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Deep0Tag: Deep Multiple Instance Learning for
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Abstract—Zero-shot learning aims to perform visual reasoning
about unseen objects. In-line with the success of deep learning on
object recognition problems, several end-to-end deep models for
zero-shot recognition have been proposed in the literature. These
models are successful in predicting a single unseen label given
an input image but do not scale to cases where multiple unseen
objects are present. Here, we focus on the challenging problem
of ‘zero-shot image tagging’, where multiple labels are assigned
to an image, that may relate to objects, attributes, actions,
events, and scene type. Discovery of these scene concepts requires
the ability to process multi-scale information. To encompass
global as well as local image details, we propose an automatic
approach to locate relevant image patches and model image
tagging within the Multiple Instance Learning (MIL) framework.
To the best of our knowledge, we propose the first end-to-end
trainable deep MIL framework for the multi-label zero-shot
tagging problem. We explore several alternatives for instance-
level evidence aggregation and perform an extensive ablation
study to identify the optimal pooling strategy. Due to its novel
design, the proposed framework has several interesting features:
(1) Unlike previous deep MIL models, it does not use any off-
line procedure (e.g., Selective Search or EdgeBoxes) for bag
generation. (2) During test time, it can process any number of
unseen labels given their semantic embedding vectors. (3) Using
only image-level seen labels as weak annotation, it can produce a
localized bounding box for each predicted label. We experiment
with the large-scale NUS-WIDE and MS-COCO datasets and
achieve superior performance across conventional, zero-shot and
generalized zero-shot tagging tasks.

Index Terms—Deep learning, Multiple instance learning, Fea-
ture pooling, Object detection, Zero-shot tagging

I. INTRODUCTION

Due to the advancement of multimedia technology, a sig-
nificantly large volume of multimedia data has become avail-
able to us. For example, enormous growth in online photo
collections requires automatic image tagging algorithms that
can provide both seen and unseen labels to the images.
Thus, image tagging and tag-based retrieval has emerged as
a principal direction of multimedia research [1]. Since the
number of possible (query) tags is infinite, we need to adopt
techniques that can assign image tags beyond the limited tag
set available during training. Zero-shot learning (ZSL) is the
obvious solution to this problem as it seeks to assign unseen
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tags during inference. Few notable works adopting ZSL on
multimedia applications are person re-identification [2], video
retrieval [3] and image representation [4].

In recent years, most of the zero-shot classification methods
assign only a single unseen tag/category label to an image [5]–
[11]. However in real-life settings, multimedia images often
come with multiple objects or concepts that may or may
not be observed during training. Despite the importance and
practical nature of this problem, there are very few existing
methods with the capability to address the zero-shot image
tagging task [12]–[15]. This is primarily due to the challenging
nature of the problem. In this paper, we identify three pertinent
issues that underpin the zero-shot image tagging task. First,
any object or concept can either be present at a localized
region or be inferred from the holistic scene information
(e.g., ‘sun’ vs ‘sunset’). Second, objects and concepts are
often occluded in natural scenes and scene context provides
valuable information for image tagging. Third, the assignment
of multiple image tags (seen and unseen) requires an accurate
mapping function from visual to semantic domain. Moreover,
the available label space is significantly larger comprising of
thousands of possible tags, and an ideal zero-shot framework
should have the flexibility to incorporate new unseen tags on
the fly during testing.

To address the above-mentioned challenges, we introduce
the first unified network for zero-shot image tagging termed
‘Deep0Tag’, that automatically locates relevant image patches,
learns their discriminative representations and assigns rele-
vant tags in a single framework. We note that the previous
approaches [14], [16], [18]–[21] used off-the-shelf features
or applied off-line procedures like Selective Search [23],
EdgeBoxes [24] or BING [25] for patch generation which
served as a bag-of-instances. The reliance on the external
non-differentiable procedure in either feature extraction or bag
generation means they cannot be trained end-to-end for the im-
age tagging task. Our solution is based on three key novelties
that systematically tackle the aforementioned requirements for
zero-shot image tagging. These include,
(a) Multi-scale Concept Discovery: We propose an automatic

procedure to extract useful patches at multiple scales that
collectively form a bag of visual instances (Sec. III-B1).
A distinguishing feature of our approach is that the
bag-of-instances not only encodes the global information
about a scene but also has a rich representation for local-
ized object-level features. Note that the existing attempts
on zero-shot tagging (e.g., [12]–[15]) mostly used image-
level global features. These techniques, therefore, work
only for the most prominent objects but often fail for non-
salient concepts due to the lack of localized information.
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Fig. 1: Overview of different multi-label image annotation architectures. (a) [14], [16], [17] extract deep features separately,
then feed those features to a neural network for classification. (b) [18], [19] use an external procedure to extract image patches
for bag generation then feed those patches to a deep model to get final bag score for seen classes. (c) [20]–[22] process whole
image as well as patches obtained using an external process to get bag scores for seen classes. (d) Our proposed MIL model
simply takes an image as an input and produces bag score for both seen and unseen classes.

(b) Context Aggregation: Deep0Tag introduces a Multiple
Instance Learning (MIL) framework that fuses multi-
scale information encoded in the bag generated from
each image (Sec. III-B2). MIL assumes that each bag
contains at least one instance of the true labels defined by
the ground-truth. We introduce two schemes to aggregate
contextual information in an image i.e., semantic and vi-
sual domain fusion. Further, we show that both parametric
and non-parametric pooling techniques can be used with
our proposed MIL framework that can effectively model
general functions computed on a bag (Corollary 1,2).

(c) Incorporating Semantics: Our proposed network maps
local and global information in a bag to a semantic
embedding space such that the correspondences with both
seen and unseen classes can be found. We use a margin
maximizing loss formulation in the semantic domain
that specifically focuses on hard cases during training
(Sec. III-B5). The closest to our work are [14], [21], that
also employ a visual-semantic mapping to bridge the gap
between seen and unseen classes. However, these models
are not fully learnable due to pre-trained features or off-
line bag extraction.

In Figure 1, we illustrate a block diagram to compare
different kinds of image tagging frameworks proposed in the
literature. Our framework integrates the concept discovery,
context aggregation and semantics incorporation in a single
framework that can be jointly trained in an end-to-end manner.
Therefore, it encompasses different modules of MIL into only

a single integrated network, which results in state-of-the-art
performance for conventional and zero-shot image tagging.
The proposed framework leads to several advantages for image
tagging: (1) It can work in both conventional and zero-shot
settings, (2) It is extendable to any number of novel tags from
an open vocabulary as it does not use any prior information
about the unseen concepts, (3) The proposed method can
function in a weakly-supervised setting, i.e., it can annotate
a bounding box for both seen and unseen tags without using
any ground-truth bounding box during training.

A preliminary version of this work appeared in [26] where
the contribution was restricted to mean and max-pooling
during semantic domain aggregation. The current extended
version includes: (1) a more detailed study on information
aggregation in both semantic and visual domains, (2) the
introduction of both fixed (mean, max and LSE based) and
learnable pooling (attention based) mechanisms for aggrega-
tion, (3) detailed theoretical motivation for loss formulation,
and (4) a substantial number of new experimental evaluation
and ablation analysis on aggregation mechanism. The rest of
the paper is organized as follows: Sec. II provides a brief
introduction to related work. Sec. III details the proposed
tagging framework. Our results with comparisons and ablation
analysis are provided in Sec. IV and the paper concludes in
Sec. V.



IEEE TRANSACTIONS ON MULTIMEDIA, JUNE 2019 3

II. RELATED WORK

1) Multiple instance learning (MIL): MIL in combination
with deep neural networks has been used for multi-label
classification [17], [19], tagging [21], image captioning [27],
text analysis [28] and medical imaging [29]. In most of
these cases, MIL depends on max or mean pooling. However,
the log-sum-exp pooling is designed to generalize traditional
mean/max pooling [30], [31]. Lack of trainable parameters is
the apparent drawback of those pooling strategies. To address
this, both linearly [28] and non-linearly [32] trainable pooling
mechanisms have been proposed in recent years. In this paper,
we have experimented with an end-to-end learnable deep MIL
framework employing various kinds of pooling strategies for
zero-shot image tagging task. Another related feature pooling
strategy is proposed in [33]. Different from our work, they
do not consider learned pooling mechanisms, decision level
pooling and semantic information as they work in a non-ZSL
setup.

2) Zero-shot learning: In recent years, we have seen ex-
citing progress on Zero Shot Learning (ZSL). The overall
goal of ZSL approaches is to classify an image to an unseen
class for which no training is performed. Investigations are
focused on domain adaptation [8], class attribute association
[34], unsupervised semantics [8], hubness effect [7], gener-
alized ZSL setting [5], [35] of inductive [6] or transductive
ZSL learning [9] and zero-shot object detection [36]–[38].
The major shortcoming of most of these approaches is their
inability to assign multiple labels to an image, which is a
major limitation in real-world settings. In line with the general
consideration of only a single label per image, traditional ZSL
methods use recognition datasets which mostly contain only
one prominent concept per image. Here, we present an end-
to-end deep zero shot tagging method that can assign multiple
tags per image.

3) End-to-end object detection: Image tags can correspond
to either whole image or a specific location within it [39]. To
model the relationship between a tag and its corresponding
locations, we intend to localize objects in a scene. To do so,
we are interested in end-to-end object detection frameworks.
Popular examples of such frameworks are Faster R-CNN [40],
R-FCN [41], SSD [42] and YOLO [43]. The main distinction
among these models is the object localization process. R-CNN
[40] and R-FCN [41] used a Region Proposal Network (RPN)
to generate object proposals whereas SSD [42] and YOLO [43]
propose bounding box and classify it in a single step. The latter
group of models usually run faster, but they are relatively less
accurate than the first group. Some recent approaches attempt
to improve the performance of both single and double stage
detectors by proposing a feature pyramid network and a loss
function to handle foreground-background imbalance [44],
[45]. Due to the focus on highly accurate object detection,
we built on Faster R-CNN [40] as the backbone architecture
in the current work.

4) Zero-shot image tagging: Instead of assigning one un-
seen label to an image during a recognition task, zero-shot
tagging allows assigning multiple relevant unseen tags to
an image and/or a ranking for unseen tags array. Although

interesting, this problem is not well-addressed in the zero-shot
learning literature. An early attempt at this, extended a zero-
shot recognition approach [46] to perform zero-shot tagging by
proposing a hierarchical semantic embedding to make the label
embedding more reliable [15]. [13] proposed a transductive
multi-label version of the problem where a predefined and
relatively small set of unseen tags were considered. In a recent
work, [14] proposed a fast zero-shot tagging approach that can
be trained using only seen tags and tested using both seen and
unseen tags. In another recent work, [47] framed the tagging
task as a multi-label zero-shot learning problem and proposed
a structured knowledge graph to propagate inter-dependencies
among seen and unseen classes. [21] proposed a multi-instance
visual-semantic embedding approach that can extract localized
image features. The main drawback of these early efforts is
their dependence on pre-trained CNN features (in [13]–[15],
[47]) or fast-RCNN [22] features (in [21]) and therefore not
end-to-end trainable. Moreover, the reliance on pre-trained
networks violates the zero-shot protocol since some of the
unseen categories overlap with the classes used to perform
pre-training of the deep network. In this work, we propose a
fully end-to-end solution for both conventional and zero-shot
tagging.

III. OUR METHOD

A. Problem Formulation

Suppose, we have a set of ‘seen’ tags denoted by S =
{1, . . . , S} and another set of ‘unseen’ tags U = {S+1, . . . , S+
U}, such that S ∩U = φ where, S and U represents the total
number of seen and unseen tags respectively. We also denote
C = S ∪ U, such that C = S + U is the cardinality of the
tag-label space. For each of the tags c ∈ C, we can obtain
a ‘d’ dimensional word vector vc (word2vec or GloVe) as a
semantic embedding. The training examples can be defined
as a set of tuples, {(Xs, ys) : s ∈ [1, M]}, where Xs is the
sth input image and ys ⊂ S is the set of relevant seen tags.
We represent uth testing image as Xu which corresponds to a
relevant seen and/or unseen tag yu ⊂ C. Note that, Xu , yu , U
and its corresponding word vectors are not observed during
training. Now, we define the following problems:

• Conventional tagging: Given Xu as input, assign relevant
seen tags yu ⊂ S.
• Zero-shot tagging (ZST): Given Xu , assign relevant un-

seen tags yu ⊂ U.
• Generalized zero-shot tagging (GZST): Given Xu as

input, assign relevant tags from both seen and unseen
yu ⊂ C.

MIL formulation: We formulate the above mentioned prob-
lem definitions in Multiple Instance Learning (MIL) frame-
work. Let us represent the sth training image with a bag of
n + 1 instances Xs = {xs,0 . . . xs,n}, where ith instance xsi
represents either an image patch (for i > 0) or the complete
image itself (for i = 0). We assume that each instance xs,i has
an individual label `s,i which is unknown during training. As
ys represents relevant seen tags of Xs , according to the MIL
assumption, the bag has at least one instance for each tag in
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Fig. 2: Proposed Deep0Tag architecture for MIL based zero-shot image tagging.

the set ys and no instance for {S \ ys} tags. The bag- and
instance-level labels are related by:

y ∈ ys iff
n∑
i=0

J`s,i = yK > 0, ∀y ∈ S. (1)

Thus, instances in Xs can work as a positive example for
y ∈ ys and negative example for y′ ∈ {S \ ys}. This
formulation does not use instance level tag annotation which
makes it a weakly supervised problem. Our aim is to design
and learn an end-to-end deep learning model that can itself
generate the appropriate bag-of-instances and simultaneously
assign relevant tags to the bag.

B. Network Architecture

The proposed network architecture is illustrated in Fig. 2.
It is composed of two parts: bag generation network (left)
and Multiple Instance Learning (MIL) network (right). The
bag generation network generates a bag-of-instances as well
as their visual features, and the MIL network processes the
resulting bag of instance features to find the final multi-label
prediction which is calculated by a global pooling of the
prediction scores of individual instances. In this manner, bag
generation and zero-shot prediction steps are combined in a
unified framework that effectively transfers learning from seen
to unseen tags.

1) Bag generation: In our proposed method, the bag con-
tains image patches which are assumed to cover all objects
and concepts presented inside the image. Many closely related
traditional methods [18]–[21] apply some external procedure
such as Selective Search [23], EdgeBoxes [24] or BING [25]
for this purpose. Such a strategy creates three problems: (1)
the off-line external process does not allow an end-to-end
learnable framework, (2) the patch generation process is prone
to more frequent errors because it can not be fine-tuned on the
target dataset, and (3) the MIL framework needs to process
patches rather than the image itself. In this paper, we propose

to solve these problems by generating a useful bag of patches
by the network itself. The recent achievements of object
detection frameworks, such as the Faster-RCNN [40], allow
us to generate object proposals and later perform detection
within a single network. We adopt this strategy to generate a
bag of image patches for MIL. Remarkably, the original Faster-
RCNN model is designed for supervised learning, while our
MIL framework extends it to weakly supervised setting.

A Faster-RCNN model [40] with Region Proposal Network
(RPN) is learned using the ILSVRC-2017 detection dataset.
This architecture uses a base network ResNet-50 [48] which
is shared between RPN and classification/localization network.
As practiced, the base network is initialized with pre-trained
weights. Though not investigated in this paper, other popular
CNN models, e.g., VGG [49] and GoogLeNet [50] can also
be used as the shared base network. Now, given a training
image Xs , the RPN can produce a fixed number (n) of region
of interest (ROI) proposals {xs,1 . . . xs,n} with a high recall
rate. For image tagging, all tags may not represent an object.
Rather, tags can be concepts that describe the whole image,
e.g., nature and landscape. To address this issue, we add
a global image ROI (denoted by xs,0) comprising of the
complete image to the ROI proposal set generated by the
RPN. Afterwards, ROIs are fed to ROI-Pooling and subsequent
densely connected layers to calculate D-dimensional features
set: Fs = [fs,0 . . . fs,n] ∈ RD×(n+1) where fs,0 is the feature
representation of the whole image. This bag is then forwarded
to MIL network for prediction.

2) MIL Network: Our network design then comprises of
two component blocks within the MIL network: ‘bag process-
ing block’ and ‘semantic alignment block’. The bag processing
block has two fully connected layers with a non-linear acti-
vation ReLU. The role of this block is to remap the bag of
features to the dimension of semantic embedding space by
calculating F ′s = [f ′s,0 . . . f

′
s,n] ∈ R

d×(n+1). F ′s is forwarded
to the semantic alignment block. This block performs two
important operations to calculate the final score for each bag:
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(i) semantic projection and (ii) MIL pooling operation. Based
on the sequence of this two operations this block can be
implemented in two ways.
Case 1- Semantic domain aggregation: In this case, the
visual domain features are first mapped to semantic space and
their responses are aggregated. Specifically, given a bag of
instance features F ′s , we first compute the prediction scores
of individual instances, Ps = [ps,0 . . . ps,n] ∈ R

S×(n+1) by
projecting them onto the fixed semantic embedding, W =

[v1 . . . vS] ∈ R
d×S, containing word vectors of seen tags,

Ps =WTF ′s . (2)

Since the supervision is only available for bag-level predictions
(i.e., image tags), we require an aggregation mechanism A(·)
to combine predictions scores Ps for individual instances in
a bag. Using the semantic-domain aggregation, we can obtain
the final bag score as follows:

zs = A
({

ps,0, ps,1, . . . , ps,n

})
. (3)

Case 2- Visual domain aggregation: In this case, visual
features are first aggregated using a pooling operation and then
transformed to semantic domain. Specifically, given a bag of
instance features F ′s , we perform a pooling operation first to
obtain a universal feature representation of bag f ′s:

f ′′s = A
({

f ′s,0, f
′
s,1 . . . f

′
s,n

})
. (4)

After that, we project f ′′s onto the semantic embedding space
to calculate the final score of the bag:

zs =WT f ′′s . (5)

3) Aggregation Mechanism: The aggregation mechanism
mentioned in Eqs. 3 and 4 can be implemented using a non-
parametric (fixed) or a parametric (learnable) function. In both
categories, we explore a range of pooling methods as described
below.

Fixed Pooling: Given a set of input feature vectors {ij}nj=0,
the aggregated output o can be obtained via max, mean or
log-sum-exp (LSE) pooling as follows:

o = max
{
i0, i1, . . . , in

}
, (6)

o =
1

n + 1

n∑
j=0

ij, (7)

o =
1
r

log
[ 1
n + 1

n∑
j=0

exp(rij)
]
, (8)

where r is a fixed hyper-parameter during network training.
In our case, the input vectors are either ps, j or f ′s, j for case 1
and 2 respectively.

Learned Pooling: The mean, max or log-sum-exp based
pooling approaches described above do not have any trainable
parameters. To address this issue, we experiment with an
attention based pooling strategy recently proposed by Ilse et al.
[32]. Given a set of input features, the attention based pooling
operation can be summarized as follows:

o =
n∑
j=0

aj ij where, aj =
exp{uT tanh(Vij)}∑n
k=0 exp{uT tanh(Vij)}

(9)

where, V ∈ RL×d and u ∈ RL×1 are learnable parameters
which are a part of the pooling operation. As tanh(.) is
approximately linear, [32] also proposed the following gated
attention mechanism to increase non-linearly:

aj =
exp{uT tanh(Vij) � sigmoid(V′ij)}∑n

k=0 exp{uT tanh(Vik) � sigmoid(V′ik)}
(10)

where, V′ ∈ RL×d denotes learnable parameters and �
represents element-wise multiplication. The learned pooling
strategies are not suitable for semantic domain aggregation
because the parameter dimension then becomes dependent on
number of seen tags, S. As the number of seen and unseen
tags may not be same, the network cannot predict unseen
scores during testing. For visual domain aggregation case,
the dimension of learnable pooling parameters V or V′ is
dependent on the bag feature dimension which remains fixed
during training and testing. Therefore, we only investigate
learned pooling for the visual domain aggregation.

4) Theoretical Analysis: It can be proved that the proposed
MIL framework can approximate any general function defined
on the bag Xs . Since our formulation is based on object
proposals xs,i , we can approximate a general function G(·)
on the bag with the following object level decomposition:

G(Xs = {xs,i}n0 ) ≈ h({g(xs,i)}n0 ), s.t ., g(xs,i) =

{
ps,i, case 1
f ′s,i, case 2

(11)

where g(·) is the transformation function defined using a deep
network and h(·) is a symmetric function that is invariant to
permutations of the object proposals. Such a decomposition is
intuitive because the proposal set is unordered and its cardi-
nality can vary, neither of these two factors should effect the
bag level predictions. The function G(·) can be approximated
adequately using the symmetric transformations in Eq. 6, Eq. 7
or Eq. 8 according to the following corollaries:
Corollary 1: Max Pooling − From the Theorem of Universal
approximation for continuous set functions [51], a Hausdorff
symmetric function G(·) can be approximated with in the
bounds ε ∈ R+ if g(·) is a continuous function and h(·) is
a element-wise vector maximum operator (denoted as ‘max’),
i.e.,

‖ G(Xs) −max{g(xs,i)} ‖< ε. (12)

Corollary 2: Mean Pooling − From the the Chevalley-
Shephard-Todd (CST) theorem [52], [53], a permutation in-
variant continuous function G(·) operating on the set Xs can
be arbitrarily approximated if g(·) is a transformation function
implemented as a neural network, where neural networks are
universal approximators [54], and h(·) is an element-wise
mean operator (denoted as ‘mean’), i.e.,

G(Xs) ≈ mean{g(xs,i)}. (13)

Remark: A smoother version of the above functions called
Log-Sum-Exp (LSE) (Eq. 8) is often followed for convex
approximation [30]. For example, it is helpful to approximate
a non-differentiable function like max operation.
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Fig. 3: The red curve shows the loss function used in this work
that focuses more on its mistakes and directly maximizes the
gap between positive and negative predictions.

G(Xs) ≈
1
r

log
[ 1
n + 1

n∑
i=0

exp(rg(xs,i))
]
, (14)

where, |G(Xs) − max{g(xs,i)}| < n+1
r . Here, r controls the

amount of smoothness where the high and low value for r
tend to behave like the max and mean function respectively
[31]. Therefore, our MIL formulation can learn a permutation
invariant function on bags of visual instances consisting of
both object and concept representations.

5) Loss formulation: Suppose, for sth training image, zs =
[z1 . . . zS] contains final multi-label prediction of a bag for seen
classes. This bag is a positive example for each tag y ∈ ys and
negative examples for each tag y′ ∈ {S \ ys}. Thus, for each
pair of y and y′, the difference zy′− zy represents the disparity
between predictions for positive and negative tags. Our goal is
to minimize these differences in each iteration. We formalize
the loss of a bag considering it to contain both positive and
negative examples for different tags:

Ltag(zs, ys) =
1

|ys | |S \ ys |

∑
y′∈{S\ys }

∑
y∈ys

log
(
1 + exp(zy′ − zy)

)
.

We minimize the overall loss on all training images as follows:

L = arg min
Θ

1
M

M∑
s=1

(
Ltag(zs, ys)

)
.

Here, Θ denote the parameter set of the proposed network and
M is the total number of training images.

We argue that the above loss formulation is better suited for
multi-label classification as compared to the standard cross-
entropy loss. This can be explained from the loss curve in
Fig. 3. For well classified cases, scores for positive tags (zy)
are higher than negative ones (zy′), i.e., zy′ − zy < 0 which
gives a small loss penalty after log function is applied. It
works opposite in other cases, which brings the following
benefits: (1) It provides an inherent mechanism to tackle
data imbalance by assigning much less penalty to an already
correct prediction compared to the incorrect ones. This criteria
helps to heavily focus on incorrect predictions during training

and speeds up the overall learning process, (2) Our loss
can impose a ranking penalty alongside forcing to predict a
specific ground truth. This capability is especially important
to deal with word vectors because image features need to
align with a high dimensional vector, not just a specific value.
We note that a similar rank based penalty was proposed in
[55]. However, different from our case, the formulation in
[55] focuses mainly on the largest error term among all the
differences zy′ − zy . In contrast, our formulation aligns all
features to their corresponding word vectors by penalizing
each difference based on the quality of the alignment.

6) Prediction: During testing, we modify the fixed em-
bedding W to include seen and unseen word vectors instead
of only seen word vectors. Suppose, after modification W
becomes W′ = [v1 . . . vS, vS+1 . . . vS+U] ∈ R

d×C. With the
use of W′ in Eq. 2 and 5 for cases 1 and 2 respectively, we
get prediction scores of both seen and unseen tags for each
individual instance in the bag. Then, after the global pooling
step, we get the final prediction score for each seen and unseen
tags. Finally, based on the tagging task (conventional/zero-
shot/generalized zero-shot), we assign top K target tags (from
the set S, U or C) with higher scores to an input image.

IV. EXPERIMENTS

A. Setup

1) Dataset: We perform our experiments using a real-
world web image dataset namely NUS-WIDE [56]. It contains
269,648 images with three sets of image tags from Flickr. The
first, second and third set contains 81, 1000 and 5018 tags
respectively. The tags inside the first set are carefully chosen,
therefore less noisy whereas the third set has the highest noise
in annotations. Following the previous work [14], we use 81
tags from the first set as unseen in this paper. We notice that
the tag ‘interesting’ comes twice within the second set. After
removing this inconsistency and selecting 81 unseen tags from
the second set results in 924 tags which we use as seen for our
experiments. The dataset provides the split of 161,789 training
and 107,859 testing images. We use this recommended setting
while ignoring the untagged images.

2) Visual and semantic embedding: Unlike previous at-
tempts on zero-shot tagging [14], [15], our model works in an
end-to-end manner using ResNet-50 [48] and VGG16 [49] as a
base network. It means the visual feature are originating from
ResNet-50/VGG16, but they are updated during iterations. As
the semantic embedding, we use `2 normalized 300 dimen-
sional GloVe vectors [57]. We are unable to use word2vec
embedding [58] because the pre-trained word-vector model
cannot provide vectors for all of the 1005 (924 seen + 81
unseen) tags.

3) Evaluation metric: Following the work [14], we cal-
culate precision (P), recall (R) and F-1 score (F1) of the
top K predicted tags (K = 3 and 5 is used) and Mean
image Average Precision (MiAP) as evaluation metrics. The
following equation is used to calculate MiAP of an input image
I:

MiAP(I) =
1
|R |

|T |∑
j=1

qj

j
δ(I, tj),
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where, |R | = total number of relevant tags, |T | = total number
of ground truth tags, qj = number of relevant tags of j th rank
and δ(I, tj) = 1 if j th tag tj is associated with the input image
I, otherwise δ(I, tj) = 0.

4) Training details: The Faster-RCNN model is first pre-
trained on ILSVRC-2017 object detection dataset. After that,
the last two layers (i.e. the classification and localization head)
are removed to produce bag generation network. We used the
following settings during Faster-RCNN [40] training: rescaling
shorter size of image as 600 pixels, RPN stride = 16, three
anchor box scale 128, 256 and 512 pixels, three aspect ratios
1:1, 1:2 and 2:1, non-maximum suppression (NMS) with IoU
threshold = 0.7 with maximum number of proposals = 300.
The network predicts scores for S number of seen tags by fine-
tuning on target tagging dataset i.e. NUS-WIDE [56]. During
the training of our MIL framework, we generated one bag-of-
instances at each iteration from an image to feed our network.
We chose a fixed n number of RoIs proposed by the RPN
which archives the best objectness score. We carried out 774k
training iterations using Adam optimizer with a learning rate
of 10−5, β1 = 0.9 and β2 = 0.999. We implemented our model
in Keras library.

B. Tagging Performance

In this subsection, we evaluate the performance of our
framework on three variants of tagging as introduced in
Sec. III-A, namely conventional, zero-shot and generalized
zero-shot tagging. The results of these three tasks are sum-
marized next. Notably, we first compare our best performing
model based on visual domain pooling (case 2 with LSE
pooling and bag size 32) with other top-performing methods in
Sec. IV-B1, IV-B2, IV-B3 and later provide a detailed ablation
study exploring different variants of our proposed model in
Sec. IV-B4.

1) Compared methods: To compare our results, we have
reimplemented two closely related published methods (ConSE
[46] and Fast0Tag [14]) and one simple baseline based on
ResNet-50 CNN architecture. We choose these methods for
comparison because of their suitability to perform zero-shot
tasks. We provide a brief introduction to compared methods
below:
• ConSE [46]: It was originally introduced for zero-shot

learning for image classification. This approach first
learns a classifier for seen tags and generates a semantic
embedding for unseen input by linearly combining word
vectors of seen classes using seen prediction scores. In
this way, it can rank unseen tags based on the distance
of generated semantic embedding and the embedding of
unseen tags.
• Fast0Tag [14]: This method is the main competitor of

our work. It is a deep feature-based approach, where
features are calculated from a pre-trained VGG-19 [49].
Afterward, a neural network is trained on these features
to classify seen and unseen input. This approach out-
performs many established methods like WRAP [59],
WSABIE [60], TagProp [61], FastTag [62] on conven-
tional tagging task. Therefore, in this paper, we do not

consider those low-performing methods for comparison.
The performance reported in this paper using Fast0Tag
method is relatively different from the published re-
sults because of few reasons: (1) We use the ResNet-
50/VGG16 whereas [14] reported results on VGG-19,
(2) Although [14] experimented on NUS-WIDE, they
only used a subset of 223,821 images in total, (3) The
implementation for [14] did not consider the repetition of
the seen tag ‘interesting’.
• Baseline: The baseline method is a special case of our

proposed method which uses the whole image as a single
instance inside the bag. It breaks the multiple instance
learning consideration but does not affect the end-to-end
nature of the proposed solution.

2) Results: We conduct experiments on the conventional,
zero-shot and generalized zero-shot settings and report results
in Tables I and II. In all of our experiments, the same test
images are used. The basic difference between conventional
vs. zero-shot tagging is whether the 81 tags set is used during
training or not. For the zero-shot settings, we perform our
training with 924 seen tags and test on 81 unseen tags. How-
ever, in the conventional tagging case, all tags are considered
as seen and training+testing is performed on the same tag set.
For the generalized zero-shot tagging case, the same testing
image set is used, but instead of predicting tags from 81 tag
set, our method predicts tags from 1005 tag set (924 seen, 81
unseen).

We compare with two state-of-the-art methods in Tables I
and II. Our method outperforms other methods by a significant
margin. Notably, the following observations can be developed
from the results: (1) The performance of conventional tagging
is much better than zero-shot case because unseen tags and
associated images are not present during training for zero-shot
tasks. One can consider that the performance of conventional
case is an upper-bound for zero-shot tagging case. (2) Similar
to previous work [5], the performance for the generalized zero-
shot tagging task is even poorer than the zero-shot tagging
task. This can be explained by the fact that the network gets
biased towards the seen tags and scores low on unseen cate-
gories. This subsequently leads to a decrease in performance.
(3) Similar to the observation from [14], Fast0Tag beats ConSE
[46] in zero-shot cases. The main reason is that the ConSE
[46] does not use semantic word vectors during its training
which is crucial to find a bridge between seen and unseen
tags. No results are reported with ConSE for the conventional
tagging case because it is only designed for zero-shot sce-
narios. (4) The baseline beats other two compared methods
in most of the cases (except VGG16 Fast0tag vs. Baseline)
because of the end-to-end training while incorporating word
vectors in the learning phase. This approach is benefited by
the appropriate adaptation of feature representations for the
tagging task. (5) The performances of ConSE, Fast0Tag, and
Baseline (where local features are not used) are better with
VGG16 than ResNet50. It tells us that VGG16 works better
as a global feature extractor compared to ResNet50. (6) Our
approach outperforms all other competitors because it utilizes
localized image features based on MIL, performs end-to-end
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Method Network MiAP K = 3 K = 5
P R F1 P R F1

Fast0Tag [14] ResNet50 35.73 20.24 34.48 25.51 16.16 45.87 23.90
Baseline ResNet50 40.45 22.95 39.09 28.92 17.99 51.09 26.61
Ours ResNet50 52.50 33.77 57.53 42.55 22.21 63.06 32.85
Fast0Tag [14] VGG16 50.43 32.21 54.88 40.59 21.25 60.33 31.43
Baseline VGG16 49.82 32.21 54.87 40.59 21.24 60.31 31.42
Ours VGG16 53.56 34.43 58.66 43.39 22.55 64.02 33.35

TABLE I: Results for conventional tagging. K denotes the number of assigned tags.

Method
Zero-shot tagging Generalized zero-shot tagging

MiAP K = 3 K = 5 MiAP K = 3 K = 5
P R F1 P R F1 P R F1 P R F1

ResNet50
ConSE [46] 18.91 8.39 14.30 10.58 7.16 20.33 10.59 7.27 2.11 3.59 2.65 8.82 5.69 6.92
Fast0Tag [14] 24.73 13.21 22.51 16.65 11.00 31.23 16.27 10.36 5.21 8.88 6.57 12.41 8.00 9.73
Baseline 29.75 16.64 28.34 20.97 13.49 38.32 19.96 12.07 5.99 10.20 7.54 14.28 9.21 11.20
Ours 39.21 25.69 43.77 32.38 17.22 48.89 25.46 20.41 33.78 13.07 18.85 23.65 15.25 18.54

VGG16
ConSE [46] 32.30 20.39 34.74 25.70 13.86 39.35 20.50 12.89 22.47 8.70 12.54 15.50 9.99 12.15
Fast0Tag [14] 35.55 23.22 39.55 29.26 15.61 44.32 23.09 18.26 30.18 11.68 16.84 21.09 13.60 16.54
Baseline 35.19 23.06 39.29 29.07 15.67 44.49 23.17 18.33 29.99 11.61 16.74 21.13 13.63 16.57
Ours 37.25 24.32 41.44 30.66 16.35 46.43 24.18 18.87 30.90 11.96 17.24 21.61 13.94 16.95

TABLE II: Results for zero-shot and generalized zero-shot tagging tasks.

Method Network MiAP K=3 K=5
P R F1 P R F1

ConSE [46] ResNet50 0.36 0.08 0.06 0.07 0.10 0.13 0.11
Fast0Tag [14] ResNet50 3.26 3.15 2.40 2.72 2.51 3.18 2.81
Baseline ResNet50 3.61 3.51 2.67 3.04 2.83 3.59 3.16
Ours ResNet50 6.61 6.52 4.96 5.63 5.25 6.66 5.87
ConSE [46] VGG16 0.47 0.12 0.09 0.11 0.14 0.18 0.16
Fast0Tag [14] VGG16 5.19 5.10 3.88 4.40 4.11 5.21 4.59
Baseline VGG16 5.09 5.00 3.81 4.32 4.08 5.18 4.57
Ours VGG16 5.98 5.85 4.45 5.05 4.67 5.93 5.23

TABLE III: Results for zero-shot tagging task with 4,084 unseen tags.

training and integrates semantic vectors of seen tags within
the network. We also illustrate some qualitative comparisons
in Fig. 5.

3) Tagging in the wild: Since our method does not use
any information about unseen tags in zero-shot settings, it
can process an infinite number of unseen tags from an open
vocabulary. We test with such a setting using the 5018 tag
set of NUS-WIDE. We remove 924 seen tags and ten other
tags for which no GloVe vectors were found (handsewn,
interestingness, manganite, marruecos, mixs, monochromia,
shopwindow, skys, topv and uncropped) to produce a large
set of 4084 unseen tags. After training with 924 seen tags,
the performance of zero-shot tagging with this set is shown in
Table III. Because of the extreme noise in these annotations,
the results are very poor in general, but our method still
outperforms other competitors by a reasonable margin [14],
[46].

4) Ablation study: As mentioned earlier, our proposed ar-
chitecture can be implemented in two different ways: semantic
domain aggregation (case 1) or visual domain aggregation
(case 2). For both of the cases, different kinds of pooling
mechanisms (like global mean, max, log-sum-exp (LSE),
attention and gated attention) could be employed. In Table IV,
we perform an extensive ablation study on the ZST and GZST

tasks with the different combinations of network architectures.
We also include two non-MIL-instance based approaches
(Ins-mean and Ins-max) where features are treated as
an individual instance rather than a part of the bag. In this
particular case, no pooling is required, and loss is calculated
based on the mean/max of all instances loss. Some of the key
findings of this ablation analysis are as follows: (1) Ins-max
performs worse than Ins-mean because Ins-max calculates
loss based on only one object proposal ignoring the contri-
bution of all other possible proposals. (2) The case when
visual domain aggregation (case 2) is done results in better
performance than the semantic domain aggregation (case 1).
In case 2, the pooling fuses visual features that combine global
and local details to find a single overall representation of
the scene. In the projection step, this overall representation
is projected onto the word vectors. In contrast, case 1 projects
the global and local features to the word vectors directly. The
projection of case 2 aligns the features to word embeddings
better than that of case 1 because localized features are
extracted from noisy object proposals (as trained to detect
objectness) and the pooling on feature level can suppress that
noise before the alignment. (3) LSE outperforms mean or max
pooling in both cases because LSE has a combined effect of
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Fig. 4: Ablation study: impact of (a) pooling type and bag size (b) hyper-parameter r on LSE pooling (c) size L on attention
based pooling while performing zero-shot tagging task using ResNet50 backbone.

Pooling
type

ZST GZST ZST in wild

MiAP K=3 K=5 MiAP K=3 K=5 MiAP K=3 K=5
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Ins-mean 37.7 24.9 42.4 31.3 16.7 47.4 24.7 20.8 33.5 12.9 18.7 23.4 15.1 18.3 6.4 6.3 4.8 5.4 5.0 6.4 5.7
Ins-max 13.9 10.2 17.4 12.8 6.50 18.5 9.6 5.3 8.7 3.4 4.9 6.5 4.2 5.1 0.6 0.1 0.1 0.1 0.1 0.1 0.1
Case1-mean 37.5 21.2 36.1 26.7 16.6 47.2 24.6 20.5 27.7 10.7 15.4 23.7 15.3 18.6 5.8 5.4 4.1 4.7 4.4 5.6 4.9
Case1-max 21.5 16.9 28.8 21.3 12.4 35.3 18.4 11.1 17.8 6.9 10.0 13.7 8.9 10.8 1.2 1.0 0.7 0.8 0.8 1.0 0.8
Case1-LSE 38.2 25.1 42.8 31.7 16.8 47.8 24.9 21.4 35.2 13.6 19.7 24.6 15.8 19.3 6.5 6.4 4.9 5.5 5.1 6.5 5.7
Case2-mean 38.2 25.1 42.8 31.6 16.8 47.6 24.8 20.3 33.6 13.0 18.7 23.8 15.1 18.3 5.9 5.7 4.3 4.9 4.6 5.8 5.1
Case2-max 36.0 23.9 40.7 30.1 16.2 45.9 23.9 17.9 30.1 11.6 16.8 21.1 13.6 16.5 5.3 5.1 3.9 4.4 4.2 5.3 4.7
Case2-LSE∗ 39.2 25.7 43.8 32.4 17.2 48.9 25.5 20.4 33.8 13.1 18.8 23.7 15.3 18.5 6.6 6.5 5.0 5.6 5.3 6.7 5.9
att 36.7 24.3 41.5 30.7 16.4 46.5 24.2 19.0 31.4 12.2 17.5 22.3 14.2 17.3 5.9 5.8 4.4 5.0 4.6 5.8 5.2
att-gated 36.4 23.9 40.7 30.1 16.1 45.7 23.8 19.0 31.6 12.2 17.7 22.2 14.3 17.4 5.5 5.3 4.0 4.5 4.3 5.5 4.8

TABLE IV: Ablation study: different pooling strategies using bag size 32 and ResNet50 backbone architecture. Hyper-
parameters r = 0.1 and L = 300 are used in LSE and attention related experiments respectively. The overall best model
is marked with ∗.

both pooling types. (4) Although the attention based pooling
(gated and not-gated) has trainable pooling parameters, still
it cannot outperform LSE based pooling. Again, the reason is
the noisy nature of objectness bounding boxes which confuses
the learning of pooling parameters.

5) Insights on Pooling: Pooling after semantic projection
(case 1) works on prediction scores, which means it is a
decision-level fusion scheme. It summarizes the semantic pro-
jection of individual features in a bag by an overall projection
score of all features. Thus, it forces each individual region in
an image to correctly align itself with its true word-vectors.
This approach can be understood as a bottom-up approach
where an overall prediction is made based on the individual
region-based predictions.

In contrast, pooling before semantic projection (case 2)
works on image features. It summarizes the feature repre-
sentation of all possible locations into one global feature
representation of the image. Then, the global representation is
projected onto the semantic space only once to align it with the
word vectors of true classes. This approach can be considered
as a top-down approach which uses global information to make
an overall prediction about image tags.

Our experiments show that the feature level fusion (case 2)
results in better performance. This is due to the fact that the
fused visual features incorporate wide context available in a
scene which better models inter-tag relationships and holistic

scene information. We also note that case 1 is more useful
when tags relate to local details as this strategy can better
locate individual instances of objects.

It is also important to note that the projection in case 2
aligns the features to word embeddings better than that of
case 1. This is because the localized features are extracted
from noisy object proposals (as trained to detect objectness)
and the pooling on feature level can suppress that noise
before the alignment. In fact, Case 2 is useful when the
image contains more stuff (non-object) categories or abstract
concepts because in that case, global representation can pick
the abstract concepts and/or interrelation between them to tag
an image.

Since LSE pooling outperforms other pooling strategies in
most cases, we are particularly interested in its behavior when
the value of its hyper-parameter ‘r’ is changed. In Figure 4(b),
we vary the value of r from 0.1 to 1.0 which transitions its
behavior from mean pooling to max pooling. We observe that
a low value of r works better in case 2 and the opposite
is true for case 1. The variation can be attributed to the
difference between the visual (case 2) and semantic space
(case 1) features. Similarly, in Figure 4(c), we vary the size
of L of attention based pooling. As gated attention has strong
non-linearity, it outperforms the non-gated version most of the
times.
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6) Analysis on Bag Size: The proposed frameworks can
work for different numbers of instances in the bag. In Figure
4(a), we perform an ablation study for zero-shot tagging based
on different combinations of network settings. The optimal
bag size depends on the dataset and pooling type. We notice
that a large bag-size generally degrades tagging performance
for max pooling and vice-versa for all other pooling types.
This variation is related to the noise inside the tag annotation
of the ground truth. Many previous deep MIL networks [19],
[20] recommended max-pooling for MIL where they experi-
mented on object detection dataset containing the ground-truth
annotation without any label noise. In contrast, other than
the 81-tag set, NUS-WIDE contains significant noise in the
tag annotations. Therefore, LSE and mean-pooling with large
bag size achieve a balance in the noisy tags, outperforming
max-pooling in general for NUS-WIDE. Notably, the bag
size of our framework is far smaller compared to other MIL
approaches [19], [20]. We observe that with only a small
numbers of instances (e.g., 4) in the bag, our method can
beat state-of-the-art approaches [14], [46]. Being dependent on
external bag generator [23]–[25] previous methods lose control
inside the generation process. Thus, a large bag size helps
them to get enough proposals to choose the best score in last
max-pooling layer. Conversely, our method controls the bag
generation network by fine-tuning shared ResNet-50/VGG16
layers which eventually can relax the requirement of large bag
sizes.

7) Cross-entropy vs. Our proposed loss: In Table V, we
compare our loss with traditional multi-class cross-entropy
(CE) loss. As stated earlier, CE loss tries to predict a specific
ground-truth without considering inter-class differences that
results in a poor alignment among visual features and word
vectors. In contrast, our proposed loss tries to increase between
class differences by assigning ranking penalty (high and low
for incorrect and correct classification respectively). Therefore,
our proposed loss outperforms CE by a significant margin.

8) Effect of reverse mapping: During bag processing, the
MIL network remaps D−dimensional visual feature Fs ∈
RD×(n+1) to Fs ∈ Rd×(n+1) in order to match the dimension
of semantic word vectors. Because of this remapping, our
semantic alignment strategies (Cases 1 and 2) work on se-
mantic space. However, instead of mapping visual features to
semantic space, a reverse mapping semantic to visual could
be performed [7]. In that case, Eq. 2 and 5 will change to:

Ps =WTU1Fs and zs =WTU2fs,

where, fs = A
({

fs,0, fs,1 . . . fs,n
})

, U1 and U2 ∈ R
S×D are

learnable parameters to map W ∈ Rd×S to WTU ∈ RD×S (D
dimensional visual feature domain). In Table V, we compare
both visual to semantic and semantic to visual strategies. We
achieve slightly better performance with visual to semantic
approach. This trend is opposite to the proposal of established
zero-shot learning approach [7]. One possible reason is that we
learn the features along with word vectors whereas [7] used
fixed pre-trained visual features and only train word vectors.
Another reason is that our ranking based loss is different from
the traditional `2 loss used in [7].

Setup MiAP K = 3 K = 5
P R F1 P R F1

CE 5.79 2.10 3.57 2.64 1.39 3.95 2.06
S → V 37.17 24.42 41.60 30.77 16.49 46.82 24.39
V → S 39.21 25.69 43.77 32.38 17.22 48.89 25.46
Baseline (187) 29.85 19.89 33.88 25.06 13.59 38.59 20.10
Ours (187) 38.45 25.16 42.87 31.71 16.95 48.12 25.07

TABLE V: Comparison between different setups of our
approach. CE: Multi-class cross-entropy loss on our
Case1-LSE architecture. S→ V: Semantic to visual domain
projection, V → S: Visual to semantic domain projection,
Baseline (187) and our (187): performance using the pre-
trained models with 187 non-overlapping classes.

9) Effect of pre-training: In this paper, we use a Faster
RCNN model pre-trained on ILSVRC-DET 2017 dataset to
initialize the bag generation network. We have identified 13
ILSVRC-DET 2017 classes (bear, birds, cars, cat, dog, fox,
horses, person, plane, tiger, train, whales, zebra) which are
also present within 81 unseen classes of NUS-WIDE dataset.
One can argue that these common unseen classes can benefit
from the pre-trained RPN. As we train the whole model in the
end-to-end manner after excluding these common classes, we
note that the advantage for these unseen classes is negligible.
In Table V, we report performance after initializing the model
with the pre-trained weights that were learned on 187 classes
(without considering the 13 overlapping classes) and notice
similar performance as for the case when all 200 classes
in ILSVRC-DET 2017 dataset are used. This is due to the
fact that RPN is trained (during Faster RCNN training) in a
class agnostic fashion. Thus, regardless of seen or unseen tags
presented in an image, it can always detect bounding boxes
based on objectness measure. As a result, the exclusion of
overlapping classes does not make a significant difference in
performance.

C. Multi-label classification on MS-COCO

We experiment with the large scale MSCOCO-2014 dataset
[63] and tackle both conventional and zero-shot tagging prob-
lems. This dataset has 80 object classes with 82,783 and
40,504 training and validation images, respectively. Being a
tagging task, we ignore all bounding box annotation during
training. For all experiments, we again use 300-dimensional
GloVe vectors as a semantic embedding and ResNet50 as a
backbone architecture.

1) Conventional tagging: This experiment aims at the
multi-label classification problem where all tags strictly repre-
sent only MSCOCO classes. Following the experiment settings
of Lee et al. [47], we use 40,137 validation images after
removing without-label images to test on this task. In Table VI
(a), we compare our approach with several other established
methods in the literature. Our approach consistently out-
performs others because it considers multi-scale information
comprising of both local and global cues, and due to the
end-to-end nature of the solution. We notice WARP [59] and
Fast0Tag [14] achieved identical performance (also reported
in Lee et al. [47]) because both methods used a similar loss
(taking a single global feature as input) that applies a ranking
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(a) Multi-label classification results

Method P R F1
WSABIE [60] 59.3 61.3 60.3

WARP [59] 60.2 62.2 61.2
Fast0Tag [14] 60.2 62.2 61.2
Lee et al. [47] 74.1 64.5 69.0

Ours 69.9 72.2 71.1

(b) Zero-shot and generalized zero-shot tagging results

Method ZST GZST
P R F1 P R F1

ConSE [46] 11.4 28.3 16.2 23.8 28.8 26.1
Fast0Tag [14] 24.7 61.4 35.3 38.5 46.5 42.1
Baseline 23.7 59.0 33.9 35.1 42.4 38.4
Our (bag=64) 26.5 65.9 37.8 43.2 52.2 47.3

TABLE VI: Experiments on on MS-COCO [63] with K=3.

penalty by maximizing the prediction difference of positive
and negative tags. Therefore, in conventional settings, both
methods behave similarly. Note that WARP does not have
zero-shot learning capability. In contrast, although Fast0Tag
can work for a conventional setting, it is specially designed
for the zero-shot learning task.

2) Zero-shot experiments: This task requires splitting
MSCOCO classes into seen and unseen sets. Recently Bansal
et al. [37] proposed a split of 48 seen and 17 unseen based on
their cluster embedding inside semantic space and WordNet
hierarchy [64]. They have provided a list of 73,774 images
containing only seen objects for training and 6,608 images
containing both seen and unseen objects for testing. We adapt
their exact setting to perform ZST and GZST. We compare
our method with ConSE [46], Fast0Tag [14] and our baseline.
Our approach constantly beats other state-of-the-art tagging
methods in both the tasks. Note that, only 2,729 images inside
the test set contains at least one unseen objects. As only seen
objects dominate the test set, the GZST performance is higher
than ZST for all the evaluated methods.

Top1 Accuracy w2v glo
Akata’16 [11] 33.90 -
DMaP-I’17 [9] 26.38 30.34
SCoRe’17 [10] 31.51 -
Akata’15 [65] 28.40 24.20

LATEM’16 [66] 31.80 32.50
Ours 36.55 33.00

TABLE VII: Zero-shot recognition on CUB using mean-
pooling based MIL. For fairness, we only compared with the
inductive setting of other methods without per image part
annotation and description.

D. Zero Shot Recognition (ZSR)

Our proposed framework is designed to handle the zero-
shot multi-label problem. Therefore, it can also be used for
single label ZSR problem. To evaluate the performance on
ZSR setting, we experiment with the Caltech-UCSD Birds-
200-2011 (CUB) dataset [67]. Although the size of this dataset
is relatively small containing 11,788 images belonging to 200
classes, it is popular for fine-grained recognition tasks. In
ZSR literature [5], [66], the standard train/test split uses a
fixed set of 150 seen and 50 unseen classes for experiments.
We follow this traditional setting without using bounding
boxes annotation, per image part annotation (like [11]) and
descriptions (like [7]). To be consistent with the rest of
the paper, we consider 400-d unsupervised GloVe (glo) and
word2vec (w2v) vectors used in [66].

For a test image, our network predicts unseen class scores
and an image is classified to the unseen class that gets the
maximum score. As per standard practice, we report the mean
Top1 accuracy of unseen classes in Table VII. Our method
achieves superior results in comparison to state-of-the-art
methods using the same settings. Note that all other methods
are deep feature based approaches but do not train a joint
framework in an end-to-end manner. In contrast, our method
is end-to-end learnable based on ResNet-50 and additionally
generates bounding boxes without using any box annotations.

E. Discussion

1) How does MIL help in multi-label zero-shot learning?:
We explain this aspect using the illustration in Figure 5. One
can observe that several tags pertain to localized information in
a scene that is represented by only a small subset of the whole
image, e.g., fish, coral, bike and bird. This demonstrates that a
multi-label tagging method should consider localized regions
in conjunction with the whole image. Our proposed method
incorporates such a consideration using the MIL formulation.
Therefore, it can annotate those localized tags where previous
methods, e.g., Fast0tag, [14] usually fail (see rows 1-2 in
Fig. 5). However, tags like beach, sunset, landscape in the third
row of the figure are related to the global information in an
image which does not depend on localized features. Therefore,
in this respect, our method sometimes fails in comparison to
Fast0tag [14] (see row 3 in Fig. 5). However, as illustrated
in Fig. 5 (the non-bold tags in blue and black colors), the
predicted tags of our method in those failure cases are still
meaningful and relevant compared to the failure cases of
Fast0tag [14].

2) Impact of pooling in MIL: The choice of pooling strat-
egy as well as the domain that is used to perform feature
aggregation, i.e., semantic domain (case 1) or visual domain
(case 2) has a profound impact on zero-shot tagging. In our
study, we find that pooling on visual features works better than
pooling on prediction scores in the semantic domain. It tells
us that pooling helps to reduce noise inside features more than
noise in word vectors. Also, we observe than LSE outperforms
mean, max and attention based pooling. It shows that LSE can
achieve a good balance between the contributions of global and
localized features.

3) Image location and tag correspondence: As a byproduct,
our approach can generate a bounding box for each assigned
tag. In Fig. 6, we illustrate some boxes (for top 2 tags)
to indicate the correspondence between image locations and
associated tags. Notably, our method often selects the whole
image as one bounding box because we consider the entire
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Fig. 5: Examples of top 5 predicted tags across different tasks by our method (left/blue) and Fast0tag [14] (right/black). Bold
text represents the correct tags according to ground-truth. First two rows of images illustrate successful examples of our method
and the third row is for negative cases.

Fig. 6: Zero-shot tag discovery in natural images. Bounding boxes are shown for Top 2 tags in each image. Our approach not
only assigns multiple tags to each image but also generates a bounding box for each tag.

image as an instance inside the bag. This consideration is
particularly helpful for NUS-WIDE dataset because it contains
many tags which are not only related to objects but are relevant
to the overall scene, e.g., natural concepts (sky, water, sunset),
aesthetic style (reflection, tattoo) or action (protest, earthquake,
sports). Any quantitative analysis for this weakly supervised
box detection task was not possible because the NUS-WIDE
dataset does not provide any localization ground-truth for tags
in an image.

V. CONCLUSION

While traditional zero-shot learning methods only handle a
single unseen label per image, this paper attempts to assign
multiple unseen tags. For the first time, we propose an end-
to-end, deep MIL framework to tackle the multi-label zero-
shot tagging problem. We integrate automatic patch discovery,

feature aggregation and semantic domain projection within a
single unified framework. Unlike previous models for tradi-
tional image tagging, our MIL framework does not depend on
an off-line feature extraction and bag generation mechanisms.
The proposed approach can inherently combine local as well
as global scene details and can assign seen and/or unseen tags
at test time. Moreover, any number of unseen tags from an
open vocabulary could be used for prediction during test time.
Our method can be viewed as a weakly supervised learning
approach because of its ability to find a bounding box for
each tag without requiring any box annotation during training.
We validate our framework by achieving state-of-the-art per-
formance on a large-scale tagging benchmark, outperforming
established methods in the literature. As future work, the
semantic relationship between word vectors can be explored
to incorporate dependency among tags.
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