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Abstract

We show how to use parallelization to speed up sampling from an arbitrary distribution � on
a product space [@]= , given oracle access to counting queries: ℙ-∼�[-( = �(] for any ( ⊆ [=] and
�( ∈ [@]( . Our algorithm takes$(=2/3 · polylog(=, @))parallel time, to the best of our knowledge,
the first sublinear in = runtime for arbitrary distributions. Our results have implications for
sampling in autoregressive models. Our algorithm directly works with an equivalent oracle
that answers conditional marginal queries ℙ-∼�[-8 = �8 | -( = �(], whose role is played by a
trained neural network in autoregressive models. This suggests a roughly =1/3-factor speedup
is possible for sampling in any-order autoregressive models. We complement our positive
result by showing a lower bound of Ω̃(=1/3) for the runtime of any parallel sampling algorithm
making at most poly(=) queries to the counting oracle, even for @ = 2.
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1 Introduction

The seminal work of Jerrum, Valiant, and Vazirani [JVV86] established an algorithmic equivalence
between the tasks of approximate sampling and approximate counting, for the ubiquitous class of
self-reducible problems. This key equivalence is at the heart of the Monte Carlo Markov Chain
approach to approximate counting [ŠVV09], which has enabled breakthroughs like approximating
the permanent [JSV04] or the volume of convex sets [DFK91]. In this paper, we focus on one side
of this equivalence, sampling via counting.

Self-reducibility, in its most widely applied form, concerns distributions � on a product space
[@]= and their pinnings: conditional distributions obtained by selecting a subset ( ⊆ [=] and
partial configuration �( ∈ [@]( and conditioning - ∼ � to have coordinates in ( pinned to �(:
-( = �(. In this setting, sampling means producing a random - distributed according to a
specified pinning of �. Counting, on the other hand, refers to computing the partition functions
of pinnings: ℙ-∼�[-( = �(].1 Sampling via counting is in fact very easy to describe in this
setting. Assuming access to a counting oracle, we can produce samples from � via the following
autoregressive generation process:

Initialize �← ∅
for 8 = 1, . . . , = do

for G ∈ [@] do

?G ← ℙ-∼�
[
-8 = G

�� -[8−1] = �[8−1]
]

�8 ←random sample in [@] distributed ∼ (?1 , . . . , ?@)
return �

Note that we only need to use the counting oracle to compute the computationally equivalent
conditional marginals:

ℙ-∼�
[
-8 = G

�� -[8−1] = �[8−1]
]
=

ℙ-∼�
[
-[8−1] = �[8−1] , -8 = G

]
ℙ-∼�

[
-[8−1] = �[8−1]

] .

This process, despite its simplicity, is how the widely successful autoregressive models generate
their output [see, e.g., LM11; VKK16; Vas+17; Dev+18; Yan+19; Bro+20]. State-of-the-art large
language models, or even some competitive vision models, train a neural network to answer
conditional marginal queries and then use the aforementioned process to generate samples. In the
context of language models, [@] represents a token space, and = is the length of generated text or
context length, while in pixel-space vision models, [@] is possible values for a pixel, and = is the
number of pixels in the image.

One downside of this simple sampling process is that it is extremely sequential. One has to generate
coordinates 1, . . . , 8−1, to know which conditional marginals need to be queried in the 8th iteration.
So, it is natural to ask if there is a more parallelizable sampling process. More precisely, suppose that
an oracle2 can answer conditional marginal queries of the form ℙ[-8 = G | -( = �(], and we can
interact with this oracle in rounds, each time asking polynomially many queries simultaneously.
We are interested in finding the adaptive complexity of sampling:

1In the literature, often � is assumed to be an unnormalized measure. The partition function for unnormalized mea-
sures is simply �({- ∈ [@]= | -( = �(}). Counting algorithms for unnormalized measures and normalized measures
are easily reducible to each other, so w.l.o.g. we assume � is normalized.

2E.g., a neural network in learned autoregressive models.
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Question 1. What is the minimum number of rounds before we can produce a sample?

At first glance, it might seem that ≃ = is roughly the optimal number of rounds. Indeed, if we
are restricted to asking queries where we always pin a prefix -[8−1] and ask for the conditional
marginal of the next coordinate -8 , not much better is possible. Imagine the adversarially chosen
distribution � being a Dirac delta on a single randomly chosen � ∈ [@]=. One cannot “guess” more
than $̃(1) coordinates of � at a time, and thus any query pinning more than $̃(1) new coordinates
is useless. Thus it takes Ω̃(=) rounds to find the hidden �.

Perhaps surprisingly, we show that when pinning is allowed on any subset of the coordinates, we
can significantly improve over =. For details of the algorithm, see Section 3.

Theorem 2 (Main). There is an algorithm that produces a random sample from any distribution � on [@]=
by interacting in rounds with an oracle that answers conditional marginal queries, with each query returning
ℙ-∼�[-8 = G | -( = �(] for all G ∈ [@]. The total number of queries is $(=), and the expected number of
rounds is

$(=2/3 ·min{log2/3 = · log @, @1/3 log1/3 @}).

We note that, although we mostly care about parallelizing interactions with the oracle, our al-
gorithm’s internal computation can also be parallelized, and up to polylogarithmic factors, the
runtime on a PRAM would be the same as the bound in Theorem 2. We also note that the guarantee
on the expected number of rounds for our algorithm also holds with high probability at the cost
of extra logarithmic factors, see Theorem 28.

Remark 3. In autoregressive models, especially large language models, @ is usually very large, but
Theorem 2 has a mild dependency on @, at most logarithmic. Since autoregressive models are
often run on hardware already capable of massive amounts of parallelism, e.g., GPUs or TPUs,
one can expect our algorithm to speed up generation time even in practice. We leave experimental
evaluation to future works, but we also note two potential issues. First, while many autoregressive
models, such as XLNet [Yan+19] or generally any-order autoregressive models [SSE22], allow
pinning of any subset, many others only allow pinning of prefixes; as noted before, no significant
parallel speedup is possible for just prefix pinnings. Second, in practice, the oracle’s role is played
by a trained neural network, which clearly returns only approximate answers. While we can handle
approximate oracles, see Section 3.4, the guarantees we need in theory might not hold in practice.

One might wonder if the number of rounds can be further improved, perhaps by using a different
algorithm. In a dream scenario, would a polylogarithmic number of rounds be feasible? We
answer this question negatively, by providing a lower bound of Ω̃(=1/3) for any algorithm.

Theorem 4 (Lower bound, informal). Even for @ = 2, any algorithm sampling from arbitrary distributions

on [@]= needs to interact with the conditional marginal oracle for at least Ω̃(=1/3) rounds.

For the more formal statement of our lower bound, see Section 5. This shows that the optimal
number of rounds, while sublinear in =, must still be a polynomially large function of =, at least
with no further assumption on the distribution �.

1.1 Related Work

Interest in parallel sampling started decades ago. As an early example, Mulmuley, Vazirani, and
Vazirani [MVV87], having found an algorithm to generate perfect matchings in parallel, asked if a
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uniformly random one can also be generated in parallel. Teng [Ten95] provided negative evidence
for this. Recently, there has been a significantly increased interest in parallel sampling algorithms.

Markov chains, arguably the most successful sampling tool, are naïvely sequential, but recent
works have shown techniques for parallelizing some classes of Markov chains, including Glauber
dynamics, under tractability conditions on the distribution � [FHY21; LY22; Lee23]. We note that
even sequential implementations of Markov chains such as Glauber dynamics take exponential
time on worst-case distributions �, so it is natural that these works need further assumptions on �.

Most related to our work, parallel sampling was raised as an open question by Anari, Hu, Saberi,
and Schild [Ana+20] for several challenge distributions that admit parallel (NC, i.e., polylogarith-
mic time on polynomially many machines) counting algorithms. These include the distributions
of uniformly random arborescences, directed Eulerian tours, planar perfect matchings, and de-
terminantal point processes. They showed polylogarithmic sampling is possible for one of these
challenges: sampling uniformly random arborescences. Later, Anari, Burgess, Tian, and Vuong
[Ana+23a] showed polynomial parallel speedups are possible for the class of entropically independent
distributions, which included all challenges except for planar perfect matchings. Most recently, Anari,
Huang, Liu, Vuong, Xu, and Yu [Ana+23b] achieved polylogarithmic sampling for all challenge
distributions except for planar perfect matchings, using the stronger “weighted counting oracle.”
This stronger oracle returns marginals not just after pinnings, but under all “exponential tilts,”
and interestingly, is what another class of generative AI models, namely diffusion models, attempt
to learn.

We note that all of these prior works use some tractability assumption about the distribution �. In
fact, none of them are able to nontrivially speed up sampling of planar perfect matchings, one of the
original challenges. In contrast, in our work, the emphasis is on arbitrary distributions �, as none
of the tractability assumptions of prior work is likely to hold for example by distributions learned
by autoregressive models. As an application of our results, we show how to nontrivially speed up
parallel sampling of planar perfect matchings in Section 4.

Recently, generative modeling in AI has produced amazing results. State-of-the-art models, de-
pending on the domain or modality, are often autoregressive or diffusion-based. Given their huge
importance in practice, significant attention has been paid to improving the sampling efficiency
of these models, particularly via parallelism. For example, Picard iterations in diffusion mod-
els [Shi+23] and speculative decoding in autoregressive models [Che+23; LKM23] have shown
practical accelerations. There are many other techniques introduced in the literature, evaluated
experimentally, by way of example “prediction and forecasting” [WH20] and fixed-point iterations
based on Jacobi and Gauss-Seidel equations [Son+21]. To the best of our knowledge, these works fo-
cus on real-world distributions and do not theoretically prove an unconditional asymptotic parallel
speedup. Interestingly, some of these practical parallelization techniques, for example, speculative
decoding, share similarities with our sampling algorithm, Algorithm 3. In speculative decoding,
a draft model, a much faster but less accurate model, is used to generate guesses sequentially for
future tokens and these guesses are “verified” using a larger but more accurate model in parallel.
Our algorithm is also based on a guessing and verification paradigm but differs from speculative
decoding because we cannot afford to sequentially run a draft model. We emphasize that our
work is focused on theoretical guarantees, and works with a single oracle, not tiers of oracles with
cost/accuracy tradeoffs.

Finally, adaptive complexity has been studied for many other computational problems, for exam-
ple, submodular maximization [BRS19; LLV20] and minimization [BS20; CCK21; Cha+22]. Most
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notably, the parallel complexity of search via a decision oracle was studied in the seminal work of
Karp, Upfal, and Wigderson [KUW88], who showed, similarly to our results, that a polynomial
speedup, and no better than a polynomial speedup, was possible.

1.2 Techniques

Our algorithm works by modifying the autoregressive sampling process in two ways. First, we
choose the order of coordinates according to a uniformly random permutation. Second, to break
sequentiality, we generate “guesses” of future coordinates, by computing the marginal of each -8

conditioned on the current pinning, in parallel, and sampling from these marginal distributions
independently for each 8. While these independent samples clearly ignore dependencies between
coordinates, we can in a second stage verify in parallel that each -8 would have been the sample
produced if we had continued sequentially. We advance up to the point where our guesses
successfully pass verification and then iterate.

The key idea behind our analysis is that as we pin more and more random coordinates, the
dependencies between the remaining coordinates weaken in an average sense. This intuitive idea
is formalized by the so-called pinning lemmas [RT12; Mon08] which we use in our analysis, see
Section 2.1. Weakened dependencies intuitively mean that our guesses are not likely to deviate
from what sequential sampling would have produced. This is formally proved in Section 3.

Finally, a tool we use from existing literature on parallel sampling is a universal coupler [LY22].
This is used to ensure consistency between the guessing and verification stages. In both of these
phases, for each -8, we would like to sample from a marginal distribution. Universal couplers
ensure that when the marginal distributions are “close”, the samples are likely to be exactly equal.
We extend the analysis of universal coupling to multiple distributions, as needed by our work, see
Section 2.2.

To prove our lower bound, we construct a challenge distribution that is a uniform distribution on an
affine subspace of F =

2 = {0, 1}= , and we show that it is hard to even output anything in its support in

fewer than Ω̃(=1/3) rounds. We group the coordinates in [=] into roughly Ω̃(=1/3) randomly chosen
buckets and put varying numbers of affine constraints on each bucket. We prove that with high
probability the buckets can only be discovered one at a time, from the most constrained bucket
to the least. This is because queries pinning too many coordinates will not be useful at all, as
they will violate the constraints of the most constrained bucket. On the other hand, if the number
of pinnings is just right for the most-constrained undiscovered bucket, no information is gained
about less-constrained buckets; with high probability all of the marginals in the less-constrained
buckets remain uniform.

1.3 Organization

In Section 2 we discuss and further develop two of the main tools we use for parallelization:
pinning lemmas and universal coupling. In Section 3, we describe our parallel sampling algorithm
and prove our main result Theorem 2. In Section 4, we provide an application of Theorem 2 to the
problem of sampling planar perfect matchings. In Section 5, we prove a lower bound against all
algorithms, i.e., Theorem 4. In Section 6, we prove that our analysis of the algorithm presented in
Section 3 is tight, and =2/3 cannot be improved for this particular algorithm.
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2 Preliminaries

We use [=] to denote the set {1, 2, · · · , =}. For any vector G and set (, we use G( to denote G restricted
to (. We use ±G to indicate the interval [−G, G]. We use S= to denote the set of permutations on
= elements. For any two sets �, �, we use � × � to denote the Cartesian product of � and �, i.e.,
� × � = {(0, 1) | 0 ∈ �, 1 ∈ �}.
For a distribution �, we use G ∼ � to denote that G is sampled from �. Similarly, for a set (, we use
G ∼ ( to indicate that G is sampled uniformly at random from (.

2.1 Pinning Lemmas

The pinning lemma formalizes an intuition that randomly pinning coordinates of an arbitrary
distribution should in an average sense lower the correlation between remaining coordinates.
Intuitively, this should make parallel sampling easier; for example, if all coordinates become fully
independent, one can in parallel sample from the marginals. We do not directly use the classical
statement of the pinning lemma, mentioned below for comparison, but rather prove a statement
in the same vein and using the same proof strategy.

Lemma 5 (pinning lemma [RT12; Mon08]). Let -1, -2, . . . , -= be random variables, each supported on
{0, 1}. For any ℓ ∈ [=], there exists a set ( such that |( | ≤ ℓ and

E-(

[
E
D,E∼([=]2 )

[
Cov(-D , -E | -()2

] ]
≤ $(1)

ℓ
.

We now define and state well-known statements about entropy, building up to state and prove our
new variant of the pinning lemma.

Definition 6 (entropy). Let -,. be random variables on [@]. The entropy of random variable - is
defined to be

ℋ(-) = −
∑
8∈[@]

ℙ[- = 8] · logℙ[- = 8] .

The conditional entropy of - conditioned on . is defined to be

ℋ(- | .) =
∑
8∈[@]
ℋ(- | . = 8) · ℙ[. = 8].

Definition 7 (KL divergence). For a pair of distributions �, �, we let

DKL(� ‖ �) = EG∼�

[
log

�(G)
�(G)

]
.

Abusing notation, we extend the definition to random variables. If - ∼ �, . ∼ �, we useDKL(- ‖
.) to denoteDKL(� ‖ �).
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Lemma 8. For any two random variables -,.,

E.[DKL((- | .) ‖ -)] = ℋ(-) − ℋ(- | .).

Lemma 9 (Pinsker’s inequality). For any two random variables -,.,

3TV(-,.) ≤
√

1
2
DKL(- ‖ .)

We prove and use the following variant of the pinning lemma.

Lemma 10. For any integer � > 0 and any collection of random variables - = (-1, . . . , -=) with support
[@],

E-,�∼S=

[
=∑

8=�

3TV

(
-�(8)

��� {-�(9)
}
9∈[8−�] , -�(8)

��� {-�(9)
}
9∈[8−1]

)2
]
≤ (� − 1) log @

2
.

Proof. For any permutation � ∈ S= and any 8 ∈ {�, � + 1, · · · , =},

E-

[
3TV

(
-�(8)

�� {-�(9)} 9∈[8−�] , -�(8)
�� {-�(9)} 9∈[8−1]

)2
]
≤

E-

[
DKL

(
-�(8)

�� {-�(9)} 9∈[8−�]
 -�(8)

�� {-�(9)} 9∈[8−1]
)]

2
≤

ℋ
(
-�(8)

�� {-�(9)} 9∈[8−�]
)
−ℋ

(
-�(8)

�� {-�(9)} 9∈[8−1]
)

2
=

8−2∑
:=8−�

ℋ
(
-�(8)

�� {-�(9)} 9∈[:]
)
−ℋ

(
-�(8)

�� {-�(9)} 9∈[:+1]
)

2
.

Summing over all possible 8 and taking expectation over all permutations, we have

=∑
8=�

E

[
3TV

(
-�(8)

��� {-�(9)
}
9∈[8−�] , -�(8)

��� {-�(9)
}
9∈[8−1]

)2
]
≤

1
2
·

=∑
8=�

8−2∑
:=8−�

E�∼S=
[
ℋ

(
-�(8)

�� {-�(9)} 9∈[:]
)]
− E�∼S=

[
ℋ

(
-�(8)

�� {-�(9)} 9∈[:+1]
)]
≤

1
2
·

=∑
8=�

8−2∑
:=8−�

E�∼S=
[
ℋ

(
-�(=)

�� {-�(9)} 9∈[:]
)]
− E�∼S=

[
ℋ

(
-�(=)

�� {-�(9)} 9∈[:+1]
) ]
≤

� − 1
2
·
=−2∑
:=0

E�∼S=
[
ℋ

(
-�(=)

�� {-�(9)} 9∈[:]
)]
− E�∼S=

[
ℋ

(
-�(=)

�� {-�(9)} 9∈[:+1]
)]

=

� − 1
2
· E�∼S=

[
ℋ

(
-�(=)

)
−ℋ

(
-�(=)

�� {-�(9)} 9∈[=−1]
)]
≤ (� − 1) log @

2
.

2.2 Universal Coupling

For any integer @ > 0, let Δ@ be the probability simplex on [@], i.e., Δ@ = {� ∈ [0, 1]@ |
∑@

8=1 �(8) = 1}.
In our main algorithm, we use a “universal coupler” as a subroutine. Informally, this is an algorithm
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that maps a distribution D ∈ Δ@ and a random source A to a sample from D, with the property
that the output is unlikely to change if D is perturbed slightly (while keeping A fixed). Such an
algorithm naturally induces a coupling between any two distributions �, �′. In any coupling, there
must be at least 3TV(�, �′) chance that the samples for �, �′ are unequal; and this lower bound can
be achieved if we design a tailor-made coupling knowing both � and �′. Surprisingly, one can
achieve the same bound within constant factors without knowing both distributions in advance.

The existence of these robust universal couplers appears to have been discovered and rediscovered
many times. The earliest works that we are aware of are the MinHash algorithm of Broder [Bro97]
for uniform distributions, and a rejection-sampling-based strategy of Kleinberg and Tardos [KT02]
and Holenstein [Hol07] for general distributions. See [Bav+20] for more on the history and
optimality of these strategies. Recently, in the context of parallel sampling algorithms, the work of
Liu and Yin [LY22] has rediscovered the same rejection-sampling-based algorithm; we borrowed
the terminology of “universal coupling” from the latter work.

A universal coupler is defined as follows:

Definition 11 (universal coupling, [LY22]). A deterministic function 5 : Δ@ × [0, 1] → [@] is a
universal coupling on [@] if, when A ∈ [0, 1] is chosen uniformly at random, for any distribution
� ∈ Δ@ and G ∈ [@],

ℙA∼[0,1][ 5 (�, A) = G] = �(G).

Note that instead of A ∼ [0, 1], one can use other sources of randomness with infinite entropy, such
as an infinite sequence of random bits, etc. Since it is easy to translate between these sources,
we pick the notationally most convenient form of random source when describing each universal
coupler.

The main characteristic we would like for universal couplers is that on “close” distributions �, �′,
the chance that 5 (�, A) ≠ 5 (�′, A) is small. A lower bound on this chance is ℙA[ 5 (�, A) ≠ 5 (�′, A)] ≥
3TV(�, �′). Surprisingly, this can be matched up to a factor of 2; in fact the optimal 5 has been
shown [KT02; Hol07; Bav+20; LY22] to satisfy

ℙA[ 5 (�, A) ≠ 5 (�′, A)] ≤ 2 3TV(�, �′)
1 + 3TV(�, �′)

≤ 2 3TV(�, �′).

In our algorithm, we need a slightly stronger guarantee that holds for not just two, but an arbitrary
number of distributions.

Definition 12 (robust universal coupler). We call a universal coupler 5 robust if for any number of
distributions �1, . . . , �< it satisfies

ℙA

[
∃8 , 9 ∈ [<] : 5 (�8 , A) ≠ 5 (�9 , A)

]
≤

∑
G∈[@](max8∈[<] �8(G) −min8∈[<] �8(G))∑

G∈[@]max8∈[<] �8(G)

Note that for < = 2, the numerator on the r.h.s. becomes 2 3TV(�1, �2), and the denominator
becomes 1 + 3TV(�1 , �2). Thus, this matches the same optimal bound derived by prior works.
We show that the rejection-sampling-based algorithm used in prior works, which we call the
MinCoupler, satisfies this more general robustness guarantee. Additionally, we show that another
widely used algorithm called the “Gumbel trick” also satisfies the same robustness guarantee.
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Universal coupler of Kleinberg and Tardos [KT02] and Holenstein [Hol07], rediscovered by Liu

and Yin [LY22]. Interpret the uniformly random A as a sequence of i.i.d. pairs (G1, ?1), (G2, ?2), · · · ∈
[@] × [0, 1], distributed uniformly at random. Given the distribution �, the algorithm 5 picks the
smallest index 8 ≥ 1 such that ?8 ≤ �(G8) and outputs G8 . See Algorithm 1.

Algorithm 1: Universal coupler MinCoupler [KT02; Hol07; LY22]

Input: Distribution � ∈ Δ@, randomness A ∈ [0, 1]
Output: A sample from �

Interpret A as uniform i.i.d. pairs (G1 , ?1), (G2, ?2), · · · ∈ [@] × [0, 1], e.g., by
• using bits of A at odd indices for G1, G2, · · · , and
• using bits of A at even indices for ?1, ?2, · · · in a zig-zag order.

8∗← min{8 | ?8 ≤ �(G8)}
return G8∗

Correctness and efficiency. Algorithm 1 is a universal coupler and can be implemented with
high probability by choosing only a sequence of ! = $(@ log =) pairs (G1, ?1), · · · , (G! , ?!) [see, e.g.,
LY22].

Lemma 13 ([see, e.g., Lemma 4.3, LY22]). Suppose MinCoupler is constructed in Algorithm 1 and 8∗ is
the smallest index chosen by MinCoupler. Then, for any distribution � ∈ Δ@,

1. MinCoupler is a universal coupler: ∀G ∈ [@],

ℙ[MinCoupler(�, A) = G] = �(G),

2. 8∗ follows the geometric distribution with success probability 1/@.

Performance. For any two distributions �,  ∈ Δ@, the samples produced by Algorithm 1 for
the two distributions (using a shared random number A) are different with probability at most
2 3TV(�, )
1+3TV(�, ) , which is also tight in the worst case [see KT02; Hol07; Bav+20; LY22].

We generalize the performance guarantee to a multi-distribution setting.

Lemma 14 (robustness of MinCoupler). Consider any <, @ > 0. Suppose A ∈ [0, 1] is uniformly
random. For any distributions �1, · · · , �< ∈ Δ@, the probability that there exist 8 , 9 ∈ [<] such that
MinCoupler(�8 , A) ≠ MinCoupler(�9 , A) is at most∑

G∈[@](max8∈[<] �8(G) −min8∈[<] �8(G))∑
G∈[@]max8∈[<] �8(G)

.

Proof. For each 9 ∈ [<], let 8∗
9
be the smallest index the universal coupler chooses for �9, i.e.,

8∗9 := min
{
8
�� ?8 ≤ �9(G8)

}
.

If all 8∗
9
are identical, the coupler’s outputs on �1, . . . , �< are the same. Therefore,

ℙA

[
∃8 , 9 ∈ [<]MinCoupler(�8 , A) ≠ MinCoupler(�9 , A)

]
≤

1 − ℙ
[
8∗1 = 8∗2 = · · · = 8∗<

]
= ℙ

[
min
9∈[<]

8∗9 ≠ max
9∈[<]

8∗9

]
.
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Observe that

min
9∈[<]

8∗9 = min

{
8

���� ?8 ≤ max
9∈[<]

�9(G8)
}

and max
9∈[<]

8∗9 = min

{
8

���� ?8 ≤ min
9∈[<]

�9(G8)
}
.

We can thus upper bound

ℙ

[
max
9∈[<]

8∗9 ≠ min
9∈[<]

8∗9

]
=

∑
8≥1

ℙ

[
min
9∈[<]

8∗9 = 8

]
· ℙ

[
?8 > min

9∈[<]
�9(G8)

���� ?8≤max 9∈[<] � 9(G8),
∀8′<8, ?8′>max 9∈[<] � 9(G8′)

]
=

∑
8≥1

ℙ

[
min
9∈[<]

8∗9 = 8

]
· ℙ

[
?8 > min

9∈[<]
�9(G8)

���� ?8 ≤ max
9∈[<]

�9(G8)
]
=

∑
8≥1

ℙ

[
min
9∈[<]

8∗9 = 8

]
·
ℙ

[
min9∈[<] �9(G8) < ?8 ≤ max9∈[<] �9(G8)

]
ℙ

[
?8 ≤ max 9∈[<] �9(G8)

] =

∑
8≥1

ℙ

[
min
9∈[<]

8∗9 = 8

]
·
@−1 ·∑G∈[@](max 9∈[<] �9(G) −min9∈[<] �9(G))

@−1 ·∑G∈[@]max9∈[<] �9(G)
=

∑
G∈[@](max 9∈[<] �9(G) −min 9∈[<] �9(G))∑

G∈[@]max 9∈[<] �9(G)
.

We additionally show that a popular sampling strategy called the “Gumbel trick”, used widely
in machine learning and in particular in the context of autoregressive models [see, e.g., JGP16],
is robust and satisfies the same bound as Lemma 14; thus it can be used as an alternative to
MinCoupler. The algorithm, described in Algorithm 2, is based on the well-known property of
exponential random variables that if -1 ∼ Exp(<1), . . . , -@ ∼ Exp(<@) are independent, then the
probability that -8 is the smallest among -1, . . . , -@ is exactly <8/(<1 + · · · + <@).

Algorithm 2: Universal coupler GumbelTrick [see, e.g., JGP16]
Input: Distribution � ∈ Δ@, randomness A
Output: A sample from �

Interpret A as @ i.i.d. exponential random variables A1 , . . . , A@ ∼ Exp(1)
return arg min{AG/�(G) | G ∈ [@]}

Remark 15. The Gumbel trick is often presented in a syntactically different form. Most often in
practice, the distribution� is given as input by the log-likelihoods log(�). Instead of using A1, . . . , A@ ,
one uses random variables �1, . . . , �= that follow the Gumbel distribution. The algorithm returns
the G that maximizes log(�(G)) + �G . The Gumbel distribution can be most simply defined as the
distribution of − log(-) for - ∼ Exp(1). The equivalence of Algorithm 2 immediately follows.

Lemma 16 (robustness of GumbelTrick). Consider any <, @ > 0. Suppose A = (A1 , . . . , A@) is chosen
by independently sampling each A8 ∼ Exp(1). For any distributions �1, · · · , �< ∈ Δ@ , the probability that
there exist 8 , 9 ∈ [<] such that GumbelTrick(�8 , A) ≠ GumbelTrick(�9 , A) is at most∑

G∈[@](max8∈[<] �8(G) −min8∈[<] �8(G))∑
G∈[@]max8∈[<] �8(G)

.

Proof. Define �min(G) = min{�8(G) | G ∈ [@]} and �max(G) = max{�8(G) | G ∈ [@]}. For each H ∈ [@],
let ℰH be the event that AH/�min(H) < AG/�max(G) for all G ∈ [@] − {H}. Conditioned on ℰH, it is easy
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to see that GumbelTrick(�8 , A) = H for all 8. This is because for any G ∈ [@] − {H}

AH/�8(H) ≤ AH/�min(H) < AG/�max(G) ≤ AG/�8(G),

which means H = arg min{AG/�(G) | G ∈ [@]}. Note also that this implies the events ℰH are disjoint
for H ∈ [@]. So we can upper bound the probability that there is a pair 8 , 9 with GumbelTrick(�8 , A) ≠
GumbelTrick(�9 , A) by

1 − ℙ

⋃
H∈[@]
ℰH


= 1 −

∑
H∈[@]

ℙ[ℰH].

Now notice that AG/�max(G) ∼ Exp(�max(G)) and AH/�min(H) ∼ Exp(�min(H)). So ℰH is the probabil-
ity that one exponential random variable is the smallest among several independent ones (with
different rates), which is proportional to the rate of the exponential random variable:

ℙ[ℰH] =
�min(H)

�min(H) +
∑

G∈[@]−{H} �max(G)
≥ �min(H)∑

G∈[@] �max(G)
.

We conclude by calculating

1 −
∑
H∈[@]

�min(H)∑
G∈[@] �max(G)

=

∑
G∈[@](max8∈[<] �8(G) −min8∈[<] �8(G))∑

G∈[@]max8∈[<] �8(G)
.

Finally, we characterize the performance of a robust universal coupler on randomly constructed
distributions �1, · · · , �< where {�8(G)}8∈[<] is a martingale for each G ∈ [@]. For these distributions,
we can bound the chance of not-all-equal samples by an expression that is only related to the
expected ℓ1 or ℓ2 distances between the first distribution ?1 and the last distribution ?< , with some
$(log =@) or $(√@) factor blowup and some small additive terms.

Lemma 17. Consider any <, @ > 0 and randomly constructed distributions �1, · · · , �< ∈ Δ@. Suppose
for any 8 ∈ [<], G ∈ [@], �8(G) is a random variable such that

∑
G∈[@] �8(G) = 1 for any 8 ∈ [<]. If for each

G ∈ [@], {�8(G)}8∈[<] forms a martingale, then for any = > 0,
∑

G∈[@] E[max8∈[<] �8(G) −min8∈[<] �8(G)] is
at most

min



$(log =@) · E[3TV(�1, �<)] +

1
=
, $(√@) · E


∑
G∈[@]
(�<(G) − �1(G))2


1/2


The proof of this lemma follows Doob’s maximal inequality on ℓ1 and ℓ2 norms. For any marti-
nagle .0, .1, · · · , .< , Doob’s maximal inequality gives upper bound for the expected maximum
differences between any .8 and .0 simply by the expected differences between .< and .0.

Lemma 18 (Doob’s maximal inequality, [see, e.g., RY13]). For any martingales .0, .1, · · · , .< and any
? ≥ 1, � > 0, the complementary cumulative distribution function of max8∈[<] |.8 −.0 | satisfies

ℙ

[
max
8∈[<]
|.8 −.0 | ≥ �

]
≤ E[|.< −.0 |?]

�?
,

and for any ? > 1,

E

[
max
8∈[<]
|.8 −.0 |?

]
≤

(
?

? − 1

)?
· E[|.< −.0 |?] .

11



Corollary 19. For any martingales .0, .1, · · · , .< on support [0, 1] and any # > 0,

E

[
max
8∈[<]
|.8 −.0 |

]
≤ $(log#) · E[|.< −.0 |] +

1
#
.

Proof. Taking ? = 1 in Lemma 18, we have ℙ[max8∈[<] |.8 −.0 | ≥ �] ≤ E[|.< −.0 |]/� for any � > 0.
Therefore, for any # > 0,

E

[
max
8∈[<]
|.8 −.0 |

]
=

∫ 1

0
ℙ

[
max
8∈[<]
|.8 −.0 | ≥ �

]
3� ≤ 1

#
+

∫ 1

1/#
ℙ

[
max
8∈[<]
|.8 −.0 | ≥ �

]
3� ≤

1
#
+

∫ 1

1/#

E[|.< −.0 |]
�

3� = $(log#) · E[|.< −.0 |] +
1
#
.

Proof of Lemma 17. Using the linearity of expectation, we get

∑
G∈[@]

E

[
max
8∈[<]

�8(G) − min
8∈[<]

�8(G)
]
=

∑
G∈[@]

E

[
max
8∈[<]

�8(G) − �1(G)
]
+ E

[
�1(G) − min

8∈[<]
�8(G)

]
≤

2
∑
G∈[@]

E

[
max
8∈[<]
|�8(G) − �1(G)|

]
(1)

Using Corollary 19, we can obtain the first upper bound for
∑

G∈[@] E[max8∈[<] �8(G)−min8∈[<] �8(G)]:

�@. (1) ≤
∑
G∈[@]

$(log =@) · E[|�<(G) − �1(G)|] +
1
=@

= $(log =@) · E[3TV(�1(G), �<(G))] +
1
=
.

Using Cauchy-Schwarz inequality and Doob’s maximal inequality for ℓ2 norm, we can obtain the
second upper bound for

∑
G∈[@] E[max8∈[<] �8(G) −min8∈[<] �8(G)]:

�@. (1) = 2E


∑
G∈[@]

max
8∈[<]
(�8(G) − �1(G))


≤ 2E


©«
∑
G∈[@]

max
8∈[<]
(�8(G) − �1(G))ª®¬

2
1/2

≤

2E


@

∑
G∈[@]

max
8∈[<]
(�8(G) − �1(G))2


1/2

≤ $(√@) · E

∑
G∈[@]
(�<(G) − �1(G))2


1/2

.

3 Sublinear Parallel Sampling via Counting Oracles

In this section, we show our main Theorem 2 that we can (approximately) sample from a distri-
bution after a sublinear number of rounds (in terms of the number of variables) of querying a
polynomial number of the distribution’s counting oracles.

3.1 Algorithm

We present our algorithm in Algorithm 3. Let D1, . . . , D= be the random seeds of the algorithm.
The algorithm also shuffles the coordinates with a uniformly random permutation that we ignore
in this description for simplicity.

12



As a subroutine, we use a universal coupler UniversalCoupler that is robust, see Definition 12.
For instance, this can be either the MinCoupler (Algorithm 1), or the GumbelTrick (Algorithm 2).

We let G ∈ [@]= denote a sample from the target distribution generated using the naive sequential
algorithm that iteratively samples the 8-th entry conditioning on all previous entries:

G8 ← UniversalCoupler

(
-8

��� {-9 = G 9

}
9∈[8−1] , D8

)
.

The goal of the algorithm is to sample faster than one coordinate per iteration. The algorithm
maintains an index 0 where the 0-th and earlier entries are all correctly sampled. At the C-th
iteration, the algorithm attempts to resample all entries after 0 by conditioning on the 0-th and
earlier entries:

GC8 ← UniversalCoupler

(
-8

����
{
-9 = GC−1

9

}
9∈[0]

, D

)
.

Then, the algorithm uses GC to find the earliest entry 0′ where sampling conditioning on GC
9∈[0′−1]

differs from sampling conditioning on GC−1
9∈[0] and immediately fixes the entry 0′: then 0′ is a new

index where the 0′-th and earlier entries are all correctly sampled.

Algorithm 3: Parallel sampling on product spaces

Input: Counting oracle �, robust universal coupler UniversalCoupler on [@]
Output: A sample in [@]=
Sample a permutation �← uniform(S=)
Sample i.i.d. random sources D1, D2, · · · , D= ← uniform([0, 1])
Initialize 0 ← 0, C ← 0, G0← null
while true do

C ← C + 1
for 8 ∈ [=] in parallel do

HC
�(8) ← UniversalCoupler

(
-�(8)

����
{
-�(9) = GC−1

�(9)

}
9∈[0]

, D8

)
for 8 ∈ [=] in parallel do

GC
�(8) ← UniversalCoupler

(
-�(8)

����
{
-�(9) = HC

�(9)

}
9∈[8−1]

, D8

)
if GC = HC then

return GC

0 ← min
{
8 ∈ [=]

��� HC�(8) ≠ GC
�(8)

}
if 0 = = then

return GC

3.2 Correctness

We consider a function G̃ : S= × [0, 1]= → [@]= defined iteratively as follows:

G̃8(�, D) = UniversalCoupler

(
-�(8)

��� {-�(9) = G̃ 9(�, D)
}
9∈[8−1] , D8

)
. (2)

13



For each 8 ∈ [=], because UniversalCoupler is a universal coupler, G̃8(�, D) follows the marginal
distribution of -�(8) conditioning on -�(1) = G̃1(�, D), -�(2) = G̃2(�, D), · · · , -�(8−1) = G̃8−1(�, D)
(considering only the randomness of D8). Therefore, this function can serve as an objective output
of the algorithm when we have fixed the randomness � and D.

Lemma 20. If Algorithm 3 always outputs GC
�(8) = G̃8(�, D), it samples perfectly from the distribution of - .

Let 0C be the value of 0 at the end of round C (if the algorithm does not terminate with GC = HC

before updating the value of 0 in round C). For simplicity, we suppose 00 = 0. Next, we show that
the vector GC produced by the algorithm in each round matches this objective vector in the first 0C

entries.

Lemma 21. For any �, D, after each round C of Algorithm 3,

∀8 ∈ [0C], GC
�(8) = G̃8(�, D).

Proof. According to the definition of 0C , we have ∀8 ∈ [0C − 1], GC
�(8) = HC

�(8). Therefore, according to

the definition of GC , we have for any 8 ∈ [0C],

GC
�(8) = UniversalCoupler

(
-�(8)

����
{
-�(9) = GC

�(9)

}
9∈[8−1]

, D8

)
. (3)

Note that this recursion matches the recursion Eq. (2) used in the definition of G̃8(�, D) for any
8 ∈ [0C]. Therefore, ∀8 ∈ [0C], GC

�(8) = G̃8(�, D).

To show that Algorithm 3 is making progress every iteration, we prove 0C is (strictly) monotone in
terms of C.

Lemma 22. 0C is strictly increasing with C.

Proof. According to the definition of HC , for any 8 ∈ [0C−1], HC
�(8) = GC−1

�(8) = G̃8(�, D). Therefore,

according to the definition of GC , for any 8 ∈ [0C−1 + 1],

GC
�(8) = UniversalCoupler

(
-�(8)

���� {-�(9) = GC−1
�(9)

}
9∈[8−1]

)

= UniversalCoupler

(
-�(8)

��� {-�(9) = G̃ 9(�, D)
}
9∈[8−1]

)
(definition of 0C−1)

= G̃8(�, D) = HC
�(8). (definition of G̃8(�, D))

By the definition of 0C , if GC ≠ HC , we get 0C > 0C−1 + 1.

Note that the algorithm terminates when either of the following two conditions is satisfied in some
round C: 0C = = or GC = HC . Due to Lemma 22, the algorithm always terminates. If it terminates
because of the first condition 0C = =, due to Lemma 21, the output of the algorithm matches
the objective in Lemma 20. Otherwise, because of the definition of GC and the fact that GC = HC ,
the output satisfies Eq. (3), which matches the recursion Eq. (2) used in the definition of G̃8(�, D),
and thus matches the objective in Lemma 20. As a conclusion, we obtain the correctness of our
algorithm.

Lemma 23. Algorithm 3 returns a sample G ∼ �.
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3.3 Round Complexity

We establish our sublinear round complexity via two steps. First, we ignore the randomness of
� and D, and establish a worst-case round complexity, which can be linear with some choices
of �, D. Second, we show that the expectation of this round complexity is actually $̃(=2/3 log @)
with the random choices of �, D. This bound is established by the robustness of the universal
coupler on randomly constructed distributions that satisfy the martingale property (Definition 12
and Lemma 17) and a pinning lemma (Lemma 10).

To use this algorithm to nontrivially speed up sampling of planar perfect matchings, we also need a tail
bound for the round complexity. Because of Markov’s inequality, the expected round complexity
implies a simple tail bound – the round complexity is less than 2 ·=2/3 log @ with probability Ω̃(1/2).
At the end of this subsection, we boost this tail bound to 2−Ω̃(2) via the simple observation that
running several rounds of the algorithm is equivalent to reinitiating the algorithm with a smaller
instance.

Worst-case round complexity. First, we consider the randomness �, D used in the algorithm as
part of the input, and give an upper bound for the round complexity. For each � ∈ S= , D ∈ [0, 1]=
and 8 ∈ [=], let 0 8(�, D) be the maximum 0 such that Algorithm 3 will not correctly sample -�(8)
to G̃8(�, D), the value of -�(8) in the final output, under the correct conditioning of -�(1) , . . . , -�(0).
Formally, 0̃8(�, D) is defined as follows:

0 8(�, D) = max
{
0 ≥ 0

��� G̃8(�, D) ≠ UniversalCoupler

(
-�(8)

��� {-�(9) = G̃ 9(�, D)
}
9∈[0] , D8

)}
,

where we define the maximum of an empty set to be 0 for simplicity. Using this definition, we can
establish a worst-case round complexity of Algorithm 3.

Lemma 24. For any integer � ≥ 1 and randomness � ∈ S= , D ∈ [0, 1]= , the round complexity of
Algorithm 3 is at most

|{8 ∈ [=] | 0 8(�, D) ≥ 8 − �}| + 1 + =

�
.

Proof. Recall that we define 0C as the value of 0 after round C, and we define 00 as 0. The algorithm
has at most one round C without computing 0C , when it terminates with GC = HC . Suppose that the
step size of any round C, where the algorithm computes 0C , is the increment 0C − 0C−1. Based on
the step sizes, we divide the rounds into two classes: small-progress rounds that have step sizes
< �, and large-progress rounds that have step sizes ≥ �. Note that the number of large-progress
rounds is at most =/� because otherwise 0 will exceed = in some round. It suffices to upper bound
the number of small-progress rounds by |{8 ∈ [=] : 0 8(�, D) ≥ 8 − �}| to finish the proof.

Consider any round C such that 0C− 0C−1 < �. Due to the definition of the algorithm and Lemma 21,
the algorithm finds HC

�(8) = GC
�(8) = G̃8(�, D) for any 8 < 0C . The algorithm also finds GC

�(0C) ≠ HC
�(0C ).

According to the definition of GC and HC and Lemma 21, HC
�(0C) =

UniversalCoupler

(
-�(0C+1)

��� {-�(9) = G̃ 9(�, D)
}
9∈[0C−1] , D0C

)
,

and GC
�(0C) =

UniversalCoupler

(
-�(0C+1)

��� {-�(9) = G̃ 9(�, D)
}
9∈[0C−1] , D0C

)
= G̃0C (�, D).
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This implies 00C (�, D) ≥ 0C−1 > 0C − �. Therefore, 0C ∈ {8 ∈ [=] | 0 8(�, D) ≥ 8 − �}. Since 0C are
strictly increasing (Lemma 22), the number of such small-progress rounds can be upper bounded
by |{8 ∈ [=] | 0 8(�, D) ≥ 8 − �}|.

We note that the cardinality of the set {8 ∈ [=] | 0 8(�, D) ≥ 8−�} can beΩ(=), even under expectation
over D. Suppose that -1, -3, . . . , -=−1 are sampled independently and uniformly at random, and
-2 = -1, -4 = -3, · · · , -= = -=−1. For � ≥ 2 and the permutation �(8) = 8, this set will involve
each 28 with probability 1/2 independently.

Remark 25. Because our analysis only needs the large-progress rounds to increase 0 by ≥ �, we
could still enjoy the same upper bound if we only resample the first � entries after 0 in each
iteration. This suggests a more query-efficient implementation Algorithm 4.

Algorithm 4: Query-efficient implementation for each iteration of Algorithm 3

while true do

C ← C + 1
HC ← GC−1

for 8 ∈ {0 + 1, . . . ,min{0 + �, =}} in parallel do

HC
�(8) ← UniversalCoupler

(
-�(8)

����
{
-�(9) = GC−1

�(9)

}
9∈[0]

, D8

)
for 8 ∈ {0 + 1, . . . ,min{0 + �, =}} in parallel do

GC
�(8) ← UniversalCoupler

(
-�(8)

���� {-�(9) = HC
�(9)

}
9∈[8−1]

, D8

)

0 ← min
{
8 ∈ {0 + 1, . . . ,min{0 + �, =}} : HC

�(8) ≠ GC
�(8)

}
∪ {min{0 + �, =} + 1}

if 0 ≥ = then
return GC

Expected round complexity. Next, we consider the randomness �, D and show an improved
expected round complexity for the algorithm. Based on the worst-case analysis, we give a better
bound for the expected cardinality of {8 ∈ [=] | 0 8(�, D) ≥ 8 − �} for some sophisticated choice of �.
Due to the linearity of expectation, we can separately upper bound the probability of 0 8(�, D) ≥ 8−�
for each 8 ∈ [=]. Only considering the randomness of D, we can obtain the following lemma, which
upper bounds the probability by the total variation distance between the conditional distributions
of -�(8) under fully conditioning of all previous variables (-�(1) to -�(8−1)) and partial conditioning
of some previous variables (-�(1) to -�(8−�)).

Lemma 26. For any 8 ≥ � and any permutation � ∈ S= , the probability of 0 8(�, D) ≥ 8 − � is at most

$(min
{
log =@,

√
@
}
) · E-

[
3TV

(
-�(8)

��� {-�(9)
}
9∈[8−1] , -�(8)

��� {-�(9)
}
9∈[8−�]

)2
]1/2
+ 1

=
,

where the probability is taken only over the randomness of D1, · · · , D= .

Proof. According to the definition of 0 8(�, D), 0 8(�, D) ≥ 8−� when there exists 0 ∈ [8−�, 8−1] such
that UniversalCoupler(-�(8) | {-�(9) = G̃ 9(�, D)} 9∈[8−1] , D8) ≠ UniversalCoupler(-�(8) | {-�(9) =
G̃ 9(�, D)} 9∈[0] , D8). Equivalently, when we apply the universal coupler on all variables -8 |{-�(9)} 9∈[0] ,
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where 0 can be any integer in [8 − �, 8 − 1], the coupler produces different outcomes for two of
them. Let {�0(G)}G∈[@] denote the variables characterizing the randomly constructed distribution
of -�(8) |{-�(9)} 9∈[0] , where the randomness is taken over the random conditioning of {-�(9)} 9∈[0] ,
i.e.,

∀G ∈ [@], �0(G) = ℙ
[
-�(8) = G

�� {-�(9)} 9∈[0]
]

We have thatℙD[0 8(�, D) ≥ 8−�] = ℙD[∃0, 0′ ∈ [8−�, 8−1],UniversalCoupler(�0 , D8) ≠ UniversalCoupler(�0′ , D8)].
Further, note that {�0(G)}0∈[8−�,8−1] forms a martingale, where randomness is taken overD1, · · · , D8−1.
Because of the robustness of UniversalCoupler, Definition 12, and Lemma 17, we can upper bound
ℙD[0 8(�, D) ≥ 8 − �] by the following terms:

E


∑
G∈[@]

max
0∈[8−�,8−1]

�0(G) − min
0∈[8−�,8−1]

�0(G)

≤

min



$(log =@) · E[3TV(�8−� , �8−1)] +

1
=
, $(√@) · E


∑
G∈[@]
(�8−1(G) − �8−�(G))2


1/2


≤

$(min
{
log =@,

√
@
}
) · E-

[
3TV(�8−1 , �8−�)2

]1/2 + 1
=
.

Then, applying the pinning lemma (Lemma 10), we can obtain a better average round complexity
for Algorithm 3.

Proof of Theorem 2. We show that the expected number of rounds of Algorithm 3 is

$(=2/3 ·min{log2/3 = log @, @1/3 log1/3 @})

Consider � = $(=1/2). According to Lemma 24, the expected number of rounds that Algorithm 3
needs is at most

=

�
+ � + 1 +

∑
8≥�

ℙ�,D[0 8(�, D) ≥ 8 − �] (4)

By Lemma 26, we can upper bound∑
8≥�

ℙ�,D[0 8(�, D) ≥ 8 − �] ≤ 1 + $(min
{
log =@,

√
@
}
)·

∑
8≥�

E

[
3TV

(
-�(8)

��� {-�(9)
}
9∈[8−1] , -�(8)

��� {-�(9)
}
9∈[8−�]

)2
]1/2

︸                                                                       ︷︷                                                                       ︸
,

where we can further upper bound the underbraced term by

≤ $(
√
=)·

E

[∑
8≥�

3TV

(
-�(8)

��� {-�(9)
}
9∈[8−1] , -�(8)

��� {-�(9)
}
9∈[8−�]

)]
≤

$(
√
=) ·

( (� − 1) log @

2

)1/2
≤ $(

√
=� log @)
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Therefore, if we take � = =1/3

log1/3 @(min{log =@,
√
@})2/3

, the expected round complexity of Algorithm 3 can

be upper bounded by

=

�
+ $(

√
=� log @ min{log =@,

√
@}) ≤ $(=2/3 ·min{log2/3 = log @, @1/3 log1/3 @}).

Note that our choice of� guarantees that
∑

8≥� ℙ�,D[0 8(�, D) ≥ 8−�] = $(=/�). The expected round
complexity can also be upper bounded by $(=/�). Using our query-efficient implementation,
Algorithm 4, the expected total number of queries we make is $(=).

Tail bounds for the round complexity. Because of Markov’s inequality, we can obtain the follow-
ing corollary:

Corollary 27. For any input -1, -2, · · · , -= , with probability at least 1/2, Algorithm 3 terminates in

$̃(=2/3 log @) rounds.

Next, we establish a tail bound for the number of rounds used by the algorithm.

Theorem 28. There exists a constant " > 0 such that for any integer 2 ≥ 1, Algorithm 3 terminates in
2" · (= log =)2/3 log @ rounds with probability at least 1 − 2−2 .

Proof. Let " be a constant such that Algorithm 3 terminates in " ·(= log =)2/3 log @ with probability
at least 1/2. The existence of such " follows Corollary 27. Let ' be the variable that denotes the
number of rounds Algorithm 3 uses. Next, we prove by induction that for any integer 2 ≥ 1, we
have

ℙ

[
' > 2" · (= log =)2/3 log @

]
≤ 2−2 .

The cases where = = 1 or 2 = 1 are trivial.

Suppose that we have proved the theorem for any = < # . Consider an instance with = = # .
For any 8 ≤ = − 1, let A8 be the event that Algorithm 3 does not terminate and has 0 = 8 after
running it for " · (= log =)2/3 log @ rounds. This definition immediately gives us

∑
8≤=−1 ℙ[A8] ≤ 1

2 .
Because of Lemma 22, after running the algorithm for " · (= log =)2/3 log @ rounds, we have
0 ≥ " · (= log =)2/3 log @. Therefore, ℙ[A0] = 0 and for any 2 ≥ 2,

ℙ

[
' > 2" · (= log =)2/3 log @

]
=∑

8∈[=−1]
ℙ

[
' > 2" · (= log =)2/3 log @

��� A8

]
ℙ[A8] ≤

1
2
· max
8∈[=−1]

ℙ

[
' > 2" · (= log =)2/3 log @

��� A8

]
.

Next, we showℙ[' > 2" · (= log =)2/3 log @ | A8] ≤ 2−2+1 for any 8 ∈ [=−1] to finish the proof. Note
that for any 8 ∈ [=−1], whether the eventA8 happens is determined by �(1), · · · , �(8) and D1, · · · , D8.
Therefore,A8 is independent of the random permutation in [=] \ {�(9)} 9∈[8] and the randomness of
D8+1 , · · · , D=. Further, ifA8 happens after running the algorithm for " ·(= log =)2/3 log @ rounds, the
algorithm fixes the values of the first 8 variables and continues with 0 = 8. Therefore, conditioning
on any �(1), · · · , �(8) ∈

([=]
8

)
and D1, · · · , D8 ∈ [0, 1] that causeA8 to happen, the remaining iterations

of the algorithm are equivalent to those in a fresh run of the algorithm on the remaining variables
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{-9} 9∈[=] \{-�(9)} 9∈[8] conditioning on {-�(9) = G̃ 9(�, D)} 9∈[8]. According to our induction hypothesis,
the number of remaining rounds of the algorithm is (strictly) greater than (2−1)" · ((= − 8) log(= −
8))2/3 log @ with probability at most 2−2+1. Therefore, ℙ[' > 2" · (= log =)2/3 | A8] is at most
2−2+1.

3.4 Sampling via Approximate Counting Oracles

We show that our algorithm can also work with approximate counting oracles. Suppose �̂ is an
oracle such that for any ( ⊆ [=] and H ∈ [@](, with probability at least 1 − �,

�̂((, H) ∈ (1 ± &)ℙ-∼�[-( = H]. (5)

At each round of the algorithm, we shall consider an approximate version of the conditional
probability distribution. For any permutation �, indices 0 ≤ 0 < 8 ≤ = and any H ∈ [@]{�(9)} 9∈[0],
we consider the following distribution  for -�(8) |{-�(9) = H�(9)} 9∈[0]: for any G ∈ [@], let H′(G) ∈
[@]{�(9)} 9∈[0]∪{�(8)} be the vector such that H′

�(8)(G) = G and H′
�(9)(G) = H�(9) for any 9 ∈ [0], then we have

∀G ∈ [@],  (G) ∝ �̂
(
{�(9)} 9∈[0] ∪ {�(8)}, H′(G)

)
.

In particular, we use  8 |0(�, D) to denote this approximate version of the distribution for-�(8)|{-�(9) =
G̃ 9(�, D)} 9∈[0]. We say that a pair of randomness (�, D) is good if for any 0 ≤ 0 < 8 ≤ =,

UniversalCoupler

(
-�(8)

��� {-�(9) = G̃ 9(�, D)
}
9∈[0] , D8

)
= UniversalCoupler

(
 8 |0(�, D), D8

)
.

We show the following two key lemmas on good randomness. The first states that the approximate
counting oracles do not influence the output of the algorithm as long as the randomness is good.
The second upper bounds the probability that the randomness is not good. We defer the proofs to
Appendix A.1 and Appendix A.2.

Lemma 29. If the pair of randomness (�, D) is good, Algorithm 3 with the approximate counting oracle
outputs the same vectors as Algorithm 3 with the exact counting oracle in the same number of rounds.

Lemma 30. For any pair of randomness (�, D), it is good with probability at least 1 − $(=2& + =2@�).
Suppose the parameters of the approximate counting oracle satisfy �, & = $(=−3@−1). Putting
Theorem 28 together with these two lemmas, we can easily obtain the guarantee: if we terminate
Algorithm 3 in $(=2/3poly log(=, @)) rounds, the output distribution is within a total variation
distance $(=−1) of �.

4 Applications

In this section, we show an example application of Theorem 2, to the problem of sampling uniformly
random perfect matchings in planar graphs. The famous FKT algorithm allows parallel counting
of the number of perfect matchings [see, e.g., Ana+23a]. The previous best parallel runtime for
this problem is $̃(=1/2) for planar graphs of size = [Ana+23a].

Remark 31. Two key techniques for deterministic (approximate) counting, namely the tree recur-
sion/correlation decay method [Wei06] and the polynomial interpolation method [Bar16] can often
be trivially parallelized. The former involves solving a recursion on a tree of logarithmic depth,
and the latter involves enumerating structures of logarithmic size in a host object (e.g., a graph).
As such, our results automatically provide a parallel speedup wherever these methods apply.
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Theorem 32. Let � = (+, �) be a planar graph. There exists an algorithm that samples a uniformly random

perfect matching in � with a parallel runtime of $̃(=1/3) and poly(=) work.

Proof. Similar to [Ana+23a], we use the planar separator theorem to find a separator of size $(
√
=),

sample the portion of the perfect matching incident to the separator, and then recursively sample
the rest of the perfect matching in the now-disjoint halves of the graph, in parallel. Our modification
is that, while naïvely sampling the separator edges takes $̃(

√
=) time, using Theorem 2, we can

speed it up to $̃(=1/3).
To be more specific, given the input graph � = (+, �), we find a planar separator ( ⊆ + of size
$(
√
=), such that � − ( is composed of two smaller graphs, on vertex sets �, �, each of size

≤ (1 −Ω(1))=. This can be done in parallel [GM87].

Next, we consider the distribution � on �(, where �(G) is proportional to the number of perfect
matchings that have edge GE incident to E for all E ∈ (. Note that many configurations G ∈ �( are
invalid, for example, those where E is not even an endpoint of GE , or those with clashing edges
for two vertices in (. All of these invalid configurations are assigned a measure of 0 under �. We
claim that there is a parallel (NC) counting oracle for �. Indeed, given a partial pinning, we can
check if it is valid, and if so, remove the edges in the pinning from the graph, and simply count
perfect matchings in the resulting subgraph. The number of perfect matchings in planar graphs
can be efficiently computed in parallel by the FKT algorithm [see, e.g., Ana+23a].

Now we use Algorithm 3 to sample from �. Once the sample is produced, we remove all the
endpoints of this partial matching from � (in particular, this removes all of (), and now we have
two disjoint subgraphs of geometrically smaller size. In parallel, we recurse on each.

Note that the total number of calls to Algorithm 3 is ≤ poly(=). By using the tail bounds for our

algorithm, Theorem 28, each call finishes in at most $̃(
√
=

2/3) = $̃(=1/3) time, with probability at
least 1−1/poly(=). Taking a union bound, and using the fact that recursively the subgraphs shrink
geometrically, we get that the overall parallel runtime is $̃(=1/3)with high probability.

5 Hardness

In this section, we prove that any algorithm cannot approximately sample within a constant total
variation distance of arbitrary distribution � with =1/3−Ω(1) round complexity and a polynomial
number of queries in each round to the exact counting oracle. More generally, we shall prove the
following hardness result on parallel search via counting oracles for @ = 2.

Theorem 33. For any constant � ∈ (0, 1], any 2 ∈ (0, =1−�) and any (randomized) algorithm ALG making
at most =2 queries to the counting oracle in each round, there exists an instance � : {0, 1}= → {0, 1} such
that ALG can only find a solution G (such that �(G) = 1) with probability at most 0.01 after (strictly) less
than 1

4 · ( =
(2+2) log =

)1/3 rounds of queries.

In the rest of this section, we use � = ((, H), where ( ⊆ [=] and H ∈ [@](, to denote a hypercube by
� = {G ∈ [@]= | G( = H}. For the abuse of notation, for any function � : {0, 1}: → {0, 1} and any
hypercube �, we define �(�) := ∑

G∈� �(G) as the output of the counting oracle.

The (random) hard instances. We consider deterministic algorithms that make at most =2 queries
in each round, where 2 < =1−� for some constant � ∈ (0, 1]. We randomly partition the = variables
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into A = 1
4 ( =
(2+2) log =

)1/3 equal blocks (1, (2, · · · , (A , each with < = =/A = 4=2/3((2 + 2) log =)1/3

variables. For each block (8, we choose 08 = 8 · 12=1/3((2 + 2) log =)2/3 and define the set of true
strings in this block using a random linear code with constraints < − 08: first we independently
and uniformly choose a matrix �8 ∈ {0, 1}(<−08 )×< and a vector E8 ∈ {0, 1}<−08 at random for each
9 ∈ [<]; and then we define the boolean function �8 as follows:

∀G ∈ {0, 1}(8 , �8(G) = 1[�8G = E8],

where all the operations are under F2. Then, the true strings of the entire function are defined as
those projections in each of the blocks are all true, i.e., the entire function � is then defined as the
product of all �8:

∀G ∈ {0, 1}= , �(G) =
∏
8∈[A]

�8(G(8 ).

For any sub-hypercube �, parameterized by ( and H, we define � restricted to (8 as �(8 :=
{G ∈ {0, 1}(8 | G(∩(8 = H(∩(8}. Since (1, · · · , (A is a partition of the = variables, we have � =

�(1 × �(2 × · · · × �(A according to the definition of �. With this fact, we can obtain the following
lemma.

Lemma 34. For any sub-hypercube � of {0, 1}= , we have

�(�) =
∏
8∈[A]

�8(�(8 ).

Proof. According to the definition of the function � and the definition of the counting oracles,

�(�) =
∑
G∈�

�(G) =
∑
G∈�

∏
8∈[A]

�8(G(8 )

=

∑
G∈�(1×···×�(A

∏
8∈[A]

�8(G(8 )

=

∏
8∈[A]

∑
G∈�(8

�8(G) =
∏
8∈[A]

�8(�(8 ).

For any sub-hypercube � parameterized by ( and H, we define its codimension co-dim(�) as |( |,
i.e., the number of variables whose values are fixed in the sub-hypercube. For any function �8, we
can show that if the codimension of a query �(8 is Ω(log =) greater or less than 08 , the query does
not give any information about the randomness of �8 , E8 in the construction with high probability.
In addition, the proof only uses the randomness of �1, E1, · · · , �A , EA .

Lemma 35. For any sub-hypercube �(8 of {0, 1}(8 , if co-dim(�(8) = 3, for any constant 21 > 0, we have

• if 3 < 08 − 21 log =, �8(�(8 ) = 208−3 with probability at least 1 − =−21 , and

• if 3 > 08 + 21 log =, �8(�(8 ) = 0 with probability at least 1 − =−21 ,

where the probability is taken over the randomness of �8 and E8 .
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Proof. For any G ∈ {0, 1}(8 and any �8 ∈ {0, 1}(<−08 )×< , ℙE8∼{0,1}<−08 [�8G = E8] = 2−(<−08 ). Therefore,
we can upper bound the probability of �8(�(8 ) ≠ 0 as follows.

ℙ�8 ,E8 [�8(�(8 ) ≠ 0] = ℙ�8 ,E8 [∃G ∈ �(8 , �8(G) = 1]
≤

∑
G∈�(8

E�8 ,E8 [�8G = E8] = 2−(<−08 ) · |�(8 |

Since co-dim(�(8 ) = 3, |�(8 | = 2<−3. We have ℙ�8 ,E8 [�8(�(8 ) ≠ 0] ≤ 2<−3−(<−08 ) = 208−3. If
3 > 08 + 21 log =, we have �8(�(8 ) ≠ 0 with probability at most =−21 .

On the other hand, we consider the number of solutions G ∈ {0, 1}(8 for �8G = E8 when 3 ≤ 08 . For
any sub-hypercube �(8 which is parameterized by ( ⊆ (8 and H ∈ {0, 1}( (i.e., �(8 = {G ∈ {0, 1}(8

| G( = H(}) and has codimension 3 (i.e., |( | = 3), we can characterize �(8 by 3 linear equations:
∀9 ∈ (, 4)

9
G = H 9, where 4 9 denotes the indicator vector having value 1 in the 9-th entry and having

value 0 in all other entries. Therefore, the set {G ∈ {0, 1}(8 | G ∈ �(8 , �8G = E8} can be characterized
by 3 + < − 08 linear equations: ∀9 ∈ (, 4)

9
G = H 9 and �8G = E8 .

Lemma 36. For any < ≤ =, � ∈ {0, 1}<×= and 1 ∈ {0, 1}< , if rank(�) = <, then there are 2=−< solutions
G ∈ {0, 1}= for the linear equation �G = 1 (under F2).

According to the above Lemma 36, if vectors in {4 9 | 9 ∈ (} and in rows of�8 are linearly independent
under F2, �8(�(8) = |{G ∈ {0, 1}(8 | G ∈ �(8 , �8G = E8}| = 208−3. It is clear that vectors in {4 9 | 9 ∈ (}
are linearly independent. Consider we start with + = {4 9 | 9 ∈ (} and insert rows in �8 into +
one by one. When the vectors in + are linearly independent and we insert one row of �8 into + , +
becomes linearly dependent only when the row is a linear combination of the vectors in + . Since
there are at most 2|+ | such linear combinations under F2, the probability that + remains linearly
independent after inserting the row is 1 − 2|+ |−<. After inserting all the < − 08 rows into + , +
remains linearly independent with probability

3+<−08−1∏
:=3

1 − 2:−< ≥ 1 −
3+<−08−1∑

:=3

2:−< ≥ 1 − 23−08 .

Therefore, we have �8(�(8 ) = 208−3 with probability at least 1−23−08 . In particular, if 3 < 08−21 log =,
we have �8(�(8 ) = 208−3 with probability at least 1 − =−21 .

On the other hand, the random partition (1, (2, · · · , (A guarantees that any hypercube has approx-
imately equal codimension in each block with high probability.

Lemma 37. For any 1 ≤ : < 8 ≤ =, any 22 > 0, and any sub-hypercube�, the probability that co-dim(�(8 )
is in the range co-dim(�(:∪···∪(A )/(A − : + 1) ±

√
322< log = is at least 1 − 2=−22 , where the randomness

is taken over the random partition of (: ∪ (:+1 ∪ · · · ∪ (A .

Proof. For convenience, let ) = (: ∪ · · · ∪ (A and 3′ = co-dim(�)). Suppose the hypercube �)

is parameterized by () ⊆ ) and H) ∈ {0, 1}) , i.e., �) = {G ∈ {0, 1}) | G) = H)}. Because
co-dim(�)) = |() | ≤ |) |, we have 3′ ≤ <(A − : + 1). For each ℓ ∈ ), let /ℓ denote the indicator
whether the variable ℓ is in (8. Because |) | = <(A− :+1) and (: , (:+1, · · · , (A is a uniform partition
of ), for any ℓ ∈ ), the probability that /ℓ = 1 is 1

A−:+1 . In addition, variables in {/ℓ }ℓ∈) follow a
permutation distribution and are thus negatively associated.
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Let / =
∑

ℓ∈() /ℓ denote the number of variables in (8 ∩(). It is clear that E[/] = 3′
A−:+1 . According

to the definition of codimension, we have / = co-dim(�(8). Because of the Chernoff bound and
3′ ≤ <(A − : + 1), for any 22 > 0,

ℙ

[����/ − 3′

A − : + 1

���� > √
322< log =

]
≤ 2 exp

(
− 322< log =

33′/(A − : + 1)

)
≤ 2 exp(−22 log =) = 2=−22 .

Therefore, the probability of co-dim(�(8 ) being 3′/(A − : + 1)±
√

322< log = is at least 1− 2=−22 .

Putting the previous lemmas together, we obtain the following key lemma for the hardness of
parallel search via counting. If we only reveal the information about the first blocks : − 1 (i.e.,
the partition (1, · · · , (:−1 and the parameters to define the true strings �1, E1, · · · , �:−1, E:−1), the
return value of any query is determined solely by the information about the first : blocks with
high probability. This lemma implies that without any information about the :-th block and
its subsequent blocks, any algorithm that uses one round of queries can only learn about the
information in the :-th block (with high probability).

Lemma 38. Fix any : ∈ [A − 1], any hypercube � and any realization of (1, �1, E1, · · · , (:−1, �:−1, E:−1.
With probability at least 1 − 3=−(2+5/3),

�(�) = ©
«
∏
8∈[:]

�8(�(8)
ª®
¬
· 2− co-dim(�)+co-dim(�(1∪(2∪···∪(: )+

∑
8>: 08 . (6)

where the probability is taken over the random partition of (: ∪ (:+1 ∪ · · · ∪ (A and the randomness of
�: , E: , �:+1, E:+1 , · · · , �A , EA .

Proof. According to Lemma 34, it suffices to show that with probability 1 − =−(2+5/3), we have

A∏
8=:

�8(�(8) = �:(�(:
) · 2− co-dim(�)+co-dim(�(1∪(2∪···∪(: )+

∑
8>: 08 . (7)

Let 3′ = co-dim(�(:∪(:+1∪···∪(A ). Next, we prove the lemma by discussing two cases: 3′/(A− :+1) ≥
0:−1+0:

2 and 3′/(A − : + 1) < 0:−1+0:
2 . Before the discussion, recall that we define < = 4=2/3((2 +

2) log =)1/3 and 08 = 8 · 12=1/3((2 + 2) log =)2/3 for each 8 ∈ [A].

Case #1: when 3′/(A − : + 1) ≥ 0:+0:+1
2 . According to the definition of 0: and 0:+1, 3′/(A − : + 1) ≥

0: + 6=1/3((2 + 2) log =)2/3. Because of Lemma 37, with probability at least 1 − 2=−(2+2),

co-dim(�(:
) ≥ 3′

A − : + 1
−

√
3(2 + 2)< log = ≥

0: + 6=1/3((2 + 2) log =)2/3 − 2
√

3=1/3((2 + 2) log =)2/3 >
0: + =1/3((2 + 2) log =)2/3 > 0: + (2 + 2) log =.

Because of Lemma 35, supposing co-dim(�(:
) > 0: + (2 + 2) log =, we have �:(�(:

) = 0 with
probability at least 1 − =−(2+2). Therefore, with probability at least 1 − 3=−(2+2), both the LHS and
RHS of Eq. (7) equal 0.

23



Case #2: when 3′/(A − : + 1) < 0:+0:+1
2 . According to the definition of 0: and 0:+1, 3′/(A − : + 1) <

0:+1 − 6=1/3((2 + 2) log =)2/3. Because of Lemma 37 and the union bound, with probability at least
1 − 2=−(2+5/3), for all 9 > :,

co-dim(�( 9) ≤
3′

A − : + 1
+

√
3(2 + 2)< log = ≤

0: − 6=1/3((2 + 2) log =)2/3 + 2
√

3=1/3((2 + 2) log =)2/3 <
0 9 − =1/3((2 + 2) log =)2/3 < 0 9 − (2 + 2) log =.

Because of Lemma 35, supposing co-dim(�( 9 ) < 0 9 − (2 + 2) log = for any 9 > :, we have �9(�( 9) =
20 9−co-dim(�(9

) for any 9 > : with probability at least 1 − =−(2+2). Therefore, with probability at least
1 − 3=−(2+5/3), we have

A∏
8=:

�8(�(8) = �:(�(:
) ·

A∏
9=:+1

20 9−co-dim(�(9
)
=

�:(�(:
) · 2

∑
9>: 0 9−

∑
9>: co-dim(�(9

)
.

Since (1, (2, · · · , (A is a partition, we have
∑

9>: co-dim(�( 9 ) = co-dim(�(:+1∪···∪(A ) = co-dim(�) −
co-dim(�(1∪···∪(:

). Hence, we obtain Eq. (7) for this case.

Finally, we can establish the main theorem of this section.

Proof of Theorem 33. We show the following statement by induction: for any 8 ∈ [A], given the sets
(1, (2, · · · , (8−1 and information �1, E1, · · · , �8−1 , E8−1, any deterministic algorithm can only find
a solution G with probability at most 3(A − 8 + 1)=−5/3 after A − 8 rounds. Note that given sets
(1, (2, · · · , (8−1 and �1, E1, · · · , �8−1, E8−1, the remaining sets (8 , · · · , (A form a uniform random
partition of [=] \ ((1 ∪ · · · ∪ (8−1) and the remaining randomness �8 , E8 , · · · , �A , EA are uniformly
at random. When 8 = 1, the statement is equivalent to any deterministic algorithm cannot find a
solution with probability =−4/3 after A rounds of queries. According to Yao’s minimax principle,
this implies that, for any randomized algorithm, there exists an instance such that the algorithm
can only find a solution with probability at most =−4/3 after A−1 rounds of queries. Next, we prove
these statements to finish our proof.

The base case is 8 = A. With no queries, any deterministic algorithm returns a fixed G∗. Since
EA ∈ F

<−0A
2 is uniformly random, < = 4=2/3((2 + 2) log =)1/3 and 0A = 3=2/3((2 + 2) log =)1/3, the

probability that G∗ is a solution is ℙ[�AG
∗ = EA] < 208−< < =−5/3.

Suppose we have shown for 8 = : + 1 (where 1 ≤ : ≤ A − 1). Consider any deterministic algorithm
ALG. Given (1, (2, · · · , (:−1 and �1, E1, · · · , �:−1, E:−1, when ALG finds a solution G∗ in A − :
rounds, at least one of the following events occurs.

• There exists an ALG’s first-round query such that its return value does not follow Eq. (6).

• Given (1, (2, · · · , (: and �1, E1, · · · , �: , E: , simulating the round 1 queries of ALG by Eq. (6)
and running ALG from round 2, we can find a solution G∗ in A − : − 1 rounds.

In the first round of the algorithm, according to Lemma 38, with probability at least 1− 3=−5/3, the
return values of all the =2 queries follow Eq. (6). Therefore, the probability that the first event occurs
is at most 3=−5/3. Also, note that Eq. (6) is fully determined by the the information in the first :
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blocks – (1, (2, · · · , (: in the partition and the bits �1, E1, · · · , �: , E: used in the construction of the
first : random linear codes. We can correctly simulate the first-round queries in the second event.
Due to the induction hypothesis, the second event occurs with probability at most 3(A − :)=−5/3.
Because of the union bound, ALG can find a solution with probability at most 3(A− :+1)=5/3 using
A − : rounds of queries.

6 Lower bound of Algorithm 3

In this section, we show that our analysis of Algorithm 3 is tight up to polylogarithmic factors. For
concreteness, we assume the UniversalCoupler used is MinCoupler.

Theorem 39. There exists an instance such that Algorithm 3 terminates in Ω( =2/3
log = ) rounds with probability

at least 0.99.

The proof of this lower bound uses the explicit construction of the universal coupler used in the
algorithm (MinCoupler), but we expect it to also hold with small modifications for GumbelTrick.
We are unaware whether this lower bound holds for an arbitrary universal coupler.

Errors of the universal coupler. Given a distribution �, we identify a set of randomness A where
MinCoupler produces different samples with constant probability for � and  when the second
distribution  is very different from �. Here, we say  is very different from �, if we sample G
from �, there is a constant probability of having  (G) < (1 − �)�(G) for some reasonably large �.
Recall the construction of MinCoupler – we encode A as pairs (G1 , ?1), (G2, ?2), · · · ∈ [@] × [0, 1],
choose the minimum index 8∗ such that ?8∗ ≤ �(G8∗) and let G8∗ be the output of the universal
coupler. The output G8∗ follows the distribution �. If we consider the restricted set of A such that
?8∗ ≥ (1 − �)�(G8∗), for any distribution  that is very different from �, MinCoupler will produce
different samples for � and  with constant probability. We formalize the above argument as the
following lemma, whose proof is deferred to Appendix A.3.

Lemma 40 (Sure mistakes made by MinCoupler). Consider any distribution � ∈ Δ@ and any � > 0.
Suppose ℛ(�, �) is the set of randomness A = ((G1 , ?1), (G2 , ?2), · · · ) used by MinCoupler such that
?8∗ ≥ (1 − �)�(G8∗), where 8∗ = min{8 : ?8 ≤ �(G8)} is the index chosen by MinCoupler.

Then, for any distribution  ∈ Δ@, we have

ℙA∼ℛ(�,�)[MinCoupler(�, A) ≠ MinCoupler( , A)] ≥ 1 −  max

2
· ℙG∼�[ (G) < (1 − �)�(G)],

where  max is the maximum mass maxG∈[@]  (G) of the distribution  .

The (random) hard instances. Suppose < = 20=. Consider parameters H1, H2, · · · , H= ∈ ℝ< ,
which are randomly constructed in symmetry and will be stated later. Let I ∼ #(0, �<) be a
random vector. For each 8 ∈ [=], let the variable -8 = round(〈H8 , I〉), where the rounding function
round(G) is constructed as follows.

round(G) = min
{
=4 log =,max

{
−=4 log =,

⌊
=4G

⌋}}
.

To prove the lower bound, we consider the parameters H1 , H2, · · · , H= as i.i.d.s following the distri-
bution #(0, 1

< �<) and use +8 = 〈H8 , I〉 to denote the variables before rounding. It can be shown
that, with high probability, -8 equals the floor of =4+8 for any 8 ∈ [=].
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Lemma 41. For any H1, H2, · · · , H= , with probability at least 1 − =−Ω(log =), ∀8 ∈ [=], -8 =
⌊
=4+8

⌋
.

In addition, ‖H8 ‖2 follows the "2
< distribution (with a 1

< factor). We can use the following to show

that ‖H8 ‖2 is concentrated within 1 ± & with probability at least 1 − 2−=
Ω(1)

for any constant & > 0.

Lemma 42 (Laurent-Massart bound [Lemma 1, LM00]). Let H ∼ #(0, �<) and 0 ∈ ℝ
<
≥0. Let / =∑

8∈[<] 08(H2
8
− 1). Then, for any G ≥ 0,

ℙ
[
|/ | > 2‖0‖2

√
G + 2‖0‖∞G

]
≤ 2 exp(−G).

Suppose H′1, · · · , H′= are the vectors generated by the Gram-Schmidt orthogonalization procedure
on H1 , · · · , H= . With this lemma and the fact that H1 , · · · , H= are i.i.d. Gaussians, if we write each H′

8
as a linear expression of H1, · · · , H= , the coefficients can be bounded polynomially in =. The proof
is deferred to Appendix A.4.

Lemma 43. Suppose = ≤ </20 and H1, H2, · · · , H= are i.i.d. vectors following the distribution #(0, 1
< �<).

Consider H′1, H
′
2, · · · , H′= as the vectors generated by the Gram-Schmidt orthogonalization procedure on

H1, H2, · · · , H= . Suppose ∀9 ∈ [=], H′
9
=

∑ 9

:=1 2 9:H: . With probability at least 1 − $(=−3), for any ℓ ∈ [=],∑=
9=1 2

2
9ℓ
≤ 2=.

Next, we show that if 8 − 0 = Ω(=1/3), the conditional distribution of -8 |{-9} 9∈[0] and -8 |{-9} 9∈[8−1]
can be very different under random conditioning of -1, · · · , -8−1 for � = Ω(=−1/3). We formalize it
in Lemma 44. Its proof can be summarized by the following 3 key ingredients:

1. +8 |{+9} 9∈[0] and +8 |{+9} 9∈[8−1] can be neatly expressed as (randomly constructed) normal
distributions whose means have a difference Ω(=−1/3)with a constant probability and whose
variances are both Ω(1) with a high probability.

2. Rounding two normal distributions that satisfy the above two properties gives two very
different discrete distributions for � = Ω(=−1/3), implying that -8 |{+9} 9∈[0] and -8 |{+9} 9∈[8−1]
are very different.

3. Using Lemma 43 to handle random noise produced by conditioning on {-9} instead of {+9}.
The full proof is deferred to Appendix A.5.

Lemma 44. Consider any 0, 8 ∈ [=] such that 8 − 0 > 40=1/3. Suppose �,  are the (randomly constructed)
distributions of -8 |{-9} 9∈[0] and -8 |{-9} 9∈[8−1] . There exist constants 21 > 0, 22 ∈ (0, 1) such that

EH1 ,··· ,H= E-1 ,-2 ,··· ,-8−1

[
(1 −  max) · ℙ:∼�

[
 (:)
�(:) ≤ 1 − 21 · =−1/3

] ]
≥ 22.

Ω̃(=2/3) lower bound of Algorithm 3. In the rest of this section, we suppose 21, 22 are the constants
stated in Lemma 44. We can show in Lemma 45, the algorithm only makes small progress (i.e., 0
increases by $(=1/3)) with probability at least Ω(1) in each round before termination.

Lemma 45. Suppose ∀8 ∈ [=], �(8) = 8. For any 00 ∈ [= − 1] ∪ {0}, if we initiate Algorithm 3 with 0 = 00

and∀8 ∈ [00], G0
8
= G̃8(�, D), the probability that the algorithm will have 0 ≤ 00+(40+2−1

1 · ⌈log(42−1
2 )⌉)=1/3

after one round is at least 22
4 , where the probability is taken over the randomness H1, H2, · · · , H= used in the

constructions of the instances and the randomness D1, · · · , D= used by the algorithm.
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Proof. Let >1 9 = 00+(40+ 2−1
1 · ⌈log(42−1

2 )⌉)=1/3 be the objective value of 0 after one round. Letℐ be
the set of integers in [00 + 40=1/3 , >1 9]. For each 8 > 0, let �8 be the distribution of -8 conditioning
on {-9 = G̃ 9(�, D)} 9∈[0] and let  8 be the distribution of -8 conditioning on {-9 = G̃ 9(�, D)} 9∈[8−1].
Let A8 be the event that ∀8 < 9 ∈ ℐ , D9 ∉ ℛ(�9 , 21 · =−1/3) and D8 ∈ ℛ(�9 , 21 · =−1/3). It is clear that
A8 are disjoint events. Note that we have 0 > >1 9 only if for any 8 ∈ ℐ, MinCoupler(�8 , D8) =
MinCoupler( 8 , D8). Therefore, we have

ℙ[0 > >1 9] ≤ ℙ[∀8 ∈ ℐ ,MinCoupler(�8 , D8) = MinCoupler( 8 , D8)]
= 1 − ℙ[∃8 ∈ ℐ ,MinCoupler(�8 , D8) ≠ MinCoupler( 8 , D8)]
≤ 1 − ℙ[∃8 ∈ ℐ , D8 ∈ ℛ(�8 , 21 · =−1/3) and MinCoupler(�8 , D8) ≠ MinCoupler( 8 , D8)]
≤ 1 −

∑
8∈ℐ

ℙ[A8] · ℙ[MinCoupler(�8 , D8) ≠ MinCoupler( 8 , D8) | A8]

≤ 1 −
(∑
8∈ℐ

ℙ[A8]
)
·min

8∈ℐ
ℙ[MinCoupler(�8 , D8) ≠ MinCoupler( 8 , D8) | A8] .

Since A8 are disjoint events,
∑

8∈ℐ ℙ[A8] equals the probability that there exists 8 ∈ ℐ such that
D8 ∈ ℛ(�8 , 21 · =−1/3). Because D8 , 8 ∈ ℐ are i.i.d.s in [0, 1] and |ℐ| = 2−1

1 ⌈log(42−1
2 )⌉=1/3, this sum of

probabilities be lower bounded as follows:

∑
8∈ℐ

ℙ[A8] = ℙ

[
∃8 ∈ ℐ , D8 ∈ ℛ

(
�8 , 21 · =−1/3

)]
≥ 1 −

(
1 − 21 · =−1/3

) 2−1
1 log(42−1

2 )=1/3

≥ 1 − 22

4
.

On the other hand, for any 8 ∈ ℐ, conditioning on the event A8 , we have D8 ∼ ℛ(�8 , 21 · =−1/3)
and D1, · · · , D8−1 are uniform i.i.d.s in [0, 1]. Therefore, G̃1(�, D), · · · , G̃8−1(�, D) follows its original
marginal distribution of -1, · · · , -8−1 after conditioning on A8 . For any choice of 8 ∈ ℐ, we have
the following lower bound:

ℙ[MinCoupler(�8 , D8) ≠ MinCoupler( 8 , D8) | A8]

=EH1 ,···H= ED1 ,··· ,D8−1

[
ℙD8∼ℛ(�8 ,21·=−1/3)[MinCoupler(�8 , D8) ≠ MinCoupler( 8 , D8)]

]
≥EH1 ,···H= ED1 ,··· ,D8−1

[
1 − ( 8)max

2
· ℙG∼�8

[
 8(G) ≤ (1 − 21 · =−1/3)�8(G)

] ]
≥ 22

2
.

Therefore, ℙ[0 > >1 9] ≥ 1 − (1 − 22
4 ) ·

22
2 ≥ 1 − 22

4 .

However, this constant probability does not suffice to show the Ω̃(=2/3) lower bound. This is because
we have not eliminated the possibility that the algorithm can terminate with a constant probability
in each round. Next, we boost this probability of small progress to 1 − =−Ω(1) by constructing a
new instance with poly log(=) i.i.d. such instances. More specifically, let 6 = 202−1

2 log = be the
number of groups. The parameters of a new instance are the vectors H1, H2, · · · , H= ∈ ℝ< and the
group numbers ℎ(1), ℎ(2), · · · , ℎ(=) ∈ [6]. Let I1, I2, · · · , I6 ∼ #(0, �<) be i.i.d. random Gaussian
vectors. Then, the variables -1, · · · , -= in the new instance are defined as follows:

-8 = round
(
〈H8 , Iℎ(8)〉

)
.

With this new construction, we can show that the algorithm will have small progress in each round
with high probability.
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Lemma 46. Suppose ∀8 ∈ [=], �(8) = 8. For any 00 ∈ [= − 1] ∪ {0}, if we initiate Algorithm 3 with
0 = 00 and ∀8 ∈ [00], G0

8
= G̃8(�, D), the probability that the algorithm will have 0 ≥ 00 + 2(40 + 2−1

1 ·
⌈log(42−1

2 )⌉)=1/36 after one round is at most (1+>(1))=−5 , where the probability is taken over the randomness
H1, H2, · · · , H= , ℎ(1), · · · , ℎ(=) used in constructions of the instances and the randomness D1, · · · , D= used
by the algorithm.

Proof. For convenience, we use >1 9 = 00 + 2(40 + 2−1
1 · ⌈log(42−1

2 )⌉)=1/36 to denote the objective
position for the algorithm to reach after one round. Let ℐ be the set of integers in [00 + 1, >1 9].
For any ℎ ∈ [6], let ℐ′

ℎ
be the set of 8 ∈ [>1 9] such that ℎ(8) = ℎ. With probability 1 − 2−=

Ω(1)
over

the choices of {ℎ(8) | 8 ∈ ℐ}, for any ℎ ∈ [6], the size of {8 ∈ ℐ | ℎ(8) = ℎ} (i.e., ℐ ∩ ℐ′
ℎ
) is at least

(40 + 2−1
1 · ⌈log(42−1

2 )⌉)=1/3. If 0 ≥ >1 9 after one round of Algorithm 3, there should be

∀8 ∈ ℐ , MinCoupler

((
-8

��� {-9

}
9∈[00]

)
, D8

)
= MinCoupler

((
-8

��� {-9

}
9∈[8−1]

)
, D8

)
(8)

Note that for any 8 , 9 ∈ [>1 9] such that ℎ(8) ≠ ℎ(9), -8 , -9 are independent. Eq. (8) is equivalent to
∀ℎ ∈ [6],

∀8 ∈ ℐ ∩ ℐ′ℎ , MinCoupler

((
-8

��� {-9

}
9∈[00]∩ℐ′ℎ

)
, D8

)
= MinCoupler

((
-8

��� {-9

}
9∈[8−1]∩ℐ ′

ℎ

)
, D8

)
Because of Lemma 45, for each ℎ ∈ [6], it happens with probability at most 1− 22

4 . Since D1, · · · , D=
are i.i.d.s, under these choices of {ℎ(8) | 8 ∈ ℐ}, the probability that 0 ≥ >1 9 after one round is at
most (

1 − 22

4

) 6
= =−5.

According to the union bound, we complete the proof.

Finally, we establish the main theorem of this section.

proof of Theorem 39. Let '(-, �, D) be the number of rounds of Algorithm 3 on variables - , using
randomness �, D. It suffices to show that

ℙ�,D,H,ℎ

[
'(-, �, D) ≥ =2/3

402−1
2 (40 + 2−1

1 · ⌈log(42−1
2 )⌉) log =

]
≥ 0.99. (9)

Since H1, ℎ(1), · · · , H= , ℎ(=)are constructed in symmetry, for any permutation � ∈ S= ,-�(1), · · · , -�(=)
are identically distributed as -1, · · · , -=. Therefore, it suffices to show Eq. (9) assuming �(8) =
8 for any 8 ∈ [=]. According to Lemma 46 and the union bound, with probability at least
1 − =−4 over the choice of H, ℎ, D, for any initialization of 0, we can increase 0 by at most
402−1

2 (40 + 2−1
1 · ⌈log(42−1

2 )⌉)=1/3 log =. In this case, the round complexity of Algorithm 3 is at

least =2/3

402−1
2 (40+2−1

1 ·⌈log(42−1
2 )⌉) log =

, and thus we obtain Eq. (9).
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A Deferred Proofs

A.1 Proof of Lemma 29

We use GC , HC , 0C to denote the intermediate variables used in the algorithm with the exact counting
oracle, and use ĜC , ĤC , 0̂C to denote the intermediate variables used in the algorithm with the
approximate counting oracle. We prove the claim that 0C = 0̂C and GC

�(9) = ĜC
�(9) = G̃ 9(�, D) for any

9 ∈ [0C] after each round C we compute 0C .

When C = 0, 0C = 0̂C = 0 and this claim is clearly true. Consider C ≥ 1. Suppose we have proved
the claim for C − 1. Because of the induction hypothesis and the fact that (�, D) is good, HC = ĤC .
Because of the definition of 0C and Lemma 21, we have HC

�(9) = GC
�(9) = G̃ 9(�, D) for any 9 ∈ [0C − 1]

and we have HC
�(0C ) ≠ GC

�(0C ) = G̃0C (�, D). Because of ĤC = HC and the induction hypothesis, we have

ĜC
�(9) = GC

�(9) = G̃ 9(�, D) for any 9 ∈ [0C]. Therefore, according to the definition of 0̂C , 0̂C = 0C .

Finally, we show how to obtain the lemma using this claim. If the algorithm with the exact counting
oracle terminates with 0C = = in some round, the claim directly implies that the algorithm with
the approximate counting oracle terminates in the same round and outputs the vector. Otherwise,
suppose C is the round in which the algorithm with the exact counting oracle terminates. There
is HC = GC . As discussed above, the claim gives ĤC = HC . Therefore, ĤC

�(8) = GC
�(8) = G̃8(�, D) for any

8 ∈ [=]. Since (�, D) is good, the algorithm with the approximate counting oracle will generate

31



ĜC = ĤC and terminate in this round. The output ĜC is thus the same as GC .

A.2 Proof of Lemma 30

Note that we use @ queries of �̂ to compute each  8 |0(�, D). With probability at least 1 − =2@�, all
queries �̂ we use while computing  8 |0(�, D)s satisfy Eq. (5). Under these circumstances, for any
0 ≤ 0 < 8 ≤ = and any G ∈ [@],

(
 8 |0(�, D)

)
(G) ≥ 1 − &

1 + & · ℙ
[
-�(8) = G

�� {-�(9) = G̃ 9(�, D)} 9∈[0]
]
.

Therefore, 3TV
(
-�(8)

�� {-�(9) = G̃ 9(�, D)} 9∈[0] ,  8 |0(�, D)
)
≤ 1 − 1−&

1+& ≤ 2&. Recall that the universal
coupler guarantees ℙ[UniversalCoupler(�, D) ≠ UniversalCoupler( , D)] ≤ 2 3TV(�,  ) for any
two distributions �,  . Under these circumstances, due to the union bound, (�, D) is good with
probability at least 1 − 4=2&. Putting things together, any (�, D) is good with probability at least
(1 − =2@�) · (1 − 4=2&) ≥ 1 − $(=2& + =2@�).

A.3 Proof of Lemma 40

Let 8∗� = min{8 | ?8 ≤ �(G8)} and 8∗ = min{8 | ?8 ≤  (G8)}. According to the definition of
MinCoupler, MinCoupler(�, A) ≠ MinCoupler( , A) if and only if G8∗� ≠ G8∗ . Observe that

ℙA∼ℛ(�,�)
[
G8∗� ≠ G8∗ 

]
=

ℙA∼[0,1]
[
8∗� < 8∗ , A ∈ ℛ(�, �)

]
· ℙ

[
G8∗� ≠ G8∗ 

��� 8∗� < 8∗ , A ∈ ℛ(�, �)
]

ℙA∼[0,1][A ∈ ℛ(�, �)]
.

On the denominator, we have,

ℙA∼[0,1][A ∈ ℛ(�, �)] =
∑
8≥1

ℙA∼[0,1]
[
8∗� = 8

]
· ℙA∼[0,1][?8 ≥ (1 − �)�(G8) | ?8 ≤ �(G8)]

=

∑
8≥1

ℙA∼[0,1]
[
8∗� = 8

]
· � = �. (?8 ∼ [0, 1])

On the other hand, let 8∗min = min{8∗� , 8∗ }. As discussed in the preliminary, we have 8∗min = min{8 |
?8 ≤ max{�(G8),  (G8)}}. For any 8 ≥ 1,

ℙA∼[0,1]
[
8∗� < 8∗ , A ∈ ℛ(�, �)

��� 8∗min = 8
]

=ℙA∼[0,1]
[
?8 >  (G8), ?8 ∈ [(1 − �)�(G8), �(G8)]

�� 8∗min = 8
]

≥ℙA∼[0,1]
[
 (G8) < (1 − �)�(G8), ?8 ∈ [(1 − �)�(G8), �(G8)]

�� 8∗min = 8
]

=ℙA∼[0,1][ (G8) < (1 − �)�(G8), ?8 ∈ [(1 − �)�(G8), �(G8)] | ?8 ≤ max{�(G8),  (G8)}]
((G8 , ?8)s are drawn independently)

=
ℙA∼[0,1][ (G8) < (1 − �)�(G8), ?8 ∈ [(1 − �)�(G8), �(G8)]]

ℙ[?8 ≤ max{�(G8),  (G8)}]

=
@−1�

∑
G∈[@] �(G)

@−1
∑

G∈[@]max{�(G),  (G)} · ℙA∼[0,1][ (G8) < (1 − �)�(G8) | ?8 ∈ [(1 − �)�(G8), �(G8)]]

(G8 ∼ [@], ?8 ∼ [0, 1])

=
�

1 + 3TV(�,  )
· ℙG∼�[ (G) < (1 − �)�(G)] ≥

�

2
· ℙG∼�[ (G) < (1 − �)�(G)] .
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Therefore, we have

ℙA∼[0,1][8∗� < 8∗ , A ∈ ℛ(�, �)] ≥
�

2
· ℙG∼�[ (G) < (1 − �)�(G)].

In addition, for any 8 ≥ 1, the event that 8 = 8∗� < 8∗ and A ∈ ℛ(�, �) is independent of the value of
any G 9 for 9 > 8. Since for any 9 ≥ 1 and any (possibly random) G ∈ [@], ℙ[G 9 ≠ G] ≥ 1 −  max, we
have

ℙ[G8∗� ≠ G8∗ | 8∗� < 8∗ , A ∈ ℛ(�, �)] ≥ 1 −  max.

Therefore, on the numerator, we have,

ℙA∼ℛ(�,�)
[
G8∗� ≠ G8∗ 

]
≥ �(1 −  max)

2
· ℙG∼�[ (G) < (1 − �)�(G)] .

Putting things together, we obtain that ℙA∼ℛ(�,�)[G8∗� ≠ G8∗ ] ≥
1− max

2 · ℙG∼�[ (G) < (1 − �)�(G)] and
thus the lemma.

A.4 Proof of Lemma 43

We shall prove this lemma by induction on 8 of the following statements: with probability at least
1 − 8 · $(=−4), we have

∀ℓ ∈ [8],
8∑

9=1

22
9ℓ ≤ 2 ·

(
1 + 12 log =

<

) 8
(10)

When 8 = 1, Gram-Schmidt procedure gives H′1 = H1/‖H1‖2. Because of the Laurent-Massart bound,

‖H1‖22 ∈ 1 ± 0.1 with probability at least 1 − 2−=
Ω(1)

. Therefore, 22
11 ≤ 1.2 with probability 1 − 2−=

Ω(1)
.

Suppose : > 1 and we have shown the statements for any 8 < :. Next, we show the statements
for 8 = :. We only consider the randomness of H: and consider the cases where Eq. (10) holds
and 22

9 9
≤ 1.2 holds for any 9 ∈ [8]. According to the Gram-Schmidt procedure, H′

:
is obtained as

follows: H′′
:
= H: −

∑
9∈[:−1] 〈H: , H′9〉H′9 and H′

:
= H′′

:
/‖H′′

:
‖2. Since H: ∼ #(0, 1

< �<) and {H′
9
} 9∈[:−1] are

orthonormal, 〈H: , H′9〉 are i.i.d.s following #(0, 1
< ). Suppose H′′

:
= H: +

∑
9∈[:−1] 2

′
: 9
H 9 . Because we

have

:−1∑
9=1

〈H: , H′9〉H′9 =
:−1∑
9=1

〈H: , H′9〉 ·
9∑

ℓ=1

2 9ℓ Hℓ =

:−1∑
ℓ=1

:−1∑
9=ℓ

2 9ℓ 〈H: , H′9〉Hℓ ,

we have 2′
::

= 1 and 2′
:ℓ
∼ #

(
0, 1

<

∑:−1
9=ℓ 22

9ℓ

)
for any ℓ < :. Therefore, for any ℓ ∈ [: − 1], with

probability at least 1 − $(=−5),

2′2:ℓ ≤
10 log =

<
·
:−1∑
9=ℓ

22
9ℓ ≤

10 log =

<
· 2

(
1 + 12 log =

<

) :−1

Then, according to the second step of obtaining H′
:
, we have 22

:ℓ
= 2′2

:ℓ
/‖H′′

:
‖22 and 22

::
= 1/‖H′′

:
‖22.

Note that ‖H′′
:
‖22 = ‖H: ‖22 −

∑
9∈[:−1](〈H: , H′9〉)2. Since 〈H: , H′9〉 ∼ #(0, 1

< ) and : < </20, we have
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‖H′′
:
‖22 ≥ 0.9 with probability at least 1 − 2−=

Ω(1)
. Therefore, with probability at least 1 − 2−=

Ω(1)
,

22
::
≤ 2, and with probability at least 1 − $(=−4), for any ℓ ∈ [: − 1], we have

22
:ℓ ≤ 2′2:ℓ/0.9 ≤

12 log =

<
· 2

(
1 + 12 log =

<

) :−1

.

Since Eq. (10) for 8 = : − 1 holds with probability at least 1− (: − 1)$(=−4), we obtain the proof for
8 = :.

Finally, because = ≤ </20, for any ℓ ∈ [=], we have

∑
9∈[=]

22
9ℓ ≤ 2 ·

(
1 + 12 log =

<

)=
≤ 2 ·

(
1 + 12 log =

<

)</20

≤ 2=.

A.5 Proof of Lemma 44

Suppose H′1, H
′
2, · · · , H′= are the vectors generated by the Gram-Schmidt orthogonalization proce-

dure on H1, H2, · · · , H= . We assume that the conditions in Lemma 41 and Lemma 43 hold, which
happens with probability 1 − $(=−3).
Consider we expand these vectors to an orthonormal basis H′1, H

′
2, · · · , H′= , H′=+1, · · · , H′< of ℝ< . For

any 8 ∈ [=] and 0 ≤ 9 < 8, suppose H8 | 9 is the projection of H8 on the linear span of H1, · · · , H 9
and let H⊥

8 | 9 = H8 − H8 | 9. We have H8 | 9 =
∑9

:=1〈H8 , H
′
9
〉H′

9
and H⊥

8 | 9 =
∑<

:=9+1〈H8 , H′9〉H′9. We can rewrite

+8 = 〈H8 | 9 , I〉 + 〈H⊥8 | 9 , I〉 for any 9 < 8. Therefore, for any 0 < 8, we can rewrite

(
+8

�� {-9} 9∈[8−1]
)
=

(
〈H8 |0 , I〉

�� {-9} 9∈[0]
)
+

(
〈H8 |8−1 − H8 |0 , I〉

�� {-9} 9∈[8−1]
)
+ 〈H⊥

8 |8−1 , I〉 ,(
+8

�� {-9} 9∈[0]
)
=

(
〈H8 |0 , I〉

�� {-9} 9∈[0]
)
+ 〈H⊥

8 |0 , I〉.

Note that ‖H8 |8−1 − H8 |0 ‖2 =
∑8−1

:=0+1(〈H8 , H′9〉)2. Because H8 ∼ #(0, 1
< �<), H′9 are orthonormal, and

H′
9
(9 < 8)s are independent with H8, 〈H8 , H′9〉 are i.i.d. variables following #(0, 1

< ). Therefore,

according to the Laurent-Massart bound, ‖H8 |8−1− H8 |0 ‖2 ∈ (1±0.01)2 · 8−0−1
< with probability at least

1−2−=
Ω(1)

. This implies ‖H8 |8−1− H8 |0 ‖ ≥ 1.5=−1/3 with probability at least 1−2−=
Ω(1)

. Since = ≤ </20,
we similarly have ‖H8 |8−1‖2, ‖H8 |0‖2 ≤ 0.1 and ‖H⊥

8 |8−1‖
2, ‖H⊥

8 |0‖
2 ∈ [0.9, 1.1] with probability at least

1 − 2−=
Ω(1)

. We shall assume these conditions in the rest of the proof.

Because of our assumption (where the condition in Lemma 41 holds), ∀8 ∈ [=], +8 − -8 ∈ [0, =−4].
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Observe that

〈H8 |0 , I〉 =
∑
9∈[0]
〈H8 , H′9〉〈H′9 , I〉

=

∑
9∈[0]
〈H8 , H′9〉

∑
:∈[9]

2 9: 〈H: , I〉

=

∑
9∈[0]
〈H8 , H′9〉

∑
:∈[9]

2 9:(-: + (+: − -:)) (+: = 〈H: , I〉)

=

∑
:∈[0]

©«
0∑

9=:

2 9: 〈H8 , H′9〉
ª®¬
· (-: + (+: − -:))

def
= ℰ1 +

∑
:∈[0]

©«
0∑

9=:

2 9: 〈H8 , H′9〉
ª®¬
· -:

︸                         ︷︷                         ︸
�

According to the Cauchy-Schwarz inequality and Lemma 43, all the coefficients (∑0
9=: 2 9: 〈H8 , H′9〉)2 ≤

(∑=
9=1 2

2
9:
)(∑0

9=1(〈H8 , H′9〉)2) ≤ 2=2‖H8 |0 ‖2. According to our assumption of ‖H8 |0‖2 ≤ 0.1, ℰ1 ∈ ±2=−2.

On the other hand, we similarly have

〈H8 |8−1 − H8 |0 , I〉 =
∑

:∈[8−1]

©«
8−1∑

9=max{:,0+1}
2 9: 〈H8 , H′9〉

ª®¬
· (-: + (+: − -:))

def
= ℰ2 +

∑
:∈[8−1]

©«
8−1∑

9=max{:,0+1}
2 9: 〈H8 , H′9〉

ª®¬
· -:

︸                                      ︷︷                                      ︸
�

,

and ℰ2 ∈ ±2=−2. Because I ∼ #(0, �<), 〈H8 |8−1 − H8 |0 , I〉 ∼ #(0, ‖H8 |8−1 − H8 |0 ‖2), and we have
ℙ[〈H8 |8−1 − H8 |0 , I〉 ≤ −‖H8 |8−1 − H8 |0 ‖] ≥ 0.15. Since ℰ2 ∈ ±2=−2 and ‖H8 |8−1 − H8 |0 ‖ ≤ −1.5=−1/3, we
have ℙ[� ≤ −=−1/3] ≥ 0.15.

Note that conditioning on {-9} 9∈[8−1] , � and � are fixed. Consider the cases where � ≤ −=−1/3.
Since I ∼ #(0, �<), for any valid choice of -1, · · · , -8−1, the distributions � ∼ (-8 | {-9} 9∈[0]) and
 ∼ (-8 | {-9} 9∈[0]) can be concluded as follows:

1. � is the value applying round on the sum of the fixed value �, random Gaussian #(0, ‖H⊥
8 |0 ‖

2)
and random variables (ℰ1 | {-9} 9∈[0]) ∈ ±2=−2.

2.  is the value applying round on the sum of the fixed values �, �, random Gaussian
#(0, ‖H⊥

8 |8−1‖
2) and random variables (ℰ1 | {-9} 9∈[0]), (ℰ2 | {-9} 9∈[8−1]) ∈ ±2=−2.

Suppose 51, 52 are the density functions of (ℰ1 | {-9} 9∈[0]) and (ℰ2 | {-9} 9∈[8−1]). We have for any
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integer : ∈ [−=4 log =, =4 log =],

�(:) =
∫ (:+1)=−4

G=:=−4

∫
41

51(41) ·
exp(−(G − 41 − �)2/2‖H⊥

8 |0 ‖
2)√

2�‖H⊥
8 |0 ‖2

3413G

 (:) =
∫ (:+1)=−4

G=:=−4

∫
41 ,42

51(41) 52(42) ·
exp(−(G − 41 − 42 − � − �)2/2‖H⊥

8 |8−1‖
2)√

2�‖H⊥
8 |8−1‖2

3413423G

If � < 0, for any integer : ∈ {: ∈ ℤ | :=−4 ∈ (4=−2 + � + 0.1, 4=−2 + � + 0.2)} := K ,

�(:) ≥
exp(−(:=−4 − � + 7=−2)2/2‖H⊥

8 |0 ‖
2)

√
2�‖H⊥

8 |0 ‖
· =−4

 (:) ≤
exp(−(:=−4 − � + |� |)2/2‖H⊥

8 |8−1‖
2)

√
2�‖H⊥

8 |8−1‖
· =−4

In this case,  (:)/�(:) is at most

‖H⊥
8 |8−1‖
‖H⊥

8 |0 ‖
· exp

(
1
2

(
:=−4 − � + 7=−2

‖H⊥
8 |0 ‖

− :=−4 − � + |� |
‖H⊥

8 |8−1
‖

) (
:=−4 − � + 7=−2

‖H⊥
8 |0 ‖

+ :=−4 − � + |� |
‖H⊥

8 |8−1
‖

))

=

‖H⊥
8 |8−1‖
‖H⊥

8 |0 ‖
· exp

(
Θ(1) ·

(
:=−4 − � + 7=−2

‖H⊥
8 |0 ‖

− :=−4 − � + 7=−2

‖H⊥
8 |8−1‖

− |� | − 7=−2

‖H⊥
8 |8−1‖

))

≤ exp
(
Θ(−|� | + 7=−2)

)
= 1 −Ω(=−1/3) (‖H⊥

8 |0 ‖ ≥ ‖H
⊥
8 |8−1‖)

In addition, we have

∑
:∈K

�(:) ≥
∫ 0.2−7=−2

0.1+7=−2

exp
(
−G2/2‖H⊥

8 |0 ‖
)

√
2�‖H⊥

8 |0 ‖
3G = Ω(1).

Therefore, we conclude that ℙE∼�
[
 (:)
�(:) ≤ 1 −Ω(=−1/3)

]
≥ Ω(1) if � ≤ −=−1/3. In addition, it is clear

that  max = $(=−4). Because � ≤ −=−1/3 happens with a constant probability, we complete the
proof.
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