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ABSTRACT

Online recommender systems enable personalized service to users.
The underlying collaborative filtering techniques operate on privacy
sensitive user data, which could be misused by the service provider.
To protect user privacy, we propose to encrypt the data and generate
recommendations by processing them under encryption. Thus, the
service provider observes neither user preferences nor recommenda-
tions. The proposed method uses homomorphic encryption and se-
cure multi-party computation (MPC) techniques, which introduce a
significant overhead in computational complexity. We minimize the
introduced overhead by packing data and using cryptographic pro-
tocols particularly developed for this purpose. The proposed cryp-
tographic protocol is implemented to test its correctness and perfor-
mance.

Index Terms— Recommender systems, privacy, secure multi-
party computation, homomorphic encryption, data packing

1. INTRODUCTION

In the last decade, we have experienced phenomenal progress in in-
formation and communication technologies. Cheaper, more power-
ful, less power consuming devices and high bandwidth communica-
tion lines enabled us to create a new virtual world in which people
mimic activities from their daily lives without the limitations im-
posed by the physical world. As a result, online applications have
become very popular for millions of people [1].

Personalization is a common approach to attract even more peo-
ple to online services. Instead of making general suggestions for the
users of the system, the system can suggest personalized services
tailored to a particular user based on his preferences [2]. Since
the personalization of the services offers high profits to the service
providers and poses interesting research challenges, research for
generating recommendations, also known as collaborative filtering,
attracts attention both from academia and industry.

The techniques for generating recommendations for users
strongly rely on the way personal user information is gathered.
This information can be provided by the user himself as in profiles,
or the service provider can observe users’ actions like click logs. On
one hand, more user information helps the system to improve the
accuracy of the recommendations. On the other hand, the personal
information on the users creates a severe privacy risk since there is
no solid guarantee for the service provider not to misuse the users’
data. It is often seen that whenever a user enters the system, the
service provider claims the ownership of the information provided
by the user and authorizes itself to distribute the data to third parties
for its own benefits [13].
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To address the privacy considerations in recommender systems,
in [3], Canny proposes a system where the private user data is en-
crypted and recommendations are generated by applying an iterative
procedure based on the conjugate gradient algorithm. The algorithm
computes a characterization matrix of the users in a subspace and
generates recommendations by calculating reprojections in the en-
crypted domain. This iterative algorithm takes many rounds for con-
vergence and in each round, users need to participate in an expensive
decryption procedure which is based on a threshold scheme, where
a significant portion of the users is assumed to be online and honest.
The output of each iteration, which is the characterization matrix, is
available in the clear. In [4], Canny proposes a method to protect
the privacy of users based on a probabilistic factor analysis model
by using a similar approach as in [3].

While Canny works with encrypted user data, Polat and Du sug-
gest to protect the privacy of users by using randomization tech-
niques [10, 11]. In their papers, they blind the user ratings with
random data assuming that during the aggregation this randomiza-
tion cancels out and the result is a good estimation of the intended
outcome. The success of this method highly depends on the num-
ber of users participating in the computation since for the system to
work, the users need to be present in vast amounts. This creates a
trade-off between accuracy/correctness of the recommendations and
the number of users in the system. Moreover, the outcome of the
algorithm is also available to the server, which poses a privacy threat
to the users. Finally, the randomization techniques are believed to be
highly insecure [14].

In [5], Erkin et al. present a cryptographic protocol based on
homomorphic encryption and MPC techniques. In that paper, the
privacy sensitive data of the users of a recommender system are pro-
tected by means of encryption and recommendations are generated
by processing the encrypted data. Being highly efficient compared
to other techniques in terms of computational and communication
costs as well as provably secure, [5] still suffers from a computa-
tionally expensive comparison protocol which is based on the ideas
from [6].

In this paper, we improve the work by Erkin et al. further by
introducing two significant changes. First, we introduce the data
packing where we pack a number of data and then encrypt. This ap-
proach considerabley reduces the number of encryption to be trans-
ferred and processes. Second, we develop and use a more efficient
comparison algorithm based on ideas from [12]. Moreover, to test
the correctness and performance of our protocol, we also present ex-
perimental results using a dataset of 10,000 users and 1,000 items.

2. GENERATING RECOMMENDATIONS
A centralized system for generating recommendations is a common
approach in e-commerce applications. To generate recommenda-
tions for user A, the server follows a two-step procedure. In the



first step, the server searches for users similar to user A. Each
user in the system is represented by a preference vector which is
usually composed of ratings for each item within a certain range.
Finding similar users is based on computing similarity measures be-
tween users’ preference vectors. Pearson correlation is a common
similarity measure (Eq. 1) for two users with preference vectors
VA = (v(A,0), . . . , v(A,M−1)) and VB = (v(B,0), . . . , v(B,M−1)),
respectively, where M is the number of items and v̄ represents the
average value of the items in vector v.

simA,B =∑M−1
i=0 (v(A,i)−vA)·(v(B,i)−vB)√∑M−1

i=0 (v(A,i)−vA)2·
∑M−1

i=0 (v(B,i)−vB)2
. (1)

Once the similarity measure for each user is computed, the server
proceeds with the second step. In this step, the server determines L
users with similarity values above a threshold δ and averages their
ratings. These averaged ratings are then presented as recommenda-
tions to user A.

In this paper, we assume that the user preference vector V ,
which consists of ratings from 0 to 5, is split into two parts: the first
part consists of R very popular items that are rated densely by the
users and is used for the characterization of the user, V d and the
second part contains M − R scarcely rated items, V s, that the user
would like to get recommendations on [2].

3. CRYPTOGRAPHIC PRIMITIVES AND
SECURITY MODEL

We use encryption to protect user data against the service provider
and other users in the system. A special class of cryptosystems,
namely homomorphic cryptosystems, allows us to process the data
in the encrypted form. We chose the Paillier cryptosystem [9] as it is
additively homomorphic meaning that the product of two encrypted
values [a] and [b], where [·] denotes the encryption function, cor-
responds to a new encrypted message whose decryption yields the
sum of a and b as [a] · [b] = [a + b]. As a consequence of the ad-
ditive homomorphism, any ciphertext [m] raised to the power of a
public value c corresponds to the multiplication of m and c in the
encrypted domain: [m]c = [m · c]. In addition, we use Goldwasser-
Micali (GM) system [8], which is bitwise additively homomorphic,
in our protocol to improve the efficiency. Both cryptosystems are
semantically secure.

In this paper, we use the semi-honest security model, which as-
sumes that all players follow the protocol steps but are curious and
thus keep all messages from previous and current steps to extract
more information than they are allowed to have. Our protocol can
be adapted to the active attacker model by using the ideas in [7] with
additional overhead.

4. PRIVACY-PRESERVING
RECOMMENDER SYSTEM

In this section we propose a protocol based on additively homomor-
phic encryption schemes and MPC techniques. In particular the ser-
vice provider, i.e. the server, receives the encrypted rating vector of a
user, let’s say user A who wants to get some recommendations, and
sends it to the other users in the system who can then compute the
similarity value on their own by using the homomorphism property
of the encryption scheme. Once the users compute the similarity val-
ues, they are sent to the server. After that, the server and user A run
a protocol to determine the similarity values that are above a thresh-
old δ. The server - being unaware of the number of users with a
similarity value above a threshold, and their identities - accumulates
the ratings of all users in the encrypted domain. Then, the encrypted

sum is sent to userA along with the encrypted number of similarities
above the threshold, L. User A decrypts the sum and L and com-
putes the average values to be used as recommendations. Each step
of the proposed protocol is detailed in the following sections.

4.1. Key Generation and Preprocessing
Any user in the system who wants to get recommendations generates
personal public key pairs for the Paillier and the GM cryptosystems.
We assume that the public keys of the users are available publicly.
Since the Pearson correlation given in (1) for user A and B can be
also written as:

simA,B =

R−1∑
i=0

CA,i · CB,i, where (2)

CX,i =
(v(X,i) − vX)√∑R−1
j=0 (v(X,j) − vX)2

,

the terms CA,i and CB,i can be easily computed by users A and B,
respectively. Each user computes a vector from which the mean is
subtracted and normalized. Since the elements of the vector are real
numbers and cryptosystems are only defined on integer values, they
are all scaled by a parameter f and rounded to the nearest integer
resulting in a vector V d

i = (vd(i,0), . . . , v
d
(i,R−1)). Note that the

threshold value δ should also be adjusted accordingly.

4.2. Computing Similarity Measures
The similarity value between user A and any other user B is com-
puted over the rating vectors of sizeR. The elements of the user vec-
tor V d

A = (vd(A,0), . . . , v
d
(A,R−1)) are encrypted individually by us-

ing the public key of the userA. Then, the encrypted vector [V d
A ]pkA

is sent to the server. The server then sends the encrypted vector to the
other users in the system. Any user B who receives the encrypted
vector [V d

A ]pkA
can compute the encrypted similarity as follows:

[simA,B ] =

[
R−1∑
i=0

vd(A,i) · vd(B,i)

]
=
[
vd(A,0) · vd(B,0) + . . .+ v′(A,R−1) · vd(B,R−1)

]
=
[
vd(A,0)

]vd
(B,0) · . . . ·

[
vd(A,R−1)

]vd
(B,R−1)

(3)

=

R−1∏
i=0

[
vd(A,i)

]vd
(B,i)

.

Note that we omit the encryption key pkA above and in the rest of
the paper for the sake of readability. The computed similarity value
is then sent back to the server in encrypted form.

4.3. Finding the Most Similar Users
Upon receiving similarity values from users, the server initiates a
cryptographic protocol with user A to determine the most similar
users whose similarity values are above a public threshold δ. The
protocol receives N encrypted similarity values and outputs en en-
crypted vector [ΓA] = ([γ(A,0)], [γ(A,1)], . . . , [γ(A,N−1)]). The el-
ements of this vector γ(A,i) are either an encryption of 1, if the the
similarity value between user A and user i is above the threshold δ,
or an encryption of 0, otherwise. An overview of this protocol can
be found in Section 5.



4.4. Generating Recommendations
After obtaining the vector [ΓA], the server can generate the recom-
mendations for user A. For this purpose, the server sends [γ(A,i)] to
the ith user in the system. User i, hereafter referred to as user B,
can raise [γ(A,B)] to the power of vsB,j to obtain another encrypted
vector [Φ(A,B)] = ([φ(A,R)], [φ(A,R+1)], . . . , [φ(A,M−1)]) where,
for j = R to M − 1, φ(A,j) = [γ(A,B) · vs(B,j)] = [γ(A,B)]

vs
(B,j) .

Notice that user B does not know the content of γ(A,B). The result-
ing vector [Φ(A,B)] is either the encrypted rating vector of user B or
a vector of encrypted 0’s. Vector [Φ(A,B)] is then sent to the server
to be accumulated with other vectors from every user.

The above procedure can be improved in order to minimize the
computational and communication cost. Instead of raising [γ(A,B)]
to the power of each rating, the ratings can be represented in a com-
pact form and then used as a single exponent:

vs(B,R)|vs(B,R+1)| . . . |vs(B,M−1) , (4)

where | represents the concatenation operation. Assuming that each
vs(B,j) is k-bits and L of such vectors are to be accumulated by the
server, where L is the number of users with a similarity above the
threshold, each compartment should have a bit size of k + log(L).
Note that the value L is unknown in the beginning of the protocol.
Therefore, we assume that L is set to a predefined maximum value.
Given L, packing is achieved by the following formula:

vPB =

M−R∑
j=0

2j(k+log(L)) · vs(B,j+R) . (5)

By packing values, the communication costs are reduced signifi-
cantly as we obtain one encrypted packed value rather than a vec-
tor of encrypted values. Packing also reduces the number of ex-
ponentiations which are costly operations in the encrypted domain,
introducing a gain in computation. However, depending on the mes-
sage space of the encryption scheme, n, L and the number of rat-
ings M − R, it may not be possible to pack all values in one en-
cryption. The number of values that can fit into one encryption is
T = n/(k + log(L)). Therefore, we need S = d(M − R)/T e
encryptions to pack all of the ratings.

Once user B packs his ratings to obtain vPB , he can compute
[Φ(A,B)] as follows:

[
Φ(A,B)

]
=
[
γ(A,B)

]vP
B =

{[
vPB
]

if γ(A,B) = 1

[0] if γ(A,B) = 0 ,
(6)

and sends [Φ(A,B)] to the server. Upon receiving [Φ(A,i)] values
from all users, the server accumulates them:

[ΦA] =
N∏
i=0

[
Φ(A,i)

]
=

[
N∑
i=0

Φ(A,i)

]
. (7)

Notice that the result will be equal to the sum of ratings of those users
with similarity values above threshold δ. The server accumulates all
[γ(A,i)] to obtain the number of users above the threshold:

[L] =

N∏
i=0

[
γ(A,i)

]
=

[
N∑
i=0

γ(A,i)

]
. (8)

[ΦA] and [L] are then sent to user A. After decrypting, user A de-
composes ΦA and divides each extracted value by L, obtaining the
average ratings of the L most similar users.

5. CRYPTOGRAPHIC PROTOCOL FOR
FINDING SIMILAR USERS

Finding similar users is based on comparing the similarity value be-
tween user A and B, simA,B , to a public threshold δ. As the simi-
larity value is privacy sensitive and should be kept secret both from
the server and the user, we compare it in the encrypted domain.

Given the similarity value simA,B and public threshold δ, both
of which are ` bits, the most significant bit of the value z = 2` +
simA,B − δ is the outcome of the comparison. To obtain the most
significant bit of [z], we run a cryptographic protocol between the
server and user A who has the decryption key. In this protocol, the
server hides the value z from user A by adding a random value r:
[c] = [z + r] and then he sends it to user A who decrypts it. When
userA sends [z÷2`] back to the server, the server is able to compute
the most significant bit of z, which is the result of the comparison
between simA,B and δ, as:[

γ(A,i)

]
= [z ÷ 2` − r ÷ 2` − t]

= [z ÷ 2`] · ([r ÷ 2`] · [t])−1 , (9)

where the term t is a single bit either 0 or 1 depending on the rela-
tion between c mod 2` and r mod 2`. At this point, we convert the
problem of comparing [simA,i] and δ to the problem of comparing
c mod 2` and r mod 2` which are available in clear to the user and
the server, respectively.

For this purpose, we use a comparison protocol that is based on
[12]. This protocol takes two private input values, x = c mod 2`

and y = r mod 2`, and outputs the result [t] in encrypted form: if
x > y, t = 1, and t = 0, otherwise. The comparison result t = t` is
computed recursively as follows:

ti+1 = (1− (xi − yi)2)ti + xi(1− yi), for 0 ≤ i < ` , (10)

where t0 = 0 and xi and yi are the ith bits of x and y, respectively.
The recursive equation (10) can be computed efficiently by using
the GM scheme. Note that this efficient cryptographic protocol has
rounds linear in ` unlike the constant round protocol in [6].

By using this comparison protocol, each similarity value is com-
pared to threshold δ simultaneously. The outcomes of the compar-
isons, [ΓA] = ([γ(A,0)], [γ(A,1)], . . . , [γ(A,N−1)]), are then used in
the subsequent steps.

6. COMPLEXITY ANALYSIS

We implemented our protocol to determine its correctness and per-
formance. For this purpose, we created a synthetic dataset with
10,000 users and 1,000 items, each rated between 0 to 5. The proto-
col is implemented in C++, using GMP library version 4.2.1 and is
tested on a single computer with Intel Xeon 2.33 GHz processor and
16 GB of RAM.

Note that the number of heavily rated items is R = 20 out of
M = 1, 000 items, the number of users is N = 10, 000, the length
of the similarity values ` = 22 bits, the threshold δ = 256, , the
scaling parameter is f = 1, 000 which is chosen experimentally
to give identical results to non-private protocol, the number of en-
cryptions required (with packing) is S = 11 and the number of
values that fit into one encryption is T = 93. S and T are computed
for a key size of 1,024 bits which provides a modest level of security.

Round Complexity. Our protocol consists of ` + 4 rounds of
communication. The data transfer from users to the server in the
initialization stage, computing the similarity values and sending
back the average ratings of all users to user A takes 3 rounds. The



Table 1. Computational complexity.
Server User A User B

Encryption O(N) O(N`+R) -
Decryption - O(N) -
Multiplication O(NS`) - O(R)
Exponentiation - - O(R+ S)

determination of the similar users, which is comparing the similarity
values with the threshold δ, takes `+ 1 rounds. Notice that to obtain
[ΓA] in the comparison protocol, all encrypted values are compared
to a public value δ and thus, all comparisons can be done in parallel.
The total round complexity of our protocol is O(`).

Communication Complexity. The amount of data transferred dur-
ing the protocol is primarily influenced by the size of the encrypted
data which is 2,048 bits for the Paillier scheme. The communica-
tion overhead for the server, the users A and any other user B is
O(N(R+ S + `)),O(N`+R),O(R+ S), respectively. As men-
tioned in Section 4.4, by packing multiple values into one single en-
cryption, we can obtain a reduction by a factor of T , significantly
reducing our communication overhead.

For the given values of the parameters above, the server sends
and receives a total of 168 MB of data. At the same time, this value
for user A is 88 MB and, for other users it is only 8 KB. Note that
the values for the server and user A are heavily affected by the
comparison protocol.

Computational Complexity. The computational complexity de-
pends strongly on the cost of operations in the encrypted domain,
which can be categorized into four classes: encryptions, decryptions,
multiplications and exponentiations. In Table 1, we provide the or-
der of each operation in the Paillier cryptosystems.
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Fig. 1. Run time of the protocol without network latency.

Figure 1 shows the run time of the several stages of the protocol.
As seen in the figure, the total run time of 75 seconds heavily de-
pends on the time spent for comparison of similarity values with the
threshold. Compared to [5] which takes 415 seconds for the same
experimental setting, our protocol outperforms it by a factor of 5.5.

7. CONCLUSION
In this paper, we propose a cryptographic protocol for generating
recommendations based on homomorphic encryption and MPC tech-
niques. In particular, we propose to encrypt the privacy sensitive
data such as user preferences and similarity values between users and

generate recommendation by processing encrypted data. While the
homomorphic property allows us to realize linear operations in the
encrypted domain, non-linear operations like comparing encrypted
values require to realize cryptographic protocols. As we aim at prac-
tical privacy-enhanced solutions, efficiency plays a vital role in the
success of such protocols.

In order to achieve further efficiency, we introduce a crypto-
graphic protocol based on the ideas of [12]. In addition to that, we
exploit data packing to reduce the costs. Both complexity analy-
sis and experimental results in a modest test environment show that
our protocol significantly outperforms the previous work by Erkin
et al. [5]. Moreover, our protocol is computationally secure and not
reliant on the number of users in the system, as opposed to random-
ization techniques [10, 11]. We conclude that our proposal is based
on a realistic scenario and the required technology is not overly de-
manding compared to cryptographic tools like thresholding schemes,
as used in other approaches [3, 4].
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