Computational Field Model:
Toward a New Computing Model /Methodology
for Open Distributed Environment

Mario Tokoro*

Department of Computer Science
Keio University
3-14-1 Hiyoshi, Yokohama 223 JAPAN
Tel: +81-44-63-1926 Telefax: 4+81-44-63-3421 F-mail: mario@keio.ac.jp

June 11, 1990

Abstract

This paper proposes a new computing model called computational field model for
solving a problem in an object-oriented open distributed environment. In this model,
we envisage an open-ended distributed environment as a continuous computational
field. We introduce the notion of mass, distance, gravitational force, repulsive force,
and inertia of objects to define a metric space for the field, so that objects migrate
to their (sub)optimal (or satisfactory) locations. We also propose a communication
model called assimilation/dissimilation model, where communication is represented
as the assimilation/dissimilation of messenger objects and their migration.

1 Introduction

The more development we see in computer and communication technologies, the more our
expectations of computer systems grow. Current demands on computer systems can be
summarized as follows: solving larger and more complex problems, realizing more reliable
real-time processing, and providing better user interfaces. When predicting how computer
systems in the next decade would be like, we must change our view: the computational

environment will be distributed, ubiquitous, open-ended, and evolutionary.

*also with Sony Computer Science Laboratory Inc., Takanawa Muse Building, 3-14-13 Higashi
Gotanda, Shinagawa-ku, Tokyo, 141 JAPAN. Tel: +81-3-448-4380, Telefax: +81-3-448-4273, E-mail:

mario@csl.sony.co.jp

Issues then will be shifted from intra-problems to inter-problems. That is to say,
we have been trying to solve a large complex problem by means of raising the level of
abstraction in describing problems and employing inherent parallelism of the problem.
In addition to such endeavors, we should now start to investigate means to satisfy users
of different purposes in an open distributed computational environment, while utilizing
resources efficiently.

In this paper, we propose a new computing model called computational field model,
or CFM for short. CFM is a computing model for solving many large and complex
problems of different purposes in an open-ended distributed environment. We understand
that solving a problem implies mutual effects between the computational field and the
problem. That is, problems themselves change or affect the environment itself. Or, we
can even say that problems are a part of the computing environment. In this sense, we
share the same view as described in [Huberman 88|.

Our model is based on concurrent objects [Tokoro 88] [Yonezawa 87]. In this model,
we envisage an open-ended distributed environment as a continuous computational field.
We consider the migration of objects to be a facility that the environment should primarily
provide in order to support optimal utilization of resources and users mobility.

We then introduce the notions of distance between objects and the mass of an object
to the model in order to form a metric space. We define gravitational force, repulsive force,
and inertia, metaphorically to dynamics. Using these measures, objects migrate to their
(sub)optimal (or satisfactory) locations during computation (i.e. over their lifetime). We
call this Mass and Distance-based computing or MD-based computing for short.

The message-passing paradigm for communication doesn’t fit well with the computa-
tional field model, because the paradigm hids the inherent nature of an open distributed
environment. For example, it cannot represent a message in transit and communication
delay. Thus, we propose a communication model for the computational field model. It
is called assimilation/dissimilation model, or A/D model for short. In this model, com-
munication is represented as the dissimilation of a messenger object at the sender object,
migration, and assimilation of it at the receiver object. Therefore, computation in CFM

is represented in a unified manner in terms of objects and their migration.

2 From Parallel to Open Distributed Computing

Parallel computing is one of the important methods for high-speed computing. Parallel

computation of a program is achieved in the following two steps:

1. decomposing a problem into subproblems and

2. allocating subproblems to parallel hardware.

It is necessary to consider to balance the load and to reduce overhead for sharing infor-
mation in order to perform the above steps.

It is difficult in general to determine the allocation of subproblems to processors /
computers in advance of execution so that the load of each processor /computer balances
for the entire course of execution. Thus, we need dynamic allocation of subproblems to
processors / computers.

Decomposing a problem into subproblems and allocating them to parallel hardware,
in fact, yield distance between subproblems. Distance manifests in communication delay.
And, this prevents an object from knowing the current status of other objects. This leads
us to the loss of the unique global view of the system, which is an essential characteristic
of distributed systems.

We can now define distributed computing as computation with more than one activity
(or object) where distance, or communication delay, between activities has to be consid-
ered. In other words, parallel computing can be defined as a sort of distributed computing
where distance, or communication delay, between activities can be ignored.

Our recent computational environment consists of existing servers (i.e., objects or
agents). The number and services of servers change from a time to time. Consequently,
programming style is changing from writing a whole program in an algorithmic/synthetic
style to “try to use them” style. That is, a program is written to make maximal use of
existing services at each step in the computation.

In such a programming style, it is impossible to know in advance of execution what
kinds of services are available at a certain time. In addition, in order to know the available
services in the course of executing a program, an object has to use time and computational
power. Nevertheless, the result returned to the object might not be correct, since the state
of the system could change before it takes the planned action. This is the significance of
the notion of Open Systems [Hewitt 84]. Although this is an unavoidable drawback from
the conventional viewpoint of programming methodology, we should affirmatively utilize
this characteristic for efficiency and robustness of a system.

Let us now define open distributed environment. An open distributed environment is a
computational environment, where services, processing capacity, and connection topology
of computing elements are changing from time to time. An open distributed environment
is a multi-user environment, where a number of various tasks with different purposes are
put in a real-time fashion. An open distributed environment supports mobile users in the

following three ways:
e It provides a user with the same environment (for accessing, programming, execu-

tion, etc.) regardless of accessing locations.

e It provides a portable computer which can be used in the two modes: attached mode

(or on-line mode) when it is connected to the network and detached mode (or off-line

mode) when it is disconnected from the network. In the attached mode it is used
as an off-line computer that provides the user with a limited functionality. When it
is attached to the network, the work that has been done while being detached from

the network will be incorporated into the user’s total environment.

e It also provides a mobile computer which is connected to the network even while it

is moving.

Open distributed computing can now be defined as computation in an open distributed
environment.

We foresee that such an open distributed environment will be obtainable in the next
decade by the advancement of computer and communication technologies. Thus, we need

to establish a new computing model for it.

3 Object Migration

Object-orientation is a technique of modularization in programming and execution, where
modularization is performed in analogy to objects in the real world. In the conventional
sense, an object possesses a set of procedures which correspond to computable requests
and a local storage to keep its state. Interaction among objects is performed in the form
of message passing. An object can communicate with any other objects through messages
when it knows the addresses (or id’s) of the objects and its interface protocol at the
execution time. Thus, computation is modeled as objects and message passing among
the objects. Object-oriented computing can be understood as the departure from the
microscopic view of computing where computation proceeds by executing an algorithm
of a procedure to the macroscopic view where computation proceeds as mutual effects
among objects.

In contrast to conventional notion of object, a concurrent object [Tokoro 88] [Yonezawa 87]
possesses a virtual processor in addition to its local storage and a set of procedures. By in-
corporating a processor in an object, we can eliminate the notion of the locus of execution
or allocation of a processor to an object from object-oriented computing. Thus, we can
employ concurrent objects as a simpler unit for concurrent and distributed computing.
Hewitt has been advocating this notion as the theory of Actor [Hewitt 73]. Orient84/K
[Tokoro 84], ConcurrentSmalltalk [Yokote 86] [Yokote 87], and ABCL [Yonezawa 86] also
employ this notion. As a result, those languages have the following very important ad-

vantages:

e Objects in the real world exist in parallel and execute in parallel. By using concur-
rent objects, it becomes very easy and natural to model computation in analogy to

the real world.

e The allocation of processors to objects becomes an implementation issue rather than
language issue. Therefore, a program becomes independent from the executing sys-
tem architecture (i.e., shared/distributed memory system, the number of processors

in the system, and so forth).

In an open distributed environment, it is important to efficiently utilize existing objects
through relocating such existing objects, as well as the new objects which are created
for a task, to their optimal locations taking cost and effect of migration into account.
Such migration of objects is necessary for so-called load balancing in general, but more
specifically, for supporting the mobility of users and achieving robustness of the system
against error and faults. That is to say, object migration is a fundamental facility that

the environment should provide.

4 Computational Field Model

The optimal location of an object can be determined by calculating cost and expected
effect of migration on the network of various computers. However, since the open dis-
tributed environment is open, the topology of the system is changing, new computing
functions are being added, and old computing functions are being replaced from time to
time. It is distributed so that there is no unique view of the system. Therefore, there is no
notion of optimality. Only we can do is to try to find a satisfactory sub-optimal location
within a reasonable time and cost.

On the other hand, the members of computing elements connected to network increases
and the mesh of networks becomes finer. Thus, it becomes reasonable for us to consider the
network of computers to form a continuous computational field. As a result, calculation
of sub-optimal locations for object migration can be easily done.

The significance of introducing the notion of CFM to open distributed computing is
that we can raise the level of abstraction by one level so that we have a clearer view of
the system. That is to say, we can ignore details such as the topology and capacity of
networks and the kinds and performance of connected computers.

We call such a model computational field model, or CFM for short. In this model,
solving a problem is envisaged as a mutual effect between the computational field and
the problem. By using CFM, we can first observe the nature and behavior of a problem
macroscopically and find the method to control the problem so as to maximally utilize
the given resources.

One important notion in CFM 1is the principle of locality. Effect of any event is local.
This is due to the distance between objects in the field, and communication delay in the
field. Thus, we define a metric space for the field and the method of computing in the

field in the next two subsections.

4.1 Metric Space

In distributed computing, it is very important to keep the communication delay between
objects short. Communication delay is a function of geographical distance, communi-
cation bandwidth, and other communication overhead. Let us introduce a metric space
and define distance between objects as geographical distance between the objects. This
is reasonable since ultimate communication delay between objects is determined by geo-
graphical distance.

In open systems where computation proceeds utilizing existing ohjects (servers), we
should use closer objects if the same services are provided, and we should ask objects
to move closer for higher performance. However, an open system is a multiuser system.
Thus, an object which is used by n users (or n objects) should be placed at (or migrated
to) a location where those users can efficiently use it. In order to decide such an ideal
location, it is rational to define gravitational force between objects by the frequency and
size of information change for communication between the two objects.

If we want to define the locations of objects only by gravitational forces, all the objects
get together at one single point. In such a case, although communication delay is mini-
mum, the execution speed of each object is reduced, because all the loads are gathered
into one computer. Thus, we should introduce repulsive force between two objects, which
can be defined by the product of the size of the objects over the distance to the n-th
power between the objects.

Assume that at a certain time in the course of computing the objects are all placed
at their optimum locations. Also assume that we can know their optimum locations at
the next time. It is not always true that migration should take place. This is because we
have to pay a cost for migration.

The cost for migration is a function of the distance and the mass of the migrating
object. The mass can be defined by the size of the object. Repulsive force can now be
redefined using the mass of an object. We may also have to take the inertia of an object
into consideration, which is interpreted as the overhead for migration. According to the
above consideration, the location of the objects at the next time should be determined by

the cost and the effect of migration.

4.2 MD-based Computing

We now define MD-based computing as a method of computing in CFM where computation
proceeds by trying to maximally utilize existing objects and determining the optimal
location of objects at the next timing taking cost and effect of migration into account.
Determination of the optimal locations is performed by using the notions of distance,

mass, gravitational force, repulsive force, and inertia. Thus, MD-based computing is a

computational method in which each user (or each object) locally gives their best effort
to achieve satisfactory allocation of objects. Conflict between users for their satisfactory
object allocations should be solved by negotiation between users to find sub-satisfactory
object allocations for them. This is viewing computation as transforming a part of the
huge computational field into its adequate shape. That is to say, in MD-based computing,
solving a problem is considered as mutual effects between the computational field and the
problem.

Figure 1 illustrates MD-based computing in CFM. There are two tasks (task A4 and
task B) being executed in a open distributed computational field. If you want to start a
new task, you will put the task to the field through your interface computer. The load
of the computer becomes very high so that repulsive forces appear among the objects
consisting the task. At the same time, gravitational forces appear between these objects
and some existing objects on the computational field, as these objects communicate with
the existing objects. Thus, the task starts to diffuse, that is, objects consisting the task
migrate. Some of the existing objects may move to their new locations, being attracted
by the new task. Negotiations among objects may be necessary for finding satisfactory
locations. Moreover, if you move, some objects may follow you. Please note that all the
existing computations in the computational field form the environment for the new task,

and the new task changes the environment.

Task A) Open Ended
mravitational Foree
)

Figure 1: MD-based computing in a computational field

5 Communication in CFM

In most object models, communication is performed in a special way: it uses a special
chunk of information called message to convey information from an object to another,
and the delivery of a message is performed as a hidden, system’s function. In such a
communication model, there is no state representing a message in transit. We consider,
however, representing a message in transit to be essential to describe computation in the
computational field model. This is because, since we introduced the notion of distance,
communication delay manifests in the model, and consequently we need to represent a
message in transit. We also would like to represent that a message actively chases the
destination object.

A message can be considered as a special object. Thus, communication can be thought
of as moving of an object from one place to another. Since object migration is provided
as a primary facility in the computational field model, we utilize this for the delivery of
messages.

Based on the above motivation, we propose a model of communication in the compu-
tational field model called assimilation/dissimilation model or A/D model for short. In

this model, communication is composed of the following three steps:

1. A sender object assimilates a messenger object at the location of the sender object.

The messenger object is a catabolite having a message and the receiver’s information.
2. The messenger object migrates to the location of the receiver object.
3. The receiver object assimilate the messenger object into it when it arrives.

The first and third steps are synchronous actions, while the second step incurs asynchrony.

We define the following primitives for this communication model:

o dissimilate creates a messenger object with a message and the receiver’s information

in the caller object and dissimilates it.

e position returns the position of an object. This is used to locate the receiver. The
answer may not show the true (correct) position but is a hint due to the nature of

an open distributed environment.

e migrate lets itself migrate to the location of a specified object (i.e., the receiver
object). We can specify a delivery service class and timeout duration. The object

migrates to the receiver object, asking the location of the receiver object by position.

o assimilate assimilates a messenger object at the same location into itself so that

information contained in the messenger object can be accessed. We can specity

timeout duration. [t returns Boolean #rue if succeeded. If failed because of some

reasons such as time out it returns Boolean false.

The main features of this model are that interaction between objects is performed by
assimilation and dissimilation, analogous to anabolism and catabolism in biology, and
that an object actively migrates to its destination by itself.

By using this model, various communication can be described. For example, unidi-
rectional asynchronous communication from object A to B is represented as follows: A
dissimilates a messenger object M1 and let M1 migrate to the position of B. M1 waits
for B’s assimilation. B assimilates the messenger object so that it can access the in-
formation contained in the messenger object (see Figure 2). Unidirectional synchronous
communication from A to B is represented by dissimilating M2 by B and letting M2 mi-
grate back to A for acknowledgment after B assimilates M1, while letting A wait for the

acknowledgment(see Figure 3).

dissimilate

N

migrate

@N@

QW ey
B

assimilate

Figure 2: Unidirectional asynchronous communication

6 Conclusion

In this paper, we proposed a new computing model called computational field model for
solving a problem in an open distributed environment. In this model, we view an open
distributed computing environment as a continuous computational field, as opposed to
conventional view of a computing system being a discrete computational field. We defined
the computational field as a metric space, introducing mass, distance, gravitational force,
repulsive force, and inertia, and proposed the method of MD-based computing to give
an idea of how to perform computation in the computational field model. We envisage

solving a problem as mutual effects between the computational field and the problem.

dissimﬂate @

=D

migrate

migrate

@//\%@

) . assimilate
A @% Q)

Figure 3: Unidirectional synchronous communication

We also proposed a new communication model called assimilation /dissimilation model
in which communication in a computational field is represented as the dissimilation, mi-
gration, and assimilation of objects. Thus, computation in an open distributed environ-
ment is represented in a unified manner in terms of objects and their migration. The
difference between object migration in MD-based computing and that in communication
is as follows: in MD-based computing, objects migrate in a passive fashon by gravitaional
and repulsive forces, while in communication, objects migrate in an active fashion in their
own right.

Based on the notion of the computational field model and MD-based computing, we
have been developing a new operating system called MUSE [Yokote 89] which supports
object migration as its primary function. We are also developing object models and
programming languages called MUSIC [Watari 90], MyAO [Minohara 89], and Orient90

to describe wide variety of application programs.

10

A cknowledgment

The author wishes to thank Carl E. Hewitt, Kohei Honda, Shinji Kono, Tatsuo Minohara,
Chisato Numaoka, Minoru Uehara, and Yasuhiko Yokote for their critical comments and

discussion.

References

[Hewitt 73] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR, Formal-
ism for Artificial Intelligence. In Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, August 1973.

[Hewitt 84] Carl Hewitt and Peter de Jong. Open Systems. In J. Mylopoulos and
J. W. Schmidt M. L. Brodie, editors, On Conceptual Modeling, Springer-Verlag, 1984.

[Huberman 88] B. A. Huberman, editor. The Ecology of Computation. North Holland,
1988.

[Minohara 89] Tatsuo Minohara and Mario Tokoro. An Object Oriented Database Pro-
gramming Language Model. In Advanced Database System Symposium 89, Information

Processing Society of Japan, December 1989.

[Tokoro 84] Mario Tokoro and Yutaka Ishikawa. Object-Oriented Approach to Knowledge
Systems. In Proceedings of the International Conference on Fifth Generation Computer

Systems 1984, November 1984.

[Tokoro 88] Mario Tokoro. Issues in Object-Oriented Concurrent Computing. In Proceed-
ings of 4th Conference of Japan Society for Software Science and Technology, September
1988. (in Japanese).

[Watari 90] Shigeru Watari, Ei-ichi Osawa, Yasuaki Honda, and Mike Reeve. Towards
Music: A Description Language for the Muse Object Model. Technical Report SCSL-
TM-90-001, Sony Computer Science Laboratory Inc., February 1990.

[Yokote 86] Yasuhiko Yokote and Mario Tokoro. Design and Implementation of Con-
currentSmalltalk. In Proceedings of Object-Oriented Programming Systems, Languages
and Applications in 1986, ACM, September—October 1986.

[Yokote 87] Yasuhiko Yokote and Mario Tokoro. Concurrent Programming in Concur-
rentSmalltalk. In Akinori Yonezawa and Mario Tokoro, editors, Object-Oriented Con-
current Programming, pp.129-158, The MIT Press, 1987.

11

[Yokote 89] Yasuhiko Yokote, Fumio Teraoka, and Mario Tokoro. A Reflective Architec-
ture for an Object-Oriented Distributed Operating System. In Proceedings of Furopean
Conference on Object-Oriented Programming, July 1989. also appeared in SCSI-TR-
89-001 of Sony Computer Science Laboratory Inc.

[Yonezawa 86] A. Yonezawa, J-P. Briot, and E. Shibayama. Object-Oriented Concurrent
Programming in ABCL/1. In Proceedings of Object-Oriented Programming Systems,
Languages and Applications in 1986, ACM, September—October 1986.

[Yonezawa 87] Akinori Yonezawa and Mario Tokoro. Object-Oriented Concurrent Pro-
gramming: An Introduction. In Akinori Yonezawa and Mario Tokoro, editors, Object-

Oriented Concurrent Programming, pp.1 7, The MIT Press, 1987.

12

