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Abstract

This thesisdevelopsnew algorithmsto obtainthe calibrationparameter®f a camera
using only information containedin an imagesequencewith the objectiveof usingthe
camerecalibrationto computea EuclideanreconstructionThis problemis knownasself-
calibration. Themotivationfor thiswork is to allow theEuclidearreconstructiomf ascene
usingonly apre-recordedmagesequencgherenoinformationis availableonthecamera
or theobjectsin thescene.

The approachusedis to utilise known motion constraints,which are commonfor
camerasnountedon mobilevehiclesor roboticarms,to simplify thealgebraiccomplexity
of the self-calibrationproblem. The algorithmsaredesignedo be easilyextendibleto use
multipleimagegatherthantheminimumnumberof threerequiredfor self-calibration.The
uncertaintyof the parametersre also computedto give a measureof confidencen the
camereacalibration.

Thefirst methodusesa purecamerdaranslatiorto allow the problemto be stratifiedby
computingthe intermediatestepof an affine reconstruction.As a resultthe algorithmis
linearandcanbeeasilyextendedo multiple images.

The secondmnethodis usedfor a cameramoving underplanarmotion, a fixed rotation
axis andtranslationconfinedto the planeperpendiculato the axis, which is the motion
of a mobile vehicle. The methodis basedon the useof fixed entities,pointsandlinesin
theimageandin the world, whosepositiondoesnot changewhile the cameramotionis
constrainedo beingplanar It is shownhow thepositionof thesefixed entitiesdetermines
the cameracalibration. An erroranalysisis computedor this methodof self-calibration,
andasaresultthealgorithmis adaptedo give accuratesstimate®of the uncertaintyof the
differentparameters.

Finally a commonrigid objecttrackerRAPID is extendedo give RORAPID, which
by utilising the complexityinherentin arigid objectis robustto conditionsuchaspartial
occlusions. The trackeris designedo be ableto useseveralcameramodelsaswell as
differentrestrictedmotionmodels.

Extensiveresultsare given for real image sequencesakenby cameragnountedon
severabplatforms,andtheseresultsareshownto be bothstableandaccurate.
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Chapter 1

Introduction

1.1 TheGoal: Euclidean Reconstruction

Visionsystemgprovideaverycompacimethodof recodingorwatchingathreedimensional
sceneputin their very nature,the projectionfrom threedimensiongo two losesa large

amountof information. As aresult,the reverseprojectionfrom a two-dimensionalmage
sequencéo afull three-dimensionadtructuras a non-trivial problem.

Thereasonsor requiringathree-dimensionakconstructiof ascenareinnumerable,
but typical problemsackledby the computevision communityinclude pathplanningfor
robotnavigation[10], the graspingof objectsby roboticarms[89], andthe recognitionof
three-dimensionadbjects[108]. However the adventof virtual reality andvirtual worlds
will dramaticallyincreaseheneedor sceneeconstructiofromrecordedmagesequences.
Virtual worlds areoften copiesof the realworld, andfor a significantnumberof accurate
virtual worlds to be constructedsomesimple methodis requiredto reconstructa scene
from a pre-recordedmagesequenceTheimagesequenceaneitherbetakendeliberately
with thecameramotioneitherknownor constrainedor moreinterestinglyold film footage
couldbeused.With thelatter, thepre-recordedilm is theonly informationavailablewhich
increaseshe complexityof obtainingareconstruction.

Scenereconstructioror structurefrom motionis oneof the oldesttopicsof computer
vision [56]. Thereareseverallevelsof scenereconstructionpasedon projectivegeom-

etry, andthesearethe projective,affine, and Euclideanreconstructiongseesection2.2).
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Differentvision tasksrequiredifferentlevelsof reconstruction.So thatonly a projective
reconstructioomayberequiredfor objectrecognition[108], andonly anaffine reconstruc-
tion mayberequiredfor pathplanning[10], grasping89], andfixation pointtracking[80].
However manytaskgespeciallycreatingvirtual worlds)requireaEuclidearreconstruction
sothat,to ahumanobserverthereconstructiomppearso bethesameastheoriginalscene.
To computea Euclideanreconstructiorrequiresthe cameracalibrationto be known.
The calibrationconsistof the cameranternalparametersvhich describehow the camera
is setup (i.e., thefocal lengthandpositionof the optical centre). Cameracalibrationwas
traditionally obtainedoff-line beforeany vision taskswere commencedanduseda 3D
calibrationobjectwith a known structure. This meantthatfirst the camerais calibrated,
thenthe imagesequences taken,andfinally the Euclideanreconstructioris computed.
However for severakcenariosthismethoddoesnotwork. Whenusingpre-recordednage
sequencethecalibrationof thecameracanbeunknown.Also, thecameraalibrationcould
changaluringnormaloperationgitherby desigror accidentsuchas: zoominginto ascene,
undegoing significantchangesn operatingconditions(i.e., the temperaturef a camera
on a satellite),or dueto a collision which canoccurin industrialapplications.However
recentadvancefaveshownthatis is possibleto construct Euclidearreconstructiorirom
pre-recordedmagesequencewherethe cameracalibrationis unknown.
Faugerasl.uong,andMaybank[25] showedthatit is possibleto computethe camera
calibrationusing only information containedin the images,andthis is the definition of
self-calibration. Sincethatinitial work manydifferentmethodshavebeensuggestedor

self-calibrationandthesearereviewedin section3.1.
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1.2 Approach and Themes

The approachusedfor the work presentedn this thesisis to understandhe underlying
situation (geometryand complexity) so that the problem can be simplified and a con-
cisealgebraicsolutioncomputed. This approachproducesseveralthemeswhich appear

throughouthethesis:

¢ Stratification Oftenaproblemcanbe stratifiedinto severakmallerstepsfor which
the solutionsare much simpler than the solution obtainedby solving the problem

directly.

¢ Utilising Constraints Often computervision algorithmstry to solvea problemfor
the mostgeneralcase but commonconstraintsuchasconstrainednotion) canbe

usedto simplify the complexityof the problem.

Theidealresultof applyingthesethemess to geta concisesolutionto a problem,sothat
the solution can be appliedto an arbitrarylarge amountof input data(i.e., imagesof a
scenewithoutsignificantlyincreasinghecomplexityof thecalculation andincreasinghe

amountof input datashouldimprovetheaccuracyof a calculation.

1.3 ThesisOutline

Thefollowing two chapterf this thesisntroducesomeof the basicconceptof computer
vision, aswell asreviewingtherelevantliterature. Chapter 2 examineghe generaldea
of reconstructinga scenegrom imagestakenby a standarccamera. The differentcamera
modelsthatcanbe usedareexplained.Projectivegeometryis introducedandit is shown
how it is possibleto havedifferentlevelsof structurerepresentationTheseareasarethen
linkedto showhowthelevelof reconstructiofior ascends dependenbnknowledgeabout

camerecalibration,the cameramotion,andthe objectsin thescene.Chapter 3 examines
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the possiblemethodsof calibratinga camera. The ideaof self-calibrationis introduced
andthenthe theoryandresultsfor the manydifferentmethodsarereviewed. Finally, for

comparisonanoff-line traditionalcalibrationmethods explainedandextensiveesultsare
given.

Thisthesispresentswo novelmethoddor self-calibrationwhich utilise knowledgeof
thetype of motionthecameras undegoing. Note,the methodsdo not requireknowledge
of theactualmotion,only thetypeof motion. Chapter 4 introduceghefirstnovelmethod,
which is self-calibrationvia affine structure[4], and extendsand combinesthe work of
otherauthors.Themethodrequireshefirst cameramotionto be puretranslatiorfollowed
by anynumberof generabisplacementsExtensiveassessmernf themethods made and
resultsaregivenfor realimagesequencesChapter 5 introducegheseconchovelmethod,
which is self-calibrationvia fixed points[5]. Herethe restrictionsarethatthe camerais
movingunderplanarmotion' andat least3 viewsareavailable. Theideaof fixed entities
is introducedandit is shownhow the positionof thesefixed entitiesin theimageandin
the world allow the camerato be calibrated. The actualmethodusedis explainedand
involvesusingthe fundamentabeometricrelationshipgor two andthreeviews, namely
thefundamentamatrix andthetrifocal tensor Resultsaregivenfor realimagesequences
using camerasnountedon severaldifferentplatforms,andtheseresultsare shownto be
both stableandaccurate.Chapter 6 examineghe error analysisof the methodfor self-
calibrationfrom fixed points,andseveraldeasemepe. A novelbatchparameterisatiofor
thefundamentamatricesgivessignificantlybetteraccuracythancombiningthe resultsof
theindividualfundamentamatrices.lt is alsoshownthaterrorestimatiorusingthetrifocal

tensoris a very difficult problem,andexplainswhy currentmethodsdo not give accurate

IPlanamotionis definedastranslationconfinedto a plane,andthe rotationis arounda fixed axiswhich
is perpendiculato the planeof translation. This type of motionis commonfor camerasnountedon AGVs
or whenwatchingvehiclesin traffic sceneanalysis.
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results.

The work presentedn the precedingchaptersusesmultiple imagestakenfrom long
image sequences. One of the problemsassociatedvith long image sequencess the
accuratdrackingof featuresandseveralmethodd8, 67, 100,104 havebeensuggested
for achievingthis. Theself-calibratiorresultsusethework of Beardsleyet al. [8] to match
andtrack features. However anothermethodwould be to fixate actively on andtrack a
movingobject,whichcouldsupplydatafrom arbitrarilylongimagesequenceslo thisend,
Chapter 7 movesawayfrom self-calibrationto theareaof objecttracking. Thewell known
rigid objecttrackerRAPID [34] is extendedn manyareado give themorerobusttracker
RORAPID[3], andthistrackercantakeadvantag®f knownmotionor cameraconstraints.
Extensiveresultsaregivenfor sequencesunningat framerate on standarchardware.In
the future, RORAPID could be usedasa testbedfor self-calibrationon extendedmage

sequence<Lhapter 8 drawssomeconclusionsandidentifiestheareador futureresearch.

1.4 Notation

Wherevempossiblethe standardhotationdescribedelowis usedin this thesis.Vectorsare
givenin bold (e.g.,v) which generallyindicatesa columnvector while matricesaregiven
in courier(e.g.,R). Thetensomotationfollows thestandaraconventionof summatiorover
contravarianandcovarianindiceswhereapplicable andtensorsareshownas7’*. Points
andlinesin theimageareshownaslower casevectors,x andl, while pointsandlinesin
theworld areshownin uppercase X andL. Correspondingointsondifferentimagesare
shownasx, x’, x”, etc. Pointsandlinesaregenerallygivenin homogeneousoordinates,
andfor any homogeneouguantitythe equality sign = signifiesequalityup to a non-zero
scalefactor. The expressionu]y is the matrix form of the crossproductsuchthatu x v

and[u] v areidentical.



Chapter 2

SceneReconstruction

Overview

This chapter introduces and reviews some of the basic ideas of computer vision in the area
of computing a 3D Euclidean reconstruction using images of a scene taken by a standard
camera. The pinhole camera model is explained, and its limitations and other related
models are discussed. The camera model attempts to mathematically model the imaging
process of a real camera from the 3D world to the 2D image plane. The idea of structure
representation is introduced, and by using projective geometry it is shown that there are
several different levels of representation for the same structure, each level having less
information than the Euclidean representation. The information required to move between
the different levels of representation is explained in terms of both projective geometry and
the pinhole camera.

Finally, these separate strands are brought together in the area of scene reconstruction
using images. It is shown how different amounts of knowledge about the camera resultsin
different levels of reconstruction. For each level of reconstruction, the theory and relevant
literature is reviewed in detail, and several reconstruction methods are described. The
conclusion of the chapter is that the camera calibration is required to achieve the goal of

a Euclidean reconstruction.
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2.1 CameraModeds

In computervision andotherrelatedsubjectstherearenumeroudlifferentcameranodels
whichmodeltheimagingprocessy mappingpointsin theworld to positionsontheimage
plane. The choiceof which modelis appropriatelepend®n severafactors:theaccuracy
requiredin the mapping;the actualcameraused;andtherelationshipbetweerthe camera
andthe scenebeingviewed.

Generallythis work usesthe ideal pinhole camera,which is describedbelow and
is one of the mostcommonlyusedcameramodelsin computervision [22, 36, 72]. In
section2.1.2the calibratedpinhole cameras explained,andthenthe possiblevariations
to weakperspectivanduncalibrateccameramodelsarebriefly explainedn section2.1.3.
However the theory of cameracalibrationand representatiorof structureis basedon

projectivegeometryandsofirst the basicideasof projectivegeometryareintroduced.
2.1.1 Projective Geometry | - Homogeneous Coor dinates

Projectivegeometry{81] is the theoreticalframeworkfor cameracalibrationandthe rep-
resentatiorof structure. It is an extensionof Euclideangeometryin which points, lines
or planesat infinity aretreatedno differently from thosein finite space. This resultsin
simplerformulae,andremoveghe problemof exceptionsesultingfrom infinity (i.e., two
linesalwaysintersecin projectivespacegvenif theyareparallelin Euclidearspace).The
following is basedn [64, 105].

In » dimensionalprojectivespaceP”, a point may be representety ann + 1 vec-
tor (X1, Xp,--+, X,41) 7. For 3-spaceP3, the homogeneousector representing point
X, = (X1, X, X3, X4)" is relatedto the correspondingpoint in Euclidean3-spaceR?,

X, =(X,Y,2) by

X =X1/Xa, Y =2Xp/Xs, 7=X3/Xs
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X, is only definedup to a non-zeroscaling,suchthatfor anon-zero), then\X, defines
the samepointas X, but conventionallyit is choserthat X, = 1. Pointsat infinity can
now betreatedin the sameway asfinite points,exceptthat X, = 0. However the points

atinfinity still havesomesignificanceandthiswill be explainedn section2.2.4.

2.1.2 Pinhole Camera Modd

The ideal pinhole camerais a perspectiveprojectionfrom the world to the imageplane,
whichdoesnotmodelanynon-lineadistortionintroducedythecamergseesectiorn2.1.3).
Themappings aperspectiverojectionfrom 3D projectivespaceP? to the2D imageplane
P2 with the positionof theworld andimagepointsexpresseih homogeneousoordinates
(seesection2.1.1). The world point X,, is mappedto the imagepoint x; by the 3 x 4
projectionmatrix P

X; = PXw. (21)

As homogeneousoordinatesreonly definedup to a non-zeroscalefactor, the projection
matrix P is alsoonly definedup to anon-zeroscalefactor, andhasl11independentlegrees

of freedom.The projectionmatrix (P) canbe split upinto threeparts

1 000 Rt
P=CTe=C|0 100 lOT 1]=C[R|t], (2.2)
0010

where: G is the transformationfrom world coordinatesX,, to camera-centredoordi-
natesX. (seefigure 2.1) and containsthe external(orientation)parametergg - rotation,
t - translation) T is the projectionof P2 into P2; while ¢ is the cameracalibration,which
mapsthe camera-centredoordinatesX. to the imagepointsx;, andcontainsthe internal
(calibration)parametersinternalandexternalifferentiatehoseparametersrhichdepend
purelyon thecamerecalibration(internal),andthosewhich dependourelyon the position

andorientationof thecamergexternal).
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The calibrationparametersvhich modelthe pinholecameraareencodedn C whichis
anuppertriangularmatrixwith 5 degree®f freedom.Thematrix C is definedonly up to a
non-zercscaling,whichis removedoy settingCsz = 1,

a, —o,Ccotd wug
c=| 0 «,/singd vy |, (2.3)
0 0 1

wherethefive calibrationparametersre

ay,,  Thefocal length(f in figure 2.1) of the camerameasuredn pixel units
alongthehorizontal(z;) andvertical(y;) directionsrespectively

(uo,v0) The principal point of the camerawhich is the intersectionof the optical
axisandtheimageplane,andis measuredh pixels(seefigure2.1).

0 The angle betweenthe horizontal (z;) andvertical (y;) cameraaxes(see
figure2.1).

Generallythe imageaxesare nearly perpendiculawith § ~ 90°, andso«,/ siné =~ «,.
With nearlyperpendiculaimageaxestheimageskew(k = «,, cotd) is oftensetto zeroto
reducethenumberof internalparametersAlso, insteadof expressinghefocal lengthwith
two differentmeasurement&y, o), the aspectratio is usedwith just one measurement
of thefocal length. The aspectatio is the ratio of the horizontalandvertical pixel sizes
(¢ = o, /). Thisgivesanalternativeexpressiorior the calibrationparameterandc
HEEH
C=| 0 a wvw|=| 0 (a, v |. (2.4)
0O 0 1 0O 0 1

2.1.3 Other Camera Models

Weak Per spective Camera M odel

The pinhole camerausesperspectiveprojection,but if the perspectiveeffectsare small,
the equationsassociateavith the cameramodel canbe numericallyill-conditioned [33].

Thereare severalsituationswhich resultin small perspectivesffects, but aretypically a
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Figure2.1: The pinhole camera model which maps from the world coordinates X, to the
image coordinates x; via the camera-centred coordinates X . with a perspective projection.
f isthefocal length, (o, vo) the principal point, and § the angle between the image axes.

combinationof the following: a smallfield of view; the depthof the objectbeingviewed
beingsmallcomparedo thedistancdrom theobjectto thecameraandalongfocallength.
Thesesituationsarecommonlyknownasaffine imagingconditions[72, 82].

Thecameramodelis derivedfrom equationg2.1)and(2.2) suchthat

10007, . R] 1
Puyp=CIG=C| 0 1 0 0|| & , =C|R] ¢t |, (2.5)
0001 0" Zaue

whereZ,,. is theaveragedepthof the pointsfrom the cameraandthe cameramodelcan

beexpresseth non-homogeneousordinates

T .
X = Qy Rl X + _Oéu e + o = waX + tuw' (26)
(ty vo

Z(IUS CR—ZF Z(IUS

Uncalibrated Camera Models

Whenthe cameracalibrationis unknown,an uncalibrateccameramodelhasto be used.
Theuncalibrateddealpinholecameramodel,termedthe projective camera by Mundy and

Zissermar{72], is a generalisatiorof equation(2.2) andis not decomposedh the same
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Figure2.2: (a) Theradial distortion affect with a short focal length camera. Notethat lines
straight in the scene are not necessarily straight in the image. (b) The same scene viewed
with a longer focal length lens.

way. Ratherit hasl1 degree®f freedomin theform

P11 Pip Piz P
Py Poy Poz Py
P31 P3p Piz P

P= , (2.7)

but the world-to-imagemappingis still expressedby equation(2.1). Similarly, the uncal-
ibratedweak perspectivecameramodel, termedthe affine camera, is a generalisatiorof
equation(2.5)andhas8 degree®f freedom

P11 Pip Piz P
Py Poy Poz Pos
0 0 0 Py

P= (2.8)

Distortion

The pinholecameramodelassumeshatthe imagingprocesss a perfectperspectivero-
jection from world to image coordinateframes(P3 to P?). However real camerasare
not perfectperspectiveprojections(especiallywhenusedwith a shortfocal lengthlens)
andnon-lineardistortionsare introducedinto the imaging process. Figure 2.2ashowsa
typical imagetakenby a camerawith a shortfocal length,wherelineswhich are straight
in the world are not necessarilystraightin theimage. Thereare severaldifferentforms
of non-lineardistortion, but usually only radial distortionis modelled,wherethe erroris

a radial displacemenproportionalto an evenpower of the distancefrom the centreof
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theimage. Severalmethodshavebeensuggestedvhich estimateand correctfor radial
distortion[7, 30,84, 94]. Thisthesishasnotconsideredlistortionproblemsandonly uses

camerasvherethe non-lineardistortioncanbe assumedo be negligible.

2.2 Reconstructing a Scene

Theaimofthework presentetiereisto computeaEuclidearreconstructiomf ascendeing
viewedby acamera.ScenaeconstructiofiromimagessfirstdiscussedThentheideathat
thereareseveralevelsof representatiofor astructurds introduced.Finally eachdifferent
level of structurerepresentations explainedin detail, and methodsof reconstructinga

scendo thatlevel arereviewed.

2.2.1 Structure Representation

For any real scene thereexistsa setof pointsrepresentinghe structuresn that scene,
andthe positionsof thosepointscanbe measuredn a Euclideanworld coordinateframe.
Any otherrepresentatiors relatedto the original setof pointsby a transformatiorof the
correspondindhomogeneousoordinatesX,. Therearefour levels of representatioior
frames): projective,affine, similarity, and Euclidean[24]. Similarity* and Euclideanare
generallygroupediogetherasmetric. The metriclevel of representatiors the aim of this
work. Thelevel of representatioa setof pointsis in, depend®nly on thetransformation
requiredto mapthe pointsto X,. An alternativeexplanationis thatin any level, the
setof pointsis only definedup to an ambiguity determinedoy thatlevel (i.e., an affine
representationf a structureis only definedup to affine ambiguity andtwo setsof points
describingthe structure which arerelatedby anaffine transformationareequivalentand

cannotbe differentiated).

LA similarity transformations a Euclideartransformatiorandanisotropicscaling.
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Representation InvariantMeasurements
Euclidean anglesdistances
Similarity anglesyelativedistances
Affine parallelism centreof mass
Projective collinearity, crossratio

Table 2.1: The measurements that are invariant in each level of representation. The
invariant measurements for each level also include those of lower levels (i.e., theinvariant
measurements lower in the table).

Affine andmetrictransformationsiresub-group®f projectivetransformationgmetric
transformationsre sub-groupof affine transformations)81]. Equivalently affine and
metricgeometryarespecialisationsf projectivegeometryandsomoredetailsof projective
geometnaregivenin sectior2.2.4.Thenthedifferentlevelsof representatioaredescribed,
includingwhatknowledgeis requiredfor each.

ForeacHevelof representatiordifferentpropertiesreinvariant(i.e.,invariantproperty
measuremengive thesamevaluein theoriginalandin anytransformedrameatthesame

level),andtable2.1lists variousinvariantpropertiedor eachlevel of representationAlso,

figure2.3givesa graphicaldeaof thetypesof representatiofor asetof simpleobjects.
2.2.2 Scene Reconstruction

Whentwo or moreimagesare takenof the samescene from differentpositionsand/or
differentcamerasit is possibleto reconstructhe 3D structurebeingviewed. The most
commonlyusedapproachor scenereconstructions featurebasedwherethe featureqor
dataprimitives)arepoints,lines, etc.in theimage,which correspondo featuregn the 3D

structure.

2Two (or more)cameragakingimagesfrom differentpositionsat the sameinstant(binocular/trirocular)
is the sameastwo imagestakenby the samecamera(monocular)rom differentpositionsat differenttimes,
providedthe scenehasnotchangedn theinterveningperiod. Also, a staticcameraviewing amoving object
is thesameasmovingcameraviewinga staticobject,providedthatthemovingobjectis correctlysegmented
from the staticbackground91, 10(0.
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Figure 2.3: Graphical representation of the possible structure representation: Top — a
metric representation of the actual structure; Middle —an affine representation of the same
structure (Note: parallel lines remain parallel); Bottom — a projective representation.
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Figure2.4: Reconstructing in 3D space by back-projecting from 2 imagestaken by cameras
in different positions. Rays from the camera centres (O, O’) pass through the matched
points (x, xX’), and intersect in 3-space to give the position of the world points X.

Features

Featuresrreusedo reduceghecomputationatiemand®f analysingmagesequenceOne
seconds(25frames)worthofa512x 512,eightbit greylevelimagesequenceontain6MB
of data. However following the observatiorfnot all informationis createdequal”[14], it
hasbeensuggestethatusinga moresparseaepresentationf animage(i.e., featureswill
facilitate the analysisof imagesequencewithin a reasonable time scale. The featuresn
theimagearecomputedasthe oneor two-dimensionaloci of greylevelsin theimage,and
manymethodshavebeensuggestedor computingtheir position[15, 18, 35, 97].
Thepointandline featureseedto bematchedacrosghedifferentimaged8, 46,103],
andthenby back-projectiorj23, 56], thecorrespondingointsandlinesin 3-spacecanbe
found(seefigure2.4). A problemencountereavhenback-projectingealimagepoints,is
thatimagenoisemeanghatthe positionof theimagepointswill notbeexactandtheback-
projectedrayswill not necessarilyntersectin 3-space.Someform of errormeasurement
will berequired sothattheinter section point canbe computedasthe minimumof theerror

measuremerjé3].
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Back-Projection

Severalauthors[23, 43] haveexaminedthe mathematic®of back-projectingpointsfrom
two or moreimagesto give the correspondingpointin 3D. Herethe mostgeneralcamera
model, the projective camera(seeequation(2.7)), is used,and rays are back-projected
from two images.Theanalysisaneasilybeextendedo includemoreimagespr different
cameramodels.First, alinearmethodis givenwhich hasa closedform solution,andthen
anon-lineamethodis presentedvhichiterativelyminimisestheerrorin theimageplane.
Considera point X = (X,Y,Z.1)7 in 3-spacewhich is projectedonto two image
planes. The projectionmatricescanbe expresse@dsP = [M|m] andP’ = [M'|m’]. From

equation(2.1)two vectorequationsareobtained

x= PX= [Mm]X, (2.9)

x'= PPX= [Mm]X. (2.10)

Eliminating the unknownscalefactor betweenthe threeequationdormed by the vector

equationg2.9)and(2.10)givesfour equationsn thethreeunknowns X, Y, 7)

0 = X(Mu— Maz)+ Y (Mip — Mzox) + Z( M1z — Mazx) + ma1 — maz,

0 = X(Mxn— May)+ Y (Mo — Mapy) + Z( Moz — Mazy) + ma — may,

0 = X(My— Mgza')+ Y (Mp— Mga') + Z(Mijg — Mgge') + my — mgz’,

0 = X(M— Mgy') + Y (Mg — Mayy') + Z(Maz — Magy') + mj — may".
This overconstrainedsystemwill not havean unique solution due to imagenoise (the
rayswill be skewandwill not intersect),so anotherconstraintor minimisationcriterion

is required. The constraintwhich can be usedto find the intersectiondependson the

level of 3D reconstructiorbeing computed(seebelow). For metric reconstructionthe
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mid-pointof theshortestine betweerrayscanbeused. However for affine or projective
reconstructiongheshortestine is notdefined(i.e., therelativelengthof non-parallelines
is notanaffine invariant)andsocannotbeused.

Ratherthanusinga constrainto find theintersectiorof the skewedines,a non-linear

method[23] canbe usedto minimisetheimageplaneerror
E =Y dx; — %)% (2.11)

whered(a, b) is the distancebetweertwo imagepointsgivenby thehomogeneougectors
a and b, x; is the actualimage point in view :, and x; is the projectionof X by the
projectionmatrix P; (i.e., X; = P;X). Thisis a non-linearfunction of X, which canbe
solvedby standardechnique431], but hasthe advantagehatthe error beingminimised
hasaphysicalinterpretation.

However ratherthan computea projective reconstructionHartley and Sturm [43]
algebraicallysolvethe error function (2.11). For generalmotion, the methodreducego
solving a single variable polynomial of degreesix, and for degeneratenotionsfurther
simplificationsare possible. This methodhasthe advantagef not requiringa non-linear

minimisation.

Accuracy

Theaccuracyof anyreconstructiomepend®n severafactors:

e Thedistancebetweerthe cameracentresknownasthe baseline.If the baselineis
small,theanglebetweerthe back-projectingayswill besmall,andimagenoisecan

producealargeerrorin back-projectior{seefigure2.5a). However if thereis alarge

3Forthreeor moreintersectingays,theintersectiorpointis definedasthe pointwhichminimisesthesum
of perpendiculadistancdo eachray.
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baselinetheback-projectingaysaregenerallywell-conditionecandtheimagenoise

hasa smallereffect (seefigure 2.5b).

e Theaccuracyof theinformationknownaboutthe camerathe motioninvolved,and

theobjectsin thescenejncluding:

— The cameramotion. This is not necessariljthe actual displacemenbf the
cameraput the type of motionthe cameras undegoing. If for example the
camerais assumedo only translate with no rotation, then how closeis the

actualmotionto this assumption?
— Assumingasetof pointslies on a planarsurfacein thescene.

— Thecamereacalibration.

e Thenumberof imagescontainingviews of the samepointsincreaseshe numberof
raysback-projectedvhenestimatingthe positionof a point. This shouldreducethe
effect of errorsintroducedby imagenoise. How to accuratelytrack featuresover

imagesequences a separat@areaof computewision[8, 32,67,100].

2.2.3 Hierarchy of Scene Reconstruction

Whenreconstructingtscendrom imagesthelevel of representationf the3D reconstruc-
tion depend®on whatis known aboutthe camerathe motioninvolved, andthe objectsin
the scene. At the lowestlevel, a projectivereconstructionmequiresno knowledgeof the
cameramotion,or sceneandseveraimethodsaredescribedor this casen section2.2.5.
For the higherlevels (affine or metric), two differentapproachesavebeenusedto
computea reconstruction. The first usesknowledgeof the camera,motion, scene,or
imaging conditionsto allow directreconstructiorof the affine/metricstructureby back-

projectingthe imagepoints directly into an affine/metriccoordinateframe. The second
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Figure2.5: The effect of baseline on scene reconstruction: (a) with a small baseline, any
errorsintheimage can producealargeerror inthereconstruction; (b) with alargebaseline,
errorsin theimage have a smaller affect. The cones show the possible back-projected rays
when image noise istaken into account, and the shaded area is the possible positions of the
world point.

methods a stratifiedapproachsothataprojective(affine) reconstructioms computedand
thenthe structureis upgradedo anaffine (metric) ambiguity Section2.2.4describegshe
knowledgerequiredto upgradeto affine and metric ambiguity andthe possiblemethods

for reconstructiorarereviewedin section2.2.6and2.2.7.

2.24 Projective Geometry Il - The Roleof Infinity

Section2.1.1 introducedthe idea that in projective geometrythe points at infinity are
treatedin the sameway asfinite points, exceptthatthe final projectivecoordinates set
to zero(i.e., pointsat infinity in 72 have X, = 0). However the pointsat infinity retain
significancen thedifferentlevelsof representatioof structure.Moreover knowledgeof
two differentgeometricstructuresthe planeat infinity andthe absoluteconic,controlthe
levelof structurerepresentatiof81]. All thepointsatinfinity lie ontheplaneatinfinity =,

andconventionallythe equationfor this planeis (0,0,0,1)". TheabsoluteconicQ., lies
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onthis plane(r..), hasaradiusof v/—1, andconsistof complexpoints. Conventionally

theconicis definedas
X2+ X3+X2 =0,
X, = 0.

Alternatively Q.. is theintersectionof the absolutequadricqQ., andr.,, which givesthe

equationglefiningQ., as

X'3.X = 0,
X, = 0,
Qoo = Ia

Strictly speakingto achieveanaffine or metricreconstructioronly requiresr., andQ,, to
be identified in the projective structure,but not necessarilyplacedat the conventional

positionsdescribedabove.

2.2.5 Projective Reconstruction

Theprojectiverepresentationf astructuras themostgeneralwith thethesetof pointsX,,
beingdefinedup to arealprojectivetransformatiorof the original setX,. This projective
transformation(alsocalleda homography or collineation) is representedy the invertible

4 x 4 matrixH which hasrealelements,

X, — HX, = [ A ] X, (2.12)

wherea isa3 x 3affinematrix,andv andt arethree-vectorsForaprojectiverepresentation

T+ is notidentified,but (v, 1)" isidenticalto =, in theaffine andmetricframes.
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Direct Projective Reconstructions

It hasbeershownthataprojectivereconstructiomequirenly point(line) matchebetween
two (three)viewsfrom uncalibratedcamera$22, 39,42]. Two differentmethodshavebeen

usedfor projectivereconstructiorusingpoints:

e Faugera$22] andMohr et al. [68, 70] usetheminimumnumberof pointsto recover
the structureup to a projectiveambiguity A basisof 5 pointsis chosenfrom all
the matchedpointsto form a projectivecoordinateframein which the otherpoints
arethenmeasured.A drawbackof this approachs thatthe accuracyof the whole
reconstructiordegradesf thereis an errorin theimagepositionof oneor more of

the5 points.

e Beardsleyet al. [10] andHartleyet al. [42] utilise all the point matchedo form the
projectiveframe for the reconstruction. This minimisesthe effect of inaccuracies
in the positionof the pointsin the image. The methodrequiresthatthe projection
matricesarefoundfor eachview, thenthereconstructioms foundby back-projecting
the rays (seesection2.2.2). With real imagescontainingnoise, the rayswill not
intersecbutwill beskew Differentmethoddo find anintersectiorpointin projective
spacewverereviewedn section2.2.2. However Beardsleyet al. [10] workin aquasi-

Euclidean framein which, theyargue,the mid-pointis usable.
Foraprojectivereconstructiorusinglines:

¢ Hartley [39] computesa projectivereconstructiorusing lines matchedover three
views. Theapproachs to computeheequationsvhichtransfedinesfrom two views
to thethird, andtheseequationggive constrainton the camergprojectionmatrices.
With sufficientlines (> 13) it is possibleto computethe transferequationsandfind

the cameraprojectionmatricescorrespondingo a projectivereconstruction.More
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recently it hasbeenfoundthatthetransferequationgsorrespondo thetrifocal tensor

whichis describedn section5.4.1.

2.2.6 Affine Reconstruction

An affine representatiomequiresthat the planeat infinity is known, so thatfinite points
cannotbemappedo or from r,. Thisgivestheinvariantpropertyof affine representation:
parallellinesremainparallel(seefigure2.3). Fromequation2.12),v needgo beidentified
to transformfrom a projective to affine representation. Conventionally =, is setto
(0,0,0,1)", andthisrequiresv = 0. Therepresentatiois definedupto anaffineambiguity

At
X, = HX, = lOT 1 ] X.. (2.13)

Lemma 2.1 The position of the plane at infinity (7., = (0,0,0,1)") is invariant under

affine transfor mations.

Proof: Undera point transformatiorti, suchthat X’ = HX, a plane(r) transformsas

7’ =H "x. Sox., transformsas

0 0 0
;-1 | 0| _ A7t o |O] _|O0]
T =B V0| T —¢TaT 1| |0|T 0| T ™
1 1 1

Direct Affine Reconstructions

Normally, from uncalibratedcamerasstructurecanonly be recoveredup to a projective
ambiguity However for somespecialmotions,or whensomeassumptionaremadeabout

thestructureor imagingconditionsijt is possibleto recoveranaffine reconstruction.

¢ KoenderinkandvanDoorn[49], QuanandMohr [79], andTomasiandKanade90]

assumehatthe depthof the objectis smallcomparedo the distanceto the camera,
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andthatthereis a smallfield of view. This allows the affine cameramodelto be
used(seesection2.1.3). Using the affine cameraallows an affine reconstructiorio
be obtainedsimply by back-projectingherays. Again, eitherthe minimumnumber
of pointscan be used[49], or all the pointsusedfrom severalimagesin a batch

method[90].

¢ If the cameramotionis a puretranslation,Moonset al. [71] showsthat an affine
reconstructiorcanbe computedrom two or more perspectiveviews. The original
methodusedthe minimum numberof pointsfor thereconstruction More detailsof

theextendednethodwhich usesall the points,canbefoundin sectiord.1.1.

Upgrading Projective to Affine Structure

To upgradefrom a projectiveto an affine reconstructiomequiresthe positionof =, to be

known. Severaimethodsxist:

e If threeor morepointsor linesin the imageareknownto be the imagesof points
or lines at infinity, back-projectingthesepointsinto the reconstructionuniquely

identifiesr.,.

e Pollefeysetal. [76] usethemodulusconstraint. Fromtwo camerarojectionmatrices
for a projectivereconstructionit is possibleto obtaina fourth-orderpolynomialin
the threeelementsof v. With four viewsi it is possibleto solve the set of three
simultaneougpolynomial equationsusing non-linearmethods,and henceidentify
T Thisresultwasindependentlpbserved?2] andis describedn sectior4.1.2,but

noresultswereobtained.
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e Hartley [37, 38] useschiral inequalitiesto give a rangeof possiblevaluesfor v.
Fromeachview of aprojectivereconstructiorit is possibleto obtaina setof inequal-
ities constrainingthe positionof v. Using the differentviews availableandlinear
programmingwith the goal of maximisingthe mamgin by which the inequalitiesare
satisfiedaconvexhull of possiblesolutionan the3 parametespaceof v is obtained.
Thisis notanexactsolutionfor v, but pointsinsidethe convexhull areapproximate

solutionsfor v, which give a quasi-affine reconstruction.

Onceaplane(v,1)T in theprojectivereconstructiorhasbeenidentifiedascorresponding
to theplaneatinfinity, it canbetransformedo theconventionaposition(0,0,0,1) " in the

affine reconstructiousingthepointtransformation

I 0
X, = [VT 1]Xp. (2.14)

2.2.7 Metric Reconstruction

A metricrepresentationotonly requiresr., to beknown,butalsotheabsoluteonic(Q..).

Thisresultsin therepresentatiobeingdefinedup to a metricambiguity

R ¢

o ) | X (2.15)

Xo:HXm:[

In a similarity representation is the unknownisotropic scaling, while in a Euclidean

representation = 1.
Lemma 2.2 The absolute conic (Q.,) isinvariant under metric transformations.

Proof: Undera point transformatiorti, suchthat X’ = HX, a quadric(Q) transformsas

Q' = H~TQH~L. Theabsolutequadricq., transformsas

0, = l —tTRR/A 1?A ] Qoo l E: _P:{L;;/A] - l —ti/k I;Q ] '
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With =, invariant(metricsarea sub-groupf affinities), theintersectiorof thetransformed

quadric(Q.,) with =, (i.e.,setX} = 0) gives

X2+ X+ X = 0,

X, = 0,

whichdefinesQ.,.

O

Direct Metric Reconstructions

Whenthecamerasrecalibratedjt is possibleto computea metricreconstructiorni23, 56,
98]. Usingthe essentiamatrix [56] allowsthe structureto berecoveredip to a similarity
ambiguity Howeverwhenthecameramotionis knownthefull Euclidearstructurecanbe
recoveredBoth methodsack-projecthe pointsusingthe projectionmatricesn theform
of equation(2.2), but differ in thatthe translationbetweerviewsis known exactlyfor the

Euclidearreconstructiomndonly up to scalefor the similarity reconstruction.

Upgrading Affineto Metric Structure

To upgradeto a metric reconstructiorrequiresthat Q. is known. However aswill be
explainedn section3.1,knowing Q.. is equivalento knowingthe cameracalibration(C).
Knowingthe cameracalibrationallowsthemetricstructureto berecoveredrom theaffine
structurewith thetransformation

X,, = HX,.

Both the affine and metric structuresare projectedto the sameimagepointswith equa-

tion (2.1),andequationg2.13)and(2.15)describeheaffine andmetricambiguity Simple
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algebraiomanipulatiorgivesthe projectionfor the metricandaffine structuresas

x= PnX, =[C|0]X,,

x= P,X, =[A]t]X,,

andthetransformatiort is

giving theupgradednetricstructureas

X,, = C71X,. (2.16)

Summary

This chapter introduced and reviewed several areas of computer vision concerned with the
3D Euclidean reconstruction of a scene using images taken by a camera. These were the
camera models, the connection between structure representation and projective geometry;,
and the different levels of scene reconstruction. It concluded that to obtain a Euclidean
reconstruction of a scene using an image sequence, the camera calibration needs to be
known. The camera calibration can be obtain in several ways, and is the topic of the next

chapter.



Chapter 3

CameraCalibration

Overview

The previous chapter introduced the idea of computing a 3D reconstruction using only
images of the scene, and concluded that to obtain a Euclidean reconstruction requires that
the camera calibration is known. This chapter discusses methodsfor obtaining the camera
calibration.

Traditionally, the camera calibration was obtai ned off-lineand used images of a special
calibration object. High accuracy is obtainable, but the method cannot cope when the
calibration of the camera changes during the normal operation (i.e., zooming in or out), or
when trying to reconstruct a scene from a pre-recorded image sequence where the camera
calibration cannot beknown. Section 3.2 explainsthetheory and givesresultsfor a standard
off-line calibration method.

Faugeras et al. [25, 58, 65] introduced the idea of self-calibration, where the cam-
era calibration can be obtained from the image sequences themselves, without requiring
knowledge of the scene. This has allowed the possibility of reconstructing a scene from
pre-recorded images sequences, or computing the camera calibration during the normal
vision tasks. A lot of work has been done in this area, and section 3.1 reviews the dif-
ferent methods which have been suggested. Also explained is the knowledge required to

sdlf-calibrate a camera.
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3.1 Sdaf-Calibration

FaugeraslLuong, and Maybank[25, 58, 65] introducedthe idea that a cameracould
be calibratedusing only point matchesbetweenimages,and termedthe method self-

calibration. Thisavoidedheuseof acalibrationobject(or knownscene)pranyknowledge
of thecameranotion. Sincethenseverahlgorithmshavebeernsuggestedyhichdifferin the
permissiblecameramotions,andin the actualmethoddor finding the cameracalibration.
Somemethodsself-calibratedirectlyin onestep,while othersusea stratifiedapproactand
calibratevia a projectiveor affine reconstruction.The differentapproachesarereviewed

belowandeachmethodis explainedn moredetailsin sections3.1.2—-3.1.8.

Monocular Image Sequences Whenthecalibrationremaindixed, therearetwo general
approachefor self-calibrationfor a monocularcamera:eitheronly imagemeasurements

areusedor areconstructions computedsimultaneously

e Faugerastal.[25], andHartley'smethodor arotaing camerg40] (seesections3.1.2
and3.1.4)find theimage(w) of the absoluteconic (Q.,). As is shownbelow w is
determinedby, and determinesthe cameracalibrationin the form of calibration
matrixC. Sofindingw is equivalento findingthecameraalibration. Thesemethods

only usemeasurementsadein theimage.

¢ Hartley'smethodor anunconstrainedamerd38] (seesections3.1.3)usesadifferent
approachAn iterativesearchs usedto find asetof consistenprojectionmatricesn
theform of equation(2.2),which areconsistentor the setof matchedmagepoints

andthe correspondingdpack-projecteavorld points.

Stereo Head Whenself-calibratinga stereohead,thereare other possibleapproaches

in additionto the two mentionedabove. From two pairs of views from a stereohead,
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two separatgrojectivereconstructiongan be computed. The projectivetransformation
relatingtheseis then computedandthis canbe usedfor self-calibration. Thereare two

differentmethodsvhich aredescribedn moredetailin section3.1.5:

e Zissermaret al. [9, 107 showthatis is possibleto obtain constrainton =, and

w from theeigenvalue/vectadlecompositiorof the projectivetransformation.

e DevernayandFaugera§20] useadifferentapproactwhichdoesnotdirectly utiliseC
orw. Theyshowthattheprojectivetransformatiorcanbe decomposeahto aspecial

form, which allowsthe projectivereconstructiono beupgradedo metricambiguity

3.1.1 Thelmageof Q. Determines Camera Calibration

In section2.2.7,it was shownthatthe absoluteconic (Q..) is invariantto rigid motion.
However moreinterestinglyfor self-calibrationtheimageof theabsoluteconic(w) is also
invariantfor rigid motions,andis determinedoy and determineshe cameracalibration.

Also, it is possibleto find w andthencethe cameracalibration.

Lemma 3.1 Theimage of the absolute conic (w) isinvariant to rigid motions of the camera,

determines, and is determined by the internal parameters of the camera.
Proof: Following Maybank[64]: apointX onQ., canbeexpresseds
X=(Y,07,
thenfrom equation(2.2),theimagex of this pointis
x = CRY,

andit follows
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Usingthe matrix equatiorfor Q. (seesection2.2.7)

0 = X'Q.X
= Y'Y
= x'C 'RR'Cx
= x'c ek

= XTK_lx,

gives the definition of a conic in the image plane, which is independenof the rigid
displacementg,t) andonly dependendnthecameracalibration(c). Thisconic(k1) isw,
theimageof the absoluteconic,andthedual of theconick = ¢CT. Hence determines
andis determinedy the camereacalibration.
O

Oncetheimageof the absoluteconick—! hasbeenfound, it is trivial to determinethe
cameracalibration(C) by Choleskidecompositiori86] of K. If thereis significantnoise
ontheimage,it is possiblethatk will notbe positivedefinite,which meanghat Choleski

decompositiowill give complexvaluesfor the calibration.

3.1.2 Kruppa's Equations

The original methodby Faugeraet al. [25] involvedthe computatiorof the fundamental
matrix F, which encodespipolargeometrybetweenwo images[22, 36, 60]. Eachfun-
damentamatrix generateswo quadraticconstraintsnvolving only thefive elementof K
(andnot the 3D structureor cameramotion). From threeviews a systemof polynomial
equationss constructedalledKruppasequationg51]. Originally [25], homotopy contin-

uation wasusedo solvethesetof polynomialequationsbutthemethods computationally

Thedualconicis definedastheadjointof theconicmatrix. Theadjointof A is A* whichis givenby the
equationAt A = de{(A)I.
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expensiveandrequiresextremeaccuracyof computation. Additional views increasethe
complexity Sincethen,Luong[58] hasusedaniterativesearchtechniqueo solvethe set
of polynomialequationsput resultswerelimited by the choiceof initial valuesandthe
complexityof the equations.More recentlyZeller et al. [102] solvedthe equationsuising
enegy minimisation. Theresultsobtainedaregenerallybetterthanthoseachievedoy the
two previousmethods.

Kruppa’s equationsare basedon the relationshipbetweenthe image of the absolute
conic (w) andthe epipolartransformation.If anepipolarline (1) is tangentto w, thenthe
correspondingpipolarine (1) is alsotangento w (se€[63] for proof). Kruppasequations
canbederivedby severabifferentmethodsandthefollowing methodfollows Vieville and
Lingrand[95].

Lemma 3.2 From a pair of images it is possible to obtain a set of polynomial equations,

quadratic in elements of K, called Kruppa’s equations.

Proof: It is shownin lemma3.4 thattheinfinite homography,., givesconstraint®onk in
theform of
K = H. KH .
It hasbeenshown[60] thatthe relationshipbetweerk andthe fundamentamatrixF is
F = [e]xHo,
wheree is theepipoleof F. Hencemultiplying K left andright by [e] gives
[elxKle]x = [e]xHoKHL [e]x (3.1)
= FKF',

andthefundamentamatrixF givesconstraintonK. HoweverF andk areonly definedup
to a non-zeroscalingandcrossmultiplying to removethe unknownscalegivesquadratic

constraintontheelement®f K. O
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Eachpairof viewsgivestwo quadratieequationgontainingheelement®fK,and,given
threecameralisplacementour independenpairsof views),theyform anoverdetermined
setof simultaneougpolynomialequations.Whenthereare only two displacementshere
areonly four equationsandfive unknowns andanotherconstraintis requiredto solvefor
K. Oftentheassumptiorthatthe imageaxesare perpendiculars used(seesection2.1.2),

which, from thedefinitionof K, leadsto the additionalquadraticconstrainiof

K17K33 = K23K3. (3.2)
Theproblemof the calibrationbeingdefinedup to anone-parametdamily, andrequiring
anotherconstraintjs arecurringthemethroughouthe areaof self-calibration.

3.1.3 Hartley’sUnconstrained Motion Method

Hartley [38] usesa setof matchedpointsfrom imagestakenwith the samecamerabut
from differentpositions.Thereis no constrainon themotionallowedbetweerthecamera
positions.Eachsetof matchedmagepointshasa correspondingpointin 3D. Themethod
involvesaniterativesearclhto find a setof calibratedcameramatricesand3D world points
consistentwith theimagepoints.

The methodis that a setworld points X; can be projectedonto m imageswith the

projectionmatricesP’ (0 < j < m), which canbe expresseth theform of equation(2.2)
P/ = Clpt’).
thenin the jthimage,X; projectsto thepointx?,
% = PX,.

Usingtheactualpositionof theimagepointsx?, solvefor X;, R/, t/, C by aniterativesearch

for theminimumof thefunction

. N2

SJ J
E:d(xmxi) )
i,]
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whered(a, b) is the Euclideandistanceon the image plane betweenthe points defined
by the homogeneousectorsa andb. Theinitial valuesaresetto thosecomputedfor a

guasi-affine reconstructiorachievedusingchiralinequalitiegseesection2.2.6).

3.1.4 Rotating Camera

Hartley [40] introducedthe ideaof self-calibrationusinga rotatingcamera. Whenthere
is no translationof the camerabetweenviews, thereis an image-to-imageprojective
mappingwhich can be calculatedusing point matches. This projective mappinggives
linearconstraintonk, thedualof w. Giventhreeor moreimagestheseconstraintsiefine
K andhencecamerecalibration.

The methodis: given a set of matchedpoints x! (samenotationas section3.1.3),

computethe 2D projectivetransformation
x! = Bx°,
Eachprojectivetransformatiorgivesa constrainionk of theform
KH/ ~T = HK.

Two or moreprojectivetransformationgjive sufficient constrainto solvefor K, andhence

thecalibrationcC.

3.1.5 StereoHead

Forasterechead aprojectivereconstructiomanbecomputedrom eachpairof imageqsee
section?2.2.5). Theprojectivetransformatiorbetweeriwo reconstructiomanbecomputed,
andis obviouslyrelatedto therigid displacementf the sterechead.

Zissermarnet al. [107] showedthat the projectivetransformations conjugateto the

rigid (Euclidean}transformationsothatthe eigenvaluesf the matricesareidentical,and
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thatthe eigenvalue/eigenvectalecompositiorof the projectivetransformationdentifies
T, anddefinesQ,,, upto anone-parametdiamily. Anotherconstrainion the calibration
is usedto identify Q.. in the one-parametdamily.

Devernayand Faugerag20] also utilise the fact that the projectivetransformations
conjugateto a rigid displacement.However ratherthan usethe eigenvalue/eigenvector
decompositiorto identify =, andQ.., they decomposé¢he projectivetransformationnto
rigid displacementnd a reduced projective transformation. This can be thoughtof as
analogougo the QR decompositiorof a matrix. This decompositiorof the projective
transformationallows metric structureto be recovered. However one againthe metric
reconstructions only definedup to anone-parametdiamily, butasQ,, is notusedin the
algorithm,the extraconstraintson calibrationwhich arenormally usedcannotbe applied.
Rathertheysuggestisinga secondlisplacemenivhichremovegheambiguity However
theseconddisplacementvill haveto havea differentrotationaxis,anda cameramounted

onavehiclewill oftenhavea fixed rotationaxiswhichwill notremovethe ambiguity

3.1.6 Affine Structure

Luongand Vieville [61] showedthatfrom two generalviews of an affine structure,it is
possibleto calibratethe camera.Firsttheinfinite homography (H..) is computedrom the
two projectionmatricesandthenH,, givesconstraint®nK. Theinfinite homography maps

theimagepoints(correspondingo pointson =) from thefirst to the secondmage.

Lemma 3.3 The infinite homography (H..) can be computed from two views of an affine
structure, whose projection matricesare P, = [Mm] and P, = [M|m’] respectively, asthe

matrix H,, = MM
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Proof: Pointsontheplaneatinfinity (X..) canberepresentedy X, = (X,Y, Z,0)", and

whenprojectedontothetwo imageplanesby P, andP/, give theimagepointsx andx’
x = MX,,
x' = MX..
Thecorrespondingmagepointsarerelatedby a projectivemapping
x' = MM x = Hox, (3.3)

wherel,, is theinfinite homography.

O

Lemma 3.4 The infinite homography (H..) between two views gives constraints on the
dual of the image of the absolute conic (w), in the form of K = H,,KH! , where K = CC"

(K" = H,,KH!) is the dual of w in the first (second) image.
Proof: Theprojectionmatricescanbe expresseth theform of equation(2.2)
P = C[rIt],
P = C'[R|t]. (3.4)
andcomparingto thedefinitionof P, andP’, andequation(3.3) gives
H,, = CR/(CR)™* = C'RRIC7Y, (3.5)

whereR'R ! is therotationof the camerabetweertheviews.

Substitutingequation(3.5)into H. .KH_ gives,

HoKHL = (CRR7'c™H)(cc)(cRR™'c™HT
— C/R/R—1C—1CCTC—TR—TR/TC/T
— C/C/T

= K. O (3.6)
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Equation(3.6)is thetransformatiorof aconicunderthelineartransformatiori,,. The
significanceof equation(3.6) is thatit providesa linear methodfor obtainingk. If the

cameranternalparametersrefixed betweerviews(sok = k')
K=HKHL. (3.7)

However if againonly onepair of imagesis used the constraintgyiven by equation(3.7)
only definek up to an one-parametefamily, and anotherconstraintis requiredto find
it. If anotherview is used,andthe rotation axesare different, thenthe two? constraint

equationg3.7)fully definek. More detailscanbefoundin chapter.

3.1.7 Varying Focal Length

Pollefeyset al. haveshownthat evenwhenthe focal length changest is still possible
performself-calibration.Severalifferentalgorithmshavebeensuggestedncludingself-
calibrationof asterechead 75], andself-calibratiorfrom amonoculaimagesequenc§r6,
77].

The methodusesan adaptationof the self-calibrationfrom affine structure(seesec-
tion 3.1.6)which candealwith a varyingfocal length. However the adaptatiorrequires
thatthe positionof the principal point is known. Hence the calibrationis found sequen-
tially, with theprincipalpointfoundfirst by zoomingwith a stationarycameraandthenthe
varyingfocallengthis foundby zoomingwith arotatingcamera.Thesedeliberatenotions

canbeachieveckasilyby takinganimagesequenceavith avideocamera.

2With threeviews therearethreeH,,’s but only two out of the threeareindependentasH., between
views1 and3 is the concatenationf the H.,'s betweerviews 1 and2, and2 and3. Hence,only two of the
threepossibleconstrainiequationg3.7) areindependent.
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3.1.8 Dediberate Motion

An alternativemethodwhich hasbeenusedfor activevision, is calibratinga camerausing
deliberatemotions[66]. Herethe stereohead[74] is madeto performa certainrotation
aboutoneof the cameraaxes,andby trackingfeaturesor usingopticalflow it is possible
to calibratethecamera.The methodis differentfrom otherself-calibratingalgorithmsasit
requirescontrol of the orientationof the cameraandtherotationbetweenviews. It is also
differentfrom the deliberatamotionsdescribedn section3.1.7,astherotationshaveto be
purerotationaroundoneof the cameraaxes,which generallycanonly be achievedusing
mechanicatontrolof thecamera.

A moregeneralmethodis givenby Horaudet al. [45], wherethe camerds mountedon
arobotarm,andthe armexecutegienerabut knownrigid displacementsFirstthescene
is recoveredup to a projectiveambiguity andthenit is shownhow the cameracalibration
canberecoveredisingtwo or moredisplacementslt is shownthatto recoverthe camera
calibrationusingthis methodthatthedisplacementmustincludeatleasttwo distinctaxes
of rotation,andatleastonemotionwherethetranslations not perpendiculato the axis of

rotation.

3.2 Traditional Calibration

Chapter2 introducedheideaof reconstructing sceneusingtwo or moreimagesandthat
for ametricreconstructiothecameracalibrationneedgo beknown. Traditionallycamera
calibrationhasbeenperformedff-line by takingoneor moreimagesof acalibrationobject
whose3D structuras known. Thenthepositionof theobjectin theimageis found,allowing
accuratesstimationof the world-to-imageprojection. Finally, the cameracalibrationcan
thenbe foundby decomposinghis projection.

The calibrationobjectsaredesignedsothatthe 3D positionof pointson the objectare
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Figure3.1: Calibration Objects. (a) atypical 3D calibration object containing two orthog-
onal Tsai grids; (b) the planar calibration grid (Tsai grid).

a

knowna priori andtheimageof thesesamepointscanbe accuratelyfound. Theaccuracy
of the calibrationis improvedby reducingthe possibleerrorin measuregositionof the
pointsin theworld andin theimage.

Thepointsusedarethecornerscreatedy textureonaplanarsurface.Figure3.1shows
atypical calibrationgrid (Tsaigrid) madeup of dark square®n a white backgroundyvith
the cornersof the dark squaredeingusedfor calibration. Cannyedgedetection[15] is
appliedto theimage,andorthogonakegressiomsedto fit linesto theeighthorizontaland
verticallines on eachplane. The intersectionof theselines generaté4 vertices(i.e., the
cornersof the dark squareswhich are usedasthe pointsto computethe world-to-image
projection.

Calibrationusinga singleimageof an objectrequiresthatthe objectis 3D ratherthan
planar(seefigure3.1). However Tsai[94] usesaplanarcalibrationobject(seefigure3.1b),
andby takingtwo or moreimageswith a known cameradisplacementhe cameracanbe

calibrated.



3.2 Traditional Calibration 39

3.2.1 Theory of Traditional Camera Calibration

Themethodusedhereto calibratethe cameraoff-line is split into two stageg23]:

1. Theprojectionmatrix (P) from equation(2.1)is estimatedisingthe positionsof the

correspondin@D world pointsand2D imagepoints.

2. ThematrixP is decomposeahto theform of equation(2.2),which givestheinternal

parameter¢C) andexternalparametergR,t).

Estimating the Projection Matrix

Theprojectionmatrix P is estimatedisinga setof » world pointsX; andthecorresponding
imagepointsx;, by minimisingtheimage error. Theimage error is the distancebetween
theactualimagepointandthe projectionof theworld pointontotheimageplaneusingP.

The projectionof the world point onto theimageis obtainedusingequation(2.1), but
thisonly givesthehomogeneougositionof theimagepoint(i.e.,theraythroughthecamera
centreon which the pointlies). The positionwherethis ray intersectsheimageplanehas
to befound sothattheimageerrorcanbe calculated.Theintersectiorof theray with the
imageplaneis foundby eliminatingthe unknownscalefactor, sothata pointontheimage
plane(z,y)" hasthehomogeneousector(z,y,1)".

Threeequationganbeobtainedrom equation(2.1),buteliminatingtheunknownscale

factorgivestwo equationgor the 12 unknownsn P

P11X + P12Y + P13Z 4 Pua
P31 X + P32V + P33Z + Pas’
P21.X + PooY + P23Z 4 Poa

y = . 3.8
Y P31.X + P3oY + P33Z 4 Pas 38)

The errorto minimiseis the geometricdistancebetweenthe actualimagepointsandthe
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projectedmagepointsfrom equationg3.8),giving thetotalimageplaneerror

P31.X; + P32Y; + P33Z; + Pas

<‘ - ParXi 4 Poali + PasZ; + 1324)2
" Pa1X; + PV + PsaZ; + Pas/ )

} zn: (( - PuXi + Pyl + PigZ; + 1’14)2
n 2

=1

(3.9)

The errorfunction (3.9) is non-linearand canbe minimisedby numericalmethods. But
beforeanyiterativeminimisationcanberun, aninitial estimateof the solutionfor P hasto
be found. Equationg3.8) canberearrangedso thatinsteadof minimisingthe geometric

distance(£,), analgebraiadistancas minimised,giving a total algebraicerror

3||—\

Z ( /(P31.X + P3oY + P33Z + P3g) — (P11X + P1oY + P13Z + P14))2 +
=1

(i(P31X + P32Y + P33Z + P3g) — (P21X + PooY + Pp3Z + P24))2) . (3.10)
Theerrorfunction(3.10) hastheadvantagehatit is linearin the unknownelementf P,
sothataclosedform solutioncanbe found.

Initial Estimate of P

Theerrorfunction(3.10)canberearrangednto theform
min | zp |z (311)

subjectto || p ||2= 1, wherep is a columnvectorcontainingthe elementf P and

[ X7 0" —zX] ]
0" X| —ypX]
7= | XJ 07 —u2,XJ

L OT X;’Lr _ynX;Lr ]
The solutionto equation(3.11)is the null eigenvectoof Z, andthis canbe found from
SingularValue Decomposition(SVD) [78] of Z. The trivial solutionp = 0 is avoided

because is aneigenvectowhichhasunit norm.
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[terative Minimisation

Oncetheinitial estimateof P hasbeenfound,aniterativemethodcanbe usedto refinethe
solution. Themethodusedhereis Levenbeg-Marquardtiminimisation[78], andthe error
function(3.9)is minimised.

WhenusingLevenbeg-Marquardiminimisation thescalefactorneedgo betakeninto
accountto producea minimum parameterisationEither one of the elementsf P canbe
fixed, or P canbe scaledbetweertheiterations[38] so|| P ||= 1. Here,oneelementof P
is fixed (P34 = 1), andthe other11 parameterareallowedto change.This could produce
inaccuraciedf, in thesolution,Ps,4 is much largeror smallerthanthe otherelementsn P,
butthis hasnotbeennoticedin practice.If thisdoesthenit is very simpleto scaleanother

parameteto 1.

Decomposing the Projection Matrix

Oncethe solutionfor P hasbeenfound, it hasto be decomposeadhto the form of equa-

tion (2.2). The3 x 3 submatrixof P canbe expresseads

P11 Pip P13
Po1 Py Pp3 | =CR,
P31 P3p Pas3

wherecC is uppertriangularandr is orthonormal Thisallows QR decompositiori31] to be
usedto find C andR. Faugerasindotherg23, 29] decomposed usinganequivalenseries
of equationscontainingall the parametershut the implementatiorof QR decomposition

providesa moresystemati@pproach.
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e Accuratelyfind the image positionsof the cornersof the Tsai grid by
intersectindinesalreadyfitted to the grid by orthogonakegression.

¢ Estimateheprojectionmatrixusingequatior(3.11)for theinitial estimate,
andtheniterativenon-lineaminimisationof theerrorfunction(3.9).

e Decomposehe projection matrix using QR decompositiorto give the
camerecalibration

Algorithm 3.1 Off-line camera calibration.

3.2.2 Resultsfor Traditional Camera Calibration

This sectionanalyseghe stability and accuracyof cameracalibrationwhenusinga cali-
brationobject. A setof 24 imageswith the calibrationgrid in variouspositionsrelative
to the cameras used(seefigure 3.3). The calibrationis computedor eachimageusing

algorithm3.1. Theaccuracyandstability of the calibrationcanbe shownin two ways:

e Theaccuracyof P canbe examinedoy measuringhe differencebetweerthe actual
cornersin theimageandthe projectionof the correspondingD pointsusingP (see

equation(3.9)).

¢ Thestability of the calibrationparametersanbe examinedoy comparinghevalues
calculatedvhentherelativepositionbetweerthegrid andcameras varied(generally

thegrid is centredn theimageandis viewedaslargeaspossible).

The calibrationobjectusedis shownin figure 3.1a. It consistof two orthogonalTsai
grids. The pointsusedarethe cornersof the 16 square®n eachgrid. The 3D pointshave
beenaccuratelymeasuredandthe positionsof the cornersin the imagecanbe found to

sub-pixelaccuraciesisingtheintersection®f thelineson thegrid®.

3Thesoftwareto automaticallyfind thecornersby straightine intersectiorwaswritten by PaulBeardsley
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Errorsin the Image Plane

Table3.1showstheaverageerrorin theimageplanefor the projectedpoints. Theaverage
is calculatedfor the 128 pointsonthecalibratedgrid, overthe24imagesused.Resultsare

givenfor two estimate®f P.
1. Theinitial (linear)solutionfor P from equation(3.11).
2. Thefinal (non-linear)solutionfor P after Levenbeg-Marquardiminimisation.

Theinitial estimatéhasawide variationof errors,butthefinal estimataypically haserrors

< 0.2pixels.

Variation of thelnternal Parameters

The internal parametersre calculatedfor the setof 24 images. The averagevalue and
standardieviationfor theinternalparameteraregivenin table3.2.

Theresultsshowthat«,, «,, and( arestable,varyingby lessthan0.5%. In contrast
the principal point (uo,v0) variesovera40 x 40 pixel regionin a512 x 512 pixel image.
This variationcommonlyoccursin calibration[94] butthe magnitudas exaggeratetiere
by havingtheimageof thegrid in differentpartsof theimage.

Figure3.2 showsthe calculatedpositionof the principal pointswhentheimageof the
gridis in thefour cornersof theimage aswell ascentredn theimage(seefigure3.3). The
positionof the principalpointis definitelyrelatedto therelativepositioningof thegrid and

cameraandis probablyrelatedto the smallamountof radialdistortionin thecamera.
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Error (pixels)
Estimate | average max. | min.
Linear 0.625 | 2.075]| 0.256
Non-Linear| 0.158 | 0.283| 0.107

Table3.1: Thereprojection error for the image point, for 128 points over 24 images, with
linear and non-linear estimates of P.

Summary

This chapter has reviewed the different methods of camera calibration. Section 3.2 ex-
plained the theory and gave results for a traditional method for the off-line calibration of
acamera.

Section 3.1 introduced the idea of self-calibration, where the camera calibration can
be computed using only information contained in the images themsel ves, and explained the
actual knowledge required for self-calibration. It reviewed the many methods that have
been suggested for self-calibration, and derived many of the basic results. A problem for
many of the methods is the algebraic and numerical complexity of self-calibration, and
that the methods are slow and require extreme accuracy of computation. Also, increasing
the number of views used greatly increases the complexity of the computation. Thisis not
advantageous as increasing the number of images used in the computation should improve
the accuracy obtainable.

In the next chapter, two ideas from chapters 2 and 3 are combined in a novel self-
calibration method, which by stratifying the problem, it reduces the numerical complexity.
The method also allows the extension to the simultaneous use of an arbitrary number of

images.



3.2 Traditional Calibration

Qay ay ¢ uQ Vo k
(pixels) | (pixels) ) (pixels) | (pixels) | (pixels)
Average | 648.7 | 972.7 | 1.4993 | 251.8 | 256.3 2.0
Std.Dev. 2.8 4.7 0.0019| 20.1 20.5 0.5
Ratio 0.4% | 0.5% | 0.1% | 8.0% | 8.0% —
Max. 657.8 | 984.7 | 1.50383| 294.0 | 306.1 3.8
Min. 643.5 | 965.1 | 1.49678| 214.9 | 211.6 1.1

Table3.2:

standard deviation to the average value.

The distribution of the internal parameters calculated from 24 images of the
calibration grid. The camerafocal length is approximately 8.5mm. Ratioistheratio of the

3204 VO (pixels)

u]

3001

280+

260

240+

220+

Co

200

¥

*

200 2

20

240

260

T T
280u0 (pixels) 300

Figure3.2: The variation of the principal point with position of the grid in the image (+
centre, * top right, o top left, O bottomleft, and A bottomright).

b

Figure3.3: The placement of the calibration grid in different position in theimage. (a) the
normal centred position, (b) and (c) the typical off-centre placements.



Chapter 4

Self-Calibrationvia Affine
Structure

Overview

The previous chapter reviewed the different methods that have been suggested for self-
calibration. A common problem encountered was the algebraic and numerical complexity
of the algorithms. In this chapter, a novel method for self-calibration is presented [4],
which stratifies the problem and thereby reduces the numerical complexity. The method
extends and combines two ideas (by different authors) from chapters 2 and 3.

First, affine structure is recovered using a translating camera, extending the work by
Moons et al. [ 71]. Then self-calibration can be performed using the affine structure work
of Luong and Meville [61]. Unlike other methods, the algorithm does not require a large
non-linear minimisation, and can be applied to an arbitrary number of images without
increasing the compl exity.

The extension of recovering affine structure from a translating camera is explained
in section 4.1.1. It is also shown in section 4.1.2 that affine structure can be recovered
using four views from a camera moving with general motion. The theory of self-calibration
from affine structure is described in detail in section 4.1.3. An extensive assessment of the
accuracy of the algorithm is performed using real images in section 4.2.1. Finally, two

applications are described and results given in section 4.2.2.
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4.1 Theory of Self-Calibration via Affine Structure

Thissectionntroducesanewmethodor self-calibratiof4] whichusesstratifiedapproach
to the problem. The methodcombinesand extendsthe work of Moons et al. [71] for
computingaffine structurewith a translatingcamera(seesection2.2.6),with the work of
LuongandVieville [61] for self-calibrationusingaffine structure(seesection3.1.6). Full

implementatiordetailsaregivenaswell asthealgorithmsummariegl.1and4.2.

4.1.1 Affine Structurefrom a Trandating Camera

Whenthereis only translationof the cameradbetweenwo views of the sceneMoonset
al. [71] showedhataffine structurecanberecoveredTheoriginalmethodusedaminimum
numberof pointsto form anaffine coordinatérame. Herethe methodis extendedo used
all the points, andinvolves estimatingthe projectionmatrices,andthen back-projecting
theraysto intersectin 3-space.With a translatingcamerathe projectionmatriceshavea

specialform which givesanaffine reconstruction.

Lemma 4.1 When a cameraisundergoing pure translation, a special formcan be used for
the projection matrices of the projective camera, which allows the structure to be recovered
up to an affine ambiguity. The projection matrices for two views are P, = [l |0] and

P, = [l |e], where eisthe epipole.

Proof: Without lossof generality[23, 38], the projectionmatrix for the first view of the
affine structurecanbesetto

P, = [I]0].

The puretranslatiorbetweerthefirst andsecondviewsallowsa speciafform to be chosen

for the secondprojectionmatrix (P/). Whenthe camerasare calibrated,the projection
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/e/ (t-1)

0

Figure4.1: The two translated image planes with optical centres O and O’, the same
epipole e, and related by the trandation (t' — t).

matrices(P,,,, P ) canbeexpresseth theform of equation(2.2)

P, = C[R|t],

P/ = C[R|t],

m

but for puretranslationR = R’. The affine and metric structureare relatedby an affine

transformatiorii (seeequation(2.13))suchthat
X,, = HX,,

andbothprojectto the samemagepoints,

Hence,

andfromP! =P/ H
P! = [I|c(t' —t)]. (4.1)
Thetranslation(t’ — t) andcalibrationC areunknown,butc(t’ — t) is the epipole(e) of

theimages.Theepipoleis theintersectiorof thelinesjoining the cameracentreswith the
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correction line

correction line

image image

a b

Figure4.2: The imageplanecorrectionused to find the 3D point by back-projection. (a)
and (b) are the two trandated views, and have the same epipole (e) and correction line.

imageplanegseefigure4.1),andcanbeexpresseasthe projectionontotheimageplane,
usingthe calibrationmatrix c, of thedirectionof translationt’ — t). Soequation(4.1)can
now bewrittenas

P =[I|e]. (4.2)

The 3-spacestructurecannow berecoveredy back-projectingheimagepointsusingthe
projectionmatricesP, andP!. The projectivetransformatiort from the metric structure
X, totheactualrecoveredstructureX, is in thesameform asequation(2.13),andsothe
recoveredstructures definedup to anaffine ambiguity

O

Finding the Epipole Theepipoleis foundusingthefundamentamatrix andsolvingthe
equatiorfe = 0. Foratranslatingcamerawith fixed internalparameterghefundamental
matrix is skewsymmetric[23] with threehomogeneouparameterswhich improvesthe

numericalcalculationof F. More detailscanbe foundin appendixA.
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e Thefundamentamatrix F is computedusingthe point matchesbetween
theimages.F is skewsymmetricwith 2 degree®f freedom.

e The epipoleis found, andis usedto form the projectionmatrix (equa-
tion (4.2)).

e Correctedmagepointsarefoundby projectingthepointsontoacorrection
line. The correction line, radiatingfrom the epipole,is positionedto
minimisesthe perpendiculadistancdrom the matchedpointsto theline.

e Thecorrectedmagepointsareback-projectedo intersectin 3-spacefo
give the pointsfor theaffine reconstruction.

Algorithm 4.1 Recovering affine structure using a translating camera.

Back-Projection from the Image Plane

Thedifferentmethoddor back-projectingmagepointswerereviewedn section2.2.2 but
asthe structureis only recoveredup to an affine ambiguity the problemof intersecting
skewedrays still remains. Hartley and Sturm’s method[43] can be used,and with the
degeneratenotionandfundamentamatrix, the polynomialequationreducedrom degree
six to aquadratiowith two solutions.

Thefollowing constrainigivesthe sameresultasHartleyand Sturm’s method but has
just one solutionratherthanthe two, and was derivedindependenti\f4]. The method
correctsthecorrespondingointsin theimagessothattheback-projectedaysdo intersect.
With the epipolesin the samepositionon bothimages the imagescanbe superimposed,
andtheimage error for bothimagescanbe minimisedsimultaneously A correction line
is definedastheline passinghroughthe epipolethatminimisesthe perpendiculadistance
from the line to the pointsx andx’ (seefigure 4.2). The pointsarethenprojectedonto
thisline generatingorrectedoointsx andx’. The correctedback-projectedaysintersect,

giving apointin 3-space.
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4.1.2 AffineStructurefrom Four Views

This sectionshowsthatwith four viewsit is possibleto recoveraffine structurewhenthe
camerais rotatingaswell astranslating. The methodis not usedfor the work presented
here,butis givento showa moregenerabpproacho obtainingaffine structure.
Section2.2.5showedthat to transformfrom a projectiveto an affine reconstruction
requiresthatthe planeatinfinity =, is identified. Equation(2.12)showedthatthe metric
andprojectivereconstructionX,, andX, respectivelyarerelatedby a transformatiort

suchthat

At
szHszlvT 1]Xp,

where (v',1)T is the position of ., in the projective reconstruction. The projection

matricesfor two views of the metric structurecanbe setto!

P, = CJI|O],

P/ = CR[I|-t],

m

while the correspondingprojectionmatricesfor the projectivestructureare

P, = [I|0]7

P, = [Mm].

Theprojectiveandmetricstructureprojectto thesamemagepoints,suchthatfor thefirst

view
x =P,X, =P, X,, = P,,HX,,
andhence
At
P,=P,H= [ vT 1 ] = AC[A[t],

1The secondprojectionmatrix for the metric structurehasa slightly differentform from thatin equa-
tion (2.2),but the only differenceis thatthetranslatioris measuredn a differentcoordinatgrame.
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where) is theunknownscalingin the projectionmatrices andthis gives

Theprojectioninto the secondview is
x' =P X, =P X,, =P HX,,

whichfollowing the sameanalysiggives

P, = XNCR[CTH/A—tvT|—t],
1 _
t = —4(CR) 'm,

andsubstitutingfor t gives

)\l
M—mv' = XCRC_l. (4.3)

Thematrix CRC~! is aconjugaterotationmatrixwhich hasthesameeigenvalueasg, which
arel ande*””. Hence,thematrix M — mv' hasthe eigenvalueg)\’/\) and(\'/\)e?.

The sum(f1), sumof pairs(f2), andproduct(fs) of the eigenvalue®f ¥ — mv ' canbe

expresseads
f1 = — (/) (1 + et 4 e—”) = —(N/X\) (1 + 2cosh) (4.4)
foo= VN (e + e 4 et ™) = (W/N)? (1 + 2c0sh), (4.5)
fa = =N (Fe) = — (V)N (4.6)

The sum,sumof pairs,andproductof the eigenvalue®f M — mv " canalsobe expressed
aslinearfunctionsof v

fi = trM) —m'v

f2 o= 1/2(tr(m)? — tr(M?)) + (Mm — tr(M)m) " v

fz = detM) — detM)(M'm)"v
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Eliminating A, A’ andf from equationg4.4), (4.5)and(4.6) givesa quarticequationn v
= £ (4.7)

Eachpair of imageswill give a constraintin the form of equation(4.7), andfour images
will give threeindependentonstraintdor the threeelementf v. Oncev hasbefound,
affine structurecanberecoveredisingequation(2.14).

IndependentlyPollefeyset al. [76] derivedthe sameresultandtermedit the mod-
ulus constraint. They solvedthe three simultaneousjuartic equationsusing non-linear

minimisation.
4.1.3 Sdf-Calibration from Affine Structure

LuongandVieville [61] showedhata cameracanbe calibratedusingtwo or morerotated
viewsof anaffine structurg(reviewedn section3.1.6). Fromeachview a projectionmatrix
canbe computedusingthe methodsdescribedn section3.2. Eachpair of views canthen

be usedto computeaninfinite homography usingequation(3.3),
Hoo = MM7L,

andeachinfinite homographygivesthe constraint©nk in form of equation(3.7)
K =H,KH .

The methodrequiresthatthe internalparametersemainfixed, andif thereis no rotation,

equation(3.7)reducego K = K, andthereis no constrainonk.

Solving the Constraint Equations

The constraintequation(3.7) canbe rearrangednto the form Z;k = 0, wherek is the six

distinctelementf thesymmetricmatrixX written asavector

- - - - - - NT
k = (K11, K12, K13, K22, K23, K33) ',
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o Computetheaffine projectionmatricesby anyappropriatanethod.

o Computeheinfinitehomographies(H,.,) betweerthedifferentviewsusing
equation(3.3).

e Solvetheconstrainiequation(3.7)for K usingequation(4.8) andpossibly
equation(4.9)if Z is Rankdeficient.

e UseCholeskidecompositiorto find C from K.

e Useequation(2.16)to upgradedrom affine to metricstructure.

Algorithm 4.2 Self-calibration and metric structure recovery using affine structure.

andz; is a6 x 6 matrixanda function of theinfinite homography A differentz, canbe
obtainedfrom eachpair of views, andthesecanbe compoundednto a 6r x 6 matrix Z

which givestheequatiorfor » pairsof viewsas
zZk = 0. (4.8)

The solutionto this equationis null spaceof Z, which for real datacan be found using
SingularValueDecompositior{SVD) to solve ”}{i” || Zk ||2 subjectto || k ||.= 1.

However whenusinga singlepair of views or whentherotationbetweenall viewsis
aboutthesameaxis,thenz is Rank4 [61] andthereis aone-parametdamily of solutionso
equation4.8). Thisisthesameasthesituationdescribedn section3.1.2 ,andtheconstraint
of noimageskewcanbeusedo identify thecorrectsolution. Now therangeof solutionsto
equation(4.8)is spannedy thetwo eigenvector$ andm associateavith thetwo smallest
eigenvaluegfound usingSVD) to give k = 1 + Am, where) is the free parameter The

valueof A correspondindo thecorrectsolutioncanbefoundby rearrangingquation(3.2)

to give the quadraticequation

)\Z(mzme — m3m5) + )\(lzms —|— lsmz - 13m5 - l5m3) —|— (lzls - 1315) = O, (49)
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which hastwo possiblesolutions,giving two possiblesolutionsfor X. Often, oneof the
solutionsfor K is not positive definite and so Choleskidecompositiorwill not give real
valuesfor the internalparametershencecanbe eliminated. OnceC hasbeenfound, the

metricstructurecanberecoveredisingequation(2.16).

Degeneracies

If camerarotationis aboutone of the cameraaxes,thensomeof the internal parameters
areunconstrainetdy equation(3.7),andcannote determined Fromequation(3.5),when

C = ¢/, andR is therotationbetweerthe camergpositions then
H., = CRC™L. (4.10)

Thedegeneraciesanbeanalysedy examiningtheinfinite homographyH..,) andexpand-
ing equation(4.10). Whentheimageskewis assumedo be zero(k = 0), a rotationof 4

aboutthecameraX axisgives

1 upSind/ a, up(Ccosf — 1) — ugvoSind/c,
Ho(R(A)) = | O cosf + vgsinf/a, wvo(cosd — 1) — visind/a, — a, sind | .
0 sinf/a, cost — vpSind/a,

Thereareno«,, termsin H,, andconsequentlpopossibleconstrainbn «,, in equation3.7)
(thecoeficientof «,, is zero). Consequently, isunconstrainedSimilarly, with arotation
aboutthe Y axis,«, isunconstrainedForarotationof ¢ aboutthe Z axis(theopticalaxis)

with £ = 0

cos¢ —(1/¢)sing —(1/()voSing + ug(1l — coSg)
Hoo(R(¢)) = | (sing COS¢ —(CugSing + vo(1 — cosg) ,
0 0 1

in which caseca,, anda, only appeaiin H,, asthe aspectratio (¢), so their independent
valuescannotbedetermined.
Neardegeneratsituationscan occur if the magnitudeof rotation aboutone axis is

small. In this casethe associateihternalparameters poorly constrained.
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4.2 Reaultsfor Self-Calibration via Affine Structure

In this section the methodof self-calibrationdescribedn section4.1is implementedand
resultsobtainedusingrealimages.Assessmeraf themethods madefor differentnumber
of imagesandsizeof rotationbetweenmagesandtwo possibleapplicationsaredescribed

with results.

421 Assessment of Method

The objectusedfor theassessmens the calibrationobjectin figure 3.1a. Theknown3D
structureof the objectis not usedto calibrate(unlike section3.2) butis usedto assesshe
accuracyof the calibrationandstructurereconstructionTheaccuracyof the calibrationis

assessernh two ways:

e The internal parametersleterminedusing self-calibrationcan be comparedo the
veridicalvalues.Theveridicalvaluesareobtainedy usingthecalibrationobjectfor
conventionakalibration. The calibrationparametersre obtainedfrom eachimage
usingthemethodgivenin section3.2,andtheveridicalvaluesaresetto theaverage

overall theimages.

e Comparingthe recovered3D metric structurewith that of the known calibration
object. Thecomparisons donewith severametricinvariantsmeasurean boththe

actualobjectandthereconstruction.

In thefollowing, anumberof differenttypesof sequencearecomparedwhichdifferin the
numberof viewsandtherotationbetweernviews. In all casesaffine structures recovered
from the first two views of the imagesequencewhich arerelatedby a translation,using
algorithm4.1. Theimagepointsusedarethe cornersof thesquare®n thecalibrationgrid

which arefoundby line intersectior(seesection3.2).
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3Images Thereis a puretranslationbetweerthefirst two imagesanda translationand
rotationfor thethird. Thetranslatiorbetweerthe seconcandthird imagess usedto fixate
on the objectwhich allows the longersequencessedbelow H., is determinedbetween
viewstwo andthree(it is identicalto thatobtainedrom viewsoneandthree).As described
in section4.1.3,the additionalconstraintthat £ = 0 is requiredin this caseof a single
rotatedview. Two setsof resultsaregiven. For thefirst (5°), the rotationmagnitudds 5°
aboutboththecameraX andY axes.Forthesecond10°), atleastoneof therotationshas
magnituddargerthan5°. Therotationis limited to 15° sothatboth sidesof the calibration
gridarestill in view in theimage. Thelargerrotationsgive morestablevalues asdiscussed

in section4.1.3.

4 Images A secondrotatedview is addedto the sequenceand the two H., matrices,
found from the mappingfrom the secondto the third, and secondto the fourth images,
areusedsimultaneouslyto find K. This secondH.., generallychangeghe rank of Z (see
equation(4.8))from four to five, sothe constraint: = 0 is notrequired,andthe calculated
value for k£ given. Note, H,, betweenthe third and fourth imagesaddsno additional
information. Theseimagesare selectedfrom the (5°) and (10°) setsabove,suchthat
rotationsaboutcorrespondingameraaxes(e.g.,the X axis)in thethird andfourth views

differin magnitude.

6 Images Fourrotatedviewsareusedto givea24 x 6 matrix Z of rankfive, with theH,,
mappingfrom the secondmageto eachof the four rotatedimages. Thesegive the most

stableresultswith internalparameterapproachindgheveridicalvalues.

Degenerate A three-imagesequences used buttherotationis herelimited to eitherthe

cameraX orY axis. As shownin sectiord.1.3 thisresultsn «, or «, beingunconstrained.
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Method Oy Qy ¢ uo vo k

(no. of segs.) (pixels) (pixels) (pixels) (pixels) (pixels)
Known 3D Grid 646.0(3.5) 968.7(4.7) 1.4996(0.0016) | 246.5(9.2) | 244.3(11.4) 1.5(0.4)
3Images-3(9) 625.2(41.1) | 954.5(35.5) 1.53(0.11) 242.8(20.1) | 225.6(29.4) 0
3Images-10(6) | 684.4(26.7) | 10340(24.9) 1.513(0.081) 2610(4.0) | 234.2(32.0) 0

4 Imageq(13) 6610(17.0) | 10180(22.2) 1.522(0.028) 258.0(7.7) | 239.7(11.6) | 1.2(36.6)
6 Images(35) 645.6(13.1) | 10018(16.9) 1.552(0.021) 260.0(4.6) 236.9(6.6) | 21.8(14.4)
Degenerate-X6) - 1064.0(32.5) - 245.0(4.2) 208.0(3.0) 0
Degenerate-Y2) | 687.2(34.9) - - 260.2(27.2) | 33.8(13.7) 0

Table4.1: Mean (standard deviation) of theinternal parametersdetermined fromavarying
number of views and rotations. — indicates that no value was obtained, and 0 indicates the
skew is set to zero. Seetext for details.

Internal Parameters

The resultsfor the internal parametersgalculatedirom the variousimagesequencesyre
givenin table4.1. The stability of the internalparametersncreasesith the numberof
viewsandthesizeof therotations.Thesiximagesequencgivesthemoststableresultswvith
internalparameterapproachingheveridicalvalues.Theparameters,,, «,,, and¢ havean
errorof betweer2% and6%. Again (uo, vo) variesoveraregionin thecentreof theimage,
thesizeof theregionvaryingfrom 20 x 30to 5 x 5, decreasingvith increasingiumberof
viewsandthemagnitudeof rotation. In thesix-imagecasethe skewparamete(k = 21.8)
is significantly larger thanthe veridical value (¢ = 1.5 + 0.4), but this correspondso
only 2° off perpendicularTheresultsfor the degeneratsequencesonfirmthe theoryof

section4.1.3with «,, or «, beingunconstrained.

M etric Reconstr uction

Metric structureis recoveredrom the affine structureand cameracalibrationusingequa-
tion (2.16). Theaccuracyof the reconstructionndicateshow errorsin cameracalibration
propagatehroughto errorsin structure. For example,an errorin «, could havea more

detrimentaleffect thanonein u,. The accuracyof the metric reconstructions assessed
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Figure4.3: (a) Affine reconstruction from two per spective images of the calibration object
with pure translation (note the in plane skew). (b) Metric structure obtained from three
per spective images, after determining internal parameters. The planes are now orthogonal

to high accuracy (see table 4.2).

by comparingsimilarity invariants(anglesdistanceratios)with thosecalculatedrom the

knownstructureof the calibrationobject. Resultsaregivenin table4.2 andfigure4.3,and

the sameimagesetsgiven aboveareused. Threesimilarity invariantsare measuredthe

first two measurdocal structure andthe third global.

1. Distance error Thedistanceerroris theratio of the standarddeviationto meanof

196 measuremertf thedistancebetweeradjacenpointson thegrid.

2. Pattern error The patternerroris the standardieviationof anglescomputedor all

cornersof thesquare®nthegrid.

3. Planeangle. Theplaneangleis the anglebetweerthetwo planesof the calibration

object,determinedy orthogonakegressiorto pointson eachgrid.

In all casegherecoverednetricstructures clearlyreasonablyaccurate Resultsmprove

for largerrotationanglesandgreatemumberof images.
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Method DistanceError | PatternError | PlaneAngle
3Images-8 4.5% 25T 91.03(3.80)
3 Images-10 3.9% 1.66° 9152°(4.20r)
4 Images 3.9% 112 89.33(2.21°)
6 Images 3.7% 1.00° 90.35°(1.07)

Table4.2: Smilarity invariants measured on recovered metric structure: the actual mea-
surements are explained in the text, but for ideal data the distance and pattern error would
be zero, and the plane angle 90°. The standard deviation for the plane angle is given in
brackets.

4.2.2 Applications
Active Vision

For a cameramountedon a robotarmor AGYV, it is usuallynot difficult to performpure
translationalmotior?. Consequentlythe methodin section4.1.1 for generatingaffine
structure,is particularlyappropriateto active vision tasks. The following resultsarefor
animplementedsystem[8], with automaticcornerdetectionmatchingandeliminationof
outliers. See[91] for detailsof the outlier rejectionmethod.During themotionthecamera
is calibratedon the fly andmetricstructurerecovered Note,cornersaredetectedhereusing
a cornerdetectoy thuslocalisationis lessaccuratghanthe line intersectiormethodused
for the calibrationgrid.

Figure 4.4 showstwo imagesfrom a sequencef 20 takenby a cameramountedon
an Adept robot arm wherethe camerarotatesby 20° overall aboutits X andY axes.
The calculatednternalparametersire (o, = 6731, o, = 10054, ( = 1.494 (ug, vo) =
(2493, 2829)), comparedvith valuesin table4.1 wherethe samecameravasused. The
recoveredstructureis shownin figure 4.5, and three views of the reconstructionwith

texturemappingof theimageareshownin figure 4.6. The anglesbetweertheroof, front

2The accuracyof the translationalmotion which can be achievedusingan AGV or robot arm varies
considerably
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andsideof thehousewerecalculatedpy orthogonakegressiono pointson eachplane,to

be53.9°,94.7°, 87.5° comparedo measuredaluesof 51.4°,90.0°,90.0°.

Repeated Structure

Structureshatrepeain asingleimageof ascenareequivalento multipleviewsof asingle
instanceof thestructurg55]. Thus,for exampleaview of two identicalobjectsrelatedby
atranslations equivalento a steregpair of imagesof oneobject,with thecameraselated
by a puretranslation.If in a singleimagetherearethreeidenticalobjects,of which two
arerelatedby a simpletranslation thenthe cameracanbe calibratedandmetric structure
recovered.Figure4.7 showssuchanimageandfigure 4.8 showsthereconstruction.The
anglesbetweernthe planarsidesof the reconstructionfound by orthogonalregressiorto

pointson eachplane,are84°, 81°, 81°, comparedo theactualvalueof 90°.

Summary

Thischapter hasintroduced a new method for self-calibration which reduces the numerical
complexity of the problem by using stratification. It involved extending the method of
obtaining affine structure from a translating camera, and then combining this result with
the theory of self-calibration from affine structure. Results were given using real images,

and two different applications were explained and results given.
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L y

Figure4.4: Two images from the sequence of twenty used for self-calibration and metric
reconstruction. The images were taken by a camera mounted on an Adept robot arm.

Figure4.5: The reconstructed house projected from a different viewpoint, with lines added
for clarity. The reconstruction is for 100 points matched between the first two images, of
which 30 (bold) were tracked through all 20 images and used to compute calibration.

e v

Figure4.6: Three views of the reconstructed house with the image texture mapped onto the
reconstruction.
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Figure4.7: A singleimage containing repeated structure which is used for self-calibration.

Figure4.8: Two views of the recovered metric structure from an image containing repeated
structure.



Chapter 5

Self-Calibrationvia FixedPoints

Overview

This chapter presents a novel method for self-calibrating a camera when the camera is
undergoing planar motion and at least three rotated views are available [5]. The method
is based on the idea that there are points and lines in the image and in the scene which
remain fixed during planar motion. The positions of these points are determined by the
camera calibration, and hence finding their positions enables the camera calibration to be
computed.

Theidea of fixed entitiesisintroduced in section 5.1.1, and the fixed entities for general
and planar motion aredescribed in sections5.1.2 and 5.1.4. How thefixed points determine
camera calibration is discussed in section 5.2, where it is shown how affine and metric
structure can be recovered. To recover full metric structure requires that one assumption
is made about the camera calibration. If thisis not possible, only planar metric structure
is achievable. Section 5.2.3 shows that one of the most common assumptions used in self-
calibration (zero image skew constraint) can give poor, unstable results, when used with a
camera moving under planar motion.

Section 5.4 shows that the position of fixed entities in the image can be found using
three images and the trifocal tensor, but that for normal planar motion the solution is a
non-trivial algebraic problem. The complexity of the problem can be reduced by stratifying

the problem into simpler steps. Section 5.3 shows that the position of some of the fixed
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image entities can be found with much less difficulty using the fundamental matrices. These
fixed entities can then be used to compute a projective transformation of the images. This
transfor mation reducesthe problem of finding the remaining fixed entities, using thetrifocal
tensor, to solving a cubic in one variable.

The algorithms used are described in detail in section 5.5, then results are given for
several real image sequences in section 5.6. The results are shown to be both stable over
the image sequences, and accurate when comparing the reconstructions to known ground

truths.

5.1 Fixed Pointsof Planar Motion

5.1.1 Fixed Entities

Fixed entities are geometricobjectsin spacewhose position remainsinvariant during
a transformationof the space. Somefixed entities have alreadybeenintroduced(see
section2.2.4),notleasttheplaneatinfinity (7.,) whosepositionremaingnvariantto affine
transformationsMoreimportanto self-calibratiorandmetricreconstructioms theabsolute
conic(Q..), whichremaingnvariantduring Euclideartransformationgrigid motion).
The otherfixed entitieswhich can occur dependon the type of transformationand
the numberof transformationgonsidered.Herethe fixed entitiesarisingfrom Euclidean
transformation(rigid motion) of 3-spaceare considered. The fixed entitiesfor a single
generalEuclideandisplacementre explainedin section5.1.2. Then planarmotion is
definedsectiorb.1.3),andthefixedentitiesfor planamotionaredescribedn sectiorb.1.4.
Therearetwo differenttypesof fixed entities: thosewhich arefixed point-wise,and
thosewhicharefixed merelyasaset. ForexampleQ,, (7..) is afixed conic(plane) butthe
pointsin theconic(plane)arenotfixed point-wise(i.e., theconic(plane)is fixed asa set).

During a Euclidean(affine) transformatiorthe pointsin the conic (plane)canbe mapped
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to otherpositionsin the conic(plane).Point-wisefixed entitiesaremadeup of fixed points
whosepositiondo notchangeduringthetransformatior{e.g.,aline of fixed points).

The intersectionof set-wisefixed entitiesresultsin the creation of additionalfixed
entitiesof alower order (i.e.,if two fixedlines(notlinesof fixed points)intersectthenthe

intersectiorpointis afixed point).
5.1.2 Fixed Entities of General Motion

Thetheoryof kinematicstatehatanygeneratigid displacemeniEuclideartransfornation
containingbothrotationandtranslation)canbe considere@sarotationabouta screw axis
andatranslationalongthe screw axis[13].

For a singlegeneraldisplacementhereare additionalfixed entitiesin additionto the
normal fixed entitiesof =, andQ.,. The planesperpendiculato the rotationaxisdo not
changeorientation— they arerotatedabout,andtranslatedalongthe axis— andsothe
axisof thepencilof planess afixedline onr, (i.e.,theline of intersectiorof theparallel
planesremainsfixed). The screwaxisis a fixed line, asthe motion canbe consideredis
arotationaboutandtranslationalongit, andsopointson theline arefixed set-wise.This

resultsin four extrafixed entitiesfor a singlegeneradisplacemenfl07] (seefigure5.1):

1. A fixed line (L) on 7., theaxisof the pencil of planesperpendiculato therotation

(screw)axis.
2. A fixed line (M) of 3-spacethe screwaxis.
3. A fixed point (V) on =, theintersectiorof =, andthe screwaxis (M).

4. Two fixed points (I,J) on Q.,, theintersectiorof thefixed line (L) andQ.., which

areknownasthecircularpoints[81].
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pencil of
planes

Figure5.1: The fixed entities for general motion. Fixed lines: M the screw axis, and
L the axis of the pencil of planes perpendicular to the screw axes. Fixed points. V the
intersection of ., and M; and the circular points| and J, the intersection of L and Q..
(Note: thisis projective representation so that the parallel planes are not drawn as such.)

However for two or more generaldisplacementsthe screwaxeswill generallynot be
parallel(i.e.,differentrotationaxes) andsothefour extrafixed entitiesfor asinglegeneral

displacementvill notexistwhenconsideringnultiple generaldisplacements.

5.1.3 Planar Motion

Planarmotion occurswhen the rotation axis is fixed throughoutthe sequenceand the
translations confinedto a planeperpendiculato therotationaxis.

This type of motionis typical for camerabasedon a movingvehicle(e.g.,acaror an
AutonomousGuidedVehicle). Theplaneof translationrdoesnot haveto correspondo any
cameraaxes(unlike the GroundPlaneMotion work of Wiles[101]), andhencethecamera
canpointin anydirectionrelativeto thetranslatiornplaneandrotationaxis.

Thesextraconstraint®nthemotionresultin extrafixedentitiesexistingfor anarbitrary

numberof displacementsf planarmotion.
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5.1.4 Fixed Entities of Planar Motion

As statedn section5.1.1,ageneraldisplacementanbe consideredsa rotationaboutand
translationablongthe screw axis. However with planarmotion,the displacementanbe
consideregurelyasarotationaboutthe screwaxis, with no translationasthetranslation

is confinedto a planeperpendiculato therotation(screw)axis.

Single Displacement  With planarmotion, thereis no translationalongthe screwaxis,
which changeghe fixed entities. The screwaxisis now a line of fixed pointsratherthan
justafixedline. Sotheintersectiorof thescrewaxisandr ., is nolongeruniquelydefined
asall pointson the screwaxisarefixed. Also thereis afixed pencil of planesratherthan
just the fixed line correspondindo the axis of the pencil of planes(as eachplaneis just
rotatedaboutthe screwaxis andnot translated).However L is still uniquelydefinedas
T andthepencilof planesarejustfixed point-wise,andhencetheintersectiorine (L) is

afixedline.

Multiple Displacements When consideringmultiple planardisplacementsthe screw
axeswill all be parallel (samerotation axis), but generallythey will not be coincident
becausef thedifferentplanartranslations.Sothereis no longera line of fixed pointsfor
the screwaxis, but now theintersectiorof the parallelscrewaxeswill beafixed pointon
T Thisisthefixed pointV whichis now uniquelyidentifiable(seefigure5.2a).

The pencil of planesremainsfixed over multiple displacementsand so the axis of
the pencil alsoremainsfixed (L on =, seefigure5.2a). Thefixed line L still intersects
Q.. (seefigure5.2b),andsothe circularpoints(I andJ) alsoremainfixed over multiple
displacementsSofor planarmotionwith multiple displacementghereare3 fixed points

andonefixedline:
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Figure5.2: The fixed entities for planar motion. (a) The fixed point V, the intersection on
T Of the screw axes; the fixed line L the axis of the pencil of planes perpendicular to the
rotation axis. (b) The circular points|, J, theintersection of L and Q.. on =.,. The points
V, I, and J are an orthogonal triad of directions, and L and V are pole and polar with
respect to Q...

1. Thefixed line L on 7., axisof thepencilof planegerpendiculato the screwaxes.
2. Thefixed point V on =, theintersectiorof the screwaxes.
3. Thetwocircular pointsI,J on =, theintersectiorof L andQ. .

ThefixedentitiesV andL arepoleandpolarwith respecto Q.. [81]. Poleandpolararea
pointandline associateavith aconic,wherethetwo linespassinghroughthe pole,which
aretangentiato theconic,arethetangentgo the pointsof intersectiorof the polarandthe
conic(seefigure5.2b).

The threefixed pointson =, (V, I, andJ) arean orthogonaltriad of directions,and
this becomesmportantin section5.2. The orthogonalitycanbe shownby the examining
therole of Q.. in determininganglesin R3, suchthattwo lines areperpendiculaif their
intersectionsvith 7., areconjugaté[81]. Thefixed pointV is theintersectiorof thescrew
axisandr.., while I andJ lie in the planeperpendiculato the screwaxis. Hence bothI

andJ areconjugateo V, andtheline L = I x J is polarwith respecto thepole V.

Two pointson 7, areconjugatef theirrelationshipo Q.. is suchthatonepointliesonthepolar, which
is definedby theotherpointaspole.
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5.1.5 Fixed Entities associated with the Camera

The fixed entitiesassociatedvith a cameraconsistof the entitiesin the imagethat are
unchangedindermotionof the camergor equivalentlya motionof space).Thesanclude
imagesof the fixed entitiesin 3-spacefor the given motion, but will alsoinclude other
entitiesthatarespecificto the camerabeingconsidered Only cameramith fixed internal
parametergcalibration)areconsidered.

In the following, a geometricaguments givenfor the existenceandform of thefixed
entitiesassociatewith thecameraMore detailscanbefoundin Maybank[63] andSemple

andKneebond81] which give algebraicargumentsandproofs.

Two Views (Single Displacement)

General Motion Considera pair of views which are separatedy a generalEuclidean
transformation Correspondingpoints(i.e., thosewith the sameimagecoordinatesgtanbe
back-projectedo give raysin 3-spacebput only someof thesepairsof rayswill intersect.
Thelocusof all suchintersectionss knownasthe horopter [63]. In fact, usingatheorem
from [81] (chapterl2,theoreml4), it follows directly thatthe horopteris a twistedcubic?.
By definitionthis mustintersecthe opticalcentre§ O andO’) andthethreefixed points
(V,I,andJ).

The horopteris imagedasa conicin the two images(sincea twistedcubicis imaged
asaconicif the projectioncentrelies onthe curve). Note, the horoptercontainsthe fixed
pointsof 3-spacaunderthe Euclidearmotion (suchasV), but otherpointson the horopter

arenotfixed points(suchasO).

2A twisted cubic is an algebraicspacecurve of the third ordes which meetsa generalplanein three
points[81]. Algebraicallylett = (1,¢,¢? ¢3)T, thenatwistedcubicis acurvec in P3 with aparameterisation
t — At whereAis a4 x 4 matrix.
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e e/

image

Figure5.3: The fixed entities of a pair of images for a camera undergoing general motion.
The conic has the equation x" Fx = 0, where F is the fundamental matrix. It isthe image
of the horopter curve in 3-space. v isthe apex, e and € are the two epipoles, and i, | are
the images of the circular points.

With fixed internal parametersthe points lying on the horopterprojectto the same
imagecoordinate$x). Thesepointsalsosatisfytheepipolarconstrain{seeequation(A.1))
whichgives

x Fx = 0. (5.1)

whereF is the fundamentamatrix betweenthe two views. The fundamentaimatrix can
be split into two parts,the symmetricpart (F, = (F + F')/2), andthe asymmetricpart
(F, = (F — FT)/2), suchthat

F=F,+F,

Theasymmetrigparthasno affecton equation(5.1) as
X F,x=0 VX,

henceequation(5.1)is equivalento
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Figure5.4: Horopter curve for planar motion. The curve consists of the screw axis (M),
which isaline of fixed points under the motion, and a conic in the plane of the motion ().
The conic contains the circular points (I and J), and the optical centres of the camera (O
and O').

Equation(5.2) definesa conic (the samein both images)which is the imageof the
horopter andit containsthe imageof the five distinguishedooints on the horopter: the
epipolese, e’ (theimagesof the optical centres)the pointsi, j, theimagesof the circular
pointsl, J; and,theapexv whichis theimageof V. Thesepointsareshownin figure5.3.

Althoughtheimagedcircularpointsandapexlie ontheconic,thereis, asyet, noalgorithm

for recoveringhesepointsgivenequation(5.2).

Planar motion Thescrewaxisis afixedline andmustbepartof thehoropter Hence for
planarmotionthe horopters degeneratandconsistof anintersectindine andconic[63].

Theconicliesin =, (the planeof the motion) andcontainsthe optical centresthe circular
points,andthe intersectionof the screwaxis with the planeof motion. Thesefive points
definetheconic. Notethatunderplanarmotiontheline partof thehoropteris aline of fixed

points. The conic,on the otherhandis notfixed by the motionatall, eitherpoint-wiseor
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image

Figure5.5: The imaged horopter curve for planar motion. The imaged screw axis (m) is
a line of fixed pointsin the image under the motion. The conic isimaged to a fixed line (1)
under the motion.

set-wise.Only its imagein thetwo camerass fixed. Ontheconic,only thecircularpoints,
andtheintersectiorwith thescrewaxisarefixed pointsof 3-space— theotherpointsmove
underthe planarmotion(seefigure5.4).

The imagedhoropteris still given by the conic equation(5.2). However now the
horopteris degenerategconsistingof a line and a conic, so the imagedhoropteris also
degeneratandconsistf two distinctlines. The optical centredie in the sameplaneas
the conic part of the horopter(actuallythe optical centresare part of the conic), and so
theimageof the horopterconicis justaline. Sotheimagedhoropterconsistof the two

distinctlines (seefigure5.5):

1. Theimageof thescrewaxis(m). Thisis aline of fixed pointsin theimagegsinceit

is theimageof aline of fixed pointsin 3-space)andit containsv.

2. Thehorizon(l), whichis afixedline (notaline of fixedpoints). Thisistheintersection

of =, (containinghehoropterconic)andtheimageplanes.Theepipolesandimaged



5.1 Fixed Pointsof Planar Motion 74

SCrew axes

T

Figure5.6: Horopter curves for planar motion over three views. Only the horopter curves
between views 1 and 2, and 2 and 3 are shown (i.e., not that between views 1 and 3). The
screw axes are not coincident in general, but are parallel, and intersect on #.,. The conics
intersect in four points. Two of these points are the circular points, the other two are the
optical centre in common (here O’) and a point X.

circularpointslie onthisline.

The intersectionof thesetwo lines (s) is the imageof the intersectionof the screwaxis
andthe planer,,, andthisis thekernelof F, (i.e.,F,s = 0). Equation(5.2) now definesa
degenerateonicof two distinctlines,henceF; is rank2 [63, 81].

To summarisefrom equation(5.2) with two views underplanarmotion, the imageof
thefixed points(V, I, andJ) arerestrictedo two lines. In orderto determinehesepoints

anadditionalview is required.

Three Views (Two Displacements)

Planar Motion Forthreeviewsunderplanamotion thehoroptersaireshownin figure5.6.
Thesecondnovemengenerateanotheiconicin theplaner,,, aswell asanewscrewaxis.
Thetwo screwaxesintersectat V, which is afixed point of 3-spaceaunderboth motions.
Considerthe two conicsin the plane;the first conic (views 1 and 2) passeshroughthe

circularpoints(I andJ), andthefirst andsecondopticalcentreq O andO’). Thesecond
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a b c

Figure5.7: The fixed image entities for: (a) Two views — two fixed lines; (b) Three views
—four fixed points and four fixed lines; (c) Multiple views — three fixed points and three
fixed lines

one (views 2 and 3) passeghroughl, J, and O’ and O”, the secondand third optical
centres.This meanghatthetwo conicsintersectn I, J andO’. Clearlythereis afurther
intersectiorpoint, hereaftercalledX. SinceX liesonthehoropterconic,it appearsatthe
samepointin imagesl and2. Sinceit liesonthesecondconic,it appearstthesamepoint
in images2 and3. In short,it appearst the samepointin all threeimages. This means
alsothatthe conicfor theviews 1 and3 mustalsopassthroughX. It is thereforea point,
otherthanthetwo circularpoints,thatmustbeafixed pointin theimageoverthreeviews.

However it doesnot correspondo afixed point of 3-spacaunderthe motion.

Multiple Views

Whenmorethanthreeviews areconsideredthe point X is no longera fixed point. The
positionof X is peculiarto thethreeviews choserfor thetriplet, anddiffersdependingn
thethreeviews. The horopterconicsonly intersectat two points,the circular pointsI and

J, andtogethemwith V arethethreefixed pointsfor planarmotion.

Summary

Foracameraundegoingplanarmotion,thetypeandnumberof fixed entitiesin theimage

dependnthenumberof viewsbeingconsideredThedifferenceassummarisethelowand
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illustratedin figure5.7:

e Two Views Two fixedlines(l thehorizon,andm theimageof thescrewaxis). These
lines containthe threefixed points, but thesecannotbe determinedrom only two

views.

e ThreeViews Fourfixed points(v theapex,i andj, theimageof the circularpoints,
andx). Fourfixedlines,thefourlinesjoining thefixed points(thisbecomesmportant

in section5.4).

e MultipleViewsThreefixedpoints(v, i andj), andthreefixedlinesjoining thepoints.

5.2 Calibration from Fixed Pointsand Structure Recovery

Theprevioussectionntroducedheideaof fixedentities andshowedhatfor planammotion
therearethreefixed points (andthe correspondingntersectindixed lines). Thesepoints
arefixed both in theimageandin 3-space.If they canbe identified,andback-projected
into the structure thenthe ambiguityin the structurecanbe upgradedrom projectiveto

affine or metric.

5.2.1 Affine Structure

To reducestructureambiguity from projectiveto affine, ., needsto be identified (see
section2.2.6). The threefixed points(V, I, andJ) all lie on =, andare not collinear
andhenceuniquelyidentify =.,. Whenthe correspondingmagepoints(v, i, andj) are
identified, they canbe back-projectedo identify =, andupgradethe structureto affine

ambiguityusingequation(2.14).

3Thefourthfixed pointsx providesno usefulinformationat presentandis only fixed for animagetriplet,
notplanarmotionin general.
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image

Figure5.8: The fixed image points (v, i, and j) and corresponding fixed lines. The fixed
linel and point v are pole and polar with respect to w (image of Q..), and hence give some
constraints on w.

5.2.2 Metric Structure

To reducethe structureambiguity to metric, Q.. needsto be identified. Section3.1
introducedthe ideathat it is sometimeseasierto find w, the imageof Q.,, ratherthan
Q.. itself. Section5.1.4statedthatthe fixed line L andfixed point'V arepole andpolar
with respecto Q. [81]. Comparingthefigures5.2and5.7c,the samerelationshipholds
betweerthefixed imageline 1, thefixed imagepoint v, andw (seefigure5.8). Hence the
positionsof 1 andv give someconstraint®nw. Thefour constraintarethatw hasto pass
throughthecircularpointsi andj, andatthesepoints,theconicmustbetangento thelines

fromv, v x 1 andv x j respectivelyasshownin figure5.8).

Planar Metric

A conic has5 degreesf freedom,so, usingthe four constraintsgiven above,definesa
pencil of conics(one-parameteiamily) which containso. Thisis illustratedin figure5.9.

Without any otherinformationthis allowsthe structureto be upgradedo planarmetric.
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image

Figure5.9: The pencil of conics defined by the fixed image points, which containsw.

Planametricstructureis whenthe planesperpendiculato therotationaxisaredefined
up to metricambiguity(i.e., anglesn theseplanesarecorrect),while thereis anunknown
scalingin the direction of the rotation axis (i.e., an affine skew). This is the ambiguity
introducedby the pencilof conics.

To obtainplanarmetric structure a transformatiorti is appliedto the affine structure
to give the planarmetric structure. The transformatiorti is computedusingthefollowing

constraints:
e Keepr,, fixedat(0,0,0,1)7.
e KeepthefixedpointV fixedat(0,1,0,0)".

e MapthecircularpointsI andJ to (+:,0,1,0) .

Full Metric

However it is commonto assumethat someinformation is known aboutthe camera
calibration. This canbethattheimageaxesareperpendiculaf6l], thattheaspectatiois

known, thatthe principal pointis known (or assumedo be the centreof theimage),or a



5.2 Calibration from Fixed Pointsand Structure Recovery 79

combinationof all three[44]. Eachof thesegivesthe extraconstraintrequiredto identify
w in thepencilof conics.
First, the pencil of conicsobtainedfrom the fixed point constraintsjs describedalge-

braically andthenit is explainechow the extraconstraintareusedto identify w.

Pencil of Conics SempleandKneebong81] give the equationfor the pencil of conics,

definedby two points/tangentgs
s=s"+ A", (5.3)

wheres’ is any conic satisfyingthe constraints] is the line connectinghe two pointson
the conic (herel = i x j), and )\ is the free parametenf the pencil. Theconicll' is the
degenerateonicof two repeatedinesthroughi andj. Fors’, thedegenerateonicformed

by the2 separatdines,l; = v x 1 andl; = v x j, is usedandthisis givenby
s'= L1 + 11 (5.4)
Constraints on Calibration Theimageof the absoluteconicis given by the dual of K

(K = ccT). Usingthedefinitionof ¢ givenin equation(2.4) gives

2 2 2
of +uf+ kS uovo+ ko, uo

2 2
K= uovo + kay, oas +vg v |, (5.5)
(71 (%s) 1
< - (e uo)+arw kv
a? aul oy oyl
K—l — - k ault+k? Qy kuo—auzvo—kz g

oy oy ay?ay? oyl oyl
2
—(Oév Uo)-l-Oév kvo oy kug—auvo—k2 vg ol onltaslug?—2a, k ugvotou? vo?+k2 vo?

aulay?

a2 0y ay?ay?

(5.6)
K~1 is in the pencil of conicsdefinedby s, and eachof the differentconstraintson the

cameraalibrationgivesa solutionfor )\, hencek ! (w).
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¢ | mage skew Themostcommonassumptioraboutcamerecalibrationis thatthereis

noimageskew sothatt = 0. Substitutingthisinto equation(5.6) gives

1 uo
Quz ? auz
-1 _ vo
K - O o2 oy
__uo __ Yo aw? av?taw? u’+aw? vo?
O(uz Olvz Oéuz 0(1;2

It follows thatthe constraintof noimageskewgivesS;, = 0, whichin turn givesa
solutionfor A,

A= =S/ (Ll). (5.7)
Previousmethodq61] haveappliedthe constraintof no imageskewto the dual of
w (i.e., K), which from equation(5.5) givesthe quadraticconstraintof K;,K33 =
K13K,3, with two possiblesolutions. Here the constraintis applieddirectly to
w giving the linear constraintof Kt = 0, which hasonly onesolution. Theseare
related,ascanbe seenby examiningthe cofactorsof K= which for elementk ! is

K12K33 — K13K>3. Theirrelationshigs examinedurtherin section5.2.3.

However aswill alsobe explainedin section5.2.3,in somecircumstancegsommonto
planarmotiontheconstrainbf noimageskewis unstableandcangive poorresults.Rather
thanassumehat theimageskewis zero,the assumptions thatthe imageskewis small

(k < o), thenotherconstraintcanbe utilisedwhich give betterresultsfor planarmaotion.
e Aspect Ratio If theaspectatio (( = «,,/«,) is known,thenfrom equation(5.6)
S11= (*Saz,
whichgives
A= _(3/11 - Czslzz)/(l% - CZ@- (5.8)

e Principal Point If theprincipalpoint(uo, vo) is known(orassumedbo bein thecentre
of theimage)then

1 — upS13 — voS23 = S33,
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whichgives
A= (1 — ‘UoSis — ’UoSés — Sés)/(lg(uOll + ’Uolz + 13)) (59)

Whicheverconstraintis used,an estimateis found for X which canbe decomposedhto
C via Choleskidecomposition.Metric structurecanthenbe recoveredrom affine using

equation(2.16).
5.2.3 Thelmage Skew Constraint

Theassumptiorthatthereis noimageskewis usedoftenin self-calibrationputthe actual
affect of the constrainton w andits dual hasnot beenexaminedin detail. Examining
equation(5.6) showsthatforcing ¥ = 0 constrainso to beof theform

x 0 x
K1=|0 x x
X X X

, (5.10)

wherex signifiesa possiblenon-zercentry. A conicof this form hasits axesalignedwith
the coordinateframe* which hereare the compleximageaxes. Using this constraintto
identify w in a pencilof conicsgivesa singlesolution(seeequation(5.7)). Alternatively,

theconstrainicanbe appliedto thedualof w which givesthe quadraticequation
K1oK33 = K13K»3

which hastwo solutions.Expandinghis equationwith theinternalparametergives
uovo + kay, = uguo

which showsthatthetwo solutionsjf distinct,correspondo & = 0 or «, = 0. Thesecond

solutiongivesa singularmatrix for K, in which casethe conicw hasa degeneratéorm.

4Considera conic consistingof real pointsand havingthe form of equation(5.10), thenits major and
minor axesarealignedwith therealcoordinateaxes.
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Carefulexaminationof equation(5.6) andsettinga,, = 0 givesthe following degenerate
form for w
0 0 O
K1=]0 x x|. (5.11)
0 x x

Applying theconstrainto w ratherthanits dualavoidsthe secondncorrectsolution.

The Unstable Image Skew Constraint

Whenthehorizonline is nearlyhorizontal thezeroimageskewconstraintangive unstable
results. This situationis commonfor planarmotion, becauseften the orientationof the
camerawith respecto the planeof motionis just elevationwith noroll, which resultsin a
horizontalhorizonline.

The pencil of conicsdefinedby the threefixed pointsis shownin figure 5.9, but the
orientationof thepencildepend®nthepositionof thefixed points. Figure5.10showstwo
possiblepencilsof conics,definedby the fixed points,which are at differentorientations
to theimageaxes.Figure5.10ashowsthe situationwith analmosthorizontalhorizonline,
while figure5.10bthe horizonline is inclined substantially A differencebetweerthetwo
pencilsis therangeof conicstherein,which arenearlyalignedwith theimageaxes. The
pencilwith the almosthorizontalhorizonline hasthe muchlarger rangeof conics. In the
limit, with the horizonline horizontal,all the conicsin the pencilwill be alignedwith the
imageaxesandthe constraintwill not give a solution. Whenthe horizonline is nearly
horizontal,a small changen the imageskewwill resultsin significantdifferencesn the

conicchosen.
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Figure 5.10: The pencil of conics defined by two sets of fixed points. (a) with a nearly
horizontal horizon line, and (b) with the horizon line at an angle to the image.

Thecircularpointsarecomplexconjugateandcanberepresenteds

i = (a+bi,c+di,1)7,

i = (a—bi,c—di,1)7,
whichgivesl andll" (seeequation(5.3))as

1 = (2di, —2bi, 2(bc — ad)i) ",
442 4bd 4d(bc — ad)
1" = 4bd 4p2 4b(be — ad) | .
4d(bc — ad) 4b(bc — ad) 4(bc — ad)?
Thematrix1l" defineshevariationin the pencilof conics,andtheimageskewassumption
is concernedvith theelementll’|;, andits relationshipto the otherelements.

It is shownin section5.4 thatthe positionsof the circular pointscanbe expressedn

termsof the horizonline (1), the vanishingpoint (v), anda complexnumber(z), suchthat

i = (—(lls) + la(lov1 — L) + Loz, —(lal3) — l1(lov1 — l1v2) — L1, l% + ZS)T7

i = (—(lls) + la(love — L) + oz, —(lal3) — li(lovg — l1v2) — a2, l% + ZS)T.
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However only theimaginarypartsaresignificantfor 11", andtheseare

b o= 1Sz,

d = LSz

For a horizontalhorizonline, [, > [;, which gives a differencein orderof magnitude

betweertheelementof 11T,

M7 < 12 < [ ]22.

As [117], is usedfor theimageskewconstraintanysmallchangen [117]1, (i.e.,theimage
skewis smallbutnot zero)will give asignificantchangen [117],, butanegligiblechange
in [117]11. Following this throughshowsthatthe estimatefor «, is highly sensitiveto the
imageskewwhenthe horizonline is nearlyhorizontal.

All of theaboveanalysishasignoredtheeffectof s’, thedegenerateonicof two distinct
lines,onthepencilandtheimageskewconstraint. However it canbe shownthatwhenthe
horizonline is nearlyhorizontaltheratio of theelementf s’ and[117] furtherexacerbates
theinstability, suchthat

/
Sll

[T
S1p
~ 1,
11712
S22
[1T]2

> 1

< 1

Theresultof theseratiosis thatchanging\ in equation(5.3) affectsthe valuesof S;, and
S22, buthasnegligibleeffecton Sq;.

The normalassumptiorabouttheimageskewis thatit is smallenoughto be approxi-
matedby zero,butasshownherea smalldifferencein theimageskewcangive significant

differencesn thecalibrationobtained.Othermethod®f self-calibratioravoidthisproblem
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eitherby havingtherotationbetweernviewsarounddifferentaxes(whichremovesheneed
for aconstraintaltogether)pr justchoosingherotationaxis sothatthe pencil of conicsis
notalignedwith theimageaxes.However for planarmotionthe horizontalhorizonline is

acommonscenaricandsothe zeroimageskewconstrainthasto be usedwith care.

5.3 FindingtheHorizon Line and Vanishing Point

Forreasonghatwill beexplainedin section5.4,thefixed imagepointsfor planarmotion
are not found simultaneouslyrathersequentiallywith the apexv andfixed line 1 being
foundfirst.

As statedin section5.1.5, for planarmotion the symmetricpart of the fundamental
matrixF, is adegenerateonicof 2 lines,which correspondo thefixed horizonline (1) and

theimageof the screwaxis(m).

Decomposing F;, ThematrixF, is adegenerateonicof two non-coincidentines. If the

two linesaref; andf,, thenF, canbeexpresseh theform [81, 95]
F, = fif, + fof]. (5.12)

F, isalsoRank2, andso canbe expressedn termsof eigenvaluegd;) andeigenvectors
(vi),

dl O O VI
F, =VDV' = [ Vi Vy V3 ] 0 d O 2 (5.13)
0O 0O vy
Comparingequationg5.12) and (5.13) gives an expressiorfor the linesf; andf,. The

eigenvaluesiresuchthatd;d, < 0, sothattherearetwo alternativeexpressions.

If dl > O,

fi = \/d71V1—|- —dava,

fz \/671V1 — —szz, (514)
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orif d; <0,

fi = \/672V2—|- —divi,

\/672V2 — —dlvl. (515)

f

Whichlinescorrespondo I andm is determinedy thefact thatthe epipoledie onl (see
section5.1.5). Whenusinga non-linearminimisationto computeF the parameterisation
for planarmotiongivenin equation(A.5) usesf; andf, assomeof the parametersyhich

avoidstheneedto decompose,.

Finding theFixed Linel

As is shown above, the fixed line 1 can be estimatedfrom the symmetricpart of the
fundamentalmatrix F,. However for real imageswith noise, the estimatefor 1 from
differentF,’s will not necessarilype the same. Somemethodis requiredto find a best

estimatdrom severadifferentestimates.

Finding the Fixed Point v

Eachpair of images(viaF,) givesaline in theimagewhich is animageof theassociated
screwaxis. All thesdinesinterseciatthe pointv, henceit is termedtheapexor vanishing
point (seesection5.1.4). Forrealimagesheydo notintersectanda least-squaresiethod
is used(seesection5.5) to give a bestestimate.lf thecameramoveswith circular motion,
sothatit fixateson a pointin thescenethescrewaxeswill bethesamdine andtheimages

of theaxiswill becoincidentandtheintersectiorpointwill notbedefined.
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5.4 Findingthe Circular Points

The circular points are found using the trifocal tensoy which allows points which are
fixed overthreeimagesto be found. Generally the methodis algebraicallycomplexand
involvessolvingthreesimultaneou$ourth-ordempolynomialsof threevariables.However
by stratifyingthe problemandusingthefundamentamatricego find the positionof oneof
thefixed pointsandthe fixed line containingthe threeremainingfixed points,the algebra

canbereducedo solvingasinglecubicin onevariable.

54.1 TheTrifocal Tensor

Thetrifocal tensordescribeshefundamentajeometriaelationshigbetweerthreeimages,
andcanbecalculatedvithoutknowledgeof thecameraalibrationor relativepositions.It is

theculminationof developmentby anumberof author426, 41,83,85,92,93, 96,99,106].

The tensormapsboth pointsandlines, andthe points/linesare mappedrom two images
to the correspondingoint/linein thethird. Thisis differentfrom the fundamentamatrix,

which describeghe epipolargeometrybetweerntwo views, andmapspointsin oneimage
to the correspondingpipolarlinesin the second.

Thetrifocal tensoris a Rank3 tensorcontaining27 elementsandis givenby

T/* i k=1,...,3 (5.16)

K3

The tensorhas 18 degreesof freedom[92, 106], and the 27 homogeneouparameters
satisfy 8 algebraicconstraints. This is analogougto the fundamentalmatrix having 9
homogeneouparametersatisfyingone algebraicconstraint. The underlyinggeometry
andthemathematicsf thetransferof pointsandlinesis describedy Zissermarj106|, and
involvesboth transferandincidencerelationships. The points/linesare transferredrom

the first imageto the third (second)imageusinga homographyandthe homographyis
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computedisingthetrifocal tensorandaline in thesecondthird) image.Whentransferring

points,theline in thesecondthird) imagehasto pasghroughthecorrespondingoint. The

tensoralsoencodesheincidencerelationshipof pointsand/orlinesoverthethreeimages.
Howeverthework hereuseghetrilinearity equation$41, 83] wherethecorresponding

pointsin threeviewsarerelatedby
o) = 2l Y — 22, T}, (5.17)
andcorrespondinginesarerelatedby
L = LT, (5.18)

wherex, x’, andx” (1, 1’, andl”) arethe points(lines)in thefirst, secondandthird views
respectively

Thetensoris alsorelatedto thethreecameramatricesP, P/, andP” which mapthepoint
X in 3-spacdo x, x’, andx” respectivelyP is setto the canonicaform [I|0], andp} and

p/ arethecolumnsof P’ andP”, suchthat
. T T
T7 =p/Ps — PaP; (5.19

Thetensoiis usefulfor finding fixed entitiesbecausequationg5.17)and(5.18)canbe
usedofind thepositiondor fixedimagepointsandlines,suchthatsubstitutingc = x’ = x”
into equation(5.17)gives

T = $Z'CL’kT]zl — CL’]'JBkT]il. (520)

Substituting =1’ = 1” into equation(5.18)gives

l; = LIT!" (5.21)
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5.4.2 Fixed Pointsand Linesfrom the Trifocal Tensor

Section5.1.5showedthat for planarmotion therearefour fixed pointsfor any triplet of
images. It alsoexplainedthatthe lines joining thesepointsare alsofixed over the three
views. Section5.2 showedthat knowingthe positionof the fixed pointsallows affine or
metricstructureto berecovered.

However finding the positionsof the fixed linesis equivalentto finding the position
of the fixed points. So ratherthanuseequation(5.20)to find the position of the fixed
points, it is easierto proceedwith equation(5.21)to find the positionof the fixed lines.
Equation(5.21)is only equivalenupto ascalefactor, soby takingthecrossproductof each
sideandequatingo azerovector, resultsn threesimultaneousiomogeneousquationgor
thecomponent®f 1.

Normally, solvingsimultaneoupolynomialequationss adifficult numerically problem.
However it is shownbelowthatfor planarmotionit is possibleto reducethe solutionto a
singlecubicequationn onevariable. Thisis achievedyy aplaneprojectivetransformation

of theimages.

Special Planar Motion

Initially, the caseof a calibratedcamerais consideredwherethe rotationis aboutthe
camera” (vertical)axis,andthetranslations confinedto the X 7 (horizontal)plane.The
camereacalibrationcanbesetto theidentity (C = I), andit canbeassumedhatthecamera

is pointinghorizontally Fromequation(2.2),thethreecameramatricesare
Pom = [1]0],
Pom = [R[t],

P// — [R// | t”],
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whereR’ andR” arerotationsaboutthe Y axis,andt’ andt” aretranslationdn the X7

plane.lt follows thatboth?’! andp”  areof theform

spm spm

|

where0 represents zeroentryand x represents non-zeroentry. Thistype of motionis

X o X
o X O
X o X
X o X

] , (5.22)

calledspecial planar motion.
Now the format of the trifocal tensoris computedfrom equation(5.19). Using the

formatof the projectionmatricesn equation(5.22),it is easyto showthat

[ x 0 x
T, = 00 O] fore =1,3
| x 0 x
[0 x O
Ty = x 0 x], (5.23)
| 0 x O

sothatthereducedrifocal tensorhasonly 12 non-zercelements.

Usingthisreducedorm of thetensorequation(5.21)canbewrittenin theform

Zl all% + bllllg + Cll%
12 = dzlllz + 62[2[3 (524)
13 agl% + 631113 + Cgl%

which haseightparameterga;, . . ., ¢3), alinearcombinationof the non-zeroslementf

thereducedensor

ap = T
b= TPP+T5
a = It
d = T3+ 13,
2 = 137+ 137

11
a3 = T3 )
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by = T3°+ 15"

Cc3y = T:;?s

Thefixed linescanthenbe foundby solvingthis setof equations.

Oneof thefixed pointsin theimageis v, theimageof the intersectiorof the rotation
axisandr,. Heretherotationaxisis (0,1,0,1)",soV = (0,1,0,0)", andtheimagepoint
isv =(0,1,0)". Also, thehorizonline (seefigure5.7b)is theimageof theintersectiorof
the planeof motionandr.,. Herethe planeof motionis the X Z plane,andso thefixed
line on 7, is (0,1,0,0)7, andimageof this (the horizonline) is (0,1,0)". Soonly the
positionof thethreefixed linesthroughv (seefigure5.7b)areunknown.All linespassing
throughv havetheform (71, 0, /3), andsoit canbeassumedhat/, = 0, andequation(5.24)
reducego theform

2 2
(h)=(mdmtad) 529
Cross-multiplyingo removethe scalefactor, reducest to a singleequation

I3(aald + bililz + c113) = l1(asl? + bslals + c3l3). (5.26)

Thisis ahomogeneousubic,andmaybe solvedeasilyfor theratio /; : /5.

Thesolutiongto thiscubicarethethreelinespassinghroughtheapexv, whichintersect
the horizonline at 3 distinctpoints. Thesethreepointsarethe imagesof the two circular
points(i andj), andthethird fixed point (x). In the particularcalibratedcaseconsidered
here, the circular points have coordinates(+:,0,1)", and hencethe lines in question
joining the circularpointsto theapexare (1,0, +¢). This givestwo complexsolutionsto
theequation(5.26). Theimageof thethird fixed pointis areal point correspondingo the

third solutionof (5.26).
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General Planar Motion

Now, general planar motion is consideredwherethe calibrationandthe orientationare
not known (i.e., it cannotbe assumedhat the camerais pointing horizontally). All that
canbeassumeds thattherotationis aboutthe Y axisin the world coordinat€rame,the
translations confinedto the X 7 plane,andthatthefirst cameras centredat the origin of

theworld coordinatdrame. The projectionmatricesarenow of theform

Popm = H[I | 0]7
P,.. = HR[t], (5.27)
P// — H[R// | t//],

whereH containsthe unknown(constantcameracalibration,andorientationwith respect
to theworld coordinatedframe.

Whencomparingthe special planar motion andthe general planar motion, it canbe
shownthat the fixed lines undereachtype if motion arein one-to-onecorrespondence.
Considera line in spacethat mapsto the sameline 1 in all threeimagesunderthe action
of the cameraprojectionsmatricesP,,,., P, andP;  givenin equationg5.28). The
transformatiom representthesameprojectivetransformatiorior eachof thethreeimages.

If afurtherprojectivetransformationrepresentetly H, is appliedto eachof theimages,

theneteffectis thatof projectingvia cameraransformations

P = H_lpgpm =[1]0],
' —1p _ ! 14
P = H ngm - [R‘ | t ]7
P// — H—1P// — [R// | t/]

gpm

However the projectivetransformatiori—! mapstheline 1to H'1. This showsthatl is a

fixed line for threeviews undera generalplanarmotion,if andonly if 1 = H'1 is a fixed



5.4 Findingthe Circular Points 93

line for threeviews underspecialplanarmotion. Sothe fixed points/linesundergeneral
planarmotionarein one-to-oneorrespondenc® thoseunderspecialplanarmotion.
Unfortunately the projective transformationis not known a priori, andthe trifocal

tensordoesnot havethe sameform asin equation(5.23). It is still possibleto solvefor
thefixedlinesusingthe samemethodasusedfor the specialplanarmotion,butratherthan
achievingthevectorequation(5.24),thefollowing is obtained

Iy B2 (14,15, 13)
( I, ) = ( K@ (1,15, 13) ) : (5.28)
h”(z)(ll, l2, 13)
whereh @, '@ p"2) arequadratigpolynomials. It alsocannotbe assumedhat/, = 0, so

settingthe crossproductto zeroleadsto threesimultaneougolynomialequations

lzh//(z)(ll, lz, 13) - lsh/(z)(lla 127 13) = O,
13021y, Iz, 13) — 1h" P11, 12, 1) = O, (5.29)

L (14, 1y, 13) — 1P (1, 15,15) = O.

In principle, theseequationscan be solvedto give the positionsof the four fixed lines.
However thethreeequationsn (5.30)arenotlinearly independentandtherearejusttwo
linearlyindependentubicequations Sogivenatrifocal tensorcomputedrom realimages
with noise, different solutionswill be obtaineddependingon the two cubicsequation
chosen. Also, the numberof solutionswill increase with a worst casescenarioof 27
possiblesolutions. It will bevery difficult to choosethe four correctsolutions,especially
if thereareseverakolutionscloseto thehorizonline.

However asthereis a one-to-onecorrespondencbetweernthe fixed lines of general
planarmotion and thoseof specialplanarmotion, it is possibleto reducethe algebraic

complexityof thesolutionfor generaplanarmotion. Thisis explainedn the nextsection.
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Normalised Planar M otion

In specialplanar motion, the horizonline (1) and vanishingpoint (v) are at (0,1,0)7,
while for generaplanarmotiontheir positioncanbefoundusingthefundamentamatrices
(seesection5.3). The canonical transformation is theimage-to-imageprojectivity which
mapsthe horizonline andvanishingpoint to their canonical positionsat (0,1,0)". The
concatenationf animage-to-imagerojectivity ontothe projectionmatricess effectively
anewcamergrojectionfor thethreeviewsandcameranotion. Thisscenarias calledthe
normalised planar motion, wherethehorizonline andvanishingpointarein theircanonical

position.

Canonical Transformation The canonicaltransformations requiredto map both the
line1to (0,1,0)", andthe point v to (0,1,0)". A possibletransformationcloseto a

Euclideantransformatior(seeappendixB.3) is

lz —ll ll‘l)z—lz’vl
H=| L b I3

= =h =l3
lv lv lLv + 1

(5.30)

The new projectionmatricesfor the normalisedplanarmotion, still differ from those
for the specialplanarmotion by a further plane projectivity, but the projectivity hasa
specialsimpleform. The vanishingpoint andhorizonline havethe coordinateg0, 1,0) "
for bothtypesof planarmotion. This meanshatthe planeprojectivetransformationt)
mustmapthepoint(0,1,0)" to (0,1,0) ", andtheline (0,1,0) to (0,1,0) 7, which gives

theequations

(0,,0" = H(0,1,0)7,

(0,1,00" = H'(0,1,0)7,
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whichresultsin H havingtheform

.

For specialplanar motion, the trifocal tensorhasthe reducedform given in equa-

X o X
o X O
X O X

] . (5.31)

tion (5.23). The specialplanarmotion and normalisedplanarmotion are relatedby a
planeprojectivetransformatiorof form givenin equation5.31). Theaffectof aprojective
transformatiorof theimageon thetrifocal tensoris describedn appendixB.2, andgiven
in equation(B.3). Usingthereducedrifocal tensor andapplyingthe projectivetransfor
mationof theform of equation(5.31),showsthatthetrifocal tensorhasthe samereduced
formfor thenormalisedlanamotion. Thisresultallowsthemethodof finding thecircular
points,via the reducediensoranda single cubic equation to be usedfor the normalised

planarmotion.

5.5 Algorithmsfor Self-Calibration from Fixed Points

In this section,the implementedalgorithmsusedfor self-calibrationfrom fixed points
andplanarmotionareexplained.Following the generaltheme the algorithmshavebeen
stratifiedsuchthat: first, the fixed imagepoints/linesarefound (seealgorithm5.1); then,
affine structureas recoveredfinally, eitherplanarmetricor full metricstructures obtained

(seealgorithm5.2).

55.1 Algorithm for Finding the Fixed Points

Section5.1.5showedthat for animagetriplet from a cameraundegoing planarmotion,
therearefour fixed pointsandfour fixed lines intersectinghe fixed points. Section5.4.2
introduceda two-stagemethodfor finding the positionsof thesefixed points. First, the

fundamentamatricesareusedto find a fixed line andfixed point. Thenthetrifocal tensor
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is usedto find the positionsof the threeremainingfixed points,with the original line and

pointbeingusedto reducethe numericalcomplexityof this stage.

The Fundamental Matrices Thecorrespondingpoint matchesarefoundautomatically
with outlier detection by the methodsof Beardsleyet al. [8]. Thefundamentamatrixis
thencomputedor all imagepairs,usingthe matchedmagepoints,anddetailsaregiven
in appendixA.3. The planarmotion parameterisatioff5] givenin appendixA.2 is used
whencomputingthe fundamentamatricesandthis ensureshatF, is Rank2.

The symmetricpart of the fundamentalmatrix is a degenerateonic of two lines,
correspondingo the horizonline andthe imageof the screwaxis. Usingtwo or more
matrices the vanishingpoint, aswell asthe horizonline, canbe found. However when
usingrealimagestherewill notbe anexactsolutionfor the horizonline or thevanishing

point.

TheHorizon Line At leasttwo method=xistfor finding the positionof the horizonline

from severakstimategoneestimatgrom eachimagepair):

e Fitting to Epipoles All the epipolesare constrainedo lie on the horizonline (see
section5.1.5), and so the fixed line can be estimatedas the bestfit line, using
orthogonalegressionthroughall the epipoles.Howeverthereareseveralkcenarios

wherethis couldgive erroneousesults:

— if thegeneralparameterisatiois usedfor F, then(dueto imagenoise)F, may
not be Rank2, andthe epipoleswill notlie onl. However usingthe planar
motion parameterisatiofor the fundamentamatrix removesghis problemand

it is nolongeranissue.
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image

Figure5.11: The incorrect fitting of the horizon line. The actual horizon line is shown
dotted. The epipoles (x) and image lines (solid) from each fundamental matrix are also
shown. The estimate of the horizon line obtained by fitting a line to the epipoles is shown
short-dashed, and is obviously incorrect, while the estimate obtained by taking the mean
position of the individual estimatesis shown long-dashed and is more accurate.

— if only afew imagepairsareusedandtherotationbetweenviewsis smallthen

theline throughthe epipolescouldgive anerroneousesults(seefigure’5.11).

¢ Mean Position Ratherthanusethe epipolesit is simplerto takethe meanposition
of thelineswhich arethedifferentestimategor the horizonlinesfrom eachr. Care
needsto be takenas outlying resultscan producesignificantchangesn the mean
position. Section6.2.1discussethe weightingof eachestimatewith its covariance,

whichreducegheeffect of outlying estimates.

Two typical setsof estimategfrom realdata)for thehorizonline areshownin figure5.12,
andfigure 5.12bshowsa setof estimatesvherefitting to the epipolesgivesan erroneous

resultcomparedo takingthe meanposition.
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Figure5.12: Finding the position of the horizon line with different methods. The solid
black line is the mean position of the different estimates shown in grey, while the dashed
black line isfitted to the epipoles (x). For someimages (a), both methods produce similar
results, but the fitting to epipoles can produce an erroneous value (b), depending on the
position of the epipoles.

The Vanishing Point Eachpair of images(via F,) givesa line in the image,which is
theimageof theassociatedcrewaxis, andtheselines shouldintersectat the point v (see
sections.1.4). With realimagestheywill notintersectandthevanishingpointis estimated
asthe point which minimisesthe perpendiculadistancefrom eachline to the point. The

detailsaregivenin appendixC.2.

A Batch Method Ratherthancomputeeachfundamentamatrix andthenusetheimage
lines to computethe position of the vanishingpoint and horizonline, it is possibleto
usea batchparameterisatiofor severafundamentamatriceswherethe horizonline and
vanishingpoint are useddirectly asparameters.As a result, the positionsof thesefixed
entitiesareobtainedvhencomputinghefundamentamatricesvhichavoidshavingto find
a bestestimate.More detailson the batchparameterisationanbe foundin section6.2.2.
Theremaindeof this chapterusesthe methoddescribedaboveto computethe positionof

thevanishingpointandhorizonline.
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e Computer for all imagepairs.
e DecomposeachF; to give two imagelines.

¢ Computethe positionof thehorizonline (1) andvanishingpoint (v) using
thesetof imagelines.

e Formthecanonicakransformatior(t.), andapplyto all images.
e Computethereducedrifocal tensorfor all imagetriplets.

e Foreachtensorsolvethecubicequation5.32),andthecomplexsolutions
correspondo theimageof thecircularpoints.

e Usetheinversecanonicakransformationto give the positionof circular
points(i andj) in therealimage.

Algorithm 5.1 Finding the fixed image points of planar motion.

The Canonical Transformation The canonicaltransformation(H,) is computedusing
thepositionof thehorizonline andvanishingpoint, usingequation5.30). Theneachimage
is transformeadwith this projectivetransformationsothattheimagesequenceorresponds

to normalisedplanarmotion.

The Reduced Trifocal Tensor With normalisedplanarmotion, the trifocal tensorhas
only 12 non-zeroelements.This reducedensoris computedusing point matcheswvhich

havebeentrackedthroughtheimagetriplet. Detailsaregivenin appendixB.1.

TheFixed Points A singlecubicequatiorfor the positionsof fixed linespassinghrough

v is formedusingequation(5.26)

T3R2 4+ (TR+ T3 - T332+ (T - 18R -T2 — T3 = 0. (5.32)
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A closedform solutionexists[1]. Therearethreesolutions(onerealandtwo imaginary).
Therealsolutioncorrespondso thefourth fixed point x, peculiarto theimagetriplet (see
section5.1.5),andis discarded. The complexsolutionsarethe fixed lines (1,0, z) T and
(1,0,z)" which intersectthe horizonline (0,1,0)" at the image of the circular points
(—2,0,1)" and(—z,0,1)". Theinversecanonicakransformations appliedto theimage

of thecircularpoints,to give the positionof i andj in therealimage.

i = H'(-2,0,1)7,

i = HY(-%0,1)7. (5.33)
5.5.2 Algorithm for Recovering Affineand Metric Structure

As mentionedpreviously the threefixed imagepoints (v, i, andj) areimagesof three
non-collinearpointson the planeat infinity, andif thesepointsare back-projectednto a
projectivereconstructionthey uniquelyidentify =.,. This allows affine structureto be
recovered. The threepoints also give 4 constraintson the position of the imageof the
absoluteconic, so given onefurther constrainton cameracalibration,the conicw canbe
identified,andthencemetricstructurerecovered.

Theprojectivestructuras computedy back-projectinghematchedmagepointsfrom
eachimageof thetriplet. This requirescomputingthe cameraprojectionmatrices. It is
essentiakthat thesethree matricesare consisten{i.e., that rays back-projectedrom the
fixed pointsarenotskew). Thisis especiallimportantherebecause¢he pointsbeingback-
projectingare complex,andhaveno metric for measuringprojectionerrorsfor complex
pointsin theimageplane.

Consistentcameraprojectionmatricescan be obtaineddirectly by decomposinghe
trifocal tensor Hartley[41] showedthat the threeprojectionmatricescanbe computed

from the trifocal tensoy but thatthis is a difficult problemproneto instability. However
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e Computethree consistentcameraprojection matricesfrom the reduced
trifocal tensorandtheinversecanonicakransformation.

e Back-projectheimagepointsto recovera projectivereconstruction.

e Back-projecthefixed points,andidentify r., in the projectivestructure.
e Upgradeto affine structureusingequation(2.14)andthe positionof = .
¢ Usethefixed pointsto computethe pencilof conicscontainingo.

¢ Useanotherassumptiono identify w, andobtainthecameracalibration.

e Upgradeto metricstructureusingequation(2.16).

Algorithm 5.2 Affine and metric reconstruction using the fixed points.

for normalisedplanamotion,thetensorhasareducedorm with 12 parametersandit also
knownthatthe projectionmatriceshavea reducedorm with only 12 degree®f freedom
in total (seesection5.4.2). An algorithmfor computingconsistenprojectionmatricesfor
normalisecplanarmotionis givenin appendixB.4.

The image points can now be back-projectedo recovera projective structure. The
position of the fixed points are also back-projectedusing the sameprojection matrices,
and the plane at infinity is computedas the plane passingthroughthesefixed points.
Conventionalkffine structurecanbe recoveredusingequation(2.14). Using the method
in section5.2, andone other constrainton cameracalibration,the imageof the absolute
conic canbeidentifiedandhencethe calibrationC canbe found. Metric structurecanbe
recoveredrom theaffine by usingequation(2.16).

If noassumptiortanbemadeaboutthe cameracalibration,thenthestructurecanonly
be recoveredup to planarmetric. The planarmetric structurecan be recoveredoy two

methods. The aspectratio canbe setto an arbitrary value, andthe methodproceedsas
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if recoveringfull metric structurefrom the affine reconstruction Alternatively, the affine
structurecanbetransformedothatthe3-spacepositionof thecircularpointsI andJ mapto

(1,0£4,0)7, thevanishingpoint V isfixed at(0,1,0,0)", andr ., is fixedat(0,0,0,1) .

5.6 Resaultsfor Self-Calibration via Fixed Points

Severalreal imagessequencefiavebeenusedto demonstrateéhe effectivenesf self-
calibrationandaffine/metricreconstructiorusingfixed points. In somesequenceknown

measurementslow theaccuracyof thereconstructioio bemeasuredThesequenceare:

e Sequence | The camerais mountedon the Adept robot arm, and thereare eight
imagesin the sequencdseefigure 5.13). The plane of motionis parallelto the
desk,andthe axis of rotationis vertical relativeto the desk. Thecameras elevated
at approximately25° to the cameraY axis with no yaw or roll. 149 points are
automaticallymatchedandtrackedthroughthe eightimages. The Tsaigridsin the
sceneareusedto provideveridicalvaluesfor the structurewhich allow theaccuracy
of thereconstructiomo bemeasuredtheyarenot usedo calibrate). Theapproximate

calibrationis (o, = 100Q ¢ = 1.02, (0, vo) = (400, 300)).

e Sequences Il Threesequencearetakenwith a cameramountedon an AGV, and
only the elevationof the camerais changedetweensequencesThe approximate
calibrationis («, = 345 ( = 1.1, (uo, vo) = (126,126)). The differentsequences
are:

— Sequence |l a elevationangleof 10°.

— Sequence | I b elevationangleof 20°.

— Sequence | I c elevationangleof 30°.



5.6 Resultsfor Self-Calibration via Fixed Points 103

Pointsaretrackedoveratleastfourimageqaquartet), andthefundamentamatrices
andtrifocal tensorsaarecomputedor thepossiblecombinationsn eachmagequartet.
Thenumberof pointsmatchedor thequartetsvariesbetweer24 and80 points. The
low numberof matchedpointsoccurbecausdor somequartetshereis significant

rotationbetweernviewsandthe cameras notfixatedon anyparticularobject.

5.6.1 Sdf-Calibration

Theresultsfor eachsequencaresplitinto severapartsandgivenin thefiguresandtables

onpagesl07-117.

Horizon Line and Vanishing Point

The fundamentamatrix is computedfor all possibleimagepairs,andthendecomposed
to give the two imagelines and epipoles. For eachsequenceheseare displayedon a
figurewhich containseachestimateor the horizonline (dotted), theimageof eachscrew
axis (dashed), andthe epipoles(x). The figure alsoshowsthe estimatedoositionof the
vanishingpoint (o), andthe estimateof the horizonline (solid) computedusingthe mean
positionof all estimates.

The resultsshowthat the estimatefor the horizonline andimageof the screwaxes
showsomevariationovertheimagesequencejutthatan accuratesstimateof the horizon
line and the vanishingpoint can be madegiven enoughimagepairs. Sequencdl (see
figure5.24)showthatthevanishingpointis betterconstraineavith theincreasingelevation

angle,butthatthehorizonline is not.
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Circular Points

The trifocal tensoris computedfor all possibleimagetriplets and eachtensorgives an
estimatefor the positionsof the circular points. The distributionof the circular pointsfor
eachsequencés shownin the appropriatdgable. Theresultsshowthatthe circular points
computedrom differenttripletsarestable andthatwith sequencd this stabilityincreases

with elevationangle.

Calibration

The cameracalibrationis computedusing eachestimateof the circular points with the
singleestimatefor the positionof vanishingpoint. Resultsaregivenfor two assumptions
aboutthecameracalibration thateithertheimageskewis zeroor theaspectatiois known.
Thedistributionof the computedtalibrationis shownin the appropriateable.

Theresultsshowthatcomputectalibrationis stableovertheimagesequencandsimilar
to the approximatevalues. For eachsequencethe resultsobtainedwith the aspectratio
assumptiorare morestable(andaccuratethanthoseobtainedwith the zeroimageskew
constraint.This observatioragreesvith thetheoryin section5.2.3.

Theresultsfor sequencd showthatthepositionof v, changesvith theelevationangle,
andmovesfrom thenominallycorrectpositionof 110pixelsto 24 pixels. Thecauseof this
drifting hasnot beenidentified, but asthe next sectionshows,the accuracyof the metric
reconstructioms notaffected. This changan positioncouldbedueto thenormalvariation

of principalpointobservedn othercalibrationmethods.

5.6.2 Structure Recovery

For sequencé, the structurein the scends known, andso the accuracyof the affine and

metricstructurecanbe measuredy comparingaffine andmetricinvariantsto theveridical



5.6 Resultsfor Self-Calibration via Fixed Points 105

values.

Theaffineinvariantusedss theratio of parallellines,andtenrandommeasurementsre
madeusingthepointsonthecalibrationgrid andcomparedo theveridicalvalueof 1.0. The
tenmeasuremen@remadeon thereconstructiorusingeachtriplet, andthedistributionof
theresultsareshownin table5.4.

The metric invariantsare the anglesbetweenthe planesof the calibrationgrid (see
figure 5.15). Planesarefitted, using orthogonalregressionto 23 and 18 pointson the
left andright faces,and 15 pointson the top row. The anglebetweenrthe planesis then
comparedo the veridicalvalueof 9C°. Thedistributionof the measure@nglesis shown
in table5.4.

Thevaluescomputedor theaffineandmetricinvariantsshowthatthereconstructions
stableandaccurate Figuress.16and5.17showoneof theaffineandmetricreconstructions,
with the imagetexturemappedonto the reconstructiorto aid visualisation. Figure5.16
containsaffine skewin thereconstructiorwhich hasbeenremovedn figure5.17.

Forsequencd, fewerinvariantscanbemeasuredh thereconstructiondyutfigure5.25
showsthelinesjoining threepointswhosepositionsin theworld andin the reconstruction
areknown. This allowsthe Euclideaninvariantsof anangleandtheratio of non-parallel
linesto be measuredn the reconstruction.Using the reconstructiorfrom the first quartet
(four images)from sequenceBb andlic, theangleis measure&s89 (llb) and84° (lic)
comparedo theveridicalvalueof 90°, andtheratio of thelinesis measureds0.61 (IIb)

and0.59(llc) comparedo theapproximatereridicalvalueof 0.65.
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Summary

This chapter has presented a novel method for self-calibrating a camera moving under
planar motion. The method is based on the idea that there are pointsand linesin theimage,
with corresponding points and lines in the world, that remain fixed during planar motion,
and whose position is closely related to the camera calibration.

Thetheory of how thesefixed entitiesarise and how their position deter minesthe camera
calibration was explained in detail. The algorithmto find the position of these fixed entities
using three images was given, and it utilised the idea of stratification. First a fixed point
and line are found using the fundamental matrices. Then the positions of these are used
to reduce the algebraic complexity of finding the remaining fixed points using the trifocal
tensor. Extensive results were given for real image sequences and those results were shown
to be both stable and accurate.

The zero image skew constraint, a very common assumption used for calibration, was
shown to be unstable under certain circumstances, which are common for a camera moving
under planar motion.

Thenext chapter triesto estimatethe covariance of the calibration parameter scomputed

using the algorithm presented in this chapter.
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Figure5.13: The eight images of sequencel.
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Figure5.14: Estimating the horizon line and vanishing point for sequence I. The epipoles
(x), thehorizonlines (grey solid), and theimage of the screw axes (grey dashed) are shown
for all image pairs. The vanishing point (o) is at (558,1967), and the horizon line (black
solid) at (—2.8¢74,3.9¢73, 1) which passes through (0,-255).
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Circularpoint
r Y
Mean 3154+ 1223 | —278F 88&
Median | 321+ 1225 | —278F 88&
Std.Dev. | 38+ 38& 3F 3

Table5.1: The statistics for the position of the circular point in sequence| estimated using
all possibletrifocal tensors and the values for v and | from figure 5.14.

Oy Oy C Uo 0] k
Mean 1020| 1041| 1.021| 391 | 422 | 41
Median | 1021| 1044| 1.021| 396 | 429 | 38
Std.Dev. | 18 18 | 0.001| 23 | 46 | 18

Table 5.2: The statistics for the calibration in sequence | estimated using all possible
circular pointsfromtable 5.1 and the known aspect ratio of 1.02.

ay, ay, ¢ ug | vo

Mean 1097| 900 | 0.822| 363 | 173
Median | 1095|908 | 0.825| 369 | 179
Std.Dev.| 39 | 44 | 0.061| 37 | 54

o O o=

Table 5.3: The statistics for the calibration in sequence | estimated using all possible
circular pointsfromtable 5.1 and the zero image skew constraint.
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Figure5.15: The orthogonal triad of angles on the calibration object (highlighted) which
are measured in the metric reconstruction from sequence |, and compared to the veridical
values of 90°. The angles are measured between the planes of calibration grid, and the
planes are fitted by orthogonal regression to 23 and 18 points on the left and right grids,
and 15 points on the top row.

Affine Metric Invariants

Invariant| Anglel | Angle2 | Angle3
Mean 1.017 84.4 87.6 89.9
Median 1.012 84.0 88.4 91.0
Std.Dev. | 0.061 3.0 5.2 5.8

Table5.4: The statisticss for the invariants measurements made in the affine and metric
reconstructions for sequence |. The affine invariant is the ratio of parallel lines measured
on the calibration grid, with 10 measurements made in each reconstruction, and with a
veridical value of 1.0. The metric invariants are the three orthogonal angles shown in
figure 5.15 with a veridical value of 9C°.
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Figure5.16: Two views of the affine reconstruction from sequence I, with the image texture
mapped onto the reconstruction. Note, the affine skew in the grid and between the grid and
the desk.

Figure5.17: Two views of the metric reconstruction from sequence I, with theimage texture
mapped onto the reconstruction. Note, all the affine skew has been removed with the grid
being orthogonal to the desk.
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Figure5.18: The seven images of sequence lla.
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Figure5.19: Estimating the horizon line and vanishing point for sequencella. The epipoles
(x), thehorizon lines (grey solid), and theimage of the screw axes (grey dashed) are shown
for all image pairs. The vanishing point (o) is at (455,1787), and the horizon line (black
solid) at (—4.9¢4, —1.9¢72, 1) which passes through (0,54).
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Circularpoint

z Y
Mean 1504+ 294 | 50F &
Median | 128+ 289 | 50F 8
Std.Dev.| 574+19% | 2+ 0

Table5.5: The statistics for the position of the circular point in sequence lla estimated

using all possible trifocal tensors.

Ay Oy C Uo 0] k
Mean 290|324 | 1.117| 161 | 113 | 50
Median | 285| 319| 1.119| 140| 111 | 54
Std.Dev. | 18 | 20 | 0.007| 55 | 9 | 12

Table5.6: The statistics for the calibration in sequence lla estimated using all possible
circular points, assuming the aspect ratiois 1.1.

a, | oy ¢ ug | vo | k
Mean 294|116 0.393| 152| 58| 0
Median | 289| 111| 0.374| 129| 57| 0
Std.Dev. | 19 | 15 | 0.043| 57 | 1 |0

Table5.7: The statistics for the calibration in sequence lla estimated using all possible
circular points, assuming the image skew is zero.
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Figure5.20: The seven images of sequence l1b.
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Figure5.21: Estimating the horizon line and vanishing point for sequence I1b. The epipoles
(x), thehorizon lines (grey solid), and theimage of the screw axes (grey dashed) are shown
for all image pairs. The vanishing point (o) is at (139,1023), and the horizon line(black
solid) at (6.7¢°, 1.5¢~12, 1) which passes through (0,-84).
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Circularpoint

z Y
Mean 1044+ 362 | —86F 2
Median | 125+ 344 | —86F 2
Std.Dev. | 89+ 103 1+ 1

Table5.8: The statistics for the position of the circular point in sequence b estimated

using all possible trifocal tensors.

Oy Oy C Uo o) k
Mean 330|363 | 1.100| 123| 50 | 5
Median | 324 | 356| 1.100| 127 |44 | 3
Std.Dev. | 20 | 22 | 0.001| 14 |19 |6

Table5.9: The statistics for the calibration in sequence I1b estimated using all possible
circular points, assuming the aspect ratiois 1.1.

a, | oy ¢ uo | vo | k
Mean 338|253|0.801|121| 2 |0
Median | 337 | 225| 0.672| 126| -38 | O
Std.Dev. | 39 | 119|0.531| 16 | 117| 0

Table5.10: The statistics for the calibration in sequence I1b estimated using all possible
circular points, assuming the image skew is zero.
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Figure5.22: The seven images of sequencellc.
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Figure5.23: Estimating the horizon line and vanishing point for sequencellc. The epipoles
(x), thehorizon lines (grey solid), and theimage of the screw axes (grey dashed) are shown
for all image pairs. The vanishing point (o) is at (241,743), and the horizon line (black
solid) at (4.7¢=%,6.2¢~3, 1) which passes through (0,-160).
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Circularpoint
r Y
Mean 110+ 377 | —169F 2%
Median | 110+ 372 | —1697F 28
Std.Dev. | 17+ 20 1+ 2

Table5.11: The statistics for the position of the circular point in sequence Ilc estimated
using all possible trifocal tensors.

Oy Oy C uo 0] k
Mean 338 | 373|1.105| 138| 24| 30
Median | 335| 370| 1.105| 137 | 20| 31
Std.Dev. | 12 | 13 | 0.002| 15 | 19| 7

Table5.12: The statistics for the calibration in sequence lic estimated using all possible
circular points, assuming the aspect ratiois 1.1.

Oy Oy C Up Vo
Mean 361| 265| 0.733| 122 | -83
Median | 359| 259| 0.726| 121 | -90
Std.Dev. | 14 | 29 | 0.060| 18 | 25

o O o

Table5.13: The statistics for the calibration in sequence lic estimated using all possible
circular points, assuming there is no image skew.
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Figure5.24: Thethreeresultsfor sequences|| juxtaposed, showing that the vanishing point
is better constrained with increasing elevation angle, but that the horizon lineis not. The
full results for each sequence are shown in figures 5.19, 5.21, and 5.23 which also explain
the notation.

llc

Figure5.25: The Euclidean invariants measured in the reconstruction from sequences I1b
andllc. Theright angleismeasured as89 (11b) and 84° (l1c) respectively. Theratio of the
non-parallel lengthsis measured as 0.61 (l1b) and 0.59 (I1c) compared to the approximate
veridical value of 0.65.



Chapter 6

Fixed Pointsandimage
Sequences

Overview

The previous chapter introduced the idea of self-calibration using fixed points for cameras
undergoing planar motion, and results using real images were shown to be stable and
accurate. However, computer vision not only requires a numerical solution to a problem
but also a measure of confidence in the solution. This chapter examines how a measure
of confidence can be computed for self-calibration using fixed points. Thisis very closely
linked to the idea of how to combine the results for an image sequence rather than a single
image triplet. Is it better to treat the sequence as a series of image triplets, or use the
whole sequence simultaneously as a batch which might give better results but at greater
computational cost?

The chapter organisation follows the structure of the self-calibration algorithm. First,
the different methods for computing the confidence in the vanishing point and horizon line
are discussed. A novel batch parameterisation for the fundamental matrices of multiple
images is given, and it is shown that this batch parameterisation gives a more accurate
estimate for the covariance of the vanishing point and horizon line.

Then the next step of the algorithm, using the trifocal tensor to find the circular points,
isanalysed. Itisshown that the noise on theimage pointsin the normalised planar motion

frameisneither isotropic, homogeneous, nor Gaussian, which greatly increasesthe problem
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of computing the covariance of the circular points. Various technigques are explained and
are shown to be unsatisfactory. Nevertheless, the final steps of the algorithm, computing
the camera calibration using the fixed points, is analysed and a method suggested for
computing the covariance of the internal parameters.

For all parts of the chapter, synthetic data with added noise is used with a Monte
Carlo simulation to show that the covariances (the measure of confidence) computed for
the different parametersare correct. Section 6.1 describes the synthetic sequence used, and
the different measurements used to assess the accuracy of the covariance matrices. Results

are also given for the real image sequences used in chapter 5.

6.1 Error Analysis

The objectiveof this chapteris to derive an analyticalsolutionfor the covarianceof the
cameracalibrationcomputedusing the fixed points of planarmotion. To showthatthe
suggestedlgorithmsare correct,Monte Carlo simulations[78] are usedthroughoutthe
chapterto allow the comparisonof the actualdistribution of solutionsand the derived
analyticalsolutions.

All theMonteCarlosimulationsarebasednthesyntheticsequenc&l, andfor eachrun
Gaussianmagenoiseis addedo the correctimagepoints. The numberof runs(samples)
andtheamountof noiseaddeds givenwith eachsetof results.Thenoiseis only addedo

theimagepointsandtheuncertaintyis thentransformedhrougheachstepof thealgorithm.

e Sequence Sl Fifty pointsarearrangedisadoubleTsaigrid (seefigure3.1a)with the
sizeof thegrid 1 unit squaredandviewedby anideal pinholecameraat a distance
of 4 units. The camereacalibrationis («, = 900, ¢ = 1.0, (uo, vo) = (400 300)). A
singleimagetriplet, consistingof threedistinctimagesof thestructurejs takenwith

thecameraotatingl(0® aroundafixedaxisbetweerviewsandthetranslatiorconfined
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to the planeperpendiculato the rotationaxis. To avoid degeneratesituationsthe
orientationof thecamerads suchthattherotationaxisis notcloseto oneof thecamera

axesandthehorizonline is nothorizontal.
Theresultsareassessedith two differentmeasures:

1. Thecovariancef thedistributionof resultsobtainedvith theMonteCarlosimulation
(statistical covariance) is comparedo the predicteddistribution(analytical covari-
ance). Foreachrun of the simulationa covariancas computedusingthe equations
derivedbelow andtheanalytical covariance shownin theresultsis the meanof the

computeccovariancdrom all theruns.

2. Using the x?2 distribution and the hyperellipsoid of uncertainty[17] (seebelow),
the distribution of resultscan be combinedwith eitherthe statisticalor analytical
covarianceso showthatthe distributionof the resultsis Gaussian.Thisis doneby
comparingthe numberof sampledying insidethe hyperellipsoid of uncertaintyto
the total numberof samples. Resultsare given for differentlevels of uncertainty
which shouldgive the ratio of samplegnsideto thetotal numberof sampless0.6,

0.8,0.9,0r0.95.

The Hyper-Ellipsoid of Uncertainty

The hyperellipsoid of uncertaintycan be usedto comparea covariancematrix to the
actualdistributionof parameter# is attemptingo model,andteststhatthe distributionis
Gaussianlf apopulationy hasadistributionwith thecovariance\y, thenahyperellipsoid

canbedefinedusingthemeanandcovarianceof y

(v — Ely]) '"AJ My — Ely]) = &% (6.1)
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P2(k,r)

r| 0.6 0.8 0.9 | 0.95
211.833| 3.219| 4.605| 5.991
6|6.211| 8.558| 10.64| 12.59

Table6.1: The percentage points of the y2-distribution. The value of k2 required to give
the probability P,-(k,r) (ratio) for the different values of r, taken from [53].

Thesizeof thehyperellipsoidis dependendnthevalueof k. Theprobabilitythatasample
from the populationy lies insidethis hyperellipsoidis given by the y2-distribution[53],
P.2(k,r), wherer is therankof Ay. Formoredetailson thederivationsee[17, 104].
Thehyperellipsoidcannow beusedto assestiow accuratelythe predictedcovariance
matrix describeghe actualdistribution. Usingthe resultsof the Monte Carlo simulations,
the ratio of the numberof sampledying inside a hyperellipsoidto the total numberof
samplescanbe calculated. This calculatedratio is thencomparedo the theoreticalratio
givenby P2(k,r). The calculationis repeatedor severalhyperellipsoid with different
valuesof k, hencedifferentratios, andthis givesa qualitativemeasureof how well the
covariancematrix modelsthe distribution. Resultsare given for the four ratios of 0.6,
0.8,0.9,and0.95,andtable 6.1 givesthe correspondingaluesof £ for differentr. For
two or three-dimensionaVariables,the hyperellipsoid can be usedto give a graphical

representationf thecovarianceaseithera conicor asanellipsoid.

6.2 Horizon Lineand Vanishing Point

The algorithm usedto computethe position of the horizon line and vanishingpoint is
describedn detail in section5.3, but canbe summarisedis: computethe fundamental
matrix betweerimagepairs,thendecompos¢he symmetricpartof the matrix to give two

imagelines;finally usetheimagelinesfrom two or moreimagepairsto give the positions
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of thehorizonline andvanishingpoint.

First,theimagepairsaretreatedseparatelysothatthe covarianceof eachfundamental
matrix andthe correspondingmagelines canbe computed. Thenthe covarianceof the
imagelines canbetakeninto accountwhencomputingthe positionandcovarianceof the
horizonline andvanishingpoint.

An alternativebatch approachs explainedvherethefundamentamatricesfor several
imagesare computedsimultaneouslyso that the position and covarianceof the horizon
line andvanishingpointscanbe computedirectly. The batch approactcandealwith an
anarbitrarynumberof imagesbut the resultsgiven hereuseonly the threeimagesof the

imagetripletin sequencé&l.

6.2.1 ImagePairs

The fundamentamatrix is computedusingthe planarmotion parameterisatioof Vieville
andLingrand[95]. Theadvantagef this, apartfrom beingtheminimumparameterisation,
is thatthe imagelines areusedas part of the parameterisationEachplanarfundamental

matrix is parameterisedith six elements
Fi — fZ = f(@z, li,mi, Pi); (62)

which areexplainedin appendixA.2, butl; andm; correspondo the imagelines usedto
computethe horizonline andvanishingpoint.

The fundamentamatrix is computedusing the non-linearminimisationdescribedn
appendixA.3, andusingtheresultsof lemmacC.1 (covarianceof animplicit function)the
covarianceof the matrix canbecomputed Hence the covariancef theimagelinesis also

computedastheyarepartof the parameterisatioaf thefundamentamatrix. It follows that
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for the:'" imagepair the following parameterandcovariancegsanbe computed

{li, 1’1’12} C fi,

{/\L‘ ’ /\mz } C /\fi ) (63)

wheref; is the six parameterepresentatiorof F; (seeequation(6.2)), and Ax is the
covarianceof theparametex.

Thevanishingpointis foundasthe point which minimisesthe squaredlistanceto the
linesm; (theimagesof the screwaxes),andthe covarianceof eachline Ay, is takeninto
account. Both the positionand covarianceof the vanishingpoint arecomputedasv and
Ny. Moredetailsaregivenin appendixC.2and[16].

Thehorizonline 1 is computedasthe weightedleast-squareaveragd6] of the setof

estimateg;, suchthat
-1
1 = lZ/\l—f] (Z/\illi)7 (6.4)
1 _l 1
N = [me] . (6.5)
Results

Csurkeaet al. [17] gaveextensivaesultsto showthattheestimatiorof the covariancef the
fundamentamatrix, usingthe covarianceof animplicit function minimisation,is correct,
andsothatwork will not be repeatechere. However the planarparameterisatioof the
fundamentaimatrix was not usedand so the distribution of the imagelinesis analysed
andshownto be correctlyestimatedy the analyticalsolution. Thenthe estimationof the

vanishingpointandhorizonline is discussed.

Image Lines The threefundamentaimatricesfor sequencesl are computedfor 1000

runs wherethe imagepoints haveeither 0.1 or 0.3 pixels of noiseadded,and 500 runs
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with 1.0 pixel of noise. The positionandcovarianceof theimagelinesarea subsebf the
parametersand covarianceof the fundamentamatrices. The distributionof the lines is
shownin figures6.1and6.2,andtables6.2,6.3,and6.4give anumericaktomparisorof the
statistical(actual)covarianceof theimagelineswith theanalytical(predicted)covariance.
The covariancesrelisted, andusingthe y? distributiongivesa numericalcomparisorof
thedifferentcovariancesAll resultsshowthatthe covarianceof thelinespredictedusing

analyticalmethodgive very similar valuesto thetrue covariance.

Vanishing Point For eachrun of the Monte Carlo simulation,the threeimagesof the
screwaxes(m;j 2 3) areintersectedo give the Monte Carlo distribution of the vanishing
point. The covarianceof the vanishingpointis alsocomputedor eachrun, hencegiving
theanalyticalcovarianceFigures6.3,6.4,and6.5showtheresultsfor thethreesequences
describedabove.

Thethreelinesbeingintersectedarenearlyparallel,so asexpectedhe distribution of
theintersectiompointsis mainly alongthe meandirectionof thelines. Thisis shownby the
majoraxisof the3c ellipsefor thestatistical covariance beingalignedwith theintersecting
lines (seefigures6.3, 6.4, and6.5). However althoughthe 3o ellipse for the analytical
covariance is alsoalignedwith the intersectingines, it is significantly overestimatedn
thatdirection. Thenumericalresultsaregivenin tables6.5,6.6,and6.7 andshowthatthe
analyticalcovariancesresignificantlydifferentfrom thetrue statisticalcovariances.

Tables6.2, 6.3, and 6.4 showthat the covarianceof one of the imagelines (m,) is
significantlysmallerthanthe others. As a resultof the weightingof the equationsisedto
find the vanishingpoint, this line dominateghe positionand covarianceof the vanishing
point. However this is not the whole story, aswill be shownin section6.2.2. A large

partof the overestimatiorof the covarianceas dueto thefact thatthe correlationbetween
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Figure6.1: Thedistribution of the imagelines computed from 1000 runs of sequence S with
(a) 0.1 and (b) 0.3 pixels of Gaussian image noise added. The three fundamental matrices
from the image triplet are decomposed to give the four lines shown: the three images of
the screw axes m; (one from each fundamental matrix), and the horizon linel; (repeated in
each fundamental matrix). The true values are shown in black while the results from each
run of the Monte-Carlo simulation are shown in grey.

the threefundamentaimatricesis not utilised. Thereis correlationbetweenthe matrices
becausehey are calculatedusingthe sameimagepointsandshouldhavesomeidentical
parametersln section6.2.2this correlationis takeninto accoun&andthe overestimatiorof

thecovariancealongthedirectionof theintersectindinesis removed.

Horizon Line Thehorizonline is computedor eachrun usingequationg6.4) and(6.5)
andthe threeestimatesf the line from the threefundamentamatrices. The resultsare
givenin tables6.5,6.6and6.7 for thethreesequencesndshowthattheanalyticalresults

aresimilarto thetruedistributions.
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Figure6.2: Thedistribution of the image lines computed from 500 runs of sequence S with
1.0 pixel of Gaussian image noise added. See figure 6.1 for explanation.

2

O-.T

Covariance

Opy |

2
Uy

y? Test
0.60 ‘ 0.80 ‘ 0.90 ‘ 0.95

Statistical

4.753e-09

-6.551e-10

4.358e-10

0.621

0.815

0.899

0.941

Analytical

4.913e-09

-6.788e-10

4.506e-10

0.631

0.824

0.906

0.944

Statistical

2.240e-12

2.890e-13

7.008e-13

0.621

0.809

0.901

0.950

Analytical

2.593e-12

3.098e-13

7.107e-13

0.635

0.834

0.916

0.955

Statistical

3.526e-12

6.936e-13

7.868e-12

0.615

0.799

0.909

0.948

Analytical

3.875e-12

4.873e-13

7.736e-12

0.619

0.815

0.917

0.955

1,

Statistical

1.972e-13

2.213e-12

4.829e-11

0.591

0.788

0.891

0.955

Analytical

2.095e-13

2.433e-12

5.245e-11

0.606

0.802

0.901

0.960

1,

Statistical

1.157e-12

-3.889e-12

1.352e-11

0.605

0.791

0.905

0.957

Analytical

1.136e-12

-3.773e-12

1.300e-11

0.607

0.801

0.914

0.960

15

Statistical

1.785e-11

-1.297e-11

9.789%e-12

0.580

0.795

0.905

0.951

Analytical

1.867e-11

-1.354e-11

1.021e-11

0.601

0.814

0.917

0.967

Table6.2: Comparing the statistical and analytical distributions of the lines shown in fig-
ure6.1a (0.1 pixelsof noise). Thelineisscaled sothat| = (z,y,1)" andthecovariance has
the three elements o2, .., and o2. The statistical covariance gives the actual distribution
of the 1000 lines, while the analytical covariance is the mean of the 1000 computed line
covariances. Also shown are the ratio of number samples lying inside the hyper-ellipsoid
of uncertainty (see section 6.1) to the total number of sampleswith four values given which
should be 0.6, 0.8, 0.9, and 0.95.
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2

O-I'

Covariance

Ory |

2
O-y

0.60 | 0.80 | 0.90 | 0.95

v? Test

Statistical

5.023e-08

-6.692e-09

4.342e-09

0.632

0.832

0.903

0.945

Analytical

5.361e-08

-7.353e-09

4.524e-09

0.653

0.837

0.912

0.950

Statistical

2.643e-11

3.831e-12

6.265e-12

0.583

0.803

0.909

0.952

Analytical

1.958e-11

2.320e-12

6.183e-12

0.532

0.755

0.870

0.930

Statistical

3.148e-11

2.294e-12

7.380e-11

0.596

0.804

0.906

0.942

Analytical

3.484e-11

4.362e-12

6.965e-11,

0.599

0.807

0.908

0.943

1,

Statistical

1.788e-12

2.084e-11

4.590e-10

0.600

0.822

0.910

0.951

Analytical

1.927e-12

2.229%e-11

4.796e-10

0.622

0.840

0.922

0.955

1,

Statistical

1.035e-11

-3.478e-11

1.209e-10

0.601

0.782

0.903

0.958

Analytical

9.284e-12

-3.076e-11

1.061e-10

0.583

0.770

0.892

0.949

13

Statistical

1.592e-10

-1.164e-10

8.859%e-11,

0.594

0.811

0.907

0.948

Analytical

1.678e-10

-1.217e-10

9.174e-11

0.607

0.817

0.912

0.953

Table 6.3: Comparing the statistical and analytical distributions of the lines shown in
figure 6.1b (0.3 pixels of noise). Seetable 6.2 for explanation of terms.

2

O-.’Z’

Covariance

ooy |

2
O-y

0.60 | 0.80 | 0.90 | 0.95

v? Test

Statistical

1.143e-06

-1.282e-07

6.814e-08

0.796

0.886

0.912

0.921

Analytical

5.015e-06

-6.119e-07

1.812e-07

0.906

0.952

0.967

0.980

Statistical

2.741e-10

3.281e-11

7.12%e-11

0.605

0.818

0.895

0.939

Analytical

1.568e-10

1.658e-11

6.500e-11,

0.502

0.713

0.829

0.886

Statistical

3.960e-10

4.688e-11

6.659e-10

0.605

0.816

0.895

0.936

Analytical

3.753e-10

4.946e-11

7.640e-10

0.618

0.825

0.906

0.947

Statistical

2.405e-11

2.763e-10

5.656e-09

0.607

0.789

0.899

0.954

Analytical

2.161e-11

2.427e-10

5.212e-09

0.586

0.776

0.882

0.939

Statistical

1.037e-10

-3.543e-10

1.258e-09

0.601

0.805

0.904

0.939

Analytical

8.803e-11,

-2.895e-10

9.983e-10

0.594

0.770

0.882

0.921

Statistical

1.886e-09

-1.378e-09

1.048e-09

0.612

0.800

0.904

0.956

Analytical

1.832e-09

-1.334e-09

1.010e-09

0.603

0.794

0.899

0.950

Table 6.4: Comparing the statistical and analytical distributions of the lines shown in
figure 6.2 (1.0 pixel of noise). Seetable 6.2 for explanation of terms.
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Figure6.3: The distribution of the vanishing points (x) computed from the lines shown in
figure 6.1a (0.1 pixels of noise). The same results are shown at two different scales. The
ellipses show the 30 confidence limits for the statistical (solid) and analytical (dashed)
covariances. The true position of the three intersecting lines are shown (dotted) and the
true position of the intersection point isat (-572,-11876).

Covariance y? Test
| o2 0.60 | 0.80 | 0.90 | 0.95

2
To ‘ Oy Y

Statistical

6.427e+03

2.465e+04

1.040e+05

0.612

0.810

0.891

0.948

Analytical

1.546e+05

6.909e+05

3.096e+06

0.667

0.724

0.763

0.793

Statistical

7.370e-14

-1.317e-13

4.911e-13

0.591

0.799

0.902

0.960

4.677e-14

-8.364e-14

3.572e-13

0.716

0.837

0.899

0.934

Analytical

Table6.5: The statistics for the distribution of the vanishing points shown in figure 6.3 and
the corresponding horizon line. The vanishing point and horizon line are scaled so that
v=(z,y9,1)" andl = (2,y,1)" to givethethree covariancevalues of 2, o, and o2. The
remaining terms are explained in table 6.2.
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Figure6.4: The distribution of the vanishing points (x) computed from the lines shown in
figure 6.1b (0.3 pixels of noise). The same results are shown at two different scales. The
ellipses show the 30 confidence limits for the statistical (solid) and analytical (dashed)
covariances. The true position of the three intersecting lines are shown (dotted) and the
true position of the intersection point isat (-572,-11876).

2

O-.T

Covariance

0w |

2
O-y

0.60 | 0.80 | 0.90 | 0.95

v? Test

Statistical

5.742e+04

2.200e+05

9.265e+05

0.623

0.811

0.904

0.947

Analytical

1.542e+06

6.776e+06

2.987e+07

0.592

0.599

0.607

0.618

Statistical

6.518e-13

-1.245e-12

4.822e-12

0.608

0.805

0.899

0.954

Analytical

4.258e-13

-7.575e-13

3.212e-12

0.702

0.832

0.900

0.943

Table6.6: The statistics for the distribution of the vanishing points shown in figure 6.4 and
theterms are explained in table 6.5.
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Figure6.5: The distribution of the vanishing points (x) computed from the lines shown
in figure 6.2 (1.0 pixel of noise). The same results are shown at two different scales. The
ellipses show the 3o confidence limits for the statistical (solid) and analytical (dashed)
covariances. The true position of the three intersecting lines are shown (dotted) and the
true position of the intersection point is at (-572,-11876).

Covariance x? Test
2 | g, | o 0.60 | 0.80 | 0.90 | 0.95

£z Yy

v | Statistical | 4.546e+05 1.799e+06| 7.897e+06 0.689| 0.838| 0.899| 0.934
Analytical | 3.129e+07| 1.359e+08| 5.957e+08 0.496| 0.504| 0.504| 0.513

1 | Statistical| 7.476e-12| -1.440e-11| 5.419e-11| 0.586| 0.796| 0.906| 0.952
Analytical | 4.656e-12| -8.238e-12| 3.496e-11| 0.697| 0.796| 0.886| 0.936

g

Table6.7: The statistics for the distribution of the vanishing points shown in figure 6.5 and
theterms are explained in table 6.5.
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6.2.2 Batch Parameterisation

Ratherthantreateachfundamentalmatrix separatelythe fact that partsof the different
matricesarecorrelatedcanbe utilised. The horizonlinesl; shouldbe the samefor every
matrix, while the otherimagelinesm; shouldall intersectatthe samepointv. This gives
a batch parameterisation for the fundamentamatricesfor a setof images.All theimage
linesl; arerepresentelly thesingleimageline 1, while theimagelinesm; arerepresented
by passinghroughtheimagepointv with orientationg;. Theotherparametersf f; remain
unchanged.

Forn imageswith p distinctfundamentamatrices the batchparameterisatiois

{FZ} = fb(val7917 ¢)17p17"'79p7¢p7pp)7 (66)

where the i'* matrix is a function of (v,1,6;, ¢;, p;), and this changesthe number of
parameterfrom (6n) to (4 + 3p).
Usingthenon-linearmethodgdescribedn appendixA.3 andresultsof lemmaC.1,and

extendingheepipolarerrorof equation(A.2) to p imagepairs,

P
Eep =323 (ARl Fiks)? + (%5, FIX)?) (6.7)

=1 g
thenthefundamentamatricesandassociatedovariancesanbecomputedimultaneously
for n images.Now thepositionandcovarianceof v andl areavailabledirectly as

{V7 l} C fba

NN} C Ay (6.8)

Results

Three Monte Carlo simulationswere completedwith 500 runswith imagenoiseof 0.1,

0.3, or 1.0 pixels added. The resultsare showngraphicallyin figures6.6,6.7, and 6.8,

1Forn imagesherearep = C3 = (n? — n)/2 distinctfundamentamatrices.
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and numericallyin tables6.8, 6.9, and 6.10. The resultsfor the vanishingpoints are
much closerto the true resultsthan thoseobtainedusing just image pairs, with only a
slight overestimatiorof the covariancealongthe dominantimageline. The analytical
covariancefor the horizonline are slightly underestimatedor both setsof results,but
the actualcovarianceof the horizonline is very small comparedo the true value of the
line. Comparetheline1 = (-2.0e-04-2.5e-031.0)" with the statisticalcovariancefrom

table6.9, (o7, 07) = (4.5e-133.4e-12).
6.2.3 Comparison of Images Pairsand Batch Methods

To comparethe resultsof the image pair and batch algorithms,the samedatais used
to computethe distribution of solutionsobtainedfrom eachmethod. The resultsare
summarisedh tables6.11,6.12,and6.13for threesequencewith 500runsandeither0.1,
0.3,0r 1.0pixelsof addedhoise. Theseresultsshowthatmoreaccurateesultsareobtained

usingthe batchmethodbut with disadvantagef increasedomputationaéxpense.

6.2.4 Resultsfor Real I mage Sequences

Someresultsusingsequence from section5.6 areshownin tables6.14and6.17. These
resultsshowthe computedvanishingpoint and horizonline with associatea¢ovariances
for boththeimagepairsandbatchalgorithm. Thebatchalgorithmis usedwith bothimage
triplets(threeimagesyndimagequartetgfourimages).Theactualvaluedor thevanishing
pointaresimilar butthe covariancesremorerealisticfor thebatchalgorithm,andalsoare
smallerfor thequartetresultsivhichis asexpectedTheresultsfor thehorizonline arevery
similar for bothalgorithms.

More resultsusingsequencelb andlic aregivenin tables6.15—-6.19.Theresultsare

givenfor tripletsandquartetdrom thefirst four imagesof eachsequence.
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Figure 6.6: The distribution of the vanishing points (x) computed using 500 runs of
the batch algorithm with 0.1 pixels of added Gaussian noise. The ellipses show the 3o
confidence limits for the statistical (solid) and analytical (dashed) covariances. The true

position of the three inter secting lines are shown (dotted).

Covariance x? Test
2 | o, | o 0.60 | 0.80 | 0.90 | 0.95

Yy

Statistical

5.513e+03

2.099e+04

8.895e+04

0.627

0.794

0.898

0.956

Analytical

8.445e+03

3.268e+04

1.341e+05

0.665

0.830

0.900

0.954

Statistical

5.868e-14

-8.737e-14

3.739%e-13

0.609

0.796

0.896

0.940

Analytical

3.686e-14

-5.923e-14

2.815e-13

0.493

0.661

0.790

0.866

Table 6.8: The statistics of the distribution of vanishing points shown in figure 6.6 and
the corresponding horizon lines (0.1 pixels of noise and the batch parameterisation). See
table 6.5 for details of terms used.
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Figure 6.7: The distribution of the vanishing points (x) computed using 500 runs of

the batch algorithm with 0.3 pixels of added Gaussian noise. The ellipses show the 3o

confidence limits for the statistical (solid) and analytical (dashed) covariances. The true

position of the three intersecting lines are shown (dotted).

v? Test
0.60 ‘ 0.80 ‘ 0.90 ‘ 0.95

Covariance
o2 | | a]

Oy

Statistical

4.670e+04

1.778e+05

7.614e+05

0.626

0.804| 0.900

0.947

Analytical

8.074e+04

3.132e+05

1.287e+06

0.677

0.832| 0.904

0.953

Statistical

4.498e-13

-6.867e-13

3.362e-12

0.581

0.787| 0.902

0.953

Analytical

3.437e-13

-5.573e-13

2.611e-12

0.502

0.681| 0.819

0.894

Table 6.9: The statistics of the distribution of vanishing points shown in figure 6.7 and
the corresponding horizon lines (0.3 pixels of noise and the batch parameterisation). See
table 6.5 for details of terms used.
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Figure6.8: The distribution of the vanishing points (x) computed using 500 runs of the
batch algorithmwith 1.0 pixel of added Gaussian noise. Theellipsesshowthe 3o confidence
limits for the statistical (solid) and analytical (dashed) covariances. The true position of
the three inter secting lines are shown (dotted).

Covariance v? Test

2
o2 |

Oy

‘ 2

Ty

0.60 | 0.80 | 0.90 | 0.95

Statistical

5.869e+05

2.324e+06

1.023e+07

0.737

0.853| 0.915

0.954

Analytical

1.264e+06

5.050e+06

2.124e+07

0.788

0.908| 0.941

0.972

Statistical

5.844e-12

-1.009e-11

4.301e-11

0.600

0.801| 0.904

0.952

Analytical

3.945e-12

-6.315e-12

2.964e-11

0.486

0.676| 0.796

0.877

Table6.10: The statistics of the distribution of vanishing points shown in figure 6.8 and
the corresponding horizon lines (1.0 pixel of noise and the batch parameterisation). See
table 6.5 for details of terms used.
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| | True | Pairs | Batch |

v, | -5.718e+02 -5.702e+02 -5.741e+02
v, |-1.188e+04f -1.187e+04 -1.189e+04

ol - 6.492e+03| 5.513e+03
ol - 1.047e+05| 8.895e+04
T, - 2.482e+04| 2.099e+04

[, | -2.003e-04] -2.003e-04] -2.003e-04
I, | -2.510e-03| -2.510e-03| -2.510e-03
of - 7.576e-14| 5.868e-14
of = 4.692e-13| 3.739e-13
- -1.279¢-13| -8.737e-14

Table6.11: Comparison of thedistribution of the vanishing point and horizon line computed
using the image pair algorithm and the batch algorithm, with 500 samples with 0.1 pixels
noise added. Theresultsfor the batch algorithm have a smaller covariance than the image
pair algorithm, with both means having a similar accuracy.

| | True | Pairs | Batch |

vy | -5.718e+02 -5.535e+02| -5.824e+02
v, |-1.188e+04f -1.181e+04 -1.194e+04

o2 — 5.716e+04| 4.670e+04
o2 - 9.378e+05| 7.614e+05
ooy - 2.203e+05| 1.778e+05

[ | -2.003e-04| -2.004e-04| -2.003e-04
[ -2.510e-03| -2.510e-03| -2.510e-03

Ui — 5.628e-13| 4.498e-13
Ulzy — 4.461e-12| 3.362e-12
O, - -1.046e-12| -6.867e-13

Table6.12: Comparison of thedistribution of the vanishing point and horizon line computed
using the image pair algorithm and the batch algorithm, with 500 samples with 0.3 pixels
noise added. The results for the batch algorithm have a smaller covariance and a mean
value closer to the true value.
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| | True | Pairs | Batch |

v, | -5.718e+02 -2.841e+02 -5.070e+02
v, |-1.188e+04f -1.070e+04 -1.161e+04

o - 4.546e+05| 5.869e+05
o2 - 7.897e+06| 1.023e+07
v - 1.799e+06| 2.324e+06

[ | -2.003e-04| -2.006e-04| -2.003e-04
[, | -2.510e-03| -2.510e-03| -2.510e-03

o2 - 7.476e-12| 5.844e-12
of - 5.419e-11| 4.301e-11
oL, - ~1.440e-11| -1.009e-11

Table6.13: Comparison of thedistribution of the vanishing point and horizon line computed
using the image pair algorithm and the batch algorithm, with 500 samples with 1.0 pixel
noise added. The results for the batch algorithm have a smaller covariance and a mean
value closer to the true value.



6.2 Horizon Lineand Vanishing Point

2

2

\ Images\ Algorithm\ (Va, vy) \ ol \ Cuavy \ ol \
567 Pair (597,2534)| 2.93e+04| -1.91e+05| 1.26e+06
Batch (665,2293)| 1.03e+03| -2.73e+03| 4.36e+04

678 Pair (658,2382)| 1.38e+03| 5.59e+02| 1.11e+05
Batch | (541,2248)| 3.74e+02| -1.10e+02 1.27e+04

5678 Pair (518,2376)| 2.97e+03| -2.45e+04| 2.10e+05
Batch (474,2526)| 3.35e+02| -1.12e+03| 1.93e+04

Table6.14: The vanishing point computed for various image triplets and image quartets
from sequence | using both the image pairs and batch algorithms. Both the vanishing point

v = (v, v,)" andits covariance are shown in the table.

| Images| Algorithm | (vz,0,) | 02 | 0w, | of |
123 Pair (421,991) | 2.57e+04| -2.13e+04| 1.80e+04
Batch (430,994) | 3.05e+03| -1.16e+03 7.73e+02

234 Pair (-28,945) | 1.05e+04| 1.77e+03| 1.80e+03
Batch (-60,936) | 4.63e+03 -1.45e+02| 3.00e+02

1234 Pair (284,981) | 2.73e+04| -2.01e+04 1.51e+04
Batch | (248,1007) 2.15e+03| -1.12e+03| 8.61e+02

Table6.15: The vanishing point computed for various image triplets and image quartets
from sequence I1b using both the image pairs and batch algorithms. Both the vanishing

pointv = (v,,v,)" and its covariance are shown in the table.

2

2

\ Images\ Algorithm\ (Vzy vy) \ o2 Topu, ol
123 Pair (270,759)| 2.56e+05| -1.33e+05| 6.86e+04
Batch | (232,797)| 8.95e+02| -3.56e+02| 2.97e+02
234 Pair (137,731)| 1.60e+04| 2.46e+03| 1.33e+03
Batch | (146,743)| 4.00e+03| 7.35e+02| 2.36e+02
1234 Pair (301,721)| 1.12e+05| -4.27e+04| 1.63e+04
Batch | (252,748)| 8.00e+02| -3.25e+02| 2.08e+02

Table6.16: The vanishing point computed for various image triplets and image quartets
from sequence Ilc using both the image pairs and batch algorithms. Both the vanishing
pointv = (v,,v,)" and its covariance are shown in the table.
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| Images| Algorithm |

(Zm ly) ‘ Olsly ‘ ley
567 Pair (-4.21e-04,2.60e-03)2.32e-10| 3.50e-10| 3.06e-09
Batch | (-3.90e-04,2.68e-03)1.15e-09| -1.58e-09| 2.69e-09
678 Pair (-5.02e-04,2.74e-03)5.22e-10| 4.54e-10| 7.11e-09
Batch | (-3.66e-04,3.31e-03)8.22e-10| -9.74e-10| 3.66e-09
5678 Pair (-3.85e-04,3.03e-03)1.71e-10| 2.46e-10| 1.62e-09
Batch | (-3.46e-04,3.18e-03)6.76e-10| -8.72e-10| 2.20e-09

Table6.17: The horizon line computed for various image triplets and image quartets from
sequence | using both the image pairs and batch algorithms. The horizon line is scaled

suchthat | = (Z,,1,,1)" and both theline and its covariance are shown in the table.

| Images| Algorithm |

() )

| ot [ ow, | 9, |

123 Pair (3.48e-05,1.27e-02)6.03e-09| 1.09e-08| 3.07e-07
Batch | (3.80e-05,1.29e-02)4.17e-08| 6.73e-08| 1.16e-07

234 Pair (3.48e-05,1.27e-02)6.03e-09| 1.09e-08| 3.07e-07
Batch | (3.80e-05,1.29e-02)4.17e-08| 6.73e-08| 1.16e-07

1234 Pair (3.21e-04,1.12e-02)6.10e-09| 1.77e-08| 3.27e-07
Batch | (3.25e-04,1.14e-02)2.35e-08| 3.91e-08| 6.83e-08

Table6.18: The horizon line computed for various image triplets and image quartets from
sequence | Ib using both the image pairs and batch algorithms. The horizon line is scaled

suchthat | = (I,,1,,1)" and both theline and its covariance are shown in the table.

| Images| Algorithm |

(I, )

‘ O-lzx O-lg:ly O'ly
123 Pair (2.00e-04,5.81e-03)1.50e-08| 1.44e-08| 8.22e-08
Batch | (2.25e-04,5.82e-03)3.90e-08| 2.64e-08| 2.63e-08
234 Pair (2.00e-04,5.81e-03)1.50e-08| 1.44e-08| 8.22e-08
Batch | (2.25e-04,5.82e-03)3.90e-08| 2.64e-08| 2.63e-08
1234 Pair (1.16e-04,4.47e-03)1.21e-08| 2.44e-08| 1.29e-07
Batch | (1.12e-04,4.58e-03)1.84e-08| 7.23e-09| 9.46e-09

Table6.19: The horizon line computed for various image triplets and image quartets from
sequence |lc using both the image pairs and batch algorithms. The horizon lineis scaled
suchthat | = (Z,,1,,1)" and both theline and its covariance are shown in the table.
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6.3 Trifocal Tensor

In chapter5 thetrifocal tensorwascomputedy thealgorithmgivenin section5.5, where
theimagesaretransformedo thenormaliseplanarmotionframeandthereducedrifocal
tensorcomputedusingthe methodgivenin appendixB.1. Thisis alinearsolutionwhich
usesSVDtofindtheeigenvectocorrespondingp theminimumeigenvalueThecovariance
of aneigenvectocanbecomputed82, 91, 98], assumingheimagenoiseis homogeneous,
isotropic, and Gaussian. However section6.3.1 showsthat theseassumptionsio not
hold for pointsin the normalisedplanarmotionframe,andthereforethe covarianceof the
solution cannotbe computedusing this method. The full tensorof 27 elementsandits
covarianceouldbecomputedisingthis methodn therealframe,butthetensoris severely
overparameteriseth this form, and Clarke[16] claimsthat the resultsobtainedby this
methodare not accurate.Instead,non-linearmethodsare describedn section6.3.2,but
currentlimitationsarealsodescribedandthesdimitations precludethe useof anon-linear

method.

6.3.1 The Canonical Frameisnot Homogeneous

Thecanonicakransformatior{(equation(5.30))is usedto transformthe imagepointsfrom
the real frame to the normalisedplanarmotion frame, andis a linear transformationof
the homogeneousoordinates. However the image noiseis associatedvith the non-
homogeneousoordinatesandwhenthe canonicatransformations expresseth termsof
non-homogeneousordinatest becomes non-linearfunction.

AppendixC discussethepropagatiorof uncertaintyusingthefirst orderapproximation
to anon-linearfunction,andthis canbeappliedto thenoiseontheimagepoints. However
aswill beshownbelow thenoiseontheimagepointsis neitherisotropicnorhomogeneous

in the normalisedplanarmotionframe. Thefollowing derivesthe covarianceof a pointin
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thenormalisedplanarmotionframeusingbothafirst andsecondrderapproximations.
Thetransformatiorof theimagepointsfrom therealframe(x) to thenormalisedlanar

motionframe(x) is expresseth homogeneousoordinatess
X = H,x

whereH. is a function of the vanishingpoint v = (u,v,1)" andthe horizonline 1 =
(I.,1,,1,)". Howeverthelinelis justusedto computearigid transformatiorof theimage
(seeappendixB.3) andthis hasno affect on the assumptionsnadeabouttheimagenoise,
namelyit is homogeneoussotropicand Gaussianandso the effect of 1 doesnot needto
betakeninto accountn thefollowing analysis.Similarly, theux componentf v is usedto
translatethe imagehorizontallysothatu — 0, andhencealsohasno affect on the noise

assumptionsSothetransformatiorof non-homogeneoysintscanbe expresseds
(2,9)" =1(a), (6.9)

wherea = (z,y,v)". Thevalues(z,y,v) aremeasuredn the transformedmageplane
wherel — (0,1,0)" andu — 0, butto avoidtheproliferationtermstherealimagenotation
is used. So usingonly the projectivepart of the canonicaltransformationpart of H, in

appendixB.3) whichinvolvesv butneitherl nor u, thenthefunctionf(a) is

/(1 y/v) )
.| = , 6.10
('y) (y/(l—y/v) (610
andthe covarianceof a canbe assumedo be
Ui 0O O
Na=1] 0 05 0
0 0 o2

Usingthefirst orderapproximatiorto the Taylor expansiorof f(a) aroundthe meanvalue

a (seeequation(C.3)) gives

f(a) =f(a) + gAa—{- O(|| Aa |?).
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Themeanis transformedorrectlyas

E[%] = f(a), (6.1)
while thecovariancas givenby
of  ofT

TheJacobiar{of /9a) is notfixed, butis afunctionof the positionof eachpoint. Expanding

equation(6.12)givesthefirst orderapproximatiorfor the covarianceas

where

2 2 1 2 (J/'/'U)z 2(1/'/’0)2(3//'0)2

0z = Uz(l—y/v)Z—l_Uy(l—y/v)‘l 7 (L—y/v)*’
02 = o2 1 + 02 (y/'v)4
R T R F e

o (@), ole/o)y/o)
=yl T A=y

Oz = O

Carefulexaminatiorof the aboveexpressionshowthatin generathe imagenoisein the
normalisegplanarmotionframeis nolongerhomogeneoussthecovariancef eachpoint
dependsn the original positionof the point (z,y), noris it isotropic,asc? # o7. Only
with the grossassumptiorthatthe vanishingpointis sufficiently distantin the y-direction
doesthenoiserevertto beinghomogeneouandisotropic.

Whenv > y andv > = then

2 2
oL & oL,
2 2
o; R0y,

Q

&
Q
o
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However extendingthe analysisto include secondordertermsof the Taylor expansion
showghatthecanonicatransformatiorcanintroducebias. Theseconarderapproximation
is

1 9%

f(a) = (5)+—A +§8—A 21 0(]] Aa|®). (6.13)

Thesecondrdertermof theTaylorseriescanbecomputednacomponent-by-component

basisas
2
182f
20222 T 21 (ZA‘“ ) @)
Themeanof the secondrderapproximations
~ X Ty
E[z] = o? 5
B = =y o e e
E[g] — Yy 2 1 2 yz

T—yfo) M@=yl A=y o)
wherethe first term in eachexpressions the true value while the remainingtermsare
bias. However the affect will only becomenoticeablewheny ~ v ando? is large. The

covarianceof thesecondrderapproximations givenby

E|(f(a) — f(a)?] = E[(aAa—I—E@Aaz)]

whichis theexpectedesultfor a secondrderapproximation.

6.3.2 Non-linear Solution for the Trifocal Tensor

Any non-lineaminimisationhasthreeparts:the costfunctionto minimise,the parameters
to minimisesover, andthe dataused.Whentrying to derivea non-linearminimisationfor
thetrifocal tensoreachof thesepartsintroducegproblemsandlimitations.

The costfunctionshouldpreferablyminimiseanerrorwhichis measuredn theimage

frame,andusingthe trifocal tensorthis canbe associatedvith the transferof pointsand
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lines. Also, it is betterif the costfunctionis unbiasedandtreatsthe measuremennade
in eachimageequally Thisis not simpleto achieveusingthe tensor asthe tensoruses
oneof thethreeimagesasthereference image,suchthatpointsaretransferredrom image
oneto threevia two or from imageoneto two via three. This requirementor anunbiased
costfunctionis analogoudo the fundamentamatrix which is estimatednoreaccurately
by minimisingthe epipolarerrorin bothimagesratherthanjust one(seeequation(A.2)).
Currentlyanunbiasecostfunctionhasnot beenderived.

Thedatausedin any minimisationis the positionof the pointsmatchedvertheimage
triplets. However the positionscanbe measuredn eithertherealframeor the normalised
planarmotion frame. The covarianceof the solutionis alsorequired,but section6.3.1
showedhattheimagenoisein thenormaliseglanamotionframeis neitherhomogeneous,
isotropic,nor Gaussianandthis greatlyincreaseshe problemof computinga covariance
whenusingthenormaliseglanarmotionframe. Similarly, thetensorcanbe parameterised
in eitherframe,andit will beeitherbeoverparameterisedr thecovariancevill bedifficult
to compute.

Theideal solutionto theseproblemswill beto obtaina parameterisationf the tensor
which includesthe fixed points/linesas part of the parameterisationThis will avoidthe
useof thenormalisedlanarmotionframeandthe associategroblems.Thisis analogous
to using the fundamentalmatricesto find the horizon line and vanishingpoint, where
section6.2 showedhatbetterresultsare obtainedusingthe batchparameterisatiowhich

useghe horizonline andvanishingpointasactualparameters.
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6.4 Circular Pointsand Camera Calibration

Whenthetrifocal tensoris computedwvithoutexplicitly usingthe circularpointsasparam-
eters,the positionsof the circular pointsare obtainedby solving the cubic equation(see
equation(5.32))

ZS—I- szz—I- blz—l— bo = O,

whereb = (by, b1,b0)" = f(t), andf(t) is a non-linearfunction of the elementsof the

reducedrifocaltensor Thecovariancef thesolutionof thecubicequatoncanbeconputed
usinga first orderapproximationto propagatehe covarianceof thetrifocal tensor The

solutionrequiredfrom the cubic equations the complexconjugatepair, which introduces
the problemof computingthe real andimaginarypartsseparatelyso that the covariance
betweenthem canbe correctly computed. The complexconjugatesolution of the cubic

equation1] is

by (s1+ s2) n iV/3(s1 — 52)

z2=——=—

3 2 2 ’

where

1= (Pt (),

Wl

2= (r=(®+ )5,
r = (biby— 3bo)/6 — b3/27,

and(¢® + r?) > 0 for thecomplexconjugatesolutionto exist.
Expressinghecomplexconjugateasz = (p+ g:) givesthepositionof thecircularpoint
in thenormalisecplanarmotionframeas(—p + ¢i,0,1)", andusingtheinversecanonical

transformationthe positionof the circularpointsin therealframeare
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i = H ' (-p+4¢,01)T7,

j = Hc_l(—p—qz"O’l)T.

Thecanonicatransformations functionof v andl, hencehepositionof thecircularpoints

in therealframecanbeexpresseas

andthefirst orderapproximatiorof the covariances

df  df T
N = %/\c% .

Now the positionandcovarianceof all threefixed pointsis known. Section5.2 shows
howtheimageof theabsoluteconicis computedusingthefixed points,andit is relatively
simpleto obtainafirst orderapproximatiorsothatthecovariancef the estimatdor w can

becomputed Also, whenusingtheknownaspectatio asthe extraconstraintijt is possible

to incorporateanyuncertaintyaboutthe aspectatio.

6.4.1 Resultsfor Camera Calibration

As section6.3did not produceanalgorithmto give anaccurateestimateof the covariance
of the trifocal tensor it is not possibleto predictthe covarianceof the calibration by
propagatinghe imagenoisethroughthe whole algorithm. However figures6.9 and6.10
showsthedistributionof the calibrationparameter$or 1000runsof sequencé&l with 0.1
and0.3 pixels of noise. The resultsshowa Gaussiardistributionandsuggesthatit will
bepossibleto obtainanaccurateredictionof the covariancaisinga concatenatiowf first
orderapproximations.Theresultsarealsogivenin table6.20,which showsthe empirical

relationshipbetweertheimagenoiseandthevarianceof the calibration.
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Figure6.9: The distribution of the calibration parameters computed using 1000 runs of
sequence S with 0.1 pixels of added noise. The extra constraint of known aspect ratio is
used, and (a) shows the distribution of the focal length «,,, while (b) shows the distribution
of the principal point (ug, vo).
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Figure6.10: The distribution of the calibration parameters computed using 1000 runs of
sequence S with 0.3 pixels of added noise. The extra constraint of known aspect ratio is
used, and (a) shows the distribution of the focal length «,,, while (b) shows the distribution
of the principal point (g, vo).
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Standardeviation
Imagenoise| «a, | ug | vo k
0.1 15|3.21.7] 45
0.3 4419.0|5.2]125

Table6.20: The empirical relationship between the image noise (pixels) and the standard
deviation of the distribution of the calibration parameters shown in figures 6.9 and 6.10.

Summary

This chapter has attempted to estimate the covariance of the calibration parameters ob-
tained using the fixed points of planar motion. It was shown that the horizon line and
vanishing point can be obtained using either an image pair algorithm or a novel batch
parameterisation, and that the latter gave better results. The noise in the normalised
planar motion frame was shown to be anisotropic, non-homogeneous, and not Gaussian,
which greatly increases the problem of computing the covariance of the circular points.
The problems of computing the covariance of the trifocal tensor when using a non-linear
minimisation were discussed.

Finally, the distribution of the calibration parameters obtained using a Monte Carlo
simulation with a synthetic data were shown to be Gaussian. This suggests that it will
be possible to compute an estimate of the uncertainty of the calibration parameters by

propagating the image noise through the whole algorithm.



Chapter 7

RobustObjectTracking

Overview

The previous chapters have presented new algorithms for self-calibration from image
sequences, but these chapters did not address the problem of the accurate tracking of
objects over long sequences. This chapter increases the robustness and hence accuracy of
arigidobject tracker by applying theideas of stratification and utilising motion constraints.
The goal is that in the future the tracking and self-calibration could be combined into a
single framework, and this has been partially achieved by using a camera model which
incor porates a changing focal length.

Many different approaches have been suggested for tracking moving objects, and these
differ in the type of object being tracked. However, most methods are not robust to a
number of ambient conditions, such as partial occlusions, which degrade performance.
This chapter increases the robustness of the RAPID tracker [34] to give the Robust RAPID
(RoRAPID) [3].

The object being tracked is described at a number of levels, and at each level there
is a model/hypothesis for which redundant measurements are available; this redundancy
allows the hypothesis to be verified or refuted. Also included are several motion models
which can improve the performance when the motion is constrained, and several camera
models which are used to remove any possible error introduced by using the incorrect

camera model. Both the motion models and camera models are constructed so that the
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same general approach can be used throughout.
Section 7.2 isareview of RAPID, then in section 7.3 the extended RORAPID is described
in detail. Finally in section 7.4 results are given for real image sequences running on

standard hardware at frame rate.

7.1 Object Tracking

Objecttrackingthroughimage sequencess typically achievedoy concentratingonly on
boundariessuchas occludingcontours. This reduceshe computationademandsand
allowsframeratetrackingon non-specialisettardware.A numberof suchmethodshave
beendemonstratedHarris[34] andLowe [57] trackrigid objectswith aknown3D model;
snakes[11, 48 havebeenusedto track image contoursof deformableobjects; while
deformabldemplate$54] havebeenusedfor objectswith knownor constrainedjeometry
Howevertheperformancef manyof theapproacheareseverelydegradedyanumber
of ambientconditionssuchas partial occlusions,photometricchangeqe.g., shadows),
cameramodelling errors,andincorrectfeaturematching. The objectivehereis to make
trackingrobustto theseconditionsby extendinghe modelof theobjectandutilising known

constraintsuchasrestrictedmotionmodelsand/ordifferentcameranodels.

7.1.1 Stratifying Object Tracking

All themethod=f trackingmentionedaboverepresenthe objectasa singlesetof points,
lines,or boundarieswhichareprocessedimultaneouslyGenerallynoneof themdescribe
anobjectasa setof lower ordercomponentsvhich still havesomecomplexity which can
be utilised. This is anotheruseof the idea of stratifying a probleminto smaller more
solubleparts. Herethe objectis describedat a numberof levels,andat eachlevel there

is amodel/hypothesifor which redundanmeasurementare available. Theseredundant



7.2 RAPID Tracker 151

measurementdlowthehypothesiso beverifiedor refuted andalsoallowtheidentification
andremovalof outliers. Outliersin this contextare grosslyincorrectmeasurementsr
associationswhoseerrorshavea very large adverseaffect on the accuracyof subsequent
calculationg91].

Theobjectis describedy a setof relatedgeometric primitives (hereaftercalledprim-
itives). Primitiveshavea knowngeometry(e.g.,linesandconics)whichis the complexity
mentionedabove. At a low level the primitives areassociatedavith a setof high contrast
edgesandareusedto rejectoutlying edgelsmeasuredn theimage. At a high level, the
primitivesareassociateavith the objectposeandareusedto rejectoutlying model-image
associationsThe robustmethodsareapplicableto severaldifferentmethodsof tracking,

butaredemonstratetiereby extendinghe RAPID trackerof Harris[34].

7.2 RAPID Tracker

The RAPID trackerrepresentsa 3D objectasa setof control pointswhich lie on high
contrasedges.The pose(positionandorientation)of the objectis estimatedndtheobject
outlinetrackedatfield rate(50Hz) on generalpurposenardware . Thecycle of the RAPID
algorithmis givenin thealgorithmsummary7.1. Thealgorithmis split into two parts,the
first dealingwith makingmeasurements theimage,andthe secondcalculatingthe new

poseof theobject.

7.2.1 TheRAPID Approach
M easurements

The control points are projectedonto the image using the predictedposeof the object
obtainedrom the Kalmanfilter [47]. Foreachcontrolpoint,a 1D searchs thenexecuted

to find the strongestmage gradient(edgel)in the vicinity of the control point, which
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Figure7.1: Measurements made by RAPID at a single control point. The control point (x)
lies on a projected model edge which isinclined at an angle «. A search is carried out
perpendicular to the projected edge to find the strongest image edgel, and the distance is
given by [. When a pose correction is added, the new position of the control point (X’) is
now at a distance I’ from the detected image edgel. See text for more details of the role of
X', ', and a.

is assumedo be the new position of the edge. The searchusedis a 1D Cannyedge
detection[15], andthe searchdirectionis perpendiculato the projectedmodeloutlinein

theimagé (seefigures7.1and7.2).

Pose Update

Whencorrectingthe poseof the object,it is assumedhatthe posediffersonly by a small
translationand a small rotationfrom the predictedpositionin 3D. The projectionof the
objectontotheimageplaneis linearisedaboutthepredictedose.Thesmallposecorrection
canthenbe calculateddirectly usingthe positionof the control pointsandthe distanceto
thecorrespondingmageedgel.

Thepositionof thecontrolpointscanbe measuredh threedifferentcoordinatdrames:

Toavoidinterpolatingoetweerimagepixels, thesearchdirectionis eithervertical,horizontal or diagonal,
andthe measuredlistanceto the edgelis correctedfor the actualorientationof the modeloutline, see[34]
for moredetails.
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Figure 7.2: Measurements made by RAPID, for a set of control points on an object, to
correct object pose. Each distance /; partially constrains the value of the small pose
correction g, and used together allow g to be computed.

the modelframe(X™ = (X™, Y™, Z™)T), the camera-centrefame (X = (X,Y, Z)"),
andthenormalisedimageframe(x = (z,y)"). Theposeof theobject(R andT) determines

thetransformatiorbetweerthemodelandcamera-centreftames
X =RX™ + T, (7.1)

while the transformatiorbetweenthe camerarameandthe normalisedmageframeis a
simpleprojection

x = (z,y) = (X/Z,Y]Z)T. (7.2)
The actualposeof the objectis assumedo differ from the predictedposeby a small
rotationaboutthe origin of themodelframe(® = (©,,0,,0.)"), andasmalltranslation
(AT = (AT,,AT,,AT,)T). This movesthe position(in the camerarame)of the point X

to X/

X' =RX"™ + T+ AT + ® x RX". (7.3)

To simplify the notation,in the following the rotatedmodelcoordinatesreused(X™ =

RX™ = (X™ V™, Z™)T). BothX andX'’ areprojectedontothe normalisedmageplane

2Thenormalisedmageframeremoveshe affect of the known cameracalibration,so point x, measured
in therealimageis transformedo thepointx,, = C~1x, in thenormalisedrame.
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by equation(7.2) to give the pointsx andx’ respectivelyandexpandingup to first order

termsgives
, AT, +©,2™ —0,Y™ — z(AT, + ©,Y™ — ©,X™)
T =z - , (7.4)
T.+ Zm
AT, + O, X™ — @, 2™ — y(AT, + O,Y™ — ©,X™
y = y+— y WX (7.5)
T.+ Zm

Expressinghe smallchangessasix vectorq = (@7, AT")T, equationg7.4) and(7.5)

canbegivenin vectorform as
x'=x+(q"a,q"b)", (7.6)
where

a = (—aV" X"+ 2™ -V, 1,0,—2)" (T, + 2™),

b = (—yV"™— 2" yX™ X" 0,1,—y)" /(T. + Z2™). (7.7)

The perpendiculadistanceof the newpositionof the controlpointto theimageedgel(see
figure7.1)is

I'=1+q'asina —q'bcosa=1+q'c, (7.8)

wherec = asina — bcosa. The sumof the squaredperpendiculadistancefrom each
control point to their respectivamageedgelgives £, a measureof the error for a given

posecorrection,

E = E(ZZ + qTCi)z, (79)

k3

andthe posecorrectionwhich minimisesthis erroris the solutionto

Z ciciTq = — Z l;c;, (7.10)

which canbe found usingstandardinear algebratechniqueg86]. The posecorrectionq

canthenbeusedto updatethe poseof theobject.
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Predictthe positionof the object.

Foreachcontrolpoint, find thestrongesimageedgel perpendiculato the
projectedmodeloutline.

Calculateposecorrectionq usingequationg7.7)—(7.10).

Updatethe positionof the objectusinga Kalmanfilter andq.

Algorithm 7.1 The cycle of the original RAPID.

Tracking

The poseof the objectis trackedovertime usinga Kalmanfilter. The poseconsistof the
translation3-vectorT (seeequation(7.1)) andthe rotationencoded asa 3-vectorR. A
constantelocity modelis assumedor theobject,sothatthereare12 statevariableq6 for

poseand6 for posevelocity) giving the statevector
x = (T,R,T,R)".
Only the poseof the objectis measuredt eachtime stepgiving the measurementector
z=(T,R)",

whereT andR arethemeasuregose. Thevectorsx andz havea covarianceof P ands
respectively
The Kalmanfilter operatesasfollows. Giventhe poseof the objectattime¢ — 1 as

x;_1, thenx; is theestimatecoseattime ¢,

X, = Fx; 1

3Therotationcanbe encodedy severaldifferentformulations(e.g., Eulerangles guaternionsetc.) but
heretheangle-axiformis used.
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wherer is the statetransitionmodel,which for the constantelocity modelis

o I 1
1o 1 |°
Thecovarianceof the statevectorincreaseslueto uncertaintyof evolutionas

P, = FP_1F | + Q;

whereq is theprocessioisecovariance.
At time ¢ the poseof the objectis measureds z; andthe updatedstatevectorx; is
computedas

x; = X; + K(z; — HX}),
whereH = [I | 0] istheobservatiormatrixandk is the Kalmangainmatrix,
K=PH (HPH™ +5,)7t.
Similarly, the statecovariancas updatedas
P, = P, — KHP}.
More detailsof thevaluesfor the errorcovarianceq ands canbefoundin [21, 34].

7.2.2 Limitationsof RAPID

RAPID hasa numberof limitations:

¢ At no point are incorrectedgelsidentified and eliminated. Incorrectedgelsarise
from shadowserrorsin posecausingalignmentwith erroneougdgespcclusionspr

textureonthe objectitself or in thebackground.

e Thestability of controlpoints(how often/accuratelyheyarefound)is notutilisedin

anycalculation.



7.3 RORAPID: A Robust Tracker 157

e Thecontrolpointsaretreatedindividually throughouthe algorithm,without taking
into accounthatseverakontrolpointsareoftenplacedon thesameedge andhence

thereis anassociatiorbetweertheir positionsin theimage.
¢ Only thecalibratedperspectiveameranodelis used.

e Only ageneramotionmodelis used.

Theseproblemsareaddressedh thefollowing section.

7.3 RORAPID: A Robust Tracker

This sectiondescribes robustobjecttracker(RoRAPID) [3], anextensiorto the RAPID
tracker whichremoveghelimitationslistedabove.Thecycleof theRoRAPIDis givenin

thealgorithmsummary7.2.

7.3.1 Robust Detection

The objectmodelis consideredoth at low andhigh levels. The low levelscontainsthe
primitives, which consistsof the high contrastedgeswith known geometry(e.g.,line or
conic). At thehighlevel,theseprimitivesarerelatedto give afull descriptiorof theobject.

This givesamodel/hypothesiat eachlevel:

Low Level Themodelistheknowngeometryof the primitive, while thehypothesiss that

thesetof detectecedgelsareconstrainedo havethis geometry

High Level The modelis the relative positionsof the primitives in the objectand the

hypothesiss thatthe detectegrimitivesareconstrainedy this relativepositioning.

Using redundantmeasurementat eachlevel allows verification of the modelsand the
eliminationof outlyingmeasurementd. herobustmethodsisedor eachevelaredescribed

below
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Figure7.3: Detection of outlying edgels for a line primitive. The outlying edgel does not
support the chosen putative line, which is fitted through the 2 circled edgels.

Robust L ow L evel Detection

A mathematicamodelis known for eachtype of primitive (line, conic, etc). Sufficient
control pointsare placedon eachprimitive to ensureredundanimeasurement&.g.,> 2
controlpointsonaline, > 5 controlpointson a conic). A RANSAC [27] methodologyis
usedodetecbutliersamongheedgelsietectedby eachcontrolpoint. After theelimination
of outliers,if the numberof remainingedgelsfalls below a thresholdthe primitive is not

includedin the poseupdate.

RANSAC

The RANSAC algorithmis the oppositeto conventionaleast-squareechniquesvhereas
muchdataaspossiblas usedo obtainasolution. Insteadassmallasubsetsis feasibleis
usedto estimatethe parametersandthe supportfor this solutionmeasuredFor example,
in thecomputatiorof aline from severakdgelqseefigure7.3), putativelinesareestimated
usingrandomsamplesof 2 edgels. The distancefrom the putativeline to eachedgelis

thencalculatedandif it is belowathresholdhatedgelis deemedo supportheline. The
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processs repeated setnumberof times,andthe putativeline with themostsupports the
onefinally adopted.Outliersareedgelsthatdo not supportthe putativeline chosen After
theeliminationof outliers,the positionof theline is thenre-estimatedisingaleast-squares

fit to theremaining(inlying) edgels.

Robust High Level Detection

Theposeupdates robustlycalculatedusingthe remainingprimitives,andoutlying primi-
tivesaredetectedandeliminated.A typical outlying primitive is shownin figure7.4. Most
of the primitives will havebeenfound correctly so ratherthanusea RANSAC method-
ology, casedeletionis usedto detectthe outlying primitives. Eachprimitive is deletedin
turn, andthe posecorrectionis calculatedrom the remainingprimitivesto give a putative
correctedoose. A projectionerroris measuredor eachputativecorrectedpose,andif the
largesterroris significant,the primitive deletedin the calculationof that putativeposeis
considereautlying andhenceeliminated.
Theprojectionerroristheimagedistancéetweertheprojectecandmeasuregrimitive.
It is measureanly for the primitive deletedn the posecomputation(similarto the Cross-
Validation method). If a primitive hasbeenincorrectlyidentifiedin the image(i.e., an

incorrectimage-mode&ssociationjhe projectionerrorwill behigh.

Primitive Stability

Thestability of theprimitiveswill varyovertime,dueto thepositionof theobject,lighting
conditions.etc. Consequentlythe confidencattachedo a particularprimitive shouldalso
vary. This confidencels computedas a decayingaverageof the frequencywith which
the primitive is correctlyfound. This confidencds thenusedto weightthe effect of the

primitive’s control pointsin the subsequenposecorrectioncalculation. The decaying
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Primitive =2

Figure7.4: Detection of an incorrect primitive. The lighting condition results in a strong
shadow near the predicted position of a line and causes the detection of an incorrect
primitive.

averageof the stability is calculatedusingthe binaryvalue found(t), whichis true when
the control point is found at time ¢, andusedto give the weight w;(¢) for the:" control
pointattimet as

w;(t) = (found(t) + w;(t — 1))/ 2.

Thisweightis thenusedin adaptingequationg7.9)and(7.10)to give
E=Y wl(li+q" ¢)? (7.11)
and
E wicic;rq = — Z ’LUZ'ZZ'CZ', (712)
7.3.2 CameraModels

Theoriginal RAPID usedacalibratedoerspectiveameravhichis describedn sectior2.1.2.
However in somecircumstancesthercameramodelsaremoreappropriate.The general
structureof thetrackeris independendf thecameranodelusedtheonly differenceeing

theposeparameterandtheobject-to-imag@rojection. Thismeanghatq containglifferent
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Predictthe positionof the Object

For eachvisible Primitive
Calculatepositionof Control Points
For eachControlPointin Primitive
Find thestrongesedgelin image
Eliminateoutlying edgelsn Primitive usingRANSAC
I f number of edgels > number of edgels threshold: then
Primitiveis found

Correctposeusingsurviving Primitives/ControPointsweighted
accordingo stability usingequation(7.12).

For eachsurviving Primitive
DeletePrimitive, recalculatgposecorrectionandmeasure
projectionerror
If largestprojectionerroris significant:theneliminatePrimitive

UpdateKalmanFilter

Algorithm 7.2: The cycle of the Robust Object Tracker RORAPID. The values of the
thresholds used are given in section 7.4.

smallposecorrectionparametersandthatc is computedisingadifferentexpressionvhich
is dependenbntheobject-to-imagerojection.However thesameequation(7.12)is used

to computethe posecorrectionwhich minimisesequation(7.11).

Weak Per spective Camera M odel

Theweakperspectiveameragescribedn section2.1.3,is anusefulapproximatiorto the
perspectiveamerd72], whichstill has6 externalpose)parameterbutthefocallengthis
combinedwith theaveragealepthof the objectto give the scalefactor.

Fromequation(2.6), the projectionof a point (X) from the modelcoordinateframe
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to the normalisedmageplan€ is givenby

R |¢m
x=s| ot | X"+t (7.13)
RZ

wheres is the scaling,andthe 2-vectort is the positionof theimageof the origin of the
modelcoordinatdrame. Following theapproactof section7.2,the posecorrectioncanbe

encodeds

q= (0T, At",As)T (7.14)

where® is thesmallrotation, At is thesmallchangan t, andAs thesmallchangan the

scalings. Incorporatinghesmallposechangegivesthe newpositionx’ as

100

010 (X™ 4+ O x X™) + t + At,

x' = (s + As)

wherepointsin themodelcoordinateéramearerotatedto correspondo the orientationof
camera-centredoordinatedrame

X™ = RX™.
The differentworld-to-imageprojectiongive the following expressiongor a andb and
hencec (seeequationg7.8)—(7.10))
a = (O,sZm,—siA/m,l,O,)A(m)T,
b = (—sZ2™,0,sX™,0,1,V™)T,

¢ = asina — bcosa. (7.15)

Affine Camera Model

The affine camerais the uncalibratedversionof the weak perspectivecameradescribed

in section2.1.3, wherethe aspectratio is unknownand the projectionmatriceshave 8

4Theuseof the normalisedmageplanefor aweakperspectiveameraemoveshe aspectatio (¢) from
equation(2.6).
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degree®f freedom.The cameramodeltransformdirectly from the modelcoordinatego

theimage,andfrom equation(2.8)
x = MX" + m. (7.16)

The smallposechanges now the smallchangen the elementof M andm, AM and Am

respectivelywhich gives
q = (AM11,AMqo, . .. ,AMz;J,,AT)’Ll,Amz)T.
Thenewpositionx’ is now
x' =M+ AMX™ + m+ Am.
This givesavery simpleexpressiorfor a andb, andhencec

a = (X", Y™ 77,000,107,
b = (0,0,0,X™, Y™ 7™ 0,1)7,

¢ = asSina — bcosa. (7.17)

Whenusinganaffine cameraonly anaffine modelof theobjectis required.

Per spective Camera with Zoom

If cameracalibrationchangeduring operation,it is usually confinedto a changein the
focallength(i.e.,zoomingin or out of the scene) Whenusinga metricmodelof anobject
andtheperspectiveamersd, it is possibleto trackchangesn thefocallengthin additionto
the changingposeof the object. The projectionfrom camera-centredoordinate®ntothe

imageis an adaptatiorof equationg2.1) and(2.2). Theimagepointsarenow measured

5The weakperspectiveeameramodelallows a changingfocal lengthasit is incorporatednto the scale
factor
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in a quasi-normalised framewherethe effectsof the aspectratio andthe position of the
principal point areremoved but not the effect of the focal length. The cameracalibration
matrix (2.4) canbedecomposedhto two parts

a, 0 wug 1 0 wug a, 0 O
C=| 0 (ay vo|=1]0 C v 0O o O

0O 0 1 00 1 0O 0 1

?

which, combinedwith equation(7.2), give the new camera-to-imagé&ame projectionfor

thequasi-normalised imageframe

(o) (o) 19

The posecorrectiong now containssevenelementswhoseseventhelements the small
changean thefocallengthA,,. Followingthesamestepsasbeforegivesthepositionof the

correctedmagepointas

, R 0,2" —O,Y™ —z(A, + O,Y™ — O, X™)

_ £ + Az, (719

x x T4 o z, ( )
+0,X" -0, 2" —y(A, + O,Y™ — O, X™

y o= g+ - +y(2m A Ay (7.20)

Hence,a andb arenow sevenvectorscontaining

a = (—aV" zX"+ 2™ -V, 1,0, —z,z(T, + 27T )(T, + Z™),
b = (—yV™ — 27 yX™, X701, —y,y(T, + 27)T J(T, + Z™),

¢ = asina — bcosa. (7.21)

So whentracking a metric modelany changesn the focal lengthwill be detectedand
trackedovertime.

However theperspective-camera-with-zoamodelcanbeunstable Thisoccurswhen
the perspectivesffectsaresmall. Examiningequation(7.21),thefinal two elementof a

andb, correspondingo thesmallchangen depthA7, andthesmallchangen focallength
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A, respectivelyhavetheratio of (7, + Zm). In anamgumentanalogougo thatusedfor
affine imaging conditions[82], if the depthof the object(the differencein the valuesof
Z™) is small comparedo the depthof the object7’, the ratio of the final two elements
of c is fixed for all pointson the object. Hence,the matrix 3" c;c; in equation(7.12)is
singularandthe valuesof the smallchangein depthandsmallchangean focal lengthare

unconstrainedyhich introducesnstability.

7.3.3 Motion Models

TherobusttrackerandRAPID assume generalBD motionmodelwith 6 dof's. However

in manysituationsa morerestrictedmotionoccurs.A numberof restrictedmotionmodels
havebeenimplementedincluding (1) puretranslationand(2) planarmotion. In all cases,
thechangen posehasfewerparameterthanthe6 usedn generaBD motion,whichresults

in improvedperformancdrom the Kalmanfilter.

Pure Trandation Thealgorithmusedfor the puretranslationmotion modelis a simple
adaptatiorof the generalmodelin which only the small translationis correctedfor, and
only thetranslations tracked.Similarly apurerotationmodelcanbe usedbutthis scenario
is lesslikely to occurwhentrackingobjects— with the exceptionof securitycameras—

andhasthe problemof definingthe centreof rotation.

Planar Motion Planamotionoccurswhenthetranslations confinedto a planeandthe
rotationis arounda fixed axis which is perpendiculato the planeof translation. Planar
motionis avery commonwhentrackingobjectsfor traffic sceneanalysissuchasvehicles
on roadsor atjunctions[28, 50, 88] or aeroplaneat anairport[87]. However the planar
motionmodelis not a simpleadaptatiorof the generaimotionmodelusedabove,andthe

requiredequationsarederivedbelow
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Theplanarmotionmodelhasthreedegree®f freedom:theangleof rotationaboutthe
fixedaxis,andthetwo degreesf plananranslation.Thetransformatioroetweemrmodeland
camera-centredoordinatdrames equation(7.1),is alteredsothattherotationis splitinto
two parts.First, therotationbetweerthemodelframeandcamergrameR ; whichremains

fixed throughouthemotion,andthentherotationr, aroundafixedaxisa = (a,, a,,a,)"
X =R,R; X" + T. (7.22)

The axis of rotationa is perpendiculato the plane,but measuredn the camera-centred
frame,andthe singledegreeof freedomfor the rotationis the angleof rotationaboutthis
axis. Thefixed axisrotationmatrixR, is parameterisedsingtheangle-axigorm with axis

a andanglef

a?(1—cosf) + cosd  aga,(1l—cosd) —a,sind a,a,(1- cosd) + a, sind
Ry, = | agay(1—cosf) +a.sind  aZ(1—cosh)+cosd  aya.(1— cosh) — a,sing |,
aza,(1— cosd) — a,sind a,a,(1— cosh) +a,sind  a?(1— cosh) + cosh

which,whené is small,simplifiesto

1 —a,f a,b
R, ~ a.f 1 —azl
—a,f  a,b 1

The translationis confinedto a planeandhasonly two degreesf freedom,and so two
perpendiculadirectionsaredefinedin the planeof translation(D; andD;), measuredn
thecamerdrame,andtheseform the coordinatedramefor the smalltranslation.

The small posevariationis now given asa singlesmall angled andthe small planar

translation(«, 3), which givesthe correctedposition,equation(7.3),as
X' = RaRme + T + aDl -+ IBDz -+ fa x RaRme. (723)

Following the stepsof section7.2.1givesthe correctedmagepositions,equationg7.4)
and(7.5),as

R aDy, + 8Dy, + H(ayZm — aszm) —z(aDy, + 8Dy, + Q(ax?m — ay)A(m))
S T, + 2Zm ’
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aDi, + 8D, + H(QZXm — aIZAm) —y(laD1, + 8Dy, + (9(%}77” - ay)A(m))
T, + Zm ’

!/

y =y+

whereX = R.R;X. Theposecorrectionvectorhasthethreeelementsy = (6, «,3)", and

theremainingvectorsa andb aresimpleto deriveas

~ ~ ~ ~ T ~

a = (a,2" —a.¥" —w(a,Y" — a,X"), D1, — 2Dy, Dy, —aDa.) [(To+ Z™),
~ ~ ~ ~ T ~

b = (aZXm —a. 7™ —ylaY"™ —a, X™), D1, —yD1,, Dy, — yDzz) [T, + 7Z™),

¢ = aSina — bcosa, (7.24)

which givesthenewform of the posecorrectionequation(7.10).
The axis of rotationandplaneof translationneedto be knowna priori for the planar
motionmodel. Thesevaluescanlearnedusingthe generamotionmodelto trackanobject

knownto be movingunderplanarmotion, thenfitting a planeto the pathof translation.

7.3.4 Object Models
Model Acquisition

A modelis constructedrom asetof primitives,whicharethehighcontrasedgesssociated
with surfacecreasespccludingcontourspr surfacemarkings.Currentlytheprimitiveshave
to havea known geometry(e.g.,line, conic), to allow the placingof control pointsalong
theirlength,andthe detectionof outliers. Also definedin the modelarethe faces(opaque
surfaces)which control which primitives arevisible in the image,thusallowing hidden
primitive removal. Thefacesaredefinedasareasnclosedy oneor moreprimitives.
Currently modelsare obtainedusing two views of the object, wherethe camerais
translating,to computean affine model (seesection4.1.1). Thenthe known camera
calibrationisusedo upgraddromaffinetoametricmodelusingequation(2.16). Figure7.5
showstwo suchimageswith thelinesfoundin theimagehighlighted,andthe actualwire

framemodelconstructed.
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a b c

Figure7.5: Obtaining a model of an object: (a),(b) the two images used with the camera
trandlating between views, and (c) the wire frame model. Note the internal (texture)
primitives.

Hidden Primitive Removal

To detectwhich primitivesarehidden(self-occludedjrom a particularview, the primitives

andfacesareorderedaccordingo distancéromthecamera.Theneachprimitiveis checked
toseeif any orall, of it is occludedoy afacebetweentself andthecameraForacalibrated
camerahis canbe doneoff-line for all possibleview directions,andthe visibility of each

primitive storedin atable.

7.4 Resultsfor RORAPID

Implementation In RORAPIDthereareseveralariablesvhich arechosermeuristically
andthevaluesusedarelistedbelow Six (10)controlpointsareplacedoneachline (conic)
primitive with four (7) beingthethresholdor the eliminationof the primitive (the number
of edgel threshold in algorithm 7.2). The thresholdfor an edgelto supporta putative
primitive is 2 pixels. The searchareafor the edgelat eachprimitive variesbetweer8 and
24 pixels,andincreasesvhentheedgelis notfoundanddecreasewhentheedgelfoundis
significantlycloserto the projectedprimitive thanthesizeof searcharea.

Whenthe numberof control pointsusedis lessthan50 (i.e., 10 line primitive with 5

controlpointson eachline) RoRAPiDcanrunat50Hzon a SUN IPX workstation[3] with
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an S2200imageboardusedpurelyfor theimageinput/output.However the resultsbelow
wereobtainedwith thetrackerrunningatframerateon eithera SUNULTRAL workstation

or SGlworkstation.

Robustness Whentrackingan objectin a simple,unclutteredenvironmentthe original
RAPID generallyworks aswell asour robusttracker However as soonas the object
becomegartly occluded(seefigure 7.6), the original RAPID fails and startsto track a
phantomobject. Figure 7.7 showsthe variationof poseparametersor bothtrackers,on
a sequenceavherethe objectbecomegartially occluded. RAPID fails, while the robust
trackercontinuedo trackcorrectlyuntil theobjectmovesout of view of thecamera.
Figure7.8 showsanothersequenc&henthe objectis rotating,andasaresultthe parts
of the objectwhich areself-occludecchange®verthe sequenceThe performancef the

trackeris notdegradedy the handoccludingpartof the object.

CameraModels Figure7.11showstwo imagesirom asequencevherethefocallength
of thecameras setincorrectly Usingthe perspective-camera-with-zoamodel,thefocal
lengthis correctedduringthe sequenceFigure7.12showsthe changingfocal lengthover
thesequencérom theinitial 400pixelsto thecorrect540pixels.

Whenthefocallengthis changingandtheperspectiveffectsaresmall,the perspective-
camera-with-zoonmodel can be unstable(seesection7.3.2),and it is betterto usethe
weak perspectivecameramodel wherethe depth of the objectandthe focal lengthare
combinednto thescalefactor. Figure7.13showssucha sequencevherethefocal length
is changedrom 12mm(1500pixels)to 50mm(6000pixels) overthe sequencavhile the
objectis movingawayfrom the camera.Theresultingchangen the scalefactoris shown
in figure7.14.

The affine cameramodelis lessstablethanthe other models,becausehe two extra
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degreesof freedom,which removethe rigid motion constraint,meanthat quite often
the primitives found do not fully constrainthe posecorrection(i.e., excessiveskew is
produced).Thisproblemcouldbealleviatedoy havemoreprimitivesdefinedontheobject,

which shouldresultin enoughbeingfoundto constrainthe posecorrection.

Motion Models Figure7.9showsimagedrom thesequencesedio comparghegeneral
motionmodelandtranslationmotionmodel. The objectin the sequencés movingunder
puretranslatiorandwastrackedusingbothmotionmodels.Figure7.10showsthe motion
parameterdeingtrackedoverthe sequenceandalsothe 95% confidencdimits for each
parameterTheconfidencdimits arecomputedisingthecovariancdrom theKalmanfilter.

Therestrictedmotionmodeltracksthe parameterslightly betterthanthegeneraimodel.

Summary

This chapter described the extension of a rigid object tracker to make it more robust to
ambient conditions such as partial occlusions, photometric changes, etc. The object model
is described at two levels, both of which have redundant measurements thus allowing the
detection of outliers. Several different camera models were used to reduce the affect of
errors introduced by an incorrect camera model, and also extending the use of the tracker
to only partially calibrated cameras. Several different motion models were described as
better results can be obtained when using the restricted motion models rather than the
general full motion model. Results were given for several real images sequences with the

tracker running at frame rate on standard hardware.
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Figure 7.6: Images from a sequence when the object is partially occluded, but the ro-
bust tracker remains locked onto the object. Note, both internal (texture) and external
(occluding) boundaries are tracked. The cross marks a tracked ellipse.
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Figure7.7: Object Pose Parameters for different trackers using the same image sequence:
(1) RoRAPID (solid), (2) RAPID (dotted). The pose parameters are 3 for rotation of the
object (given in the angle/axis form), and 3 for the translation from the camera to object
coordinate frames. The object is partially occluded after 8 sec., causing RAPID to fail,
while RoRAPID continues to track correctly until, after 20s, the object moves out of view
of the camera.
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Figure7.8: Images from a sequence when the object is rotating and the parts of the object
which are self-occluded changes mid-sequence. Also, the hand occludes part of the object
during the sequence but the performance of the tracker is not affected.

Figure 7.9: Images from the sequence where the object is only translating, and moving
towards the camera.
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Figure7.10: The comparison of the results for the full motion model and the pure trans-
lation model when the object being tracked is only translating (see figure 7.9). The three
trandlation parameters are shown for a sequence of 20 frames from the 200 frames the
object is tracked over. The different lines are: solid - tranglational model parameters,
dashed - trandlational model 95% confidence limits, dot/dashed - full model parameters,
and dotted - full model 95% confidence limits. The confidence limits for the translational
model are smaller than those of the full model.
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Figure7.11: Perspective Camera with Zoom Model: The (a) first and (b) 75 images from
a sequencewheretheincorrect initial focal length of 400 pixelschangesto the correct value
of 550 pixels. The pose parameters and focal length are shown in the top left hand corner
of the images. Note how in image (b) the projected outline fits the object unlike image (a).
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Figure7.12: Perspective Camerawith ZoomModel: Graph showing changing focal length
from the sequence shown in figure 7.11. The focal length (solid) converges fromthe initial
value of 400 pixels to 555 pixels after 350 frames, with the 1o confidence limits shown
dashed.
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Figure7.13: Weak Perspective Camera Model: Several images from a sequence where the
object is moving away from the camera and the focal length isincreasing. Images (a), (b)
and (c) show the object moving away from the camera over frames 1-400 when the focal
length is fixed, then the object remains still while the camera zooms in until frame 580 (d),
then again the focal length is fixed and the object moves away until frame 700 (e), and
finally the camera zooms with the object still moving until frame 1100 (f).
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Figure7.14: Weak Perspective Camera Model: Graph showing changing scale factor for
the weak perspective camera from the sequence shown in figure 7.13. The 1o confidence
limits are shown dashed. The spikes at frames 650, 740, and 1040 are where the lock on
the object is temporarily lost giving an obvious increase in the uncertainty. The motion
occurring is described in figure 7.13.



Chapter 8

Conclusions

8.1 Summary

This thesishaspresentedvork in two areasof computervision: two novel methodsfor
self-calibratinga pinhole cameraweredescribedanda commonrigid objecttrackerwas
extensivelymodifiedto increaseds robustnessThegenerathemesappliedto theseareas
includedstratificationof a problemandutilising known constraintgo simplify a problem,
with the aim of obtaininga concisealgorithmwhich canbe easily extendedo multiple
imagesratherthanthe minimumnumbermrequired.

Thefirst self-calibrationalgorithm(chapterd), utilised theknownmotionconstrainof
aninitial puretranslationto allow the stratificationof the self-calibrationproblem. As a
result,thecalibrationalgorithmis linearandcanbe easilyextendedo anarbitrarynumber
of images.

The secondself-calibrationalgorithm (chapter5) demonstratethe geometricimpor-
tanceof fixed entitiesastools for cameracalibration. The fixed entitiesof planarmotion
weredescribedandit was shownhow the positionof thesedeterminethe cameracali-
bration. Thenchapter6 estimatedhe covarianceof the positionof the fixed entities,and
showedhow this cangive a measureof uncertaintyfor the computedcalibration. How-
ever thiswasonly partially successfulandthelimitationsandproblemsencounteregvere
described.

ThetrackerRAPID wasextendedo givetherobustobjecttrackerRoRAPID(chaptef7),
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which by utilising the complexityinherentin rigid objectsandrobustdetectionmethods,
improvedthe robustnes®f the trackerto conditionssuchaspartial occlusion. The con-
straintsof thetypeof objectmotionor thedifferentcameramodelsvereusedto extendthe
operationof thetracker

Throughouthe thesis extensiveresultsweregivenfor a numberof camerasnounted

onvariousplatforms,andtheseresultshavebeenshownto be bothaccurateandstable.

8.2 FutureWork

Althoughthetheoryandalgoithmspresentedherehavebeenshownto performsuccessfully
therearestill manyareaswhich requirefurtherwork. Someof the moregeneralareasof

interestaredescribedelow

e Mostcameracalibrationalgorithmsusestaticscenesbut thesearenot the normfor
computewision,wherethescenaisuallycontaingandependentlynovingobjects.So
aninterestingavenueof work will beto examindf it is possibleto calibrateacamera
whentrackinga moving object. This couldinvolve combiningthe work presented
hereon rigid objecttrackingandself-calibration especiallywith the planarmotion
constraint. This approachhasthe advantagehatif morethanoneobjectis being

tracked theneachobjectwill giveindependentonstraintonthe calibration.

e Cameracalibrationis generallypresenteds singleindependentopic in computer
vision, butit shouldreally be seenasa smallpartof alargervisiontask. As aresult,
cancamereacalibrationbe approachedsa backgroungrocesgso othervision tasks,

sothatit cantrackthe cameracalibrationanddetectwhenthe calibrationchanges?

¢ Uncertaintyanalysisis importantas it gives a measureof the confidencein the

computedparametershut is not well understoodn the areaof self-calibrationand
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scenereconstruction. How doesthe uncertaintyin cameracalibration affect the
Euclideanreconstruction? How can the uncertaintyof the motion constraintsbe

propagatedge.g., what is the effect of a small rotation during an assumedoure

translation?

e Thework presentedhereusesa large numberof pointsmatchedvera few images.

How doesthis compareo usingafew pointstrackedoveralargenumberof images?



Appendix A

The FundamentaMatrix

Overview

A large amount of work has been done on understanding and computing the fundamental
matrix. This appendix is only a brief review of the fundamental matrix containing the
theory of epipolar geometry which leads to the fundamental matrix, and the different
parameterisations for the matrix. A description of the implementation used to compute the

matrix is given. More details on the matrix and its computation can be found in [60, 91].

The Fundamental M atrix

Thefundamentaimatrix[22, 36] algebraicallyencodesheepipolargeometrybetweertwo
views. It is theextensiorof theessentiamatrix [56] to uncalibratedcamerasTheepipolar

geometryconstraintwhich defineshefundamentamatrixis statedwithout proof.

Theorem A.1 Given an uncalibrated camera moving under therigid displacement defined
by (R t) such that t # O, and a set of homogeneous image points {X;} in the first view
which are transformed to theimages points {x’ } in the second view, then thereexistsa3 x 3

matrix F which satisfies the epipolar geometry constraint
X[ Fx;=0 Vi. (A1)

Proof: SeeFaugera$22] or Hartley[36].

O
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A.1 Epipolar Geometry

Equation(A.1) is the epipolarconstraintfor correspondingpointsin two views. Geomet-
rically, a pointin the first imagex is mappedby F to aline I’ in the secondimage (the
epipolar line), wherel’ = Fx, andthe correspondingoint x’ lies on this line giving the
constraint

x'"l =x'""Fx = 0.

Converselythe pointx’ is mappedo the epipolarline in thefirstimage,l = F'x’, andx

lies onthisline to give thesimplerearrangemerdf equation(A.1)
x"1=x"F'x' =0.

For realimages,wherethe position of the pointsis perturbedby noise,the epipolar
constraints not alwayssatisfied.Sothatfor therealpointsx andx’, correspondingo the
exactpointsx andx’ respectivelythenthepointsdo notnecessarilyie ontheepipolarine
and

x'TFx = ¢,

wheree is the algebraicerror of the epipolarconstraint. However ratherthan usethe
algebraicerrore, a geometricerrormeasurean theimageplaneis oftenused. This leads
to the definition of epipolardistance(error), which is the perpendiculadistancefrom a
pointx’ to thecorrespondingpipolarine Fx, andis givenby d(x’, Fx) whered(a, 1) isthe
perpendiculadistancé from the pointa to theline 1.

Generally the epipolardistances computedor bothimagesto avoid anybiasin any

computationusing the epipolardistance,andfor a setof pointsthe sumof the squared

Theactualfunctionis d(a, 1) = (a1ly + azlz + 13)/(az\/15 + 13).
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epipolardistances givenby

Eep =3 (d(x, Fx;)? + d(x;, FTx))?) . (A.2)

A.2 Parameterising the Fundamental Matrix

General Motion Parameterisation

For generalmotion, F hassevenindependentegreesof freedom. The constraintequa-
tion (A.1) only requiresF to bedefinedup to anon-zercscaling,andF alsohasto satisfies
theadditionalalgebraicconstrainbf de{F) = 0. Thisleavessevenndependendegree®f
freedom.

Severalifferentparameterisationsavebeensuggestedor F which encodethe above
constraintd25, 59], but the simplestform is whereonerow (column)is computedas a
linearcombinatiorof the othertwo rows(columns)suchas

Fiq Fia Fi3
F= Foq Fo o3 5 (A3)
aly1+ BFyn aFi2+ BFy aFiz+ BFos

andoneof the elementgor a row/column/matrixnorm)is fixed to be unity to removethe
non-zerascaling. Possiblesrrorscanbeintroducedvhenthefixed elements significantly
smallerthanthe otherelementsput this canbe detectedand a differentparameterisation
used.

However for degeneratenotions(e.g., pure translation)the fundamentamatrix has
reducedorms,which areimportantif the degeneratsituationsarenotto adverselyeffect
numericalcomputationg91]. The parameterisation®r puretranslationor planarmotion
aredescribeelow Severabtherdegeneratéormsof F exist,but arenot utilisedfor the

work presentedhere,andmoredetailscanbefoundin [91, 95].
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Translational Motion Parameterisation

For a pure translatingcamera,the fundamentalmatrix F is skew symmetricwith two

independentlegree®f freedom[63], andhastheform

0 Iy Fig
F=| —Fpp 0 Foz | . (A4)
—Fi3 —Fy3 O

Planar M otion Parameterisation

Foracameraundegoingplanarmotion,Maybank{63] showedhatthefundamentamatrix
satisfiesan additionalconstraint,thatde{F + F') = O (i.e., the symmetricpart of F is
also Rank 2), which resultsin six independentlegreesf freedomfor F. Vieville and
Lingrand[95] introduceda minimal parameterisatiofor thisdegenerateatrix of theform

F = [sin(0)[fo]x + (1 — cos(0))[fxf] + fofy ]| . (A.5)
whered is relatedto the rotation anglebetweenviews, andfy; » areunit vectorswhich
satisfythe additionalconstraintof fy f; = 0. Section5.3 showsthatthis parameterisation
is very closelyrelatedto thefixed imageentitiesfor planarmotion. Thetwo unit vectorsf;
andf, correspondo theimagelines]l andm.

Theconstraintof f; f; = 0 is explicitly encodedn the parameterisatioby expressing
fo asafunctionof f; andananglep (i.e., fo = f(f1, p)). Theconstraintis such,thatif the
vectorf; is takento definea normalto a planein 3-spacethenf is constrainedo lie in
thatplane.A referencalirectionon the planeis obtainedby projectingthe X axisontothe
plane.Thenp istheanglemeasuredetweerthedirectionof f, andthereferencelirection,
hencef, is constrainedo lie in the planeandthe constraint, f; = 0 is satisfied.

Sothe minimumparameterisationsedfor eachplanarmotionfundamentaimatrixis
F« f(6,1,m,p)

wheretheimagelinesareencodedisingsphericalkcoordinateso give unit vectors.
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A.3 Computing the Fundamental Matrix

Severamethodshavebeensuggestetbr computinghefundamentamatrixusingmatched
pointg [8, 19, 36, 60,91]. All methodshavea similar approachfirst, anestimateof F is
computedusinglinearmethodswvhich minimisesthe algebraicerrorusingequation(A.1);
thena non-linearmethodis usedto minimisethe geometricerror, the epipolardistance
givenin equation(A.2). Wherethe methodgdiffer, is in how the fundamentamatrix is
parameterise¢seeappendixA.2), if andhow outlying points(mismatchesare detected,
andif thedegeneratsituationsaredetectedandutilised.

Themethodusedto computethefundamentaimatrix for thiswork is givenbelow with
a linear methodusedto obtainan initial estimateof the solution,andthena non-linear

minimisationwhich iterativelyrefinestheanswer

Linear Method

The linear methodis independenof the final parameterisatioof F, anddoesnot enforce

theRank2 constraint.Equation(A.1) canberearrangedhto theform
Frza' + Fiya' + Fist' 4+ Faxy' + Foyy' + Fosy' + Faix + Faoy + Faz =0,

wherex = (z,y,1)" andx’ = (2’,y’,1)T, andeachpair of pointsgive oneconstrainton

F. Soeigh or morepairsof pointscanbe usedto solvefor F with the equation
zf = 0, (A.6)
wheref = (Fy1, Fia, . .., F33)" andeachrow of Z is afunctionof a pair of points

_ ST Y SNy N S AR AN
zZ; = (‘rlxi?yzfcﬂIiaxlyﬂylyiayﬂxhyh 1)

2Matchedpoints are obtainedusing softwaredevelopedby Paul Beardsley and the approachusedis
describedn [8].
3F is only definedup to scaleandrequireseightconstraints.
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Forrealpointsthereis generallynotanexactsolutionto equation/A.6), andsothesolution

is foundusingSVD [78] to solve

min || Zf ||, . A7
min, | 21 || (A7)

The solutionto equation(A.7) is the right singularvectorassociatedvith the minimum
singularvalueof Z. However Z is an x 9 matrix wheren, the numberof points,is often
n > 9, andsobetternumericalresultscanbefoundby decomposinghe9 x 9 matrixz 'z
to give the eigenvectosolution. Theextraconstrainof || f ||.= 1 is requiredto avoidthe
trivial solutionof f = 0. Thisconstrainis automaticallyachievedy usingtheeigenvector
solutionwhich hasunit normby definition. Following [36], numericallybetterresultsare
obtainby scalingthe pointsto havethe meanpositionat the origin, anda meandistanceof
/2 from theorigin.

Whenthe motionis puretranslationthereducedorm for thematrix (A.4) canbeused.
Now thereareonly threeelementdo find andequation(A.1) canbe rearrangednto the
form

Fiyz' — zy') + Fiz(z' — z) + Fas(y' — y) = 0.

Again the eachpair of points gives one constraint,and thesecan be rearrangednto a
reducedorm of equation(A.6)

zZ'f* =0, (A.8)
wheref* = (Fy, Fi3, F23)" andeachrow of z* hasthe form
z] = (yi%; — @iy, T — T, Yi — Yi),

and SVD is usedto find a solution correspondingo the right singularvector of z*7z*

associateavith the minimumsingularvalue.
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Non-Linear Method

Onceaninitial solutionhasbeenfoundusinglinearmethodsanon-lineariterativescheme
canbeused.Thishastheadvantagef minimisingthegeometriqepipolar)errorratherthan
analgebraicerror, andalsoallowsthe correctminimum parameterisationyhich satisfies
the applicableconstraintsto be used.A Levenbeg-Marquard{78] minimisationscheme
is usedto minimisethesumof thesquarecepipolardistancegivenin equation(A.2). Any
of the possibleparameterisation®r F canbeused,andthe covarianceof thefinal solution

canbeobtainedusingtheresultsof lemmacC.1.



Appendix B

TheTrifocal Tensor

Overview

The trifocal tensor was reviewed in section 5.4.1, and was used to compute the position of
thecircular points. In this appendix, it is shown how the tensor was computed, and several

results associated with the tensor are derived.

B.1 Computingthe Trifocal Tensor

Severalmethodshavebeensuggestedor computingthetrifocal tensorf41, 52, 92], some
of which enforcethe minimum parameterisation. However the method here follows
Hartley[41] by computingthe 27 parametersvithout enforcingthe additionalconstraints.

The methodusedis analogoudo the linear methodsusedto computethe fundamental
matrix (seeappendixA.3). Fromeachtriplet of matchedoointsandequation(5.17),nine
constraint®on the elementf thetensorareobtained pf which only four areindependent.
Similarly from atriplet of matchedines andequation(5.18),two independentonstraints
onthetensorareobtained.Sogivenn, tripletsof matchedointsandr; tripletsof matched
lineswhich satisfy4n, + 2r; > 26, thenthetensorcanbe computed.The constraintsare
arrangednto theequation

Zt = 0 (B.1)

wheret = (711, 772, ..., T3%) T andz containgheconstraint§rom thematchedgointsand
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lines. Thesolutionfor realimagess foundusingSVD to solve

min || Zt B.2
min, | 2t | (8.2

with the methoddescribedn appendixA.3. Again to improve numericalaccuracythe
imagesare transformedo havemeanpositionat the origin and an averagedistancey/2

from the origin [36].

Computing the Reduced Trifocal Tensor

The methodusedto computethe reducedtrifocal tensoris the sameasthat for the full
tensor However asonly 12 elementsarebeingestimatedthe calculationshouldbe better
conditionedhanwhenestimatinghe full tensor

The pointsandlines aretransformednto the normalisedplanarmotionframe,andthe
correspondingripletsareusedwith equationg5.17)and(5.18)to give constrainton the
12 non-zeroelementf thetensor Now, only n,, tripletsof matchedpointsandr; triplets

of matchedineswhich satisfy4n, + 2n; > 11arerequiredto find a solution.

B.2 Trifocal Tensor Transfor mation

Whenanimageis transformedeitherto improvethe numericalcomputatiorof thetensor
(appendixB.1) or to transformto the canonicaframe,a differenttensomwill becomputed.
Givenbelowis the transformatiorof the tensorgiven animage-to-imageransformation.

The sameamagetransformatiorhasto beappliedto all threeimages.

LemmaB.1 Given an image point transformation H, such that X = Hx, which is applied
to all threeimages, then the corresponding trifocal tensor transformation can be expressed

asTor = [HY,,H,; H,, T?*.
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Proof: Thepointandline transformatiorin tensomotationare; = H,;z; andl; = Hjl,

respectively Thetrifocal tensortransferdines betweer3 imageswith equation(5.18)
li = Z;Z;C/Tz]k7

with the standardhotationfor thecorrespondindinesin threeimages.If all theimagesare
transformedvith the samefunctiond, thenthethreenewlinesarel; = HmlAn, l;- = Hoji;,

and/}; = Hpkig. Substitutingheseinto equation(5.18)gives
Hyily, = Holl Hy VT,
andsimplerearrangemerndf theindicesandcarefultreatmenof H,,; gives
"TH™Yin Ho; Hyp T7F
Comparisowith 7, = /"7 showsthat
Tor = [H™Y,, H,; H, T3 (B.3)

O

B.3 Canonical Transformation

Thecanonicakransformationintroducedn section5.4.2,is animage-to-imagerojective
mappingwhichis requiredto mapthevanishingpointv to (0, 1,0) " andthe horizonlinel

to(0,1,0)7.

Lemma B.2 The canonical transformation H. which maps the image point v to (0,1,0)"

and theimagelinel to (0,1,0)7 is
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Proof: First1 is mappedto (0,1,0)" with the transformatiorti; (i.e.,1 = H{(0,1,0)7),

which canbetherigid transformatiorof the plane

lopb =hb O
H, = ll 12 Z3 .
0O 0 1

lz’Ul — Zl’Uz
V= | hoa+bv+13 |.
1

Thenthe projectivetransformatior; is usedto mapv to (0, 1,0)" whilst keepingtheline
(0,1,0)7 fixed, suchthat

Thistransformsv to v where

(0,1,00"7 = Hy¥,

(0,1,0)7 H, (0,1,0)7,
whichto be non-singulaihastheform
1 0 —01
H,=| 0 1 0o |.
0 -1/, 1

Hence thecanonicakransformatiori, = H,H; hastheform

lz —Zl 11‘02—12’01
H=| L b l3

= =h =l3
RY lv lv + 1

O

Theinverseof thecanonicakransformations

lp &L— % + ﬂlﬂf;&l —lil3 + Ip(lv1 — lyv2)
HC_l = —ll lz — % — W —1213 — ll(lz’l)l - 11’02)
0 15+12

v 5+15
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B.4 Projection Matrices

Section5.5.2useghereducedrifocal tensorto obtainthreeconsistenprojectionmatrices,
which canthenbeusedto back-projectheimagepointsto give aprojectivereconstruction.
Hartley[41] first decomposethetrifocal tensorto give consistenprojectionmatricesand
wasderivedfrom equation(5.19),

T: =pl'py —p4ip.,

whereP, P/, andpP” arethethreeprojectionmatricesandPp is setto thecanonicaform [I]0],
andp’ andp/ arethecolumnsof P/, andp”. However themethodis complexandproneto
instability. For normalisecblanarmotion, thetrifocal tensor(77*) hasareducedorm with
only 12 non-zeroparametergseeequation(5.23)),andthis allows a simplermethodto be

usedto obtainthe projectionmatrices.

Lemma B.3 Thereduced trifocal tensor 7/* can be simply decomposed into three consis-
tent projection matrices P, P’, and P”, which can then be transformed using H. from the

normalised planar motion frame into the real frame using the canonical transformation.

Proof: Section5.4.2showedhatthe projectionmatricedfor the normalisedplanarmotion

frame,P, &, andP”, havea specialform

1 000
P = |0100],
0010
) Py 0 Bl Pis)
P/: ~OP2/200,

[ Py O Py Py
[Py 0 P P
P’ = 0 r, 0 0 |.
Py 0 Py Py |

Usingequation(5.19)in the normalisedpblanarmotionframe

Tk Dt oD S Dt
13" = PjyPy; — PPy
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thefollowing equationsareobtained

r D pn DI DN DI DIt DI Dt
~ P11P14_P14P11 O P11P34_P14P31
Fit — 0 0 0 ,
DI Dt DI D DI DIt DI Dt
L P31P14_P31P34 O P34P11_P34P31
DI DN
~ - O~ _P14P22 - O~
ko _ ! D ! pn
5" = | PpPly 0 PPy |,
Y
L O _P34P22 O
r D opn DI D DI DIt DI Dt
~ P13Pl4_Pl4P13 O P13P34_P14P33
Tyt = 0 0 0
DI DI DI DI DI DI DI DI
L P33Pl4_P33P34 O P34Pl3_P34P33

Six parameterg P4, Ply, PLy, P, Pl PL,} canbefoundup to scalefrom 73, Projection
matricesareonly definedupto scalewhichis fixed suchthat|| .|| = 1.0and|| P4|| = 1.0.
From 77* and 74, 8 linear equationsin the 8 remainingunknown parametersare
obtained. However thereis a two-parametefamily of solutions,andany solutionfrom
this family will give consistenprojectionmatrices. So P}, and Pl aresetto unity, and
the remaining6 parameterganbe found. The two-parametefamily of solutionsexist
becausef thearbitrarychoicefor theplaneatinfinity. Normally, whenforming projective
projectionmatricesthereis a four-parametefamily [10], but the constrainedorm of the
projectionmatricesreduceghis ambiguityto justtwo-parameters.
Threeconsistenprojectionmatricesfor therealimagescanbe computedoy usingthe
inversecanonicalransformatiorp, = H-1P;. Thisis from the simpleobservatiorthatthe
sameprojectivereconstructiorprojectsto thetransformedmagepoints.

O



Appendix C

First OrderError Propagation

Overview

Thisappendix givesa brief review of error propagation for non-linear functions, and shows
how using a first order approximation to a non-linear function it is possible to get a first
order estimateof the covariance of the output. Also stated, without proof, isaresult showing
how to estimate the covariance of the solution of a non-linear minimisation. The theory of

first order error propagation is applied to the intersection of multiple lines.

C.1 Non-Linear Functions

Chapter6 examinedhe methodof self-calibrationusingfixed points,andtried to estimate
thecovariancef thecomputedalibration. Theinitial assumptiomvasthattheimagepoints
areperturbedoy Gaussiamoise andthis uncertaintyis thentrackedthroughthe algorithm
usingerrorpropagation However manyof the stepsof thealgorithmarenon-linearandso

first orderapproximation$fiaveto be usedto propagatehe covariance.

Error Propagation Given somedatax with covariance/\x, and a known function
y = f(x), whatis the covarianceof the outputof thefunction Ay ?
If thefunctionf islinearandis expressedsamatrix¥, thentheoutputandits covariance

canbesimply statedas

y = Mx, (C.2)
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Ny = MALM'. (C.2)

Oncethe functionf becomeson-linear a first order approximationhasto be used.

Expandinghefunctionusinga Taylor seriesandtruncatingto first ordertermsgive
_ of 2
f(x+ Ax) :f()?)—l—an—l—O(H Ax |9, (C.3)

wherex is the expectedralue,and Ax modelsthe covariancesuchthat

E[Ax] = O,
E|(Ax—E[Ax])) = E|AxAx']
= Ax

Thecovarianceof the outputcannow becalculatecas

Ay = E[(f(X+ Ax)-f(x))? (C.4)
El(%Ax)zl

of  of’

ax X ox

%

Covariance of an Implicit Function

Severalalgorithmsin this thesisuse an unconstrainedninimisationof an implicit cost
function when iteratively solving a non-linearminimisation (see section6.2.2 and ap-
pendixA.3). Usingtheimplicit functiontheorem62] andthe casewherethecostfunction
is a sumof squarest is possibleto computea first orderapproximatiorto the covariance

of thesolutions.

Lemma C.1 Given animplicit function of the form

n

C(xi,2) =Y CAx;,2)

=1
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where x; are the measurements, z contains the p parameters being minimised over, and

Z = Z at the minimum of the function C(x;, z). Then the covariance of the solution z; is

given by
Zcmzn -
/\ZO = 7H T,
n—p
where the Hessian His approximated by
oC; T aC;
H~
2 dz 9z’

and

Cmin = Z Ciz(xh ZO)

Proof: SeeCsurkaet al. [17] (or bookson classicalnalysig62]).

O

C.2 Covarianceof thelntersection of Lines

The following is takenfrom Clarke [16], and dealswith the problemof estimatingthe

position of the vanishingpoint by intersectingthe image lines (seesection5.5). The

problemcanbe statedgenerallyasthatgivena setof lineslying in a planefind the point

which minimisesthe sumof the perpendiculadistancefrom that point to thelines. The

n linesaregivenashomogeneou8 vectors(l; = (1, l;2, l;3)7) which arescaledsuchthat

12 + 1% = 1, andthe pointis representety p = (p.,p,,1)". Thesumof the distances
squareds

C =

K3

(i7p)".

1

It canbe shown[16] thatthesolutionis

Pz _ 1 Syy _Sxy Szz C 5
[Py - Smsyy—sa%y [ —Szy Sae Syz |7 ( . )
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wheresS,, = > ; lil;,. Thecovarianceof the solutionis givenby
Np = VENVET, (C.6)

where/\; is ablock diagonaimatrix with thei'" block containing/\,, the covariancef the

:'* line. TheJacobiarVf is estimatedising

2 -1 42
Vf:_<ac) 90

ap2? opal’
where
82_6’ — Sz Szy
apz Sl‘y Syy ’
and
opdl 2lype lypy Ly :

If thelineshavedifferentcovariancematricesthentheequationsareadjustedsuchthat

~ Zzulw
Suy = Z )
=1 Wi
and
2 2ipps  lLiaPy  lig
’C wifnlybe
a 81 - 2liyp.r liypy lt_y ?
P —wi —uH i Ce

whereuw; is thetraceof the:*" line covariancematrix.
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