquired knowledge in new task-specific procedures and 
the "chunking" of procedures that consistently follow each other in solving 
particular problems. Knowledge compilation produces a considerable speedup in 
performance and implies a reduction of processing load because newly acquired 
knowledge need no longer be retrieved from memory and held active to be 
interpreted by more general procedures. 

Complete automatic processing may be reached as learning proceeds further 
through a tuning process that strengthens the task-specific procedures with every 
successful application, so that situation-driven procedures become available that 
directly control programming behavior. Automatic processing works fast, with 
minimal errors, and with low demands on processing capacity so that cognitive 
resources become available for other aspects of the task. However, automatic 
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processing may be disadvantageous as well because there is the ever present 
danger of action slips to occur if particular stimulus input triggers nonintended 
procedures (Norman, 1981). 

Automation and the design of practice. As automation is the result of practice, 
skills can only be acquired by doing them. This principle of "learning by doing" 
has some important implications for the design of practice. First, an expert programmer 
is believed to have available tens of thousands of highly task-specific procedures (e.g., 
Brooks, 1977). The development of such a broad range of highly task-specific 
procedures, which underlies flexibility in programming behavior on a high 
performance level, requires lengthy training as well as a high variation in training. 

Second, the detailed procedural knowledge is likely to be highly implicit and not 
easily verbalized, so that teachers may have difficulty explicating such knowledge. 
An effective alternative way to communicate the knowledge and to shorten the 
training for automation of the skill is the use of worked examples. In this respect, 
Anderson et  al. (1984) and Pirolli and Anderson (1985) reported that students 
made a highly selective use of instructional materials during practice. In particular, 
they used concrete examples of problem solutions that were similar to the solution 
of the problem at hand and that had the form of concrete computer programs. 
Students used these worked examples as a kind of concrete schemata to map their 
new solutions. The key to this use of worked examples is interpreting the example 
by general procedures and mapping it onto the current knowledge of programming 
to create new solutions. Such interpretation of worked examples is a powerful tool 
in guiding programming behavior. But most importantly, the information that 
comes from the worked examples may be incorporated, or compiled, into new task- 
specific procedures. Thus, the use of worked examples initially bridges the gap 
between current knowledge and programming behavior and facilitates the 
development of task-specific procedures and, eventually, automation. 

Automation and transfer. With regard to the effects of automation on transfer, a 
distinction must be made between near and far transfer. Mayer and Greeno (1972) 
introduced this distinction to indicate the extent of similarity between the new 
setting and the original training setting. For the purposes of this paper, near transfer 
is defined as transfer of programming skills within the programming domain, such 
as the ability to solve new programming problems; far transfer is def'med as the 
transfer of programming skills outside the programming domain, such as the ability 
to apply learned top-down design techniques in writing an essay. This distinction is 
closely related to the issue of context-dependent versus context-independent 
strategies in programming (Perkins & Salomon, 1989), because far transfer 
assumes an excessive decontextualization of acquired skills. The present article is 
limited to near transfer, that is, to the transfer of skills within the context of 
programming. 

Automation may explain such transfer by the overlap of task-specific procedures 
that were learned in the original task but that are also applicable in performing the 
transfer task. In fact, this explanation is closely related to the associationist theory 
of identical elements  (Thorndike & Woodworth, 1901), which claimed that transfer 
from one task to another would only occur when both tasks shared identical 
elements. Whereas it never became clear what exactly was meant by identical 
elements, it was usually interpreted to mean something like stimulus-response 
pairs. In current cognitive research, the identical elements are usually interpreted in 
terms of productions (e.g., Singley & Anderson, 1985, 1988). The availability of 
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automatic procedures predicts transfer in so far as the procedures that are learned in 
the training task are identical to the procedures that are needed for performing the 
transfer task. Salomon and Perkins (1987) refer to this transfer mechanism, which 
results from extensive practice and automation, as low-road transfer. It is limited 
by the triggering stimuli that will activate automated performance and hence 
requires varied practice to reach transfer. 

In increasingly further transfer within the programming domain, there is a 
decreasing overlap of task-specific procedures between the original task and the 
transfer task. Thus, automation cannot directly explain the ability to solve new, not 
previously encountered--aspects of--programming problems. However, automatic 
processing of certain aspects of the task makes very low demands on processing 
capacity, so that cognitive resources become available for other controlled 
processes that may lead to such transfer. This side-effect of automation can be 
argued to be particularly important for a problem-solving intensive task such as 
computer programming. The interpretation of schemata that provide analogies for 
solving new problem situations is a good example of a form of controlled 
processing that may occur due to automation, and lead to further transfer within the 
programming domain. This process will be discussed in the next section. 

Schema acquisition 

Schemata can be conceptualized as cognitive structures that allow particular 
objects, events, or activities to be assigned to general categories. Thus, schemata 
provide general knowledge that can be applied to particular cases. Due to the 
availability of schemata, expert programmers are not only able to fluently perform 
familiar programming tasks by the use of highly task-specific procedures, but also to 
interpret unfamiliar situations in terms of their generalized knowledge. For instance, 
they may rely upon a good notion of the working of the computer to make their 
programs more efficient, their clear view of the design process in program development 
to guide their programming behavior, and their extensive knowledge base of 
programming plans to improve their problem decomposition and program composition. 

The acquisition of several kinds of schemata is also relevant to learning 
elementary computer programming (Rist, 1989). For instance, a general design 
schema should be developed to provide abstract knowledge concerning the 
processes involved in generating a good design and its overall structure (e.g., 
Jeffries, Turner, Polson & Atwood, 1981). The design schema may then be used 
recursively to generate a decomposition of the problem into more and more 
detailed modules in a process of "stepwise refinement", which leads to a top-down, 
breadth first expansion of the solution. The design process continues until 
programming code has been identified for each of the subproblems. 

Programming plans are generally considered to be a particularly important kind 
of schemata to acquire in elementary computer programming (Ehrlich & Soloway, 
1984; Soloway, 1985). These programming plans are learned programming 
language templates, or stereotyped sequences of computer instructions, that form a 
hierarchy of generalized knowledge. High-level programming language templates 
(such as a general input-process-output plan) may be applied to a very wide range 
of programming problems, whereas medium level templates (such as a looping 
structure with an initialization above the loop) and low-level templates (such as a 
statement to print the value of a variable) are applicable to increasingly smaller 
ranges of (sub)problems.  Thus, programming plans provide,  within the 
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programming domain, a hierarchy of increasingly context dependent strategies that 
may guide a process of "templating" in the creation of solutions to posed problems. 
In our discussion of schema acquisition, we mainly focus on the learning of such 
programming language templates during practice. 

The development of schemata. In the prenovice stage of learning programming, 
the learner has neither task-specific procedures nor useful cognitive schemata 
available. Thus, the learner has to apply very general, weak problem solving 
methods to perform the programming task. As discussed in the previous section, a 
result of practice is that task-specific procedures are compiled that will 
significantly increase performance on subsequent problems. But in addition, and 
often simultaneously, schemata may be acquired that offer analogies, or abstract 
categories of problems and solutions, that may guide subsequent problem solving 
behavior. 

Learning processes may either create new schemata or adjust existing schemata 
to make them more in tune with experience. For example, inductive processes can 
be described (e.g., Carbonell, 1984, 1986) that either extend or restrict the range of 
applicability of schemata. A more generalized schema may be produced if a set of 
successful solutions is available for a class of related problems, so that a schema 
may be created that abstracts away from the details; a more specific schema may 
be produced if a set of failed solutions is available for a class of related problems, 
so that particular conditions may be added to the schema which restrict its range of 
use. Recent research points out that such schema acquisition is a form of controlled 
processing, that is, it is subject to strategic control (e.g., Anderson, 1987; Proctor & 
Reeve, 1988). Consequently, compared to automation, which slowly develops and 
is mainly a function of the amount of practice, the acquisition of schemata such as 
programming plans may rapidly occur but requires the investment of effort, or, 
conscious attention and mindful abstraction from the learner. 

After useful schemata have been developed, they may be used as analogies to 
generate behavior in new, unfamiliar problem situations. Obviously, this will often 
be the case if no task-specific, automated procedures are available (i.e., triggered 
by cues in the current situation). The use of analogy can best be conceptualized as 
a kind of mapping process (e.g., Anderson & Thompson, in press). As discussed in 
the previous section, students may use worked examples as a kind of concrete 
schemata to map their new solutions; in interpreting cognitive schemata, the key to 
the use of the schema is interpreting it by general procedures and mapping it onto 
the current knowledge of the situation to create a new solution (Hesketh, Andrews 
& Chandler, 1989). Thus, novices compare the current problem situation to 
information available in worked examples; with increasing expertise, the current 
problem situation can be compared with cognitive schemata retrieved from 
memory. As discussed before, such controlled processing has the advantage of 
flexibility, but it has the disadvantage that it works slowly and it may lead to errors 
due to processing overload. 

If analogy repeatedly leads to the desired solutions, the schemata themselves 
may eventually be compiled into task-specific procedures that apply to particular 
classes of related problems and that directly produce the effect of the analogy 
without making reference to schemata. For instance, if a general design schema is 
repeatedly used to decompose a certain class of problems in subproblems in a 
process of stepwise refinement, the decomposition process for this class of 
problems may be automated. And likewise, if the application of a particular 
programming language template repeatedly leads to the desired solution for a 
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certain class of subproblems, this template may be compiled into problem-specific 
procedures that are automatically applied when confronted with subsequent similar 
subproblems. 

Schema acquisition and the design of practice. The assumption that the 
acquisition of schemata is often the result of mindful abstraction from concrete 
problems and their solutions has some important implications for the design of 
instruction. First, it is clear that the confrontation with a wide range of different 
problems and solutions to these problems, that will often have the form of actual 
computer programs or worked examples, is important to give inductive processes 
the opportunity to build, generalize, or specialize schemata. Obviously, mindful 
abstraction is not possible if there are no concrete objects, events, or activities to 
abstract away from. For instance, to develop a hierarchy of programming plans 
students must be confronted with a wide range of programs that demonstrate the 
use of programming language templates. 

Second, there is evidence that mindful abstraction is an effortful process that 
requires the conscious attention of the learner. This leads to the additional 
implication that one should provoke this mindful decontextualization and 
generalization. Whereas Salomon and Perkins (1987) have stressed this point, they 
are not very specific about how exactly to provoke mindful abstraction in 
instructional materials. Instead, they focus on the role of the teacher, and remark 
that "... mindful abstraction is facilitated by a high teacher-student ratio, socratic 
interaction with the learners, and a great sensitivity on the part of the teacher for 
the ebb and flow of enthusiasm and understanding in the individual student..." (p. 
164). 

Schema acquisition and transfer. Acquired schemata may explain transfer by the 
presence of relevant knowledge from other problem solving situations and in 
particular, on how that knowledge is organized in schemata. Indeed, the quality of 
the induced schemata has been found to be highly predictive of subsequent transfer 
performance (e.g., Gick & Holyoak, 1983). In fact, this explanation is closely 
related to the gestalt theory of structural understanding, which claimed that 
transfer from one task to another is achieved by arranging learning situations so 
that a learner can gain insight into the problem to be solved. Bartlett (1932) first 
elaborated this view in his schema theory, which predicts that transfer will occur if 
one can relate the present problem to existing schemata, that is, to concepts and 
ideas in memory. Interpreting the selected schema and reorganizing the new 
situation according to this particular schema is, again, a form of controlled 
processing. Thus, both the acquisition of schemata and their use in transfer tasks 
requires effort and conscious attention from the learner. Salomon and Perkins 
(1987) refer to this transfer mechanism, which results from mindful abstraction 
from one situation and application to another, as high road transfer. 

In increasingly further transfer within the programming domain, the overlap of 
task-specific procedures that were learned in the original task and are also 
applicable in the transfer task decreases. As a result, the availability of relevant 
schemata that may offer useful analogies becomes increasingly important in 
reaching further transfer (Jelsma, van Merri~nboer, & Bijlstra, in press). A central 
empirical question concerns how these analogies are noticed and then applied to 
generate solutions to the new transfer problems. Spontaneously noticing the 
analogy is often a prerequisite for successful transfer in realistic problem 
situations. But, in learning schemata, it may help to explicitly state that a schema is 
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also applicable in certain transfer situations; then, cues may be added to the schema 
that will facilitate its activation in these particular situations. 

To summarize, automation and schema acquisition both play an important role in 
learning computer programming. The automation of procedures requires extensive 
varied practice, is facilitated by the availability of worked examples, and provides 
identical elements that may help to solve familiar aspects of new programming 
problems; furthermore, in solving a particular programming problem the 
availability of task-specific procedures frees up processing resources that may be 
devoted to various controlled processes. The acquisition of schemata, such as a 
general design schema or programming plans, requires mindful abstraction, 
presupposes the confrontation with a well-chosen range of problems and their 
solutions (i.e., worked examples), and provides analogies that may guide 
subsequent behavior in solving unfamiliar aspects of new programming problems. 

TEACHING COMPUTER PROGRAMMING 

In the previous section, it was argued that automation and schema acquisition make 
their own demands to the design of practice in teaching computer programming. 
With regard to these requirements, three instructional design principles can be 
formulated: 

1. To facilitate automation, extensive varied practice should be provided; 
2. To facilitate schema acquisition, mindful abstraction from examples should be 

provoked, and 
3. To facilitate both automation and schema acquisition, worked examples 

should be directly available during practice. 

All three instructional principles can be considered to be important to reach 
higher learning outcomes and near transfer. First, note that principles 1 and 2 need 
not be compatible. In teaching programming, one can give full priority to 
automation, full priority to schema acquisition, or priority to automation of certain 
aspects of the task and schema acquisition for other aspects of the task. In the 
following, the authors will advocate the middle road to transfer. Second, the 
authors will argue that principle 3, which claims that useful worked examples 
should always be available during practice, is largely neglected in current 
programming instruction and may--at least partly----explain low learning outcomes 
and, especially, the lack of ability to solve new programming problems (near 
transfer). Finally, this paper will discuss some more specific guidelines to provoke 
mindful abstraction, based on the assumption that a heavy emphasis on the use of 
worked examples is provided in the instruction. 

The Middle Road to Transfer 

One may stress the importance of automation and extensive varied practice in 
learning computer programming. But obviously, in elementary high school 
programming courses there is nei ther  occasion for extensive practice 
(approximately. 100- 500 hours to reach mastery level, Anderson, 1982; Kurland, 
Mawby & Cahir, 1984), nor for much task variation within practice. Given this 
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contradiction, for example de Corte and Verschaffel (1986) are moving away from 
a concern of programming. They argue that learning to program requires a time 
commitment that is out of the question in educational settings. Instead, they 
advocate a shift in attention to more constraining, quicker-to-leam general purpose 
application packages. 

On the other hand, one may stress the role of schema acquisition and mindful 
abstraction. Salomon and Perkins (1987) argue, like de Corte and Verschaffel, that 
extensive varied practice to mastery or near automaticity, which they call the low 
road to transfer, is an inconvenient road to learning to program because automation 
is a slow process and the available time in school settings is severely limited. But 
instead, they argue that schema acquisition by mindful abstraction, which they call 
the high road to transfer, does offer opportunities to reach near transfer of 
programming skills and even to harvest general cognit ive benefits from 
programming instruction. Obviously, students will stick to controlled processing 
when they generate their programs by interpreting schemata, that is, by using 
analogy; but in school settings this certainly is a more realistic goal to strive for 
than automation because schema acquisition may more rapidly occur. 

Given the presented framework, the authors propose the middle road to transfer 
and claim that automation of the more familiar aspects of the programming task is 
of great importance in learning to program because it frees up processing resources 
that may be devoted to both the acquisition of n ew schemata and the interpretation 
of existing schemata. These processes are necessary to perform the unfamiliar 
aspects of the task. Thus, in solving a new programming problem the situation will 
be as follows. First, familiar aspects of the task (i.e., those aspects that are 
consistent over problem situations), such as proceeding in the programming 
environment, choosing the correct basic commands and applying syntactic rules 
can be performed by task-specific procedures. These procedures can be applied 
fast, without errors, and with little or no demands on processing capacity. Second, 
new aspects of the task can be solved by the use of analogy. Schemata such as 
programming plans (learned programming language templates) should be available 
to help to find a solution and these schemata can be interpreted thanks to 
processing resources that are freed up by automation of the more familiar aspects 
of the programming task. 

In conclusion, automation should be seen as a process that is complementary to 
schema acquisition because it facilitates problem solving by analogy by freeing up 
the required cognitive resources. In addition, the authors fully subscribe that the 
provocation of mindful abstraction is important to reach schema acquisition and 
thus increase the possibility that near transfer effects occur. In other words, well- 
designed practice should provide extensive training of basic skills, but under strict 
conditions that vigorously promote the acquisition of schemata. In the following 
sections, the authors claim that a heavy use of worked examples during practice 
supports both automation and schema acquisition, and that the provocation of 
mindful abstraction is considerably simplified if such examples are the central 
component in programming instruction. 

The Neglected Use of Worked Examples 

The conventional way to teach computer programming is to present stereotyped 
sequences of instructional materials and problems. Typically, students are offered 
(a) a small amount of new programming language features along with some 
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syntactic details, (b) a small number of illustrative problems and solutions in the 
form of computer programs that demonstrate the use of the new material, and (c) a 
relatively large number of programming problems for which students have to 
generate new computer programs. 

From research in other domains, it is known that this traditional procedure 
used to enhance problem solving skills, that is, extensive practice on many 
conventional  problems, is relatively ineffective. This evidence has been 
obtained both from solving puzzle problems (Mawer & Sweller, 1982; Sweller, 
1983; Sweller & Levine, 1982; Sweller, Mawer & Howe, 1982) and from 
solving mathematical problems (Owen & Sweller, 1985; Sweller & Cooper, 
1985; Sweller, Mawer & Ward, 1983). In particular, the lack of guidance and 
modelling during problem solving seems to impose a high processing load 
which may result in either directing the attention away from those aspects of 
the task that are important in learning or in completely losing ones way 
(Sweller, 1988). In addition, such ineffective practice and cognitive overload 
may eventually lead to decreased motivation and a further impairment of 
performance. 

In the view of the authors, this undesirable situation can also be observed in 
most elementary computer programming courses. First, low learning outcomes and 
the lack of ability to solve new programming problems clearly demonstrate the 
ineffectiveness of current programming instruction. Second, high processing load 
during elementary computer programming and its negative effects on learning has 
been frequently reported (see, Anderson & Jeffries, 1985). And finally, the 
presentation of illustrative problems and their solutions in isolation from practice 
has been argued to be highly ineffective (Van MerriEnboer & Krammer, 1987). 
During problem solving, students have to search for examples that fit in with their 
solution and they must turn back leaves, looking for examples analogous to the 
solution. This is a difficult task as students cannot be sure that a useful example is 
available; sometimes an example at In-st glance looks similar to the solution of the 
problem at hand but in fact it cannot be mapped correctly, which may result in 
serious mistakes. 

Obviously, more effective practice should reduce processing load and redirect 
attention to those aspects of the task that facilitate learning. A heavy use of worked 
examples, which are directly available during practice and that provide a solution 
with a format that is similar to the format of the desired solution to the posed 
problem, may be the key to achieving this goal. Whereas, to the author's 
knowledge, no research is available in the field of computer programming, Cooper 
and Sweller (1987) reported that the simultaneous presentation of worked 
examples and problems in learning mathematical  problem solving had a 
facilitating effect on automation as well as schema acquisit ion. In their 
experimental design, one group first received some illustrative examples and 
then a set of conventional  problems; the other group received the same 
problems, but each problem was accompanied with an identical format problem 
that had the solution written out in a manner similar to that of the illustrative 
examples in the other group. The direct availability of useful worked examples 
during practice was found to be far more effective than the conventional use of 
illustrative examples. In particular, the use of worked examples shortened the 
acquisition phase, reduced the number of errors made during acquisition, and 
improved both near and far transfer performance. 

Concluding, the main claim of this paper in regards to the design of practice in 
elementary computer programming is that during practice useful worked examples, 
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which have the form of correct, well-structured programs with a format similar to 
that of the desired solution, should be directly available. As several other authors 
have argued on various grounds, the use of such worked examples has not been 
taken seriously enough in current programming instruction (e.g., Dalbey, 
Toumiaire, & Linn, 1985; Pea, 1986). In this respect, the authors fully agree with 
Lieberman (1986), who proposes that examples of correct solutions should be the 
kernel of well-designed practice. First, students can use such examples as 
blueprints to map their new solutions, which supports automation. And second, 
students may generalize from the examples to learn new programming principles, 
design techniques and, in particular, programming plans or programming language 
templates so that they also support schema acquisition. In addition, the direct 
coupling of practice with worked examples will make it easier for the teacher to 
articulate his or her expertise, because by presenting the students selected worked 
examples the-- for  the greater part-- taci t  knowledge,  which is difficult to 
verbalize, may be implicitly conveyed. And finally, the use of worked examples 
during practice might simplify the provocation of mindful abstraction; at least, 
students are continuously confronted with materials they can abstract away from. 

How to Provoke Mindful Abstraction ? 

In the previous section, the authors argued that a heavy use of worked examples 
during practice might be essential to reach more effective programming instruction. 
However, the presentation of worked examples alone will often not be sufficient, 
because the use of these examples as blueprints to map new solutions as well as the 
generalization of certain aspects of the examples requires the voluntary investment 
of effort, or the conscious attention, from the learner. In experimental studies, such 
as that of Cooper and Sweller (1987), learners will often be highly motivated and 
inclined to invest mental effort. However, in typical school settings one often has 
to deliberately provoke mindful abstraction. Thus, it is particularly important to 
focus on the question "how do we get the learners to thoroughly study the worked 
examples, and abstract away from their details?". 

As a first observation, it should be obvious that a good teacher always points out 
what is, and what is not important about the worked examples. As Anderson, 
Boyle, Corbett and Lewis (1986) as well as Lieberman (1986) pointed out, the 
worked examples should be annotated with information about what they are 
supposed to illustrate. As programming plans, or learned programming language 
templates, are a particularly important kind of schemata to acquire during 
programming instruction (Ehrlich & Soloway, 1984; Soloway, 1985), it may be 
desirable to annotate the examples by explicitly referring to the newly-to-learn 
templates they use. In addition, one should explicitly state the situations to which 
the demonstrated principles or techniques might transfer to increase the chance that 
this transfer actually occurs (Gick & Holyoak, 1983). Only then, contextual cues 
may be added to the schemata that increase the likelihood that the appropriate 
schema is found and can be applied in the transfer situation. 

A further, and in the opinion of the authors, particularly powerful route to 
provoke mindful abstraction is the use of programming assignments that require 
both the generation of code and a thorough study of worked examples. An obvious 
method to reach this goal is to confront the students with useful worked examples 
that have to be completed; the examples have the form of incomplete, but well- 
structured, understandable computer programs. Then, the students actually have to 
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design and generate programming code and they extensively train basic skills such 
as proceeding in the programming environment, choosing the correct basic 
commands and applying syntactic rules, which is seen as essential to the 
acquisition of programming skill according to the proposed middle-road to transfer. 
But furthermore, the students are required to study the worked examples carefully 
because there is a direct, natural bond between examples and practice: They cannot 
correctly finish an assignment without understanding the program that has to be 
completed. Provided that the incomplete programs are well-chosen, that is, contain 
elements that are also relevant to completing them (e.g., the incomplete program 
contains a certain looping structure that is also necessary to correctly complete it), 
this method can be expected to facilitate both automation, because the students have 
blueprints available to map their new--partial--solutions, and schema acquisition, 
because they are forced to mindful abstraction from the incomplete programs. 

In two studies that compared the effectiveness of these so-called "completion 
assignments" with conventional assignments (i.e., solving programming problems), 
higher learning outcomes for program construction tests were found for students 
who worked on the completion assignments (van Merri nboer, in press; van Merri8 
nboer & de Croock, 1989). The completion assignments that were used always 
consisted of a programming problem and a partial solution to this problem that was 
presented on-line, together with three components: (a) information on the language 
features and templates used in the partial solution and information on the situations 
in which those templates are useful, (b) questions on the structure and the workings 
of the incomplete program, and (c) task instructions to run, complete or change the 
incomplete program. Figure 1 presents a--shortened and simplified-- example of 
a completion assignment to indicate its different components. The higher leaming 
outcomes after working on the completion assignments could be well explained by 
a better application of programming language templates during the construction of 
new computer programs, indicating superior schema acquisition. 

Finally, it should be noted that a heavy use of worked examples during practice 
in such a way that mindful abstraction is provoked places constraints on the 
sequence and variability of those examples. Whereas it goes beyond the scope of 
this article to elaborate these aspects, some important guidelines are the following. 
Obviously, a sequence of worked examples should start with simple examples and 
build to more complex examples. This will enable the students to initially acquire 
relatively simple schemata that are applicable to a wide range of problems, and 
subsequently develop more specialized schemata that may handle more exceptional 
cases. Furthermore, the sequence of worked examples should be varied in such a 
way that the differences and the similarities of one situation and solution to other, 
related situations and solutions is clarified to the students. For example, when and 
how to use a WHILE loop in a program should be clearly contrasted to when and 
how to use a REPEAT UNTIL. And to conclude, in the opinion of the authors it is 
self-evident that the amount of worked examples should be as high as possible, 
provided that they are directly coupled to practice and presented in such a way that 
they provoke mindful abstraction. 

DISCUSSION 

This paper offered a description of two learning processes that may be considered 
to be particularly important in learning elementary computer programming. 
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A u t o m a t i o n  leads to task-spec i f ic  p rocedures  that may direct ly  control  
programming behavior; schema acquisition offers cognitive structures, such as 
programming plans, that provide analogies in new problem situations. Based on the 
analysis of these leaming processes, the authors argued that traditional practice, 
that is, solving many conventional programming problems after receiving some 
illustrative examples, is ineffective in terms of learning outcomes and transfer. 
Well-designed practice should provide extensive training of basic skills, but under 
strict conditions that vigorously promote the acquisition of schemata. 

It was claimed that useful worked examples should always be available during 
practice, and that effortful, mindful abstraction from these examples should be 
provoked both by annotation of the examples and, in particular, by having the 
students to finish incomplete  programs that concurrently serve as worked 
examples. These requirements to practice are easily met in a programming 
curriculum that may be labeled the reading approach (e.g., Deimel & Moffat, 
1982). Four phases are distinguished in this curriculum. In the first phase, students 
run working programs, observe their behavior and evaluate their strengths and 
weaknesses. In the second phase, students are actually introduced to well- 
structured programs; their primary activities in this phase are reading and hand 
tracing of programs. During the third phase, students are confronted with 
complet ion assignments:  They amplify and modify existing programs and 
practice both design and coding aspects on a modest scale. Only after students 
have reached a reasonable level of proficiency, they generate programs on their 
own and continue practicing basic design techniques and structured coding. For 
a comprehensive evaluation of this curriculum and its contrasts with other 
prevai l ing  in t roductory  p rog ramming  curr icula,  see van Merr i~nboer  & 
Krammer (1987). 

Whereas the present article focussed on near transfer, or the ability to solve new 
programming problems, the framework has also some clear implications for 
reaching far transfer effects to other domains, that is, for the development of 
context independent strategies. In far transfer situations, the overlap of task- 
specific procedures with the original task heavily decreases so that the importance 
of acquired schemata increases (Jelsma et al., in press). Consequently,  the 
provocation of mindful abstraction is particularly important to develop context 
independent strategies. In addition, it should explicitly be stated to the students that 
the leamed techniques might transfer to an expressly named domain, so that cues 
become available in the acquired schemata that may activate them in the new 
context. For example, if one teaches students top-down design techniques in 
elementary programming, it should explicitly be stated that these techniques are 
also useful in writing an essay to be able to reach transfer to this domain. 

But obviously, even as a top-down design schema has been acquired, and cues 
are available that may activate it when writing an essay, there is no warrant that the 
desired far transfer effects will actually occur. Just like schema acquisition, the 
interpretation of schemata is a controlled process that requires the investment of 
effort. As in near transfer, the learner will only be able to do so if the more familiar 
aspects of the task are automated; then, processing resources are available that may 
be devoted to mapping the top-down design schema to the new essay-writing 
context. If, on the other hand, students still have difficult ies with writing 
grammatically correct sentences, the chance that transfer effects occur is low 
because no processing resources will be available to interpret the top-down design 
schema. And in addition, even as these cognitive resources are available, the 
students must be willing to invest effort or, simply stated, they must be willing to 
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do their best to apply the learned skills in the new context. In conclusion, the 
proposed instructional principles are believed to increase the likelihood that--both 
near and far transfer effects occur, but they can never guarantee such transfer 
because motivation eventually plays a crucial role in the learning and transfer of 
computer programming skills. 

Finally, the authors are completely aware of the fact that the proposed approach 
to teaching elementary programming has far-reaching implications for designing 
elementary programming courses. Nowadays, there are almost no courses available 
which offer practice that is directly coupled to useful worked examples and 
explicitly provokes mindful abstraction from these examples. Much strenuous 
work will have to be done to design and implement such courses, because the good 
teaching of programming heavily depends on the laborious art of selecting and 
sequencing good examples to present to the students. However, given the 
disappointing learning outcomes and the lack of transfer effects of  current 
programming instruction, this investment is believed to be worth while. It is the 
author's f'u'rn conviction that it is high time to seriously reconsider the traditional 
approach to teaching programming. 
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