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Abstract. In this work, we examine online authenticated encryption
with variable expansion. We follow a notion where both encryption and
decryption are online, and security is ensured in the RUP (Release of
Unverified Plaintext) setting. Then we propose a generic way of obtain-
ing an online authenticated encryption mode from a tweakable online
encryption mode based on the encode-then-encipher paradigm (Bellare
and Rogaway, Asiacrypt 2000). To instantiate our generic scheme, we
start with proposing a provably-secure tweakable online encryption mode
called t-OleF, a tweakable version of OleF (Bhaumik and Nandi, ToSC
2016(2)), and then plug it into our generic scheme to obtain OlÆF, a
provably-secure online authenticated encryption mode. As an applica-
tion, we propose a primitive we call a bidirectional online channel suited
for communication between lightweight devices.

Keywords: online authenticated encryption · tweakable online cipher ·
bidirectional online channel · OleF · t-OleF · OlÆF · INT-RUP

1 Introduction

Authenticated encryption is a widely-used mode of cryptographic operation which
provides both privacy and authenticity to the ciphertext. Initially, Goldwasser
and Micali [31] formalised encryption schemes as stateful or probabilistic. Later,
Rogaway [43, 44] unified them by defining a cryptographic scheme as a deter-
ministic algorithm that takes a unique user-supplied nonce. In the case of nonce-
based authenticated encryption (nAE), the adversary is not allowed to repeat the
nonce between any two encryption queries. If such repetition is observed, then
the security guarantees (both privacy and authenticity) disappear. To overcome
this strong requirement regarding nonce repetition, Rogaway and Shrimpton [45]
proposed the notion of misuse resistant authenticated encryption (MRAE). In
the MRAE game, the adversary is allowed to repeat the nonce between encryp-
tion queries. This repetition of the nonce has no adverse effect on authenticity,



while privacy is compromised only to the extent that the repetition of the entire
encryption query is detectable.

With all its advantages, there is one major drawback of MRAE, namely that
an MRAE scheme can not be online. When we say an AE scheme is online, we
mean that the encryption is done in a single pass over the message so that it can
be realised with constant memory. In the case of an MRAE scheme, its definition
implies that every bit of the ciphertext depends on every bit of the message. So
it can not output the first ciphertext bit before it gets the last message bit. So,
by definition, an online MRAE scheme is impossible to design [33].

Online AE. To overcome this extreme degradation of security or efficiency in
either case, Fleischmann et al. [30] proposed the notion which we call OAE1
(following [33]). Their definition builds on the idea of an online cipher [13]. An
online cipher with block-size n is a cipher E : K × {{0, 1}n}∗ → {{0, 1}n}∗
(i.e., E(K, ·) is a permutation for every K ∈ K) where the i-th ciphertext block
depends only on the first i message blocks; and an OAE1 output is the output of
a tweakable online cipher with (N,A) as the tweak and M as the input, followed
by a random (N,A,M) dependent tag, with N , A and M denoting the nonce,
the associated data, and the message respectively.

Weakness of OAE1. Fleischmann et al. [30] claimed that OAE1 supports MRAE
security and online AE. Hoang et al. [33] showed first with a trivial attack on
small-block OAE1 and then with the chosen-prefix/secret-suffix (CPSS) attack
(the idea of which was introduced in a different setting with the BEAST attack
[28]) on OAE1 with any block-size that the MRAE security claim is wrong, i.e.,
an adversary can exploit the nonce-misuse power to mount those attacks. Also,
they made a series of arguments against their claim of constructing online AE.
One of them was that even though encryption is online, decryption is not, i.e.,
the message cannot be released until and unless it is verified. For that, it needs
additional security in the RUP (Releasing Unverified Plaintext) setting. Finally,
in the same work, the authors proposed an alternate notion named OAE2. It
is worth noting that there is a downside to the argument regarding the CPSS
attack. Firstly, many real-world settings don’t enable a CPSS attack. Also, OAE2
is vulnerable to the CPSS attack as well. Both of these facts are acknowledged
in [33]. Later, Andreeva et al. [5] extended the notion of OAE2 to deal with
messages that have an incomplete last block.

RUP Setting. Security notion for AE schemes in the RUP setting was ini-
tially formalised by Andreeva et al. [9]. They proposed the notions IND-CPA +
PA1/PA2 for privacy and INT-RUP (INT-CTXT in RUP setting) for authen-
ticity. Among other things, the authors showed that OCB [36] and COPA [10]
are not INT-RUP secure. Chang et al. [25] proposed the notion AERUP which
unified IND-CPA + PA1 and INT-RUP. In the meantime, Ashur et al. [12] also
proposed an alternate notion named RUPAE which focused on nAE schemes. Un-
fortunately, it turned out that PA1 cannot be achieved by online AE schemes [50].
PA2, being a stronger security notion than PA1, is trivially not helpful to the
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cause. Earlier, Abed et al. [3] used OPRP-CCA notion in the context of privacy
of online AE schemes in RUP setting. Later, Zhang and Wu [50] introduced OPA
notion, and showed that OPA coupled with OPRP-CPA is equivalent to OPRP-
CCA. Note that OPRP-CPA and OPRP-CCA were introduced by Bellare et
al. [13] in the context of online ciphers.

Secure Channels. In practice, an encryption mode can be used to construct se-
cure communication channels [4, 14, 34, 37] between two or more parties. In the
two-party case, Marson and Poettering [37] noted the importance of modelling
bidirectional channels (where both parties send and receive) instead of unidirec-
tional channels due to subtleties that arise when composing two unidirectional
channels. Some channels consider different security properties and support dif-
ferent message patterns like out-of-order message delivery. Generally, the RUP
setting is not considered in existing formalism: [27] is one notable exception,
albeit they work in the Universal Composability (UC) framework [22].

Our Contributions. The primary contribution of this work is two-fold: (1) a
generic Encode-then-Encipher (EtE) scheme to obtain an online authenticated
encryption from a tweakable online cipher, and (2) a new primitive called bidirec-
tional online channel which is essentially an application of online authenticated
encryption. Also, to further elaborate the EtE scheme, we design a new tweak-
able online cipher t-OleF, and instantiate the EtE scheme with that to obtain
OlÆF. In more detail:

1. First, we discuss the notion of tweakable online cipher, and propose a secure
tweakable online cipher t-OleF, based on the online cipher OleF [21].

2. Next, we discuss the notion of online authenticated encryption, and propose a
generic EtE scheme [16] to obtain an online authenticated encryption scheme
from a tweakable online cipher, which is the first primary contribution of this
work. Towards this aim, we prove that a random tweakable online permu-
tation composed with an injective suffix-pad results in a random tweakable
online injection.
An important design feature of the EtE scheme is that it allows an optional
use of a nonce. In the nonce-based setting, the nonce can be used as a prefix
of the associated data using an injective padding. Since the nonceless setting
can be seen as a nonce-misuse setting, this implies that the EtE scheme is
MRAE secure up to the leakage of common prefix, which we understand is
the best one can achieve in the online setting.

3. Next, we propose a concrete instantiation of the EtE scheme. We use t-OleF
as the underlying tweakable online cipher to obtain an online authenticated
encryption scheme which we call OlÆF.
OlÆF has a couple of important design features. OlÆF matches the bound
for the number of block cipher calls needed for security in the non-online
setting shown by Nandi [41]: namely, it uses two block cipher calls per block
(or more precisely, four per diblock i.e., a sequence of two consecutive blocks).
Similar to OleF or t-OleF, OlÆF is block cipher based and inverse-free, i.e.,
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it depends only on the encryption circuit of the underlying block cipher.
This enables us to use a weak security assumption (i.e., PRF security) on
the block cipher (instead of the stronger SPRP security). Also, we avoid the
extra cost of implementing the inverse circuit of the block cipher.

4. Finally, we arrive at the second primary contribution of this work. As an
application of online authenticated encryption, we introduce a new primitive
which we call bidirectional online channel. We define appropriate correctness
notions, in particular capturing message sending that is online and in batches
of L blocks (such that authentication is performed for every L blocks). Our
security notion captures the RUP setting, and while our primitive is stateful,
‘state resets’ are allowed by the security game, in which case we provide
online security (and otherwise provide ‘full’ security). We construct a secure
bidirectional online channel from an online authenticated encryption scheme.

Related Work. In recent years, online AE with INT-RUP security (which
ensures that both encryption and decryption are online) has drawn significant
research interest, and a few designs have already been proposed. Some of the
important names are CAESAR [1] candidates POET [3], APE [8] and Minalpher
[47] (second-round candidates), NIST LWC [42] candidates TinyJAMBU [48] (a
finalist), SAEAES [39] (instantiation of SAEB [40] with AES-128), LOCUS and
LOTUS [23], Oribatida [20] and SAEF [11] (all but TinyJAMBU were second-round
candidates). Other examples include Lynx [32]. One can look into the following
works examining the INT-RUP security of different designs: [2] for POET, [7] for
APE, [46] for Minalpher, [26] for SAEB and TinyJAMBU, and [6] for SAEF.

AE with INT-RUP security has garnered independent attention as well, be-
cause there are other motivations for INT-RUP security besides making the de-
sign online. Some AE schemes have been proven to be INT-RUP secure, though
they are not online, e.g., NIST LWC candidates Romulus-M [35] (one of the fi-
nalists) and ESTATE [24] (a second-round candidate). Other examples include
MONDAE [25]. [6] considers the INT-RUP security of Romulus-M and ESTATE.

Outline. We start with notations and a few security and cryptographic notions
in Section 2 that we use in the rest of the work. Section 3 talks about t-OleF and
its security. Section 4 introduces the generic scheme to obtain an online authenti-
cated encryption from a tweakable online cipher, does its security analysis, plugs
in t-OleF into it to obtain OlÆF, and proposes its instantiation. Section 5 covers
our bidirectional online channels and their security. Finally, Section 6 concludes.

2 Preliminaries

Notation. For a positive integer r, [r] denotes the set {1, . . . , r}. For a bit-string
x, ∥x∥ denotes its length. For t, s ∈ [∥x∥] and t ≤ s, xt..s denotes the (s− t+1)-
bit sub-string of x starting at the t-th bit. When y = x1..s for some s ∈ [∥x∥], we
say y is the s-bit prefix of x; if in addition s < ∥x∥, we say y is a proper prefix
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of x. For two strings x and y, x∥y denotes their concatenation. For a finite set
S, its size is denoted by |S|. For two sets S1 and S2 of strings, we define their
cardinal product as S1×S2 := {x∥y | x ∈ S1, y ∈ S2}. A set S of strings is called
prefix-free if there does not exist a pair of strings in S such that one is a prefix
of the other. For a positive integer m, let {0, 1}≤m :=

⋃m
t=1{0, 1}t denote the set

of bit-strings with at most m bits.
For a non-negative integer τ , a function f : D −→ R is said to be τ -expanding

if for every x ∈ D, ∥f(x)∥ = ∥x∥ + τ ; and τ is called the expansion of f . f is
called length-preserving if it is 0-expanding. An injection f : D −→ R is called
prefix-free if the set {f(x) | x ∈ D} is prefix-free. An injection from a domain D
onto itself is called a permutation over D. Given a set S and a distribution µ over
it, we write x←µ S to denote that x is sampled from S according to distribution
µ. When µ is the uniform distribution over S, we simply write x←$ S.

2.1 Security Notions

Distinguishing Game. For two oracles O0 and O1, let A be an algorithm which
tries to distinguish between O0 and O1. A distinguishing game is an interactive
game that A plays with Ob (b ∈ {0, 1}) where b is unknown to A, and then
outputs a guess for b. A wins when the guessed bit matches b. A strong dis-
tinguishing game is a special kind of distinguishing game where Ob can handle
both forward and inverse queries by accepting an extra bit to indicate the type
of the query. A is called a (strong) distinguishing adversary. Sometimes, we say
G-adversary to denote that A plays the (strong) distinguishing game G.

Distinguishing Advantage. We use the notation PrOb
[·] to denote probability

under oracle Ob. For an adversary A playing a (strong) distinguishing game
with Ob (b ∈ {0, 1}), we define the (strong) distinguishing advantage of A as

AdvO1,O0(A) :=
∣∣∣PrO0 [A ⇒ 1]− PrO1 [A ⇒ 1]

∣∣∣,
whereA ⇒ b denotes the event thatA outputs b. Sometimes, we say G-advantage
or write AdvGO1,O0

(A) to denote that A plays the (strong) distinguishing game

G. Sometimes we just write AdvGO1
(A) or AdvO1(A) when O0 is clear from

the context. If the (strong) distinguishing advantage is upper-bounded by ϵ for
any adversary, we say that O0 and O1 are (1 − ϵ)-(strong) indistinguishable.
Sometimes we simply say that O0 and O1 are (strong) indistinguishable, when
ϵ is “negligible”.

Pseudorandomness. Consider a class C of functions from D to R, and a key
space K. Consider the keyed family of functions

F = {fk | k ∈ K} ⊂ C .

We say F is pseudorandom (or strong pseudorandom) in C if for f ←$ C and
k ←$ K, oracles O0 simulating f (called the ideal oracle) and O1 simulating fk

5



(called the real oracle) are indistinguishable (or strong indistinguishable respec-
tively). Common examples of (strong) pseudorandom families are pseudorandom
function, pseudorandom permutation, and strong pseudorandom permutation,
which we discuss below.

Security notions: prf, prp and sprp. Suppose F is pseudorandom in C . When
F is pseudorandom in Func, the set of all functions from D to R, it is called a
pseudorandom function (prf) from D to R. When F is pseudorandom in Permm,
the set of all permutations from {0, 1}m to {0, 1}m, F is called an m-bit pseudo-
random permutation (prp). Finally, when F is strong pseudorandom in Permm,
it is called an m-bit strong pseudorandom permutation (sprp).

2.2 Cryptographic Notions

Deterministic Encryption Scheme. Formally, with a deterministic encryption
scheme E, we associate three finite spaces: the message spaceM, the ciphertext
space C, and the key space K. E consists of two deterministic functions: the
encryption function e : K×M −→ C and the decryption function d : K× C −→
M, such that for any K ∈ K,M ∈M, we have d(K, e(K,M)) = M . In addition,
we associate with E a key distribution µK (usually uniform over the key-space).
For a fixed K ∈ K, we write e(K, ·) as eK(·) and d(K, ·) as e−1K (·).

Block Cipher. A block cipher E is a deterministic encryption scheme withM =
C = {0, 1}n for some fixed n. We call n the block length of the E. More specifically,
we write EK , or in short E, to denote the encryption function of the block cipher,
and E−1K , or in short E−1, to denote the decryption function of the block cipher.
E is usually modelled as an n-bit prp. It is a well-known result that for any
family F of block functions, the prf-advantage of any adversary A making at
most q queries cannot exceed its prp-advantage by more than q2/2n. This result,
known as the prp-prf switching lemma [15], lets us treat a block cipher as a prf.

Almost-XOR-Universal Hash Functions. A keyed hash-functionH : K×X −→ Y
takes a key K ∈ K and a message X ∈ X and outputs an element Y ∈ Y. H
is said to be ϵ-almost-XOR-universal, or in short ϵ-AXU, if for any X1, X2 ∈ X
and any Y ∈ Y, on sampling K ←$ K, we have Pr[HK(X1)⊕HK(X2) = Y ] ≤ ϵ.
Sometimes we omit the term ‘ϵ’ and only say “AXU hash” to denote an ϵ-AXU
hash with “good” value of ϵ. Hash functions based on univariate polynomials,
e.g., Poly1305 [19] and GHASH [38] are examples of AXU hashes.

3 t-OleF: A Tweakable Online Cipher

We first specify the notion of “online” as used in this paper, and other relevant
notions, before describing the new construction t-OleF.
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3.1 Tweakable Online Permutation and Cipher

Blocks and Block-Prefixes. Let B := {0, 1}n be the block space, the set of com-
plete blocks; let IB := {0, 1}≤n−1, the set of incomplete blocks. LetMD := {x |
2n ≤ ||x|| ≤ 2nl} be the message space.5 We’ll parse a message as a sequence of
two or more complete blocks optionally followed by an incomplete block. For any
x ∈MD, denote the number of blocks in x as ⟨x⟩ := ⌈||x||/n⌉. For r ∈ [⟨x⟩ − 1],
let the r-th block of x be defined as x[r] := xn(r−1)+1..nr; let the final block of
x be defined as x[⟨x⟩] := xn(⟨x⟩−1)+1..||x||. For 1 ≤ i ≤ j ≤ ⟨x⟩, let x[i..j] denote
the sequence of (j − i+ 1) blocks from x[i] to x[j].

Module encrypt[K,K′]
input : ℓ′ AD blocks A[1], . . . ,A[ℓ′], ℓ plaintext diblocks (L[1],R[1]), ..., (L[ℓ],R[ℓ])
output: ℓ ciphertext diblocks (L’[1],R’[1]), ..., (L’[ℓ],R’[ℓ])

begin
T[1]← HK′ (A[1], . . . ,A[ℓ′])
if |R[ℓ]| = n then

for j ← 1 to ℓ do
(T[j + 1], L’[j],R’[j])← round[K](j, ℓ,T[j], L[j],R[j])

end for

else
for j ← 1 to ℓ− 2 do

(T[j + 1], L’[j],R’[j])← round[K](j, ℓ,T[j], L[j],R[j])
end for
if |L[ℓ]| < n then

LTEMP ← L[ℓ− 1]⊕ b4 · E(K, pad(L[ℓ]))

(T[ℓ], L’[ℓ− 1],R’TEMP)← round[K](ℓ− 1, ℓ,T[ℓ− 1], LTEMP,R[ℓ− 1])
L’[ℓ]← L[ℓ]⊕ chop(E(K,T[ℓ]))

R’[ℓ− 1]← R’TEMP ⊕ b4 · E(K, pad(L’[ℓ]))
else

LTEMP ← L[ℓ− 1]⊕ b4 · E(K, L[ℓ])⊕ E(K, pad(R[ℓ]))

(T[ℓ], L’[ℓ− 1],R’TEMP)← round[K](ℓ− 1, ℓ,T[ℓ− 1], LTEMP,R[ℓ− 1])
L’[ℓ]← L[ℓ]⊕ E(K,T[ℓ])
R’[ℓ]← R[ℓ]⊕ chop(E(K,T[ℓ]⊕ 1))

R’[ℓ− 1]← R’TEMP ⊕ b4 · E(K, L[ℓ])⊕ E(K, pad(R’[ℓ]))
end if

end if

end

Module round[K]
input : j, ℓ,T, L,R
output: TNEXT, L’,R’

begin
if j = ℓ then

bT← b3 · T
else

bT← b2 · T
end if
X← E(K, L)⊕ R⊕ bT
Y← E(K,X)⊕ L
R’← E(K,Y)⊕ X
L’← b1 · E(K,R’)⊕ Y⊕ bT

TNEXT ← X⊕ Y
end

Algorithm 1: The algorithm of t-OleF[E,H]. b1, b2, b3, b4 are distinct
small constants that allow efficient multiplication.

5 For sampling purposes we need a theoretical upper limit on the message length, but
the results in this paper hold for arbitrarily large l.
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Tweakable Online Permutation. We call g̃ : T × MD −→ MD a tweakable
online permutation if for every T ∈ T , g̃(T, ·) is a permutation over MD such
that for every x, y ∈MD and for every r with ∥x∥ − 2nr ≥ 2n, ∥y∥ − 2nr ≥ 2n,

x[1..2r] = y[1..2r] =⇒ g̃(T, x)[1..2r] = g̃(T, y)[1..2r].

We write g̃−1 : T ×MD −→MD to denote the tweakable online permutation
satisfying g̃−1(T, ·) = g̃(T, ·)−1 for each T ∈ T . Note that in this definition, the
online property does not extend to the last 2n bits of the output, which are
allowed to behave arbitrarily, even when the corresponding input bits form part
of a common prefix.

It will often be convenient to treat an odd-numbered block and the next
even-numbered block together as a single entity, which we will call a diblock ;
elements of B2 will be called complete diblocks and those of IB ∪ B ∪ (B × IB)
will be called incomplete diblocks (which include incomplete single blocks and
complete single blocks to account for messages with an odd number of blocks in
total). Messages will be parsed into a sequence of complete diblocks optionally
followed by an incomplete diblock.

Tweakable Online Cipher. Formally, a tweakable online cipher consists of an
encryption function e : K × T ×MD −→ MD and a decryption function d :
K ×T ×MD −→MD satisfying the following:

– It must be correct. For every (K,T, x) ∈ K ×T ×MD,

d(K,T, e(K,T, x)) = x;

– It must be online. For every (K,T, x, y) ∈ K × T ×M2
D, and for every r

with ∥x∥ − 2nr ≥ 2n, ∥y∥ − 2nr ≥ 2n,

x[1..2r] = y[1..2r] =⇒ e(K,T, x)[1..2r] = e(K,T, y)[1..2r].

The sprtop game. Let TOPerm be the set of all tweakable online permutations
over MD with tweak-space T . In the strong pseudorandom tweakable online
permutation (sprtop) game, the adversary tries to distinguish between O0 rep-
resenting g̃ ←$ TOPerm, and O1 representing oEK for K ←$ K where oE is a
tweakable online cipher.

3.2 Specifications and Security of t-OleF

We now propose a tweakable online cipher, which we call t-OleF. It is a tweakable
variant of the online cipher OleF [21]. Figure 1 shows the construction of t-OleF
for a message with ℓ complete diblocks. E : K × B −→ B is a block cipher, and
H : K×T −→ B is an ϵ-AXU hash-function that takes the tweak as input, and
outputs a block. The keys of E and H are sampled independently. For partial-
diblock messages, we carry over the technique used in OleF, as shown in Figure 2.
Algorithm 1 gives the complete specification of t-OleF.
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b1

L[ℓ] R[ℓ]

L’[ℓ] R’[ℓ]

b3

T[ℓ]
· · ·

HK′

T

Fig. 1. t-OleF[E,H]K,K′ processing ℓ complete diblocks where denotes field multi-
plication

Slightly modifying the proof used in [21] to show the security of OleF, we can
show the following sprtop security bound for t-OleF[E,H] for any block cipher
E and any ϵ-AXU hash function H. A sketch of the modified proof is included
in Section A.

Theorem 1. For any sprtop-adversary A of t-OleF[E,H] limited to q queries
consisting of up to σ query blocks in total, there is a prf-adversary A′ of E
making at most 10σ/3 queries such that

Advsprtop
t-OleF[E,H](A) ≤

7σ2

2n
+Advprf

E (A′) + 3q2ϵ.

4 OlÆF: An Online AE scheme

We begin this section by building towards our proposed notion of online authen-
ticated encryption.

4.1 A Variable-Expansion Tweakable Online Injection

Definitions. Fix an expansion-cap t ≤ 2n(l − 1). Define T := {0, 1}≤t, and
M−D := {x | 2n − 1 ≤ ∥x∥ ≤ 2nl − t}. An injection γ : [t] ×M−D −→ M

−
D × T

is called a variable-expansion injection if for every τ ∈ [t], γτ := γ(τ, ·) is τ -
expanding. γτ (x)∥x∥+1..∥x∥+τ is called the tag associated to x by γ. We call γ

a variable-expansion online injection if, for every τ ∈ [t], for every x, y ∈ M−D,
and for every r with ∥x∥ − 2nr ≥ 2n− τ and ∥y∥ − 2nr ≥ 2n− τ ,

9



EK

EK

X[ℓ − 1]
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Y[ℓ − 1]
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b1
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· · · EK

EK
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∗L’[ℓ]

EK

EK

EK

EK

b1

L[ℓ − 1] R[ℓ − 1]

L’[ℓ − 1] R’[ℓ − 1]

b2

T[ℓ − 1]
· · · T[ℓ]

EK
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EK

EK

EK

b4

b4

1

L[ℓ]

L’[ℓ]

∗R[ℓ]
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Fig. 2. t-OleF[E,H]K,K′ processing an incomplete diblock, when (left) ||∗L[ℓ]|| = t <

n, and when (right) ||∗R[ℓ]|| = t < n. The nodes indicate truncation to t bits,

and the nodes indicate suffix padding with 10n−t−1.

x[1..2r] = y[1..2r] =⇒ γτ (x)[1..2r] = γτ (y)[1..2r].

A function γ̃ : T ×[t]×M−D −→M
−
D×T is called a variable-expansion tweakable

online injection if for every T ∈ T , γ̃T := γ̃(T, ·, ·) is a variable-expansion online
injection. It is useful to note thatM−D × T coincides withMD.

Injective Suffix-Pad. A function ϕ : [t]×M−D −→MD is called an injective suffix-
pad if ϕ is an injection such that for any τ ∈ [t] and any x ∈M−D, we can find y ∈
{0, 1}τ such that ϕ(τ, x) = x∥y. For an injective suffix-pad ϕ, for τ ∈ [t], define

ϕτ := ϕ(τ, ·), and let Mϕ
D[τ ] :=

{
ϕτ (x) | x ∈M−D

}
be the range of ϕτ . Then

ϕτ is a bijection from M−D to Mϕ
D[τ ], with an inverse ϕ−1τ : Mϕ

D[τ ] −→ M−D.
We can define the unverified inverse ϕ[−1] : [t] ×MD −→ M−D of ϕ as ϕ[−1](τ,

z) := z1..∥z∥−τ ; the name indicates the fact that when z ∈ Mϕ
D[τ ], ϕ[−1](τ, ·)

exactly coincides with ϕ−1τ . A common example of an injective suffix-pad is ϕ10∗

defined by ϕ10∗(τ, x) := x∥10τ−1.

An Equivalence Result. We now come to an important equivalence result. Let
TOInj be the set of all tweakable online injections with the parameters as above.

Lemma 1. Sample g̃ ←$ TOPerm and γ̃ ←$ TOInj. Fix a tweak T ∈ T and
define hT := g̃T ◦ϕ for some injective suffix-pad ϕ. Then for any q distinct pairs
(τ1, x1), . . . , (τq, xq) ∈ [t]×M−D, (hT (τ1, x1), . . . , hT (τq, xq)) and (γ̃T (τ1, x1), . . . ,
γ̃T (τq, xq)) are identically distributed.

In other words, if we take a random tweakable online permutation, and compose
it with an injective suffix-pad, we get a random tweakable online injection.
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Proof. Consider the set ℘ of all distinct complete-diblock proper prefixes in
{x1, . . . , xq}. We observe that under any diblock-online function f every r-
diblock x ∈ ℘ can be associated with a unique diblock, which is the r-th diblock
of f(x∥y) for any y with ∥y∥ ≥ 2n. Thus, once T is fixed, from each of these
prefixes we have one ciphertext diblock from hT and one from γ̃T , which are
identically distributed. Since ϕ is a suffix-pad, the block associated with a pre-
fix x ∈ ℘ by hT is exactly the block associated with x by g̃T , the distribution
of which is identical to that of the one associated with x by γ̃T . Similarly, for
both, the tag will be identically distributed. The only boundary case is when
the online-but-last effect comes into play. To resolve that, we simply note that
hT is also an online injection, since for every τ ∈ [t], for every x, y ∈ MD, and
for every r with ∥x∥ − 2nr ≥ 2n− τ, ∥y∥ − 2nr ≥ 2n− τ ,

x[1..2r] = y[1..2r] =⇒ hT (τ, x)[1..2r] = hT (τ, y)[1..2r].

Since the blocks assigned to the diblock-prefixes, along with the tags, constitute
the ciphertexts, the result follows.

⊓⊔

4.2 Online Authenticated Encryption

Definition. Formally, an online authenticated encryption (AE) scheme consists
of an encryption function ẽ : K×T × [t]×M−D −→MD, a decryption function

d̃ : K×T ×[t]×MD −→M−D, and a verification function ṽ : K×T ×[t]×MD −→
{accept, reject} satisfying the following:

– It must be correct. For any (K,T, τ, x) ∈ K ×T × [t]×M−D,

d̃(K,T, τ, ẽ(K,T, τ, x)) = x, ṽ(K,T, τ, ẽ(K,T, τ, x)) = accept.

– It must be online. For any K ∈ K, the function ẽK := ẽ(K, ·, ·, ·) is a
variable-expansion tweakable online injection.

Security Game. In the OAE security game, the real oracle O1 has three func-
tions associated with it: encryption Enc1, decryption Dec1, and verification Ver1,
and the ideal oracle O0 has three functions associated with it: encryption Enc0,
decryption Dec0, and verification Ver0. The adversary A can make queries to
all the functions of the oracle it is interacting with. Enc0 is a random tweakable
online injection γ̃ ←$ TOInj. However, by Lemma 1, we can take an injective
suffix-pad ϕ and a random tweakable online permutation g̃ ←$ TOPerm, and
compose them, and what we arrive at is identical in distribution to γ̃. Thus, we
can assume either of the two to be Enc0, and we choose the latter because it
makes our proof easier. Figure 3 summarises the oracles and the corresponding
functions mentioned above.

An online authenticated encryption scheme strives to attain two major secu-
rity goals: privacy—the ciphertexts should “look like” random bit-strings, and
integrity—it should be difficult to forge a valid ciphertext. We formalise these
two notions as two different security games with the oracles defined above:
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Module Enc[K,K′]

input : associated data A, plaintext M, expansion τ
output: ciphertext C

begin
P← ϕ10∗(M, τ)
C← t-OleF[E,H](K,K′,A,P)

end

Module Dec[K,K′]

input : associated data A, ciphertext C, expansion τ
output: unverified plaintext M

begin
P← t-OleF−1[E,H](K,K′,A,C)

M← ϕ
[−1]
10∗ (P)

end

Module Ver[K,K′]

input : associated data A, ciphertext C, expansion τ
output: flag F

begin
P← t-OleF−1[E,H](K,K′,A,C)
if P∥P∥−τ+1..∥P∥ = 10τ−1 then

F← accept
else

F← reject
end if

end

Algorithm 2: The algorithm of OlÆF[E,H]. The messages are encoded
using ϕ10∗ .

– Privacy The privacy game (priv) is a distinguishing game played with either

O0 or O1.

– Integrity The integrity game (int) is played with O1 and expansion τ∗. A
wins if one of the verification queries with expansion τ∗ returns accept.

In both games we add the stipulation that A is not allowed to feed the output
of an encryption query unchanged into a verification query with the same tweak
(otherwise the integrity game would be trivial to win). Note that in the integrity
game the target expansion τ∗ is only used to check for a valid forging attempt—A
is free to make queries with other expansions.

4.3 A Generic Construction

We’re now in a position to put everything together and propose a generic tech-
nique of constructing an online authenticated encryption scheme from a tweak-
able online cipher.
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Ideal Oracle O0

g̃ ←$ TOPerm

Enc0(T, τ, x)

return g̃(T, ϕ(τ, x))

Dec0(T, τ, y)

z ← g̃−1(T, y)

return ϕ[−1](τ, z)

Ver0(T, τ, y)

z ← g̃−1(T, y)

if z ∈Mϕ
D[τ ] :

return accept

else :

return reject

Real Oracle O1

K ←$ K

Enc1(T, τ, x)

return e(K,T, ϕ(τ, x))

Dec1(T, τ, y)

z ← d(K,T, y)

return ϕ[−1](τ, z)

Ver1(T, τ, y)

z ← d(K,T, y)

if z ∈Mϕ
D[τ ] :

return accept

else :

return reject

Fig. 3. Oracles for online authenticated encryption security games

For our construction, we use the encode-then-encipher paradigm, where the
message is first put through a public encoding and then encrypted using a keyed
primitive. The encoding is done with ϕ : [t]×M−D −→MD, and the enciphering
is done with the encryption function e : K × T ×MD −→MD of a tweakable
online encryption scheme oE = (e, d). Formally, the encryption, decryption, and
verification functions of our online authenticated encryption scheme oaE = (̃e,
d̃, ṽ) are defined as follows:

ẽ(K,T, τ, x) : = e(K,T, ϕ(τ, x)),

d̃(K,T, τ, y) : = ϕ[−1](τ, d(K,T, y)),

ṽ(K,T, τ, y) : = accept, if d(K,T, y) ∈Mϕ
D[τ ],

= reject, otherwise.

Security Analysis. We next prove the following security result for oaE.

Theorem 2. For any priv-adversary A of oaE making q queries with a max-
imum of σ query blocks, we can find an sprtop-adversary A′ of oE making q
queries with a maximum of σ query blocks such that

Advpriv
oaE(A) ≤ Advsprtop

oE (A′).
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Also, for any int-adversary A of oaE with target expansion τ∗ ≤ 2n making q
queries with a maximum of σ query blocks, among which there are q′ forging
attempts (i.e., decryption queries with expansion τ∗), we can find an sprtop-
adversary A′ of oE making q queries with a maximum of σ query blocks such
that

Advint
oaE(A) ≤ Advsprtop

oE (A′) + q′

2τ∗ .

Proof. Privacy This is a standard reduction proof. A′ uses A to play an sprtop-

game against oE as follows: for every encryption query (T, τ, x) of A, A′ makes an
encryption query with (T, ϕ(τ, x)) and passes on the response to A as the output
of Encb. For every decryption query (T, τ, y) of A, A′ makes the decryption query
(T, y) to receive z as response; and passes on ϕ[−1](τ, z) to A as the output of
Decb. Finally, for every verification query (T, τ, y) of A, A′ makes the decryption

query (T, y) to receive z as response; and passes on accept if z ∈ Mϕ
D[τ ], and

reject otherwise, to A as the output of Verb. At the end A′ outputs the output
bit of A, and wins if A wins, thus proving the claimed bound.

Integrity We first replaceO1 byO0 using the upper-bound of the priv-advantage.

Thus in order to win A must produce a ciphertext (T, y) such that g̃−1T (y) is in
the range of ϕ(τ∗, ·), where g̃ ←$ TOPerm. The online-but-last property ensures
that at least the last 2n bits of g̃−1T (y) always have fresh randomness for all
distinct y, and τ∗ ≤ 2n, so the last τ∗ bits for any forging attempt can only
match the required suffix with a probability of 1/2τ

∗
. This completes the proof

of the claimed bound. ⊓⊔

A Word on Integrity. We’ve just shown that our scheme when used with a fully
secure oE gives an integrity of τ∗ bits (for τ∗ ≤ 2n). This does not, however,
guarantee a practically useful integrity, because for very low values of τ∗, the
scheme can be forged by brute-force. We do not see this as a weakness of the
scheme; indeed it is rather an advantage of variable-expansion authenticated
encryption schemes that the user can select τ∗ to suit his integrity requirements.
Note that a user only needs to worry about forge attacks with the expansion of his
choice; any variable-expansion authenticated encryption scheme can be forged
for low expansion values, and that does not imply a weakness in the scheme.
Thus, it is useful to talk about integrity of a scheme for specific expansions,
instead of a general integrity. We also point out that the privacy of the scheme
remains intact even for very low values of τ∗.

4.4 OlÆF: Security

Now we propose OlÆF, a provably secure online authenticated encryption scheme.
To obtain OlÆF, the tweakable online cipher t-OleF[E,H] from Section 3 is
plugged into the generic construction from Section 4.3. Algorithm 2 gives the
complete specification of OlÆF. We can show the following security bound for
OlÆF using the bounds from Theorem 1 and Theorem 2.

14



Theorem 3. For any priv-adversary A of OlÆF making q queries with a max-
imum of σ query blocks, we can find a prf-adversary A′ of E making at most
10σ/3 queries such that

Advpriv
OlÆF(A) ≤

7σ2

2n
+Advprf

E (A′) + 3q2ϵ.

For any int-adversary A of OlÆF with target expansion τ∗ ≤ 2n making q queries
with a maximum of σ query blocks, among which there are q′ forging attempts
(i.e., decryption queries with expansion τ∗), we can find a prf-adversary A′ of
E making at most 10σ/3 queries such that

Advint
OlÆF(A) ≤

7σ2

2n
+Advprf

E (A′) + 3q2ϵ+
q′

2τ∗ .

In the above statement, we assume that in the prf-game against E the ad-
versary A′ can make encryption queries with chosen keys and chosen plaintexts.
The birthday-term in the second bound implies that τ∗ can be at most ≈ n/2
in order to guarantee around τ∗ bits of integrity.

As an injective suffix-padding scheme, we propose ϕ10∗ . Note that while hash-
ing the associated data, since inverse-free is not a relevant property in the context
of hashing (it being itself a non-invertible function), we do not need to handle
diblocks, and can process it block-wise.

5 An Application: Bidirectional Online Channels

In this section, we build a formalism and construct a primitive for communication
between parties that we call a bidirectional online channel. Our channels are
particularly suited for communication between lightweight devices that send
and receive messages in a streaming fashion due to memory constraints. To this
end, our primitive ensures online security even in the presence of ‘state resets’; a
special case of this is when the state is ‘reset’ after every send/receive operation
for both parties, i.e., when the local state is not updatable.

5.1 Online Channels

We first define a syntax and correctness notions for an online channel. In our
formulation, we consider two parties, A and B, who can both send and receive
messages between each other. We assume that parties initially have performed
key exchange or have otherwise agreed upon initial keying material (abstracted
into the function init in our formalism).

Definition. Formally, we associate an online channel scheme with the following
sets: the randomness space R, the state space for both parties S, the message
space M =M−D, the ciphertext space C =MD and the associated data space
T . Let Z>0 denote the set comprised of all integers greater than 0.
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We assume that a state stP for party P ∈ {A,B} has a variable ooo ∈ {0, 1};
semantically, this variable is set to 1 whenever a message is delivered out-of-order
(at least when there are no state resets).

We also assume that ciphertexts can be split into two components ccore and
caux with the implementation-specific helper function (ccore , caux )← getaux(c).6

Then, an online channel consists of an initialisation function

init : [l]×R −→ S × S,

that takes as inputs an integer L (the block limit) and randomness r and outputs
initial states for A and B; a send function

send :M× [t]×T × S −→ C × Z>0 × S,

that takes as inputs a message, expansion, associated data and the caller’s state,
and outputs a ciphertext, an index and a new state; and a receive function

receive : C × [t]×T × S −→M∪ {⊥} × Z>0 × S,

that takes as inputs a ciphertext, expansion, associated data and the caller’s
state, and outputs a message and index (or (⊥,⊥), denoting failure), and a new
state; satisfying the following:

– Online Consider (stA, stB)← init(L; r). Then, for all (L, r) ∈ [l]×R and for
all sequences of send and receive calls, let stP be the state of some P ∈ {A,B}
at some point during protocol execution. Then the function fi := [(c, ·,
·) ← send(·, ·, ·, stP); (c1, c2, . . . , caux ) = (c1..(Ln+τ), c(Ln+τ+1)..(2(Ln+τ)), . . . ,
caux )← c; return ci] is a tweakable online injection for all i ∈ [⌈||c||/(Ln+
τ)⌉].

– Good-Case Sequentiality Consider (stA, stB) ← init(L; r). Then, for all (L,

r,P) ∈ [l]×R×{A,B} and for all sequences of send and receive calls, consider
a call (m, i, stB)← receive(c, τ, a, stB) made at some point in time by P such
that m ̸= ⊥ and stB.ooo = 0 (if such a call exists). Let (m′, i′, stP

′) ←
receive(c′, τ ′, a′, stP

′) be the next call made by P such that m′ ̸= ⊥ and
stP
′.ooo = 0 (if it exists). Then for all such pairs of receive calls, i′ = i+ 1.

– Correctness Consider (stA, stB) ← init(L; r). Then, for all (L, r) ∈ [l] × R
and for all sequences of send and corresponding (sequentially made) receive
calls using the output of send and the same associated data a as input (where
such receive calls are only made once), we have for all P ∈ {A,B}, m, τ : (c,
i, stP) ← send(m, τ, a, stP) ∧ (m′, i′, stP) ← receive(c, τ, a, stP) ⇒ (i,m) = (i′,

m′) (where P denotes P’s counterpart).

Primitive design choices. Our primitive is stateful: this is required for sequen-
tiality in the good case scenario that the adversary does not deliver ciphertexts
out-of-order to parties.

6 Looking ahead, we split the ciphertext into two components so that security will
ensure ccore is indistinguishable from random.
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Algorithm init is parametrised by L, which enforces that encryption is per-
formed in batches of L blocks (such that authentication checks are certainly
performed every L blocks). Our online condition requires that each ciphertext
component corresponding to L plaintext blocks corresponds to a tweakable online
injection (as in the online condition for online authenticated encryption). Note
that we consider blocks for simplicity but diblocks could easily be considered.

Good-case sequentiality requires the index output by receive to increase
monotonically (in particular by 1 after each call receive that outputs m ̸= ⊥),
except when messages are delivered out-of-order or when the state is reset (which
we elaborate on below when describing security). Some channels in the litera-
ture vary here by, e.g., allowing messages to be received in a ‘sliding window’ or
out-of-order (captured in more general robustness predicates in [4, 29]).

As done for online authenticated encryption, our send call (and corresponding
receive call) supports variable-length expansion and thus takes τ ≤ t input, which
corresponds to the expansion of each L-block message sequence (rather than the
entire ciphertext).

Security Definitions. We describe the security definition’s oracles in Figure 4,
and let Advbocs

Ch (A) denote adversary A’s advantage in the bidirectional online
channels distinguishing security game bocs w.r.t. channels scheme Ch. For sim-
plicity of explanation, we assume that messages consist of kL blocks for positive
integer k and block limit L. Our indistinguishability game captures both privacy
and ciphertext integrity and is a real-or-random game. The adversary can make
oracle queries of the form (x, δ), where x ∈ {s, r, ℓ, sr} corresponds to send,
receive, leak and state reset queries, respectively, and δ to the relevant input.

In the ideal game (O0), Send queries are such that each L block ciphertext
component corresponds to the output of a random tweakable online injection
(except for the auxiliary output), which, as in Section 4.3, is constructed by
composing a random tweakable online permutation g̃ and an injective suffix-pad
ϕ. For queries of the form Receive1(c, τ, · · · ), we require that τ = τ∗ for forgery
target tag length τ∗.

The tweak in the ideal game comprises both the input associated data and
the sender’s current index (i.e., how many times Sendb has been called for party
P ∈ {A,B} since their state was reset). We define the leakage function Leakb as
an extension of the unverified decryption Decb of online authenticated encryption
(Figure 3) to account for the fact that encryption is performed blockwise (we
assume that input ||c|| = k(nL + τ) + aux for positive integer k and aux =
||caux ||). We define for O1 the concrete leak function for our online channel
scheme to be introduced in the next subsection.

Our game allows the state of each party to be adaptively ‘reset’ over the
lifetime of the game’s execution. This captures a setting where a device’s memory
is erased or reset over time. This is captured in the Resetb oracle, which in
the ideal world simply sets the send counter for P to 0, and in the real world
sets the state of P to the state stP originally output by init. We require that
the cryptographic portion of the ciphertext comprises random tweakable online
injections in this setting or when messages are delivered out-of-order (given
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Ideal Oracle O0

g̃ ←$ TOPerm; iA, iB ← 0

Send0(m, τ, a,P ∈ {A,B})

e← ⌈||m||/nL⌉
(m1, . . . ,me)← (m[1 : L], . . . ,m[(Le− 1) + 1 : Le])

for i ∈ [e] :

yi ← g̃((a, iP, e, i), ϕ(τ,mi))

y ← (y1, . . . , ye); iP ← iP + 1

return (y, iP − 1)

Receive0(c, τ, a,P ∈ {A,B})

return ⊥

Leak0(c, τ, a,P ∈ {A,B})

(ccore , caux )← getaux(c); (c1, . . . , ce)← ccore

x← min{i ∈ [e] : ci is invalid, e+ 1}
for i ∈ [x− 1] :

z ← g̃−1((a, iP, e, i), ci)

mi ← ϕ−1(τ, z)

if x ≤ e :

mx ← g̃−1((a, iP, e, i), ci); mx+1, . . . ,me ← ⊥
return (m1|| · · · ||me, iP)

Reset0(P ∈ {A,B})

iP ← 0

return

Real Oracle O1

(stA, stB)←$ init(τ, L)

(stA
∗, stB

∗)← (stA, stB)

sentA, sentB ← ∅

Send1(m, τ, a,P ∈ {A,B})

(c, i, stP)← send(m, τ, a, stP)

sentP ← sentP ∪ {c, τ, a}
return (c, i)

Receive1(c, τ, a,P ∈ {A,B})

(m, i, stP)← receive(c, τ, a, stP)

if (c, a) ∈ sentP ∨ (τ ̸= τ∗) :

return ⊥
return (m, i)

Leak1(c, τ, a,P ∈ {A,B})

(m, i, stP
′)← leak(c, τ, a, stP)

return (m, i)

Reset1(P ∈ {A,B})

stP ← stP
∗

return

Fig. 4. Online channels security game defined with respect to forgery target tag length
τ∗ and assuming an encode-then-encipher cipher used for sending/receiving; injective
suffix-pad ϕ is defined as in Section 4.3. getaux is a construction-dependent helper that
separates the ‘core’ ciphertext and auxiliary data that need not be indistinguishable
from random. leak is a construction-dependent leakage function that captures what
kind of release of unverified plaintext is allowed.
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neither of these occur, each L-block ciphertext portion corresponds to a random
tweakable injection).

Our game departs from some previous work which considers a left-or-right
indistinguishability game (i.e., where Sendb would take messages (m0,m1) with
m0 = m1 as input and encrypt mb), rather than a real-or-random game, as we
feel it is more meaningful to define Leakb in a real-or-random game.

5.2 Online Channels from Online Authenticated Encryption

Construction. We present our online channels construction Ch in Algorithm 3
which uses online authenticated encryption scheme oaE. Essentially, our con-
struction uses oaE to encrypt/decrypt (via ẽ/d̃) in L block batches. Note that
we include several values in the tweak to prevent trivial forgeries from an adver-
sary who tries to mix and match different ciphertext values. It otherwise keeps
track of indices to enforce our correctness requirements. We define helpers leak
and getaux as follows:

– leak: We define leak as running receive except if the first i (but not all) d̃ calls
were successful and output (m1, . . . ,mi), the function outputs (m1, . . . ,mi,
m∗,⊥, . . . ,⊥) where m∗ denotes the unverified plaintext associated with the
(i+ 1)-th call to d̃ if it exists.

– getaux(c): On input c ← (ccore , caux ), getaux returns caux as defined in Al-
gorithm 3 (which is just an integer).

Our channels are ‘robust’ in the sense of [17] (and unlike those of [37]) in that
a single incorrect ciphertext will not result in the caller’s state being set to ⊥,
as the caller’s state is unchanged after a decryption failure. Correctness follows
from the correctness of oaE, the online property follows from the online property
of oaE and good-case sequentiality by inspection of how indices are managed in
the construction.

Security. We state the following security result for Ch proven in Section B.1.

Theorem 4. For any bocs-adversary A of Ch making q queries with a maximum
of σ query blocks, we can find an int-adversary A′ of oaE and a priv-adversary
A′′ of oaE each making at most σ queries w.r.t. messages/ciphertexts of at most
L blocks such that

Advbocs
Ch (A) ≤ Advint

oaE(A′) +Advpriv
oaE(A

′′).

6 Conclusion and Future Work

We have proposed new definitions for tweakable online encryption and online
authenticated encryption under the release of unverified plaintext, and provided
provably secure instantiations for both. We also detailed a salient application of
our online mode, namely to construct online bidirectional channels. Our online
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Module init
input : block limit L
output: initial states stA and stB

begin
k ←$ K
tA, tB ← (0, 0)
ooo ← 0
stA ← (k, L, tA, tB)
stB ← stA

end

Module send
input : message m, expansion τ , associated data a and state stP = (k, L, tA, tB, ooo) for

P ∈ {A,B}
output: ciphertext c, index i and updated state stP

′

begin
e← ⌈ℓ/L⌉ // encryption count
parse B1|| · · · ||Bℓ ← m // parsing m in blocks of length n
// encrypting in L block batches
for i← 1 to e do

Ti ← combine(tP, e, i, a,P)
mi ← B(i−1)·L+1|| · · · ||Bi·L+1

ci ← ẽ(k, T, τ,mi)
end for
ccore ← (c1, . . . , ce); (i, caux )← (tP, tP); c← (ccore , caux )
tP ← tP + 1; stP

′ ← (k, L, tA, tB)
end

Module receive
input : ciphertext c, expansion τ , associated data a and state stP = (k, L, tA, tB) for

P ∈ {A,B}
output: message m (or ⊥), index i (or ⊥) and (possibly) updated state stP

′

begin
parse ((c1, . . . , ce), j)← c; c0 ← ⊥
// decrypting in L block batches
success← 1
for i← 1 to e do

if ||ci|| ̸= nL + τ then
success← 0
break

end if

Ti ← combine(j, e, i, a, ci−1,P)

mi ← d̃(k, T, τ, ci)
if mi = ⊥ then

success← 0
break

end if

end for
if success = 1 then

// successful decryption
if j ̸= tP + 1 then

ooo ← 1
end if
m← (m1|| · · · ||me); i← tP
tP ← tP + 1; stP

′ ← (k, L, tA, tB)

else
// decryption failure
m← ⊥; i← ⊥; stP

′ ← stP
break

end if

end

Algorithm 3: Online channels scheme Ch from online authenticated en-
cryption scheme oaE. Function combine is an injection that maps integers
tP, e and i, ciphertext ci−1 or bottom value ⊥, associated data a and party
identifier P to associated data T .
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authenticated encryption scheme OlÆF uses two independent keys, and a possible
future work could explore whether the same security can be achieved with a
single-keyed construction. Another avenue of work could be beyond-birthday
constructions satisfying these definitions. Even though we haven’t provided a
proof of this, it seems to suggest that t-OleF, the online sprp used in OlÆF,
is optimal in the number of block cipher calls for an inverse-free construction
of an online sprp, due to a result by Nandi [41], which in future work should
be confirmed or contradicted. Another direction is to adapt our online channel
formalism to better suit different settings, which we elaborate on in Section B.2.
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Appendices

A Proof Sketch of Theorem 1

We first use the standard hybrid reduction to replace EK with a random function
f∗ : B −→ B, by allowing A′ to play a PRF game against EK using A; since there
are at most 10σ/3 calls to EK in the game (worst case: 10 for a 3-block query

with a tiny 4-th block), this accounts for the term Advprf
E (A′) in the advantage.

This brings us to the setting of [21, Theorem 2], and we can follow the same
proof with a few changes.

One can observe that the first message block is processed differently in OleF
and t-OleF, while the processing of the rest of the message blocks are similar. As
a result, badB of OleF requires dedicated analysis in t-OleF whenever the first
message block is involved.

We consider the tweaks T i(i ∈ [q]) as part of the transcript. We also take the
tweaks into account when we compute prefixes (thus affecting in particular the
definitions of F , F ′, badA, and badB). Here we need to consider some additional
bad events. We follow the notation of the proof of [21, Theorem 2]. As all of the
additional bad events fall into the category badB of [21, Theorem 2], we state
all the bad events from that category below, and bound their probabilities. The
rest of the security analysis of OleF and t-OleF are identical, and we omit that
to avoid tedious repetition.

Instead of sampling the basis elements suggested in [21], we sample directly
the outputs corresponding to D (as defined in [21, Sec. 4.1]): we call the outputs

corresponding to Li[j] and R’i[j] respectively L̂
i
[j] and R̂’

i
[j].

1. badB1: For some (i1, j1), (i2, j2) ∈ F , with (i1, j1) ̸= (i2, j2), X
i1 [j1] = Xi2 [j2].

(a) badB11: j1 > 1, j2 > 1. This event is a sub-event of the first event under
the category badB of [21, Theorem 2].

(b) badB12: j1 > 1, j2 = 1. Expanding the expressions for the random vari-
ables, we obtain

L̂
i1
[j1] + Ri1 [j1] + b2 · Ti1 [j1] = L̂

i2
[1] + Ri2 [1] + b2 · H(T i2).

For H(T i2) = 0, this event is a sub-event of the first event under the
category badB of [21, Theorem 2]. And even if H(T i2) ̸= 0, the same
bound holds as all the required randomness are still present in the event.

(c) badB13: j1 = j2 = 1. Expanding the expressions for the random vari-
ables, we obtain

L̂
i1
[1] + Ri1 [1] + b2 · H(T i1) = L̂

i2
[1] + Ri2 [1] + b2 · H(T i2).

If T i1 ̸= T i2 , then for a fixed value of the indices, the probability of the
event is upper bounded by ϵ as H is ϵ-AXU. If T i1 = T i2 but Li1 [1] ̸=
Li2 [1], then for a fixed value of the indices, the probability of the event

is upper bounded by 1/N due to the randomness of L̂
i1
[1] or L̂

i2
[1]. And
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if T i1 = T i2 and Li1 [1] = Li2 [1] but Ri1 [1] ̸= Ri2 [1], then for a fixed value
of the indices, the probability of the event is 0. Applying union bound
over all possible values of the indices, we obtain

Pr[badB13] ≤ q2ϵ+
q2

N
.

2. badB2: For some (i1, j1), (i2, j2) ∈ F ′, with (i1, j1) ̸= (i2, j2), Yi1 [j1] =
Yi2 [j2].

(a) badB21: j1 > 1, j2 > 1. This event is a sub-event of the second event
under the category badB of [21, Theorem 2].

(b) badB22: j1 > 1, j2 = 1. The probability of this event can be bounded
following similar argument to badB12.

(c) badB23: j1 = j2 = 1. Expanding the expressions for the random vari-
ables, we obtain

L’i1 [1] + b1 · R̂’
i1
[1] + b2 · H(T i1) = L’i2 [1] + b1 · R̂’

i2
[1] + b2 · H(T i2).

If T i1 ̸= T i2 , then for a fixed value of the indices, the probability of the
event is upper bounded by ϵ as H is ϵ-AXU. If T i1 = T i2 but R’i1 [1] ̸=
R’i2 [1], then for a fixed value of the indices, the probability of the event is

upper bounded by 1/N due to the randomness of R̂’
i1
[1] or R̂’

i2
[1]. And

if T i1 = T i2 and R’i1 [1] = R’i2 [1] but L’i1 [1] ̸= L’i2 [1], then for a fixed
value of the indices, the probability of the event is 0. Applying union
bound over all possible values of the indices, we obtain

Pr[badB23] ≤ q2ϵ+
q2

N
.

3. badB3: For some (i1, j1) ∈ F , (i2, j2) ∈ F ′, Xi1 [j1] = Yi2 [j2].

(a) badB31: j1 > 1, j2 > 1. This event is a sub-event of the third event under
the category badB of [21, Theorem 2].

(b) badB32: j1 = 1, j2 > 1. The probability of this event can be bounded
following similar argument to badB12.

(c) badB33: j1 > 1, j2 = 1. The probability of this event can be bounded
following similar argument to badB12.

(d) badB34: j1 = j2 = 1. Expanding the expressions for the random vari-
ables, we obtain

L̂
i1
[1] + Ri1 [1] + b2 · H(T i1) = L’i2 [1] + b1 · R̂’

i2
[1] + b2 · H(T i2).

If T i1 ̸= T i2 , then for a fixed value of the indices, the probability of the
event is upper bounded by ϵ as H is ϵ-AXU. If T i1 = T i2 but Li1 [1] ̸=
R’i2 [1], then for a fixed value of the indices, the probability of the event

is upper bounded by 1/N due to the randomness of L̂
i1
[1] or R̂’

i2
[1].

Even if T i1 = T i2 and Li1 [1] = R’i2 [1], for a fixed value of the indices,
the probability of the event is upper bounded by 1/N because we can
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still use the randomness of L̂
i1
[1] as it doesn’t cancel out in the equation.

Applying union bound over all possible values of the indices, we obtain

Pr[badB34] ≤ q2ϵ+
q2

N
.

4. badB4: For some (i, j) ∈ F , Xi[j] ∈ D.

(a) badB41: j > 1. This event is a sub-event of the fourth event under the
category badB of [21, Theorem 2].

(b) badB42: j = 1. The probability of this event can be bounded following
similar argument to badB12.

5. badB5: For some (i, j) ∈ F ′, Yi[j] ∈ D.

(a) badB51: j > 1. This event is a sub-event of the fifth event under the
category badB of [21, Theorem 2].

(b) badB52: j = 1. The probability of this event can be bounded following
similar argument to badB12.

Of the probability terms above, the only terms not subsumed in the bound
of OleF are the three q2ϵ terms in the bounds for Pr[badB13], Pr[badB23], and
Pr[badB34], which add up to an additional term of 3q2ϵ in the final bound.

B Deferred Material on Online Channels

B.1 Proof of Theorem 4

Proof. Let G be the online channels security game played w.r.t. Ch except where
the output of Receive1 with target expansion τ∗ is always ⊥. By a standard bad-
event hybrid argument, we can first hop from the original game to G by excluding
the event where Receive1 outputs (m, i) ̸= ⊥ by a reduction to the integrity of
oaE. In particular, A′ queries Enc to simulate Send, Dec to simulate Leak and Ver
to partially simulate Receive (note the game aborts before Receive1 ever outputs
a non-⊥ value) where the third argument x/y to Enc/Dec/Ver comprise of L
blocks or less. A′ otherwise simulates locally, and in particular keeps track of
Reset queries to know what indices to simulate Send queries. In the worst case,
A′ (and A′′ below) makes at most σ oracle queries (but could make as few as
⌈σ/L⌉ if A makes e.g. a single long Send query). Note in general that more than
one oaE forgery (i.e., non-⊥ output from Dec) may be required to break Ch
(i.e., non-⊥ output from Receive), e.g. if the forged ciphertext consists of several
L-block batches. Consequently, the advantage loss is at most Advint

oaE(A′) for
efficient A′. It is then straightforward for oaE privacy adversary A′′ to simulate
perfectly for a G adversary, in particular simulating Send calls via Enc, Receive
calls by outputting ⊥, Leak via Dec, and Reset locally. ⊓⊔
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B.2 Extensions and Variants

Our formalism in Section 5 could be conceivably extended to support forward
security [18,49]. That is, if the secret key is exposed (i.e., given to the adversary)
after i e.g. encryption queries, then the key cannot be used to decrypt the first
i ciphertexts. This attack vector is especially important for long-lived communi-
cation sessions. A two key (rather than our one key) construction would be more
suited to this purpose for handling concurrency/asynchrony, where each party
encrypts using a different key. Here, the relevant key would be hashed (using an
online PRP, for instance) after every encryption.

Our security notion captures the particular case where, after every operation,
the state of both parties is reset/cleared, corresponding to the scenario where
their states are never updated. Our formalism can be adapted and simplified to
this ‘stateless’ setting, since, e.g., we no longer require good-case sequentiality
and indices output by send/receive are not so meaningful in this case.

Our security game (and security notions in the previous sections) are such
that Send and Receive queries are one-shot, i.e., that they encrypt/decrypt the
entire message at once. It would therefore be more general to allow for per-block,
rather than per-message oracle queries.
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