
Scalable Approaches for Test Suite Reduction

Emilio Cruciani∗, Breno Miranda†§, Roberto Verdecchia∗‡, and Antonia Bertolino§

∗Gran Sasso Science Institute | L’Aquila, Italy
†Federal University of Pernambuco | Recife, Brazil

‡Vrije Universiteit Amsterdam | Amsterdam, The Netherlands
§ISTI – Consiglio Nazionale delle Ricerche | Pisa, Italy

∗emilio.cruciani@gssi.it | †bafm@cin.ufpe.br | ‡roberto.verdecchia@gssi.it | §antonia.bertolino@isti.cnr.it

Abstract—Test suite reduction approaches aim at decreasing
software regression testing costs by selecting a representative
subset from large-size test suites. Most existing techniques are
too expensive for handling modern massive systems and moreover
depend on artifacts, such as code coverage metrics or specification
models, that are not commonly available at large scale. We
present a family of novel very efficient approaches for similarity-
based test suite reduction that apply algorithms borrowed from
the big data domain together with smart heuristics for finding
an evenly spread subset of test cases. The approaches are very
general since they only use as input the test cases themselves (test
source code or command line input). We evaluate four approaches
in a version that selects a fixed budget B of test cases, and also in
an adequate version that does the reduction guaranteeing some
fixed coverage. The results show that the approaches yield a fault
detection loss comparable to state-of-the-art techniques, while
providing huge gains in terms of efficiency. When applied to a
suite of more than 500K real world test cases, the most efficient
of the four approaches could select B test cases (for varying B

values) in less than 10 seconds.

Index Terms—Clustering, Random projection, Similarity-
based testing, Software testing, Test suite reduction.

I. INTRODUCTION

In recent years testing has consistently been the most ac-

tively investigated topic of main software engineering confer-

ences [6]. One prominent problem in software testing research

can be abstracted as: Given a software S and an associated test
suite T , how can we efficiently verify whether S passes on T ,
or -if not- identify the failing test cases? In this formulation,

the emphasis is on the term “efficiently”: Otherwise, the easy

solution would be to just execute S on T . The research targets
the common practical case that along the development process

S needs to be repeatedly tested on T (see, e.g., [15]) and
the plain retest-all strategy may be too costly considering the

available resources (e.g., time).

To address the above question, in the last three decades

many techniques have been proposed, which can be roughly

divided in two groups: those that aim at reordering the test

cases in T so that those more likely to fail are executed first
(test case prioritization), and those that select a subset T ′ ⊆ T
that should ideally include the failing test cases, if any; the

latter group of techniques is referred to as test case selection

or test suite reduction,1 depending on whether when choosing

1Some authors use the term minimization in place of reduction when the
not selected test cases are permanently removed from the test suite. Here, in
line with [34], we will consider the two terms as interchangeable.

T ′ the changes made to S are considered (modification-aware
regression testing) or not [34].

The proposed techniques have been evaluated and compared

against each other using metrics relative to their fault detection

effectiveness (e.g., the Average Percentage of Fault Detection

of the reordered test suite, or the loss in faults detected by the

reduced test suite T ′); for test reduction and selection, also
metrics relative to cost savings, e.g., the size or the execution

time of T ′ are compared against those of the full suite T .
Another important factor that should be taken into account

is the cost of the technique itself, both in terms of the compu-

tational effort and of the resources it requires. In other words,

when evaluating whether investing on an automated approach

aimed at reducing the cost of testing is worth, a complete cost-

benefit analysis should also include the overheads implied by

the approach [18].

However, not many of the proposed techniques have consid-

ered such implied costs. In 2004, Orso and coauthors already

noticed that in regression testing efficiency and precision need

to be traded off, because “precise techniques are generally

too expensive to be used on large systems” [29]. Gligoric

and coauthors [16] were the first to observe that the time

consumed by any regression test technique should include an

analysis phase, an execution phase, and a collection phase.

They noticed that most authors only considered the savings

in execution, a few measured also the analysis time, but no

one before them measured also the last phase in which the

information needed to apply the technique is collected. As

pointed out by Elbaum and coauthors [15], at scale industries

need approaches “that are relatively inexpensive and do not

rely on code coverage information”. In fact, for white-box

techniques, the cost of collecting and saving up-to-date code

coverage information should also be considered as part of

the collection phase. This is confirmed by Herzig [19], who

observes that code coverage is not for free as assumed in many

works, and can cause up to 30% of time overhead!

In a recent work [28], we addressed the prioritization of very

large test suites and showed that as the size of the test suite

grows, most existing approaches become soon not applicable.

That work proposed the FAST family of similarity-based test

prioritization approaches that outperformed in efficiency and

scalability all the compared approaches, except for the white-

box greedy total approach. If we count the often ignored

costs of measuring coverage, then FAST appears as the only

scalable prioritization approach.

This paper introduces a family of scalable approaches for

test suite reduction, called the FAST-R family. As in [28],

FAST-R approaches are similarity-based and borrow tech-

niques from the big data domain. However, with respect

to [28] we apply here several new techniques that allow us

to achieve even more efficient results. In FAST we used

minhashing and locality-sensitive hashing algorithms [25].

FAST-R approaches adopt other efficient heuristics that are

used to derive a set of B evenly spread points in a big data
space. Precisely, one approach called FAST++ applies the

k-means++ algorithm [4], while another one called FAST-CS

uses a recent importance sampling algorithm to construct

coresets, a clustering technique that scales up to massive

datasets [5]. Moreover, we further enhance the scalability of

both approaches by applying the random projection technique,

that reduces the space dimensionality while preserving the

pairwise distances of the points [21].

FAST++ and FAST-CS are extremely “practical” techniques

in the sense required by all of [15], [16], [19], [28]: i) thanks
to the heuristics imported from the big data domain they are

computationally very efficient; ii) to reduce a test suite T they
require no other information beyond T itself.
Based on the applied algorithms, the most natural scenario

for FAST++ and FAST-CS is that of finding a fixed budget

B of test cases. This is referred in literature as inadequate
test suite reduction. In the paper we also show how they

can be adapted to perform adequate reduction, i.e., preserving

coverage: We apply a filtering strategy and search for the most

dissimilar test cases only among the ones that cover not yet

covered elements. However we acknowledge that at large scale

such adequate scenario is not realistic, because as already said

coverage information cannot be assumed.

Although originally proposed for prioritization, we note that

FAST approaches [28] could be easily adapted for test reduc-

tion: Instead of ordering the whole test suite, the algorithm

is stopped when the budget B (or the desired coverage) is
reached. Accordingly, we also include in FAST-R and evaluate

the reduction version of FAST-pw and FAST-all (the most

precise and the most efficient of the FAST family).

Summarizing, this paper proposes four test suite reduction

approaches (two original ones and two adapted from [28]) that

can be applied in two testing scenarios: under a fixed budget

or for adequate test suite reduction.

We evaluated the four proposed approaches on commonly

used C and Java benchmark programs against state-of-the-

art reduction techniques, obtaining comparable results for

effectiveness but notable improvements in efficiency. More

interestingly, to validate our claims on the scalability of the

approaches, we applied all four of them to the budget reduction

of a test suite formed by more than 500K Java test cases

collected from GitHub. At such large scale, not considering

the preparation time, FAST-pw and FAST++ required several

hours to reduce the suite, e.g., ∼37 hours and ∼11 hours
respectively for a 10% size, but FAST-all required 25 seconds

and FAST-CS 9 seconds. Actually, FAST-CS looks as a real

breakthrough as it took less than 10 seconds for the reduction

independently from the percentage, and needed just 5 minutes

for preparation in contrast to more than 3 hours taken by

FAST-all .

The original contributions of this work include:

• The FAST-R family of scalable approaches for inade-

quate test suite reduction.

• A variant of all the approaches for adequate test suite

reduction.

• A large-scale experimentation for evaluating the effi-

ciency and effectiveness of the approaches in three sce-

narios, including a very large-scale test suite.

• An open-source automated framework along with all the

data used for the experiments to support verifiability.

The paper is structured as follows. In the next section we

survey related work. In Section III we present the approaches

used. In Section IV and V, respectively, we present the evalua-

tion methodology and the achieved results. Finally, Section VI

draws conclusions and hints at future work.

II. RELATED WORK

This work is related to software regression testing and more

specifically to test suite reduction techniques. The literature

on software regression testing is huge: Two surveys [13],

[35] provide a broad overview of prioritization, reduction (or

minimization, used here in interchangeable way), and selection

techniques. In particular, Yoo and Harman [35] reviewed the

literature until 2009. Concerning reduction techniques, most

of the surveyed works consists of heuristics over white-box

coverage criteria, at various level of granularity (including

statement, branch, function, or call-stack). Some approaches

augment the coverage information with additional inputs by

the tester (e.g., weighting coefficients or priority assignments),

which may be costly or even biased [35]. Among the few

“interesting exceptions” doing black-box reduction, they report

some combinatorial, fault-based, and model-based techniques.

More recently, Do [13] surveys further advances over [35].

In particular, for test suite reduction she reviews four more

recent techniques, two of which are again coverage-based,

and two ones introduce specific reduction techniques: one

for GUI testing [3], and another for combinatorial interaction

testing [7]. Note that both surveys [13], [35] include no work

on similarity-based test suite reduction, as we propose here.

A recent systematic survey by Rehman and coauthors [23]

focuses specifically on test suite reduction. The study sur-

veyed the literature between 1990 and 2016, identifying a

set of 113 relevant primary studies. Based on the adopted

algorithms, they classify the approaches into: Greedy (mostly

coverage-based), Clustering, and Search-based, plus hybrid

combinations thereof. Our approach would fit in the Clustering

group, in which out of the surveyed 113 studies they only find

three works: one [8] using machine learning algorithms, and

two [27], [33] using hierarchical clustering.

We take here a distance from most of the techniques

surveyed in the above studies, since FAST -R is expressly

motivated by considerations of scalability and practical ap-

plicability. In this perspective, our approach is more closely

related to few recent works based on coarse-grained heuristics,

clustering, and similarity.

In recent years some collaborative efforts between academic

and industrial researchers start to appear that develop coarse-

grained approaches trading precision with efficiency/scalabil-

ity. Strictly speaking such works focus on test case selec-

tion and not test suite reduction, in that the choice of tests

to execute is modification-aware. For example, Knauss and

coauthors [24] use a statistical model that relates the changed

code fragments (or churns) with test outcomes on Ericsson

systems; considering a continuous integration development

environment, Elbaum and coauthors [15] propose a strategy

apt for Google testing process, which combines test case

selection during pre-submit testing and test case prioritization

in post-submit testing. Both selection and prioritization apply

heuristics based on failure history and execution windows. By

relying on very efficient algorithms, our FAST -R approaches

can scale up to large industrial systems as the above works,

while not sacrificing much of precision in deriving a represen-

tative subset of the test cases.

Our similarity-based approach is related to several tech-

niques that exploit the diversity among test cases for guiding

selection. Some techniques build on the notion of adaptive

random testing (ART) [10] that, in a few words, first selects

a random set of test cases and then filters them based on

their distance from the already selected test cases. Several

variants instantiations of ART have been proposed, including

ART-D [20] and ART-F [36] that we use as competitors to

FAST -R and that are further described in Section IV.

Some black-box approaches use similarity to reduce model-

based test suites. Both test case reduction [2] and test case

selection [9], [17] techniques have been proposed. These

techniques have been conceived for industrial use: For example

Hemmati and coauthors [17] pursue as a main goal a selection

of test cases adjusted to the available testing budget. However,

all such model-based approaches rely on the assumption that

a formal model of program behavior, e.g., a LTS, is available.

In contrast, FAST -R does not need to assume anything else

beyond the test cases themselves.

A few works have proposed to leverage clustering of test

cases as we do here, e.g., [11], [30]. However they calculate

the similarity between two test cases based on code coverage

information, which as said already could be too expensive at

the testing scale we aim.

III. THE APPROACHES

Given a test suite T and some fixed budget B ≤ |T |, the
goal of similarity-based test suite reduction is to select B
evenly spread test cases out of the test suite. If we model

each test case as a point in some D-dimensional space, then
the problem could be thought of as that of finding the central

points of B clusters. The problem of clustering is NP -hard,
but we are able to perform scalable similarity-based test suite

t1: grep -e 'foo' file

2. Vector Space Model (Term Frequency)

grep -e -v -F 'foo' 'bar' file

t1

t2

t3

3. Random Projection

Comp1 Comp2 Comp3

t1

t2

t3

1. Test Suite

t2: grep -v -e 'foo' file

t3: grep -F 'bar' file

Fig. 1: Visual representation of FAST-R preparation phase.

reduction by borrowing a technique from the big data domain

and using it in combination with some efficient heuristics.

We consider an Euclidean space, a metric space where the

distance between any two points is expressed by the Euclidean

distance – what one could think of as the straight line connect-

ing them. Let x,y ∈ R
D be two points; the Euclidean distance

between them is defined as d(x,y) =
√

∑

D

i=1
(xi − yi)2.

In the preparation phase of our approaches (Fig. 1) we

transform test cases into points in the Euclidean space via the

vector-space model: The textual representation of each test

case, e.g., test source code or command line input (Fig. 1.1),

is mapped into an n-dimensional point where each dimension
corresponds to a different term of the source code and n is
equal to the total number of terms used in the whole test suite.

The components are weighted according to term-frequency

scheme, i.e., the weights are equal to the frequency of the

corresponding terms (Fig. 1.2).

The computation of the Euclidean distance between any

two n-dimensional points can be expensive when n is large.
To overcome this problem we exploit a dimensionality reduc-

tion technique called random projection. Roughly speaking,

random projection works because of Johnson-Lindenstrauss

Lemma [21], which states that a set of points in a high-

dimensional space can be projected into a much lower-

dimensional space in a way that pairwise distances are nearly

preserved. In particular we use sparse random projection [1],

[26], an efficient implementation of the technique that is

suitable for database applications (Fig. 1.3).

We model the clustering problem as a k-means problem,
with k = B. Given n points in a metric space, the goal of k-
means is to find a k-partition P = {P1, . . . , Pk} of the points
that minimizes the sum of the squared Euclidean distances

between each point to its closest center of one partition.

Formally, the goal is to find argmin
P

∑

k

i=1

∑

x∈Pi
d(x,µi)

2,

where µi is the center of the points belonging to partition Pi.

There exist efficient techniques that are able to find an

approximate solution to k-means. One is k-means++ [4],

Algorithm 1 FAST++

Input: Test Suite T ; Budget B
Output: Reduced Test Suite R
1: P ← RandomProjection(T) ⊲ Preparation phase
2: s← FirstSelection(P)
3: R← List(s)
4: D ← Distance() ⊲ Squared distance to closest point in R
5: D(s)← 0
6: while (Size(R) < B) do

7: for all t ∈ P do

8: if d
(

P (t), P (s)
)

2
< D(t) then

9: D(t)← d
(

P (t), P (s)
)

2
⊲ Squared Euclidean distance

10: s← ProportionalSample(P,D)
11: R← Append(R, s)
12: D(s)← 0

13: return R

which achieves an O(log k) approximation ratio2 in expec-
tation and finds the centers of the clusters in k linear time
iterations. The algorithm is the de facto standard technique

for the initialization phase of k-means algorithms. After the
initial centers are selected, standard k-means algorithms would
iteratively compute the clusters. In our case, to be more

efficient, we stop at this stage and use the k selected centers as
the test cases of the reduced test suite. The reduction approach

that exploits k-means++ as greedy reduction strategy is called

FAST++ (Algorithm 1).

FAST++ starts by preprocessing the test suite T , mapping
each test case into a vector according to the vector-space model

and then lowering its dimensionality via random projection

(Line 1). After the preparation phase, the reduction algorithm

works only on the projected data P on which the greedy
selection of k-means++ is applied. First, pick the first point

uniformly at random3 (Line 2). Then, until B points have not
been selected: i) for each projected point t ∈ P , compute the
squared distance d(t, R)2 between t and its nearest center in
R that has been already picked (Lines 7, 8, 9); this can be
done incrementally by maintaining the minimum distance and

computing only the distance with the last selected point (Lines

8, 9); ii) pick next point s with probability proportional to its
distance to R (Line 10).

Another possible approach to simplify the clustering prob-

lem is that of using coresets. Given a set of points S, a coreset
is a small subset of S that well approximates the geometric
features of S. One usually constructs a coreset first and then
finds the centers of the clusters on it, reducing the complexity

of the problem while still having theoretical guarantees on the

solution. In our case, though, the size of the reduction grows

linearly with the size of the test suite making this standard

approach less efficient – the complexity of the problem would

not lower much. Instead, exploiting a recent extremely efficient

algorithm developed for massive datasets [5], we construct a

coreset of size B and use it as reduced test suite. The algorithm
is based on importance sampling: All points have nonzero

2In a minimization problem, an α-approximation algorithm finds a solution
which is not worse than α times the optimum.
3Note that this is to stick with k-means++ algorithm, but any other criterion

for the choice of the first test case is possible.

Algorithm 2 FAST-CS

Input: Test Suite T ; Budget B
Output: Reduced Test Suite R
1: P ← RandomProjection(T) ⊲ Preparation phase
2: µ← Mean(P)
3: for all t ∈ P do

4: Q(t)←
1

2 |T |
+

d
(

P (t), µ
)

2

∑

t′∈P
d
(

P (t′), µ
)

2
⊲ Importance sampling

5: R← ProportionalSampleWithoutReplacement(P,Q,B)
6: return R

probability of being sampled, but points that are far from the

center of the dataset (potentially good centers for a clustering)

are sampled with higher probability. We call the reduction

approach that use this technique FAST-CS (Algorithm 2).

FAST-CS starts with the preparation phase to compute the

set of projected points P (Line 1). Then, it only requires
two full passes on P : First it computes the mean of the data
points (Line 2) and then it uses it to compute the importance

sampling distribution (Lines 3, 4). The probability of each

point to be sampled is a linear combination of the uniform

distribution (first term in Line 4) and of the distribution which

is proportional to the squared Euclidean distance between the

data point and the mean of the data (second term in Line

4). Then B points are sampled out of P without replacement
with probability proportional to their importance sampling

probability (Line 5) and used as reduced test suite.

Both FAST++ and FAST-CS have also been adapted to be

adequate, i.e., to perform a reduction that guarantees some

fixed coverage.4 Getting coverage information of each test case

as an extra input, both the proposed approaches are able to

reduce the test suite such that some fixed coverage is achieved.

This is possible thanks to a filtering phase. In FAST++ , all test

cases which would not add any extra coverage are filtered out

after each selection and the next selection is carried out only

among the remaining ones. As for FAST-CS , log |T | test cases
are picked at each subsequent iteration and then importance

sampling probabilities are recomputed setting to 0 the ones

relative to test cases which are filtered out. Picking log |T |
tests per iteration instead of just one makes the algorithm

scale better to big test suites. Moreover, this choice does not

increase the size of the reduced test suite since the selected

test cases are still diverse among them and thus the chance

of covering different parts of the software under test is still

high. Finally, instead of stopping when the reduction reaches

size B, both adequate approaches stop whenever the reduction
achieves some fixed coverage.

As said, this work was inspired by the FAST family of

test case prioritization approaches [28]: Roughly speaking,

those approaches could be also used for the goal of test

suite reduction by only picking the first B test cases of

the prioritized test suite. To assess also their efficiency and

effectiveness when applied to test suite reduction, we modified

4The pseudocodes of adequate versions are not reported for lack of space,
but can be found online at https://github.com/ICSE19-FAST-R/FAST-R.

all the original algorithms to stop after B test cases are

prioritized. Moreover we adapted them to be adequate as well,

again using the same filtering phase introduced in FAST++

and FAST-CS .

IV. EVALUATION METHODOLOGY AND SETUP

We conducted some experiments to evaluate the effective-

ness and the efficiency of the proposed approaches in different

application scenarios. As a first scenario we considered the

case in which test resources are limited and a tester can only

run a small subset of test cases from an existing test suite:

We call this the budget scenario, because we fix a priori a

reduction percentage of test suite size. In this scenario we can

apply the natural version of the proposed approaches. As a

second case we considered adequate scenario, in which the

code coverage measures of the whole test suite are preserved.

To study this scenario, we applied the adequate version of

the approaches. We also studied a third case, called the large-

scale scenario, in which we apply the inadequate reduction on

a very large test suite.

A. Research Questions

We address the following research questions (RQs):

RQ1: How effective are the proposed test suite reduction ap-

proaches in comparison with state-of-the-art techniques?

The goal of test suite reduction is to reduce the size of a

test suite while maintaining its fault detection effectiveness.

Thus the effectiveness of reduction approaches is commonly

measured in terms of the Fault Detection Loss (FDL), and

for adequate approaches also in terms of Test Suite Reduction

(TSR). Consequently we articulate the above RQ1 into the two

following subquestions:

RQ1.1: [FDL] What is the fault detection loss of the pro-

posed approaches compared with that of state-of-the-art

techniques?

To answer RQ1.1 we measure: FDL = |F |−|F ′|
|F | , where F is

the set of faults detected by T and F ′ is the set of faults
detected by T ′.

RQ1.2: [TSR] What is the test suite reduction achieved by

the proposed approaches compared with that of state-of-

the-art techniques?

To answer RQ1.2 we measure: TSR = |T |−|T ′|
|T | .

We answer RQ1.1 in both budget and adequate scenarios,

and RQ1.2 only in the adequate scenario.

To evaluate the efficiency we address the following RQ:

RQ2: How much time is taken by the proposed approaches

to produce the reduced test suite?

We measure the time spent in preparation and in reduction.

We answer RQ2 in all the three scenarios: In the budget and

adequate scenarios we compare the time taken by the proposed

approaches against state-of-the-art competitors; in the large-

scale scenario we could only apply our proposed techniques, as

all competitors approaches require coverage information that

at such scales are not available.

B. Compared reduction approaches

We recall that the FAST-R family of proposed approaches

consists of the newly devised FAST++ and FAST-CS plus the

modified reduction versions of FAST-pw and FAST-all , first

introduced for prioritization [28].

The competitor approaches we consider are ART-D [20]

and ART-F [36], which belong to the family of Adaptive

Random Testing techniques [10]. In brief, they both work by

first deriving a candidate set of test cases from those not yet

selected that would increase coverage, and then selecting from

within the candidate set the most distant test case from those

already selected. The two techniques differ on the candidate set

size (Dynamically changing in ART-D and Fixed in ART-F)

and on the adopted distance metric (Jaccard and Mahattan,

respectively). We selected these approaches because they also

aim at obtaining an evenly spread set of test cases as in our

approaches, and also because in the results reported in [28]

they were among the best competitors to FAST . Differently

from FAST-R , ART-D and ART-F use coverage measures.

Finally, we also applied the GA (Greedy Additional) ap-

proach [31], which for its simplicity and effectiveness is often

considered as a baseline. GA selects the test case that covers

the highest number of yet uncovered elements.

For all three competitors we consider three variants, applied

to coverage of function, statement, and branch.

C. Experiment material

To evaluate the budget scenario and the adequate scenario

we took 5 C and 5 Java programs as experimental subjects.

The C programs (consisting of Flex v3, Grep v3, Gzip v1,

Sed v6, and Make v1) were gathered from the Software In-

frastructure Repository (SIR) [14]. For each of these programs

subsequent versions are available, each containing a varying

number of seeded faults. In our experiment we considered for

each program the version containing the highest number of

difficult to reveal faults, i.e., faults that are discovered by less

than 50% of the test cases. This was done to avoid including in

the experiment “anomalous” versions, e.g., versions in which

most faults are revealed by the majority of the test cases or no

faults are revealed at all. In total, the C subjects amounted to

52,757 LoC containing 49 faults, and were accompanied by a

test suite comprising 2,938 test methods.

The 5 Java programs taken into account (namely Closure

Compiler, Commons Lang, Commons Math, JfreeChart, and

Joda-Time) were taken from the Defects4J database [22]. Such

database provides a set of programs available in different

versions, each containing a single real fault. For our exper-

iment, we considered the first version of the programs. In

total, the Java Subjects amounted to 320,990 LoC and were

accompanied by a test suite comprising 1198 test classes.

To evaluate the large-scale scenario, we used a set of

more than 500K real-world test cases gathered through the

GitHub hosting-service. To efficiently collect a high number

of heterogeneous test cases, we selected classes committed to

the master branches of the available Java repositories, precisely

commits adding a single class which adheres to common

naming conventions for JUnit classes. In total through this

process we collected 514,272 test cases, amounting to roughly

39 million LoC for a total size of 14 GB.

D. Experiment procedure

The experiment was performed on an AMD Opteron™ 6376

with 2.3GHz CPU, 16MB L2 cache, 64GB RAM, running

Ubuntu 16.04.5 LTS. The procedure varied according to the

scenario considered. More specifically:

1) Budget scenario: We fixed a set of budgets B for

each experimental subject (both C and Java). The budgets

considered ranged between 1% and 30% of the total test suite

size of each subject with a step increase of 1%. While the

FAST-R approaches only required the test suite for the reduc-

tion process, all competitors could take in input 3 different

coverage types, namely function, statement, and branch. We

therefore performed a single study for the FAST-R approaches

and 3 for each of the competitors. We used each compared

approach to reduce the test suite of the experimental subjects

by considering all B budgets. The metrics considered were
fault detection loss, preparation time, and reduction time. The

measurements were repeated 50 times for each study given the

stochastic nature of the approaches.

2) Adequate scenario: The FAST-R approaches require

coverage information for the filtering phase as an extra input

to have an adequate reduction. The competitor approaches

instead require exclusively the coverage information. For this

scenario we considered function, statement, and branch cov-

erage. We used the compared approaches to reduce the test

suite of each experimental subject (both C and Java) so to

maintain the coverage prior of the reduction. We measured

fault detection loss, test suite reduction, preparation time, and

reduction time. The measurements were repeated 50 times for

each study given the stochastic nature of the approaches.

3) Large-scale scenario: As for the budget-scenario, we

considered a set of budgets B ranging from 1% to 30% of
total test suite size of the subjects, with a step increase of 1%.

In this setting we exclusively evaluated FAST-R approaches,

as the other approaches require coverage information, which in

this scenario is not available. To answer RQ2, we applied the

approaches to the GitHub dataset for each possible reduction

of B, and measured preparation time and reduction time.

V. RESULTS

In this section we report and discuss the results. Note

that with the aim of supporting independent verification and

replication, we make available the artifacts produced as part of

this work [12]. The replication package includes approaches,

input data, statistical analyses, and additional results.

A. The budget scenario

1) Fault Detection Loss: The box plots of Figure 2 display

the FDL of the compared approaches and more details are

provided in Table I. The results are grouped by programming

language because the C and Java programs investigated contain

different types of faults (see Section IV-C). The approaches

●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●

●

●●

●

●●●●●●●●●●●

●
●
●
●●●
●
●
●●
●

●

●
●●
●●

●●

●

●●●●●●●●●●●●

●

●●●

●

●
●

●

●●

●

●
●●●
●●●

●
●
●
●●
●●

●

●

●

●

●
●
●●

●

●
●

●
●

●

●

● ●
● ●●● ●

●

●

●

●●

●

●

●●●●●●●●●●●

java

c

F
A

S
T

+
+

F
A

S
T

−
C

S

F
A

S
T

−
p

w

F
A

S
T

−
a

ll

A
R

T
−

D
 (

F
)

A
R

T
−

D
 (

S
)

A
R

T
−

D
 (

B
)

A
R

T
−

F
 (

F
)

A
R

T
−

F
 (

S
)

A
R

T
−

F
 (

B
)

G
A

 (
F

)

G
A

 (
S

)

G
A

 (
B

)

0

25

50

75

100

0

25

50

75

100

F
a

u
lt
 D

e
te

c
ti
o

n
 L

o
s
s
 (

in
 %

)

Fig. 2: FDL for the test suite reduction approaches (in %).

from the FAST-R family are applied in a black-box fashion

while the competitors target different coverage criteria. For

this reason we have three boxes for each competitor (the

letter insides the parenthesis is the first letter of the targeted

criterion: function, statement, or branch). For this metric, the

lower the result, the better.

The visual assessment of the data can show us that, overall,

the median fault detection loss is similar for all the approaches

with two exceptions: while GA outperformed all the competi-

tors for C (statement and branch), it performed very poorly

and always missed the fault for the Java subjects (statement

and branch); FAST-pw , on its turn, was comparable to most of

the competitors when considering the C subjects but, similarly

to GA, it performed poorly for Java.

After the visual inspection we proceeded with the statistical

analysis of the data. We adopted a non-parametric statistical

hypothesis test, the Kruskal-Wallis rank sum test, as our data

could not be assumed to be normally distributed. We assessed

at a significance level of 5% the null hypothesis that the

differences in the FDL values are not statistically significant.

For the particular case of C programs when targeting the

function coverage criterion, the null hypothesis could not be

rejected (p-value = 0.8605), i.e., no significant difference in
fault detection loss was observed. For all the other cases the

observed differences in FDL are statistically significant at least

at the 95% confidence level.

Provided that significant differences were detected by the

Kruskal-Wallis test we performed pairwise comparisons to

determine which approaches are different.5 The results are

5A significant Kruskal-Wallis test indicates that at least one reduction
approach stochastically dominates one or multiple competitors, but does not
identify the dominance relationship among pairs of techniques.

TABLE I: Fault detection loss in the budget scenario.

Approach
C Java

Mdn σ δ Mdn σ δ

FAST++ 26.67 21.20 (b) 78.00 17.06 (a)
FAST-CS 27.14 21.00 (b) 82.00 15.41 (b)
FAST-pw 24.75 28.89 (b) 100.00 22.02 (c)
FAST-all 25.71 20.00 (b) 82.00 21.52 (ab)
ART-D (F) 23.44 20.53 (b) 80.00 17.29 (ab)
ART-F (F) 26.40 21.15 (b) 80.00 17.06 (ab)
GA (F) 23.21 15.11 (b) 100.00 26.71 (d)
ART-D (S) 25.71 21.04 (b) 80.00 16.91 (ab)
ART-F (S) 26.33 21.09 (b) 80.00 17.05 (ab)
GA (S) 12.50 22.40 (a) 100.00 0.00 (e)
ART-D (B) 25.75 21.10 (b) 78.00 16.96 (ab)
ART-F (B) 28.87 21.43 (b) 81.00 16.90 (ab)
GA (B) 14.29 20.17 (a) 100.00 0.00 (e)

Mdn is the median fault detection loss, σ is the standard deviation, and δ is the

group for the pairwise comparisons after the Kruskal-Wallis test.

TABLE II: Reduction times for the budget scenario (including

and excluding preparation time).

Approach
Total Time Reduction Time

Mdn σ δ Mdn σ δ

FAST++ 0.37 0.21 (b) 0.01 0.05 (b)
FAST-CS 0.47 0.24 (c) 0.01 0.00 (a)
FAST-pw 7.94 12.36 (i) 0.10 0.21 (d)
FAST-all 7.82 12.40 (i) 0.02 0.03 (c)
ART-D (F) 0.18 0.56 (a) 0.18 0.56 (e)
ART-F (F) 0.46 2.19 (c) 0.46 2.19 (f)
GA (F) 0.20 0.27 (a) 0.20 0.27 (e)
ART-D (S) 2.50 8.50 (f) 2.50 8.50 (j)
ART-F (S) 4.87 31.89 (h) 4.87 31.89 (k)
GA (S) 3.26 5.02 (g) 3.26 5.02 (k)
ART-D (B) 0.62 4.80 (d) 0.62 4.80 (g)
ART-F (B) 1.41 19.77 (e) 1.41 19.77 (i)
GA (B) 0.77 2.79 (d) 0.77 2.79 (h)

Mdn is the median time (total or reduction), σ is the standard deviation, and δ is the

group for the pairwise comparisons after the Kruskal-Wallis test.

displayed in Table I inside the parenthesis.6 The statistical

analysis confirmed the conclusions drawn from the visual

inspection: with the exception of GA and FAST-pw that had

varying performance depending on the programming language

(and coverage criterion, when applicable), all the approaches

investigated had overall comparable FDL.

2) Time: The results obtained by the approaches in terms

of efficiency are displayed in Table II. It contains the total

time (which includes preparation time) and the time for doing

only the reduction itself. For this metric, we do not make any

distinction between the programming languages (C or Java)

because the efficiency of the approaches could be impacted

only by the size of the test case representation adopted.

6If two approaches have different letters, they are significantly different
(with α = 0.05). If, on the other hand, they share the same letter, the
difference between their ranks is not statistically significant. For example,
looking at the results for the Java subjects in Table I, we can tell that
FAST-all (ab) is not different from FAST++(a) and it is also not different
from FAST-CS (b), even though FAST++(a) is different from FAST-CS (b).
The approach (or group of approaches) that yields the best performance is
assigned to the group (a).

TABLE III: Fault detection loss in the adequate scenario.

Approach
C Java

TSR FDL TSR
Mdn σ δ Mdn σ δ Mdn σ δ

F
u
n
ct
io
n

FAST++ 97.76 1.92 (b) 33.33 22.88 (bc) 17.97 6.48 (b)
FAST-CS 96.72 1.94 (c) 28.57 21.49 (bc) 16.39 6.12 (c)
FAST-pw 97.01 1.99 (c) 33.33 27.16 (b) 20.28 5.76 (bc)
FAST-all 57.51 36.53 (e) 0.00 19.13 (a) 2.76 5.11 (d)
ART-D 30.64 32.20 (d) 0.00 20.72 (a) 0.00 0.62 (e)
ART-F 21.49 34.70 (e) 0.00 19.22 (a) 0.00 0.40 (f)
GA 98.21 1.67 (a) 28.57 20.64 (c) 30.33 7.57 (a)

S
ta
te
m
en
t

FAST++ 90.54 2.87 (b) 14.29 23.82 (d) 7.27 5.17 (b)
FAST-CS 88.32 3.56 (c) 14.29 24.60 (d) 6.45 5.26 (c)
FAST-pw 87.85 3.91 (d) 14.29 24.20 (d) 7.37 5.36 (b)
FAST-all 28.51 32.27 (e) 0.00 20.97 (b) 0.00 1.33 (d)
ART-D 6.17 8.26 (f) 0.00 9.28 (a) 0.00 0.41 (e)
ART-F 3.44 6.57 (g) 0.00 6.62 (a) 0.00 0.31 (e)
GA 91.62 2.74 (a) 12.50 25.46 (c) 12.30 4.67 (a)

B
ra
n
ch

FAST++ 88.65 3.56 (b) 14.29 24.43 (d) 22.58 5.63 (b)
FAST-CS 86.10 4.55 (c) 12.50 25.00 (d) 21.53 5.98 (c)
FAST-pw 86.45 5.17 (d) 0.00 26.62 (c) 19.72 5.60 (d)
FAST-all 15.97 22.96 (e) 0.00 10.41 (b) 6.76 5.18 (e)
ART-D 4.92 6.49 (f) 0.00 8.75 (a) 0.26 0.79 (f)
ART-F 2.43 4.68 (g) 0.00 3.49 (a) 0.00 0.62 (f)
GA 90.27 3.52 (a) 14.29 23.78 (e) 35.94 5.45 (a)

Mdn is the median fault detection loss, σ is the standard deviation, and δ is the

group for the pairwise comparisons after the Kruskal-Wallis test. Results for FDL are

not displayed for Java because all the approaches were able to always reveal the

existing fault with the reduced test suite.

If we consider only the reduction time, the FAST-R ap-

proaches outperformed all the competitors. FAST++ and

FAST-CS are much more efficient than FAST-pw and

FAST-all during the preparation phase. Indeed, even if we

consider total time, FAST++ and FAST-CS are still very

efficient: They would beat all the competitors with the excep-

tion of the ones targeting function coverage, which is a very

coarse-grained criteria that allows the approaches to finish the

reduction task after just a few iterations.

B. The adequate scenario

1) Test Suite Reduction and Fault Detection Loss: For the

adequate scenario the FAST-R approaches are still applied in

a black box fashion but they can use coverage information

(which entities are covered by which test cases) in the re-

duction phase to filter out test cases that cannot contribute

to increase coverage anymore. For this reason we report the

results of our study grouped by programming language and

by coverage criteria.

An ideal reduction approach should be capable of maximiz-

ing TSR while maintaing the same fault detection effectiveness

of the original test suite. Thus, it is important to analyze TSR

and FDL together. Figure 3 displays, for each approach, a side-

by-side box plot for each metric (TSR in the left, and FDL

in the right). For better readability, in Figure 3 we display

1 − TSR, which represents the size (reported in %) of the
reduced test suite, such that we can visually interpret the two

metrics in the same direction: the lower the value, the better.

Additional results from the statistical analysis are reported

in Table III. For our analysis we again performed the Kruskal-

●

●●

●●●

●

●●●●●●●

●●

●

●●●

●

●●

●

●

●●

●●

●

●

●

●●

●●

●

●●

●●

●●

●●●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

●

●●●●●

●

●●●●●●

●●●●●●●●●

●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●●●●●●

●

●●●●●●●

●

●●

●

●●●

●

●●

●

●

●

●●

●

●

●

●
●
●●

●

●

●

●●●●●●●●

●

●
●

●●

●

●●
●

●
●

●
●
●●

●●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●

●

●
●

●

●

●●
●

●

●
●
●●

●

●

●●●●●●●

●

●

●●
●
●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●●

●●

●●●●●●●
●●●●●●●
●●●
●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●
●●
●
●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●
●
●●
●●●●
●●●●●
●● ●

●●●●●
●●●●●●●●●
●●●●●
●
●
●
●
●●
●●●●●●
●●●●●●●●●●●
●●●
●
●●● ●●

●
●●●●●●●
●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●● ●●

●●●●●● ●●●
●●●●●●●●●●●

●●●●●●●●●
●●
●●●
●●●
●
●
●●

c (function) c (statement) c (branch) java (function) java (statement) java (branch)

F
A

S
T

+
+

F
A

S
T

−
C

S

F
A

S
T

−
p
w

F
A

S
T

−
a
ll

A
R

T
−

D

A
R

T
−

F

G
A

F
A

S
T

+
+

F
A

S
T

−
C

S

F
A

S
T

−
p
w

F
A

S
T

−
a
ll

A
R

T
−

D

A
R

T
−

F

G
A

F
A

S
T

+
+

F
A

S
T

−
C

S

F
A

S
T

−
p
w

F
A

S
T

−
a
ll

A
R

T
−

D

A
R

T
−

F

G
A

F
A

S
T

+
+

F
A

S
T

−
C

S

F
A

S
T

−
p
w

F
A

S
T

−
a
ll

A
R

T
−

D

A
R

T
−

F

G
A

F
A

S
T

+
+

F
A

S
T

−
C

S

F
A

S
T

−
p
w

F
A

S
T

−
a
ll

A
R

T
−

D

A
R

T
−

F

G
A

F
A

S
T

+
+

F
A

S
T

−
C

S

F
A

S
T

−
p
w

F
A

S
T

−
a
ll

A
R

T
−

D

A
R

T
−

F

G
A

0

25

50

75

100

S
iz

e
 o

f
th

e
 r

e
d
u
c
e
d
 s

u
it
e
 a

n
d
 F

D
L
 (

in
 %

)

Size of the Reduced Suite Fault Detection Loss

Fig. 3: Test Suite Reduction and Fault Detection Loss (in %).

Wallis rank sum test, followed by the pairwise multiple

comparisons to identify the differences among the compared

approaches. All the results reported in Table I are statistically

significant at the 5% significance level.

Considering the results for C, two main groups seem to

emerge: FAST-all and ART-* achieve the best results in terms

of FDL, but at the price of having much bigger test suites (e.g.,

ART-F achieved a median reduction of 2.43% w.r.t. the original

test suite considering branch); on the other hand, we have that

the other members of the FAST-R family achieve reduction

levels that are very similar to those of GA while remaining

competitive with GA in terms of FDL. In fact, for some cases,

the three members from the FAST-R family outperformed GA

in terms of FDL (e.g., column δ of C-FDL-Branch).
For the particular case of Java, all the approaches were able

to always reveal the existing fault with the reduced test suite.

That explains why we do not have the FDL column for Java

in Table III. GA always achieved the best results in terms of

TSR, followed by the FAST-R family, then by the ART-based

approaches. This result was somehow expected as GA aims

at reaching the maximum achievable coverage with as few

test cases as possible, while the FAST-R approaches aim at

maximizing the diversity of the reduced test suite without

having coverage as a target to be achieved.

2) Time: Table IV summarizes the results of the statis-

tical analysis of our data after the Kruskal-Wallis test and

the pairwise comparisons. Overall, the performance of the

approaches remained stable when compared with the efficiency

study for the budget scenario. With the exception of total time

for function, where GA performed better, at least one of the

FAST-R approaches achieved the best performance for all the

other cases.

The ART-based approaches are, in general, not compet-

itive: ART-D performs better than FAST-pw and FAST-all

only when we consider total time for function. Then their

performance degrades very quickly as we move from coarse-

to fine-grained coverage criteria.

TABLE IV: Reduction times for the adequate scenario (in-

cluding and excluding preparation time).

Approach
Total Time Reduction Time

Mdn σ δ Mdn σ δ
F
u
n
ct
io
n

FAST++ 0.48 0.40 (b) 0.04 0.24 (a)
FAST-CS 0.51 0.44 (b) 0.07 0.22 (b)
FAST-pw 8.41 16.10 (d) 0.10 0.31 (d)
FAST-all 8.64 15.75 (d) 0.14 0.13 (bc)
ART-D 3.76 7.86 (c) 3.76 7.86 (e)
ART-F 18.45 38.35 (e) 18.45 38.35 (f)
GA 0.10 0.51 (a) 0.10 0.51 (cd)

S
ta
te
m
en
t

FAST++ 0.93 2.39 (a) 0.50 2.22 (c)
FAST-CS 1.01 1.86 (a) 0.58 1.78 (c)
FAST-pw 8.15 12.48 (c) 0.44 1.89 (b)
FAST-all 8.49 12.05 (c) 0.43 1.39 (a)
ART-D 151.87 122.65 (d) 151.87 122.65 (e)
ART-F 287.76 761.10 (e) 287.76 761.10 (f)
GA 4.25 5.82 (b) 4.25 5.82 (d)

B
ra
n
ch

FAST++ 0.65 0.56 (a) 0.26 0.39 (a)
FAST-CS 0.75 0.58 (b) 0.37 0.38 (b)
FAST-pw 9.05 15.79 (d) 0.37 0.54 (b)
FAST-all 9.05 14.29 (d) 0.40 0.28 (a)
ART-D 30.27 79.49 (e) 30.27 79.49 (d)
ART-F 55.10 415.23 (f) 55.10 415.23 (e)
GA 1.62 1.27 (c) 1.62 1.27 (c)

Mdn is the median time (total or reduction), σ is the standard deviation, and δ is the

group for the pairwise comparisons after the Kruskal-Wallis test.

The very efficient preparation phase of FAST++ and

FAST-CS make them good candidates even if we had to

consider the costs incurred by the preparation phase.

C. The large-scale scenario

The goal of this scenario is to provide empirical evidence to

support our claim of scalability for the FAST-R approaches.

The line plots in Figure 4 depict the time spent by the four

FAST-R approaches to reduce the test suite formed by 500K+

test cases gathered from GitHub down to a budget B (with
B varying from 1% to 30% of the full size). Precisely, we
plot the total time in Figure 4.a and the reduction time in

●

●

●

●
●

●
●

●
●

● ●
1

,0
0

0
1

0
,0

0
0

1
0

0
,0

0
0

0 10 20 30

T
im

e
 (

in
 s

e
c
o

n
d

s
)

−
 l
o

g
1

0
 s

c
a

le

(a) Total time

●

●

●
●

●
● ●

1
0

0
1

0
,0

0
0

0 10 20 30

Reduction Percentage

T
im

e
 (

in
 s

e
c
o

n
d

s
)

−
 l
o

g
1

0
 s

c
a

le

● FAST++

FAST−CS

FAST−pw

FAST−all

(b) Reduction time

Fig. 4: Time required to reduce 500K+ test cases to different

reduction targets.

Figure 4.b. Note that in both plots we use on the vertical axis

a logarithmic scale.

The slowest approach is FAST-pw and the fastest one is

FAST-CS . While the reduction time of FAST-CS is about

9 seconds independently of the reduction percentage, the

reduction time taken by FAST-pw varies with the reduction

percentage between 25K seconds for 1% and 329K seconds

(91+ hours) for 30% (see Figure 4.b), i.e., the time difference

between the two approaches spans over 4 orders of magnitude.

Considering the reduction time only, also FAST-all is quite

efficient, as its time varied over the reduction percentage

between 23 and 25 seconds.

The comparison of values between the two plots also evi-

dences how the preparation phase of FAST++ and FAST-CS is

faster than the one of FAST-pw and FAST-all : for the former

two the preparation time over the 500K+ GitHub test cases

was ∼314 seconds, whereas for the latter two it grew up to
∼13K seconds, i.e., it took 40 times longer (see Table V).

Unfortunately in this scenario we could not measure FDL,

but if the results of the budget scenario generalize, i.e., FDL is

comparable to other state-of-the-art techniques, then we have

here two approaches that in seconds can select a represen-

tative subset of dissimilar test cases from half million test

cases. Considering also its lightweight requirements (Table V),

FAST-CS is definitively the approach we would push to

industrial applications.

For sake of completeness, we have also applied the FAST-R

family to a synthetic set of coverage data for the large-scale

test suite, and could also assess the scalability of the adequate

versions of FAST-R . We do not show here the results for lack

TABLE V: Time and space needed to compute and store

prepared data by FAST-R in the large-scale scenario.

Algorithms Input data Preparation time Prepared data

FAST++ , FAST-CS 14.00 GB 314.43 s 22.05 MB
FAST-pw, FAST-all 14.00 GB 12979.29 s 83.85 MB

of space, but they are included in the replication package.

D. Answering the RQs

Trying to draw a concise summary of the results in the three

scenarios, we can conclude that:

RQ1.1: The FAST-R family shows FDL values that are

statistically comparable to those of competitor approaches

(see Tables I and III).

RQ1.2: In terms of TSR, FAST-R approaches (excluding

FAST-all) resulted the first for C, and second only to

GA for Java (see Figure 3).

RQ2: Time-wise, FAST-R beats all competitors in reduction

time, and remains competitive even including preparation

time, resulting second only to ART-D and GA on function

coverage (see Tables II and IV). At large-scale, FAST-CS

achieves outstanding results (Figure 4), being able to

prioritize a 500K+ test suite in 5 minutes, including the

preparation time.

E. Costs and benefits

1) Preparation phase: The preparation phase of FAST++

and FAST-CS is crucial for scalability; the random projection

technique has a cost of O(nDd), where n is the number of
points we are projecting, D is the actual dimensionality of the
data, and d the dimensionality of the projected data. In this
work, the test cases are projected into a space with d = 10
dimensions; a higher dimensionality would better preserve the

original pairwise distances, but this choice seems to provide

a good trade-off between effectiveness and efficiency [28].

As can be seen in Table V, FAST++ and FAST-CS require

much smaller preparation times, and also less space to store

the prepared data on disk. This is because even if the di-

mensionality of the projected data (FAST++ , FAST-CS) is

the same as the length of the minhash signatures (FAST-pw ,

FAST-all), the sparsity of the random projection makes many

of the components of the projected data null. This results

in space savings through sparse representation of the data,

which is not possible for the minhash signatures. Note that

also the new preparation phase is suitable to scenarios in

which additions/edits are made to the test suite, e.g., regression

testing. In fact it is enough to update the random projection

matrix to handle the increased dimensionality of the space

and to process only new/modified test cases (the old are not

affected by the updated matrix).

2) Budget version: With a fixed budget B, the reduction
time complexity is O(nBd) for FAST++ and O(nd) for
FAST-CS : The former performs B iterations, each of which
computes n distances in O(nd); the latter instead, just needs

two full iterations on the data, with a cost of O(nd), to
compute the distances between the mean and each point.

3) Adequate version: With a worst case analysis, the time

complexity of FAST++ would increase, since an adversarial

input could make it select the entire test suite in n iterations
other than canceling out the advantages of the filtering phase;

in practice, though, filtering should lower problem complex-

ity, iteration by iteration, making the algorithm much faster

on non-adversarial input. Regarding FAST-CS , instead, the

complexity increases to O(nRd

logn
), where R is the size of the

reduction. In fact, another pass of the data is needed after

each filtering phase to recompute the importance sampling

probability. The 1/ log n factor is due to the selection of log n
points per iteration. Picking log n test cases per iteration,
instead of just one, helps to mitigate the higher complexity

w.r.t. the budget scenario and make the algorithm scale better

on big test suites.

F. Threats to validity

Despite our best efforts, the presented results could suffer

from validity threats. Following the classification in [32] we

consider four aspects.

1) Construct validity: if the experiments we set are ap-

propriate to answer the RQs. To answer RQ1 we measured

FDL and TSR, which are de facto standard metrics [34]. This

should nullify potential threats in answering RQ1. Concerning

RQ2, we measured preparation and reduction time: A potential

threat is that other factors than time could prevent FAST-R to

scale up. To mitigate this risk, we used real world test suites

in all scenarios.

2) Internal validity: if the observed results are actually

due to the “treatment” and not to other factors. A common

internal threat is the accuracy of measures that can be affected

by random factors: To mitigate this threat we replicated all

observations 50 times.

3) External validity: whether and to what extent the obser-

vations can be generalized. The experiments we performed are

in line with other studies in the literature. We have observed

the proposed techniques over C and Java subjects, of varying

dimensions. Perhaps the programs and test sets from SIR and

Defects4J may not well represent actual regression testing

scenarios. However, we opted for such subjects because: i)
we could not find other subjects providing faults information;

ii) they are used in many other studies. Notwithstanding, from
current observations we cannot draw general conclusions, and

more experimentation is needed.

4) Reliability: whether and to what extent the observations

can be reproduced by other researchers. To ensure repro-

ducibility, as said we make available all data and settings

related information.

VI. CONCLUSIONS AND FUTURE WORK

This paper addressed the problem of reducing the size of

test suites during regression testing. Our focus is on very

large scale test suites; existing coverage-based or model-based

techniques cannot be used in such scenario. We rather propose

to apply similarity-based selection, which intuitively picks the

test cases so that they are the most distant from each other,

according to some distance metric.

To efficiently find a subset of B test cases we introduced two
novel techniques, FAST++ and FAST-CS , and adapted to the

problem of reduction the FAST-pw and FAST-all techniques,

previously proposed in [28] for test prioritization. All four

approaches import smart heuristics from the big data domain

and provide different degrees of precision and efficiency.

We evaluated the effectiveness and efficiency of the FAST-R

family on the commonly used SIR and Defects4J benchmark

programs. The effectiveness is measured through the metric

of Fault Detection Loss. Moreover, even though we would

not need to use coverage information, we have implemented

an adequate variant of the four techniques on which we

measured Test Suite Reduction. The results from both budget

and adequate scenarios are that FDL and TSR remain both

comparable with state-of-the-art reduction techniques (namely

GA, ART-D, and ART-F). On the other hand, the efficiency

of the proposed approaches, in terms of the reduction time,

is better than all the compared approaches but GA applied

to function coverage, already for the relatively small scale

benchmarks. We also applied the FAST-R family to a much

larger test suite (500K+ test cases) and here we got impressing

results as presented in Section V.

For the future, we have made several plans to extend this

work. We would like to challenge our FAST-R family on

a real large scale testing scenario. Although in our studies

we measured the time employed in deriving the reduced test

suite on a real set of half million test cases, we could not

also assess the effectiveness at such scale because we did

not have fault data. Moreover, we would also like to apply

the techniques in real development environment, to consider

other possible process factors that may impact scalability. In

particular, we would like to embed the techniques into a

continuous development practice, where other criteria could

be also considered when picking test cases.

In this work, we did not consider which files are modified

when selecting test cases, as in (modification-aware) regres-

sion test selection. We could extend the proposed reduction

approaches by filtering out the test cases that do not impact

on modified files. Or, other smarter, more efficient heuristics

could be conceived. This is an extension very relevant also

in light of the conclusions in [34] that selection techniques

achieve higher TSR than reduction ones, and are safer.

As already said in [28] in modern complex and distributed

software systems, test suites deserve to be managed in the

same way as big data, and we do hope that our novel

approaches to test suite reduction contribute to further advance

the fields towards scaling up test automation.

ACKNOWLEDGMENT

This research has been partly funded by the H2020 Euro-

pean Project ElasTest under GA No 731535. Miranda thanks

the postdoctoral fellowship jointly sponsored by CAPES and

FACEPE (APQ-0826-1.03/16; BCT-0204-1.03/17).

REFERENCES

[1] D. Achlioptas, “Database-friendly random projections: Johnson-
lindenstrauss with binary coins,” Journal of computer and System

Sciences, vol. 66, no. 4, pp. 671–687, 2003.
[2] P. D. L. M. Ana Emília V. B. Coutinho, Emanuela G. Cartaxo, “Test suite

reduction based on similarity of test cases,” in 7st Brazilian workshop

on systematic and automated software testingâĂŤCBSoft, 2013.
[3] S. Arlt, A. Podelski, and M. Wehrle, “Reducing gui test suites

via program slicing,” in Proceedings of the 2014 International

Symposium on Software Testing and Analysis, ser. ISSTA 2014. New
York, NY, USA: ACM, 2014, pp. 270–281. [Online]. Available:
http://doi.acm.org/10.1145/2610384.2610391

[4] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM Sym-

posium On Discrete Algorithms. Society for Industrial and Applied
Mathematics, 2007, pp. 1027–1035.

[5] O. Bachem, M. Lucic, and A. Krause, “Scalable k-means clustering
via lightweight coresets,” in International Conference on Knowledge

Discovery and Data Mining (KDD), 2018, p. 11.
[6] A. Bertolino, A. Calabrò, F. Lonetti, E. Marchetti, and B. Miranda, “A

categorization scheme for software engineering conference papers and
its application,” Journal of Systems and Software, vol. 137, pp. 114 –
129, 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0164121217302844

[7] D. Blue, I. Segall, R. Tzoref-Brill, and A. Zlotnick, “Interaction-based
test-suite minimization,” in Proceedings of the 2013 International

Conference on Software Engineering, ser. ICSE ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 182–191. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486813

[8] L. C. Briand, Y. Labiche, Z. Bawar, and N. T. Spido, “Using machine
learning to refine category-partition test specifications and test suites,”
Inf. Softw. Technol., vol. 51, no. 11, pp. 1551–1564, Nov. 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.infsof.2009.06.006

[9] E. G. Cartaxo, P. D. L. Machado, and F. G. O. Neto, “On the use of a
similarity function for test case selection in the context of model-based
testing,” Softw. Test., Verif. Reliab., vol. 21, no. 2, pp. 75–100, 2011.
[Online]. Available: https://doi.org/10.1002/stvr.413

[10] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive
random testing: The art of test case diversity,” J. Syst. Softw.,
vol. 83, no. 1, pp. 60–66, Jan. 2010. [Online]. Available: http:
//dx.doi.org/10.1016/j.jss.2009.02.022

[11] C. Coviello, S. Romano, G. Scanniello, A. Marchetto, G. Antoniol, and
A. Corazza, “Clustering support for inadequate test suite reduction,”
in 2018 IEEE 25th International Conference on Software Analysis,

Evolution and Reengineering (SANER). IEEE, 2018, pp. 95–105.
[12] E. Cruciani, B. Miranda, R. Verdecchia, and A. Bertolino, “Scalable

approaches for test suite reduction (online material),” Jan 2019.
[Online]. Available: https://doi.org/10.5281/zenodo.2550079

[13] H. Do, “Recent advances in regression testing techniques,” in Advances

in Computers. Elsevier, 2016, vol. 103, pp. 53–77.
[14] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting controlled exper-

imentation with testing techniques: An infrastructure and its potential
impact.” Empirical Software Engineering: An International Journal,
vol. 10, no. 4, pp. 405–435, 2005.

[15] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in Proceedings of the 22Nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 235–245. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635910

[16] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in Proceedings of the 2015

International Symposium on Software Testing and Analysis. ACM,
2015, pp. 211–222.

[17] H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable model-
based testing through test case diversity,” ACM Trans. Softw. Eng.

Methodol., vol. 22, no. 1, pp. 6:1–6:42, Mar. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2430536.2430540

[18] K. Herzig, “Let’s assume we had to pay for testing,” Keynote at AST
2016, 2016. [Online]. Available: https://www.kim-herzig.de/2016/06/
28/keynote-ast-2016/

[19] ——, “Testing and continuous integration at scale: Limits, costs,
and expectations,” in Proceedings of the 11th International Workshop

on Search-Based Software Testing, ser. SBST ’18. New York,
NY, USA: ACM, 2018, pp. 38–38. [Online]. Available: http:
//doi.acm.org/10.1145/3194718.3194731

[20] B. Jiang, Z. Zhang, W. K. Chan, and T. Tse, “Adaptive random test case
prioritization,” in Automated Software Engineering, 2009. ASE’09. 24th

IEEE/ACM International Conference on. IEEE, 2009, pp. 233–244.

[21] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings
into a hilbert space,” Contemporary mathematics, vol. 26, no. 189-206,
p. 1, 1984.

[22] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database
of existing faults to enable controlled testing studies for java
programs,” in Proceedings of the 2014 International Symposium

on Software Testing and Analysis, ser. ISSTA 2014. New York,
NY, USA: ACM, 2014, pp. 437–440. [Online]. Available: http:
//doi.acm.org/10.1145/2610384.2628055

[23] S. U. R. Khan, S. P. Lee, N. Javaid, and W. Abdul, “A systematic review
on test suite reduction: Approaches, experiment’s quality evaluation, and
guidelines,” IEEE Access, vol. 6, pp. 11 816–11 841, 2018.

[24] E. Knauss, M. Staron, W. Meding, O. Söder, A. Nilsson, and
M. Castell, “Supporting continuous integration by code-churn based
test selection,” in Proceedings of the Second International Workshop on

Rapid Continuous Software Engineering, ser. RCoSE ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 19–25. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2820678.2820684

[25] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of massive

datasets. Cambridge university press, 2014.

[26] P. Li, T. J. Hastie, and K. W. Church, “Very sparse random projections,”
in Proceedings of the 12th ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 2006, pp. 287–296.

[27] Y. Liu, K. Wang, W. Wei, B. Zhang, and H. Zhong, “User-session-
based test cases optimization method based on agglutinate hierarchy
clustering,” in 2011 International Conference on Internet of Things and

4th International Conference on Cyber, Physical and Social Computing,
Oct 2011, pp. 413–418.

[28] B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino, “FAST
approaches to scalable similarity-based test case prioritization,” in
Proceedings of the 40th International Conference on Software

Engineering, ser. ICSE ’18. New York, NY, USA: ACM, 2018, pp. 222–
232. [Online]. Available: http://doi.acm.org/10.1145/3180155.3180210

[29] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to
large software systems,” in ACM SIGSOFT Software Engineering Notes,
vol. 29, no. 6. ACM, 2004, pp. 241–251.

[30] Y. Pang, X. Xue, and A. S. Namin, “Identifying effective test cases
through k-means clustering for enhancing regression testing,” in Machine

Learning and Applications (ICMLA), 2013 12th International Confer-

ence on, vol. 2. IEEE, 2013, pp. 78–83.

[31] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test
cases for regression testing,” Software Engineering, IEEE Transactions

on, vol. 27, no. 10, pp. 929–948, Oct 2001.

[32] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Softw. Engg.,
vol. 14, no. 2, pp. 131–164, Apr. 2009. [Online]. Available:
http://dx.doi.org/10.1007/s10664-008-9102-8

[33] S. Sampath, S. Sprenkle, E. Gibson, L. L. Pollock, and A. L. Souter,
“Analyzing clusters of web application user sessions,” ACM SIGSOFT

Software Engineering Notes, vol. 30, no. 4, pp. 1–7, 2005. [Online].
Available: http://doi.acm.org/10.1145/1082983.1083255

[34] A. Shi, T. Yung, A. Gyori, and D. Marinov, “Comparing and combining
test-suite reduction and regression test selection,” in Proceedings of the

2015 10th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 237–247.
[Online]. Available: http://doi.acm.org/10.1145/2786805.2786878

[35] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Softw. Test. Verif. Reliab., vol. 22, no. 2, pp. 67–
120, Mar. 2012. [Online]. Available: http://dx.doi.org/10.1002/stv.430

[36] Z. Q. Zhou, A. Sinaga, and W. Susilo, “On the fault-detection capabili-
ties of adaptive random test case prioritization: Case studies with large
test suites,” in 2012 45th Hawaii International Conference on System

Sciences, Jan 2012, pp. 5584–5593.

