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Abstract

Many markets feature sequentially mixed search (SMS), which has directed search

followed by noisy matching with multiple offers. I construct a simple model of SMS,

establish existence of a unique equilibrium, and analyze the novel implications of the

equilibrium on quantities and price dispersion. Moreover, I show that an increase

in the meeting efficiency widens price dispersion. An extension endogenizing search

effort shows that the equilibrium is constrained inefficient, where search effort is

inefficiently high and can be strategic complements among visitors. Under a mild

condition, policies that restore efficiency should lean against the wind to manage

aggregate demand and supply.
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1. Introduction

A real estate agent often asks a house buyer what price range and neighborhood the buyer

is searching for. The agent gives a list of houses on the market that fit into the buyer’s

description and the buyer can visit more than one house on the list before making an offer.

Similarly, when searching for a job, a worker has a desired range of wages and restricts the

applications to such wages. The worker may be interviewed for several jobs that fit into

the desired range before choosing whether to accept one of them. In the market for goods

and services, a consumer narrows down search to a specific range of prices and conditions

and, after getting a number of quotes in the range, chooses whether to trade. An example

is online booking of airline tickets or hotel rooms.

The common feature of all these markets is sequentially mixed search (SMS) — meeting

with directed search followed by noisy matching. In the meeting stage, individuals choose a

feature of the price distribution to restrict search, such as the maximum price, with rational

expectations that the meeting rate will depend on the specified feature. For example,

increasing the maximum house price to search for increases the probability of finding such

a house in any given neighborhood. In this stage a searcher cannot target a particular

offer because many offers can have the same specified feature. The noisy matching stage

is as in Burdett and Judd (1983, henceforth BJ). A searcher randomly receives a number

of meetings all having the specified feature and chooses which one to accept.

Given the ubiquitous nature of SMS, it is surprising that it has not received much

attention in the literature. Most papers in the literature formulate search either as purely

directed, which excludes noisy matching in the second stage, or as purely undirected.1

When mixed search is the focus of a small number of papers, the mixing is simultaneous

across markets rather than sequential in the same market, e.g., Lester (2011), Godoy and

Moen (2013), and Delacroix and Shi (2013). In these papers, some markets are open for

directed search while other markets for random search simultaneously, but no searcher uses

1The literature on undirected search goes back at least to Diamond (1971). For directed search models,

well-known examples are Peters (1991), Montgomery (1991), Moen (1997), Julien et al. (2000), Burdett

et al. (2001), and Shi (2001). See additional references at the end of this Introduction.
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both modes of search in any market or receives multiple offers.

I construct a simple model of SMS to study the positive and normative implications.2

The positive analysis will examine how directed search in the first stage regulates price

dispersion and search effort, and how the equilibrium responds to changes in the meeting

efficiency. The normative analysis will investigate when the equilibrium is socially inef-

ficient, what policies can correct the inefficiency, and how these efficient policies should

respond to economic conditions.

Section 2 constructs the baseline model of SMS. There is a unit measure of homogeneous

visitors, each wanting to consume one indivisible unit of a good. On the other side of the

market are homogeneous stayers each wanting to sell a good. Stayers enter the market

competitively under a fixed cost of entry and they commit to posted prices to sell the good.

In the meeting stage, individuals choose a submarket (  ) to participate, where  is the

highest price and  the meeting rate for a visitor in the submarket. Individuals take into

account the relationship between  and . In each submarket, a meeting function with

constant returns to scale determines the measure of meetings. A visitor receives meetings,

potentially multiple ones, at the rate  according to the Poisson process. For simplicity,

I assume that a stayer receives at most one meeting in the period, and so the meeting

process is one-to-many. Meeting congestion exists in the sense that the meeting rates on

both sides of the market vary with the market tightness. In the second stage, at the end of

a period, a visitor chooses which meeting to accept for trade, i.e., to form a match. With

homogeneous individuals on each side of the market, the equilibrium has only one active

submarket. Prices are continuously distributed in an interval, all of which generate the

same expected surplus to a stayer. The meeting rate  is consistent with the two sides’

choices of participation in the submarket.

The highest price in a submarket,  , plays a unique role. As explained at the end of

section 2.1, a stayer would want to increase  after entering a submarket. Commitment

to  is necessary for directing search by providing visitors with the tradeoff between

2Some SMS markets, such as the housing market, may have bargaining or bidding in the second stage.

I abstract from bargaining or bidding in order to focus on the role of posted prices in directing search.
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the meeting probability and the price across submarkets. Other prices do not serve this

purpose and do not need commitment. Given  , the entire distribution of posted prices

arises from rational expectations that a stayer should obtain the same expected profit at

all such prices in the submarket. In this sense, the relationship between  and  is also

sufficient for directing search into submarkets.

The sequentially mixed search equilibrium (SMSE) exists and is unique. An SMSE

differs importantly from purely noisy matching, as detailed in section 3. First, the choice

of the submarket regulates the price distribution by determining . Second, a match yields

strictly positive surpluses to both sides. In particular,  is lower than the monopoly price

 that sets a visitor’s surplus to zero, in contrast to  =  in BJ. Both directed search

and meeting congestion are necessary for   . Third, the SMSE is constrained efficient

in the baseline model, despite the existence of noisy matching in SMS.

Moreover, the model generates interesting comparative statics: An increase in the meet-

ing efficiency widens price dispersion. This effect arises precisely because visitors respond

to the higher meeting efficiency by choosing to enter a submarket that has a higher meeting

rate . The higher  reduces a stayer’s matching probability by more at high prices than

at low prices. Because all prices must yield the same expected surplus to a stayer, prices

fall by less at high levels than at low levels, resulting in wider dispersion. This result helps

explain the empirical puzzle that the Internet has not reduced price dispersion, e.g., Baye

et al. (2004), Ellison and Ellison (2005).

Section 4 endogenizes visitors’ search effort by letting each visitor choose search effort

after entering a submarket. In most models, search effort is strategic substitutes among

visitors, because one’s high search effort increases congestion and reduces the return on

search to other visitors. In the current model, search effort can be strategic complements

among visitors. The key to this unusual effect is, again, the effect of  on price dispersion.

When visitors increase search effort, their meeting rate  increases. This widens price

dispersion, which increases the return on search to other visitors. Despite the complemen-

tarity in search effort, a unique SMSE exists. The usual congestion from high search effort
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still exists in the current model to make search effort weak complements among visitors.

In the SMSE, a reduction in search cost widens price dispersion, similar to an increase in

the meeting efficiency.

I prove that the SMSE with search effort is socially inefficient and prescribe policies for

restoring efficiency. Relative to the constrained social optimum, the SMSE has excessive

search effort, an inefficiently high meeting rate for a visitor, a deficient meeting rate per

search effort for a visitor, and excessive aggregate output. Also, the SMSE has inefficiently

wide dispersion in prices, although price levels are lower in the SMSE than in the social

optimum. The government can restore social efficiency of the equilibrium by taxing the

joint value of a trade and subsidizing stayers’ entry cost, both proportionally, and balance

the budget by a lump-sum rebate to visitors. Under a mild condition, the corrective

policies should lean against the wind, in the sense that the tax on the joint value of trade

should increase in an economic boom and decrease in a recession. Note that this policy

recommendation has nothing to do with increasing returns to scale in the matching function

that Diamond (1982) emphasized. Price dispersion is necessary for the inefficiency here,

because the desire to find lower prices is the cause of inefficiently high search effort.

This paper makes several contributions to the literature. First, it constructs a tractable

framework for modeling an important phenomenon, SMS. The framework is simple and the

mathematics is not hard. All this is deliberate to focus on the novel interaction between

the two stages of SMS. The framework can serve as a basis of incorporating other features

such as heterogeneity, private information, and many-to-many meetings (see section 5).3

Second, the paper explains the puzzling effect of the meeting efficiency on price dispersion.

Third, the paper shows that search effort can be strategic complements, proves social

inefficiency of the SMSE with endogenous search effort, and prescribes corrective policies.

The simplicity of the model might lead one to think that this paper is a routine exercise

of grafting directed search onto the BJ model of noisy search. It is not. This should be

3Bethune et al. (2018) introduce noisy search into the directed search submarket, but they take the

meeting rate as exogenous instead of modeling it as part of the choice of directed search. Kennes et al.

(2018) examine three directed search models, one of which (buyer posting) has the flavor of SMS. However,

they do not focus on SMS and they abstract from congestion in meetings for visitors (see section 3.2).
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obvious from the fact that the BJ model has existed for a long time and yet the literature

has not managed to analyze SMS. In fact, grafting directed search onto BJ would not work.

In BJ,  = , and so all aspects of the price distribution are pinned down by a stayer’s

indifference among posted prices. There is nothing left for directing search!4 What then

makes the modeling of SMS possible in this paper? It is meeting congestion implied by

a general meeting function. By generating the tradeoff between the meeting rate and  ,

meeting congestion induces    and enables  to serve as an instrument for directing

search. As explained in section 3.2, meeting congestion does not exist in BJ for at least

one side of the market and even in auction models cited below that explicitly distinguish

meetings from matches. The absence causes  =  in those models. Hence, another

contribution of this paper is to bring meeting congestion to the forefront, in addition to

matching frictions.

The importance of meeting congestions also clarifies the role of the reserve price in

competing auctions. Peters and Severinov (1997) construct a model of competing auctions

in which sellers use the reserve price to direct search. Albrecht et al. (2012) show that the

reserve price does not direct search because it must be equal to a seller’s outside option

which is exogenous. My analysis demonstrates that if meeting congestions exist on both

sides of the market, the reserve price is in the interior between the two sides’ outside options

and, hence, can serve the role of directing search. See section 3.2 for the exposition.

Some papers have allowed stayers to direct visitors’ search with mechanisms instead of

prices, e.g., auctions with reserve prices (Julien et al., 2000), potentially vague messages

(Menzio, 2007), list prices with bargaining (Stacey, 2015) or with sequential inspection

(Lester et al., 2017), and auctions with cheap talk (Kim and Kircher, 2015). SMS differs

from auctions in several aspects. First, prices are posted in advance rather than being

determined ex post by auctions. Second, visitors are directed into a submarket, not to any

particular auction. Third, there is meeting congestion. In the auction models, in contrast,

every bidder submits a bid to some auction with probability one.

4In addition, grafting directed search onto BJ would face an intractable integer choice because the

number of meetings is the primary characteristic there. I model the choice as the continuous variable ,

which also enables me to incorporate a general meeting function.
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SMS also differs substantially from directed search with multiple applications, e.g.,

Albrecht et al. (2006) and Galenianos and Kircher (2009). In the latter models, each

visitor directs search toward a particular set of stayers and, hence, knows exactly the price

or the pricing mechanism that he/she will get if there is a match. In contrast, the prices

a visitor encounters in SMS are random draws from the equilibrium distribution. Besides

realism, noisy matching in the second stage of SMS affects the equilibrium. In Galenianos

and Kircher (2009), the number of equilibrium prices is equal to the number of applications

that a worker can send out simultaneously. With SMS, the support of equilibrium prices

is a connected interval. Also, the equilibrium in Galenianos and Kircher (2009) is not

constrained efficient, but the SMSE is constrained efficient in the baseline model here.

Inefficiency of the SMSE arises, instead, when search effort is endogenous.

2. Baseline Model

2.1. The model environment

Consider a one-period economy with a continuum of homogeneous individuals on each

side of the market. On one side are homogeneous stayers whose measure is elastically

determined by competitive entry at the entry cost   0. The cost of producing a good is

normalized to 0. On the other side are visitors whose measure is relatively inelastic and,

for simplicity, fixed at unity. A visitor wants to consume one unit of an indivisible good

and a stayer can produce one unit. Stayers post prices and visitors search. In a trade, the

joint value is , the stayer obtains a surplus , and the visitor gets ( − ), where  is the

price. If an individual fails to trade, the value is 0.5

Search is sequentially mixed (SMS). In the first stage, individuals choose which sub-

market (  ) to enter, expecting the meeting for a visitor, , to depend on the highest

price,  . By choosing submarket (  ), stayers commit to posting prices not exceeding

5In a directed search environment, Shi and Delacroix (2018) address the question which side should

incur the cost to organize trade in order to maximize social welfare in an economy with search frictions.

In the current model, the entry cost  is the elastic side’s participation cost in the market, while the

participation cost of the inelastic side and the cost of creating a trading post are zero. Under these

assumptions, the analysis in Shi and Delacroix (2018) implies that social welfare is the same regardless of

whether the elastic side or the inelastic side posts prices to organize trade.
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 but can post any price that honors this commitment. Visitors do not observe the price

posted by any specific stayer before meeting the stayer. The second stage is noisy matching

in each submarket. Given the measures of stayers and visitors in a submarket, a meeting

function, described below, delivers the meeting rate  for a visitor. A visitor receives meet-

ings according to the Poisson distribution and, at the end of the period, chooses which

of the received meetings to accept. An accepted meeting is called a match, which yields

immediate trade at the posted price. For simplicity, I focus on one-to-many meetings by

assuming that a stayer receives at most one meeting in the period. See section 5 for a

discussion on many-to-many meetings.

In submarket (  ), let  be the measure of stayers and  the measure of visitors.

The meeting function is  ( ) ( ), which has constant returns to scale. For a

visitor, the probability of receiving a number  of meetings in the period is −
!
, and so

the expected number of meetings is . Since  and  ( ) are both equal to the

measure of meetings, the equality yields:

 =
 ( )



= ( 1)  (2.1)

where  ≡ 


is the tightness of the submarket. For any given , define  () as the solution

for  to (2.1). This is the tightness needed to deliver the meeting rate  for each visitor

in the submarket. A stayer receives at most one meeting in the period and the meeting

probability is  () ≡ ()


= 

()
.

There are two critical features of SMS. First, there are frictions in meetings as well

as in matching. Congestion is the common consequence of both frictions. Assumption 1

later will capture meeting congestion by the feature that both meeting rates  and  vary

with . Meeting congestion is a realistic feature of many markets. In the labor market,

for example, the proper interpretation of a meeting is that an applicant is reviewed or

interviewed by a firm. Although a worker can always send an application to a firm, the

probability of getting reviewed or interviewed is usually less than one and varies with the

labor market tightness. Second, a visitor chooses a trade at the end of the period, rather

than whenever a meeting arrives, and so a stayer in a meeting faces potential competitors
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for the same visitor. As in BJ, noisy, or non-sequential, matching may reflect a fixed cost of

making decisions on offers, or simply the inability to decide on an offer on spot. In reality,

there may also be cost of waiting for offers. The validity of non-sequential matching is

likely to depend on the length of a period. The shorter is a period, the lower is the cost

of waiting relative to the fixed cost of making decisions, and the more reasonable is the

assumption of non-sequential matching.6

In submarket (  ), denote  (|) as the cumulative distribution of posted prices,
bounded below by  and above by  . Consider a stayer  in submarket (  ) and let 

be the price posted by . To compute the trading probabilities, I use the following lemma:

Lemma 2.1. If 1 is Poisson with the rate  and 2| (1 = ) is binomial with ( ), then

2 is Poisson with the rate  (see Haight, 1967, p.46). This implies that, conditional

on having a meeting, the trading probability for stayer  is − (|). For a visitor, the

probability of trading at a price no higher than  is
£
1− − (|)

¤
.

Let me explain the lemma briefly. Suppose that stayer  met a visitor  . Let  be

the number of visitor  ’s meetings with stayers other than , and  the number of such

meetings with prices no higher than . Because meetings arrive to  independently from

different stayers,  is Poisson distributed with the rate . In each of those meetings, the

price is not higher than  with the probability  (|). Conditional on ,  is binomial

with (  (|)), and so Pr( = 0|) = [1−  (|)]. Unconditional on , stayer  expects
visitor  to accept the match with the following probability:7

Pr( = 0) =
X∞

=0

−

!
[1−  (|)] = − (|)

This verifies the result for stayer  in Lemma 2.1. Similarly, for a visitor, conditional

on the number of meetings, , the number  of meetings with prices no higher than  is

6Menzio and Trachter (2015) construct a model to generate equilibrium price dispersion with sequential

matching instead of noisy matching. The important ingredient of their model is the existence of a large

player who has positive mass and receives meetings at a different rate than all other stayers who have zero

mass and lie in a continuum.
7If a visitor receives two or more identical prices that are the lowest among the received offers, the

visitor chooses one of them with equal probability. It will become clear later that the offer distribution

contains no mass point. Thus, the probability that stayer  faces a competitor who offers the same price

and has met the same visitor is zero.
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binomial with (  (|)). Unconditional on ,  is Poisson with the rate  (|). Hence,
the visitor trades at a price no higher than  with the probability Pr ( ≥ 1) = 1−− (|).

Conditional on having a meeting, a stayer’s expected surplus is

Π (   ) ≡ − (|) (2.2)

Denote the maximum of a stayer’s expected surplus in a meeting as

 () = max
≤

Π (   )  (2.3)

A stayer’s expected profit of entering submarket (  ) is  () () − , where  is the

stayer’s meeting probability in the period and  the entry cost. For a visitor, the expected

surplus in the submarket is:

 () ≡
Z 



( − ) d
£
1− − (|)

¤
 (2.4)

where  is with respect to .

The trading process endogenously generates an aggregate matching function and a

distribution of transaction prices. A visitor trades with the probability 1 − −. The

measure of matches in the period is  (1− −). This matching function has constant

returns to scale. Conditional on having at least one meeting, a visitor succeeds in trading

at a price no higher than  with the probability:

 (|) ≡ 1− − (|)

1− −
 (2.5)

This is the cumulative distribution of transaction prices. It is clear that  (|) ≥  (|)
for all , with strict inequality for all  ∈ ( ). Search enables visitors to obtain prices
lower than posted prices in the first-order stochastic dominance.

A sequentially mixed search equilibrium (SMSE) consists of a tightness function,  (),

stayers’ choice of the submarket to enter and the price to post, visitors’ choice of the

submarket to enter, a set  of active submarkets, ( )∈ , and the implied distribution

of posted prices, ()∈ , that satisfy (i)-(iii) below:
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(i) Optimality of pricing decisions: For each  ∈ , a stayer in submarket  optimally

chooses the price  to post to maximize Π (  ) under the constraint  ≤ . All

posted prices generate  () as the maximized Π and they constitute the distribution .

(ii) Optimality of search: Given  (), a visitor chooses the submarket to enter to maximize

 subject to the dependence of  on  and, especially, the dependence of  on . The

set of submarkets that receive positive measures of visitors is .

(iii) The tightness function:  () induces  () that satisfies a complementary slackness

condition on competitive entry of stayers. That is,  () () =  for all submarkets with

 () ≥  and  () = 0 for all submarkets with  ()  .

Requirements (i) and (ii) are for submarkets active in the SMSE. Requirement (iii) is

for all submarkets, which restricts the beliefs on the function  () for both inactive and

active submarkets (see Menzio and Shi, 2010, and Guerrieri, et al., 2010). For every active

submarket, the expected profit of a stayer should be zero. For every inactive submarket, a

stayer should be unwilling to enter the submarket even if the stayer would meet a visitor

with probability one. This requirement prevents a submarket from being inactive just

because individuals on each side expect no one on the other side will enter the submarket.

Why is the highest price  special in the model? Can the lowest price serve equally

well for directing search? To answer these questions, it is important to note that the

entire distribution of posted prices depends on . However, given  , the distribution of

posted prices arises from rational expectations that all prices posted in a submarket should

generate the same expected profit for a stayer (see (i) in the equilibrium definition). Thus,

under rational expectations,  is sufficient for directing search. The commitment to  is

also necessary for directing search whenever   . If there were no commitment to  ,

a stayer after entering a submarket would profit by deviating to + slightly higher than

 . Once in the submarket, a stayer’s meeting probability is independent of the posted

price. Moreover, at + and  , a stayer has the same probability to trade, which occurs

when the stayer meets a buyer who has no other meeting. However, a trade at + yields

higher profit to a stayer than at  , which implies that expected profit is higher at 
+
 .

Precisely, Π1
¡
+   

¢
 0 if   . In contrast, reducing the price from the lowest price
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 reduces a stayer’s expected profit, and increasing the price from  does not change a

stayer’s expected profit. Thus, the lowest price, or any price strictly lower than  , serves

no role in directing search beyond rational expectations on the price distribution.

2.2. Optimal choices and the SMSE

To characterize optimal decisions, define ̄ ≤ ∞ by  (̄) =∞ as the natural upper bound

on , and define the elasticity of  as  () ≡ 0()
()

.

Assumption 1. The meeting function is such that  () ∈ (0 1), 0 ()  0 and 00 ()  0
for all  ∈ (0 ̄), and that  (0) = 0, 0 (0)  0, and 0 (̄) = ∞. Also,  ()  1 for all

  0, and 0 (0)   .

The assumption  ()  1 says that a stayer receives at most one meeting. The as-

sumptions on  () are equivalent to the standard properties:  is strictly increasing and

concave in each of the two arguments,  (0 1) = 0, 1 (0 1)  ∞ and 1 (∞ 1) = 0.8

The assumptions on  () imply 0 ()  0 and  (̄) = 0. The feature  ()  1 is listed for

a reference. It is not an additional feature but rather an implication of 0 ()  0, because

 = 1 − 0. The assumption 0 (0)    requires the joint surplus of a trade to exceed

the cost of stayers’ entry when the measure of stayers in the market is arbitrarily small. If

this assumption is violated, it is socially efficient to shut down the market. The following

well-known meeting functions satisfy Assumption 1 with   :

Example 2.2. The Dagum (1975) function is  ( 1) = (− + 1)−1 with  ∈ (0∞).
This function yields  () = [− − 1]−1 and  () = [1− ]

−1
. Another function is the

urn-ball function  ( 1) = 
¡
1− −1

¢
. This function yields  () = 1()−1

1()−1− 1
()

. With

both functions,  (0) = ̄ = 1, 0 (0) = 1, and 0 ()  0.

The assumptions on  () capture meeting congestion on the two sides of the market.

That is,  increases, and  decreases, in the market tightness . An increase in the

8Because  ( ) =  ( 1), then 2 ( ) = − 1 ( 1). The property 2 ( )  0

and the fact 1 ( 1) = 1
0 () imply  ()  1.
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market tightness alleviates congestion of visitors but exacerbates congestion of stayers in

the meeting stage. It is useful to mention that meeting congestion is absent on one side of

the market in the urn-ball process, e.g., Burdett et al. (2001) and Julien et al. (2000). In

this process, a “ball” (visitor) is thrown at an “urn” (stayer) in the meeting stage and then

each urn selects one received ball. A visitor’s meeting probability (one) is independent of

the market tightness.9

To analyze optimal choices, consider a stayer first. The individual makes two decisions

sequentially: which submarket to enter and what price to post in the submarket. Suppose

that the stayer has already chosen to enter submarket (  ). The stayer chooses the

posted price  ≤  to maximize the expected surplus in a meeting, Π (   ), as in (2.2).

The maximized expected surplus is  (). If a price  ≤  is not in the support of  ,

then it must be the case that Π (   )   (). Conversely, all prices in the support of

 must yield the same expected payoff to a stayer in a meeting as  (). That is,

Π (   ) =  () for all  ∈ supp ( ) 

This equal-surplus condition determines the distribution of offers in the submarket:

 (|) = 1


ln

µ


 ()

¶
for all  ∈ supp ( )  (2.6)

It is convenient to invert  as

 =  ()  for all  ∈ supp ( )  (2.7)

Because the bounds on the support must satisfy  () = 0 and  () = 1, then
10

 = ,  =  ()  (2.8)

The formula for  in (2.8) is the relationship between  and  needed for directing

the choice of the submarket. A stayer’s expected profit of entering submarket (  ) is

9This absence of meeting congestion generalizes to the case where a visitor reaches some stayer with a

constant probability  ≤ 1.
10The price  should satisfy a visitor’s individual rationality:  ≤ . I will show later in Corollary

3.2 that this inequality holds strictly in the equilibrium.
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 () () − . In every submarket with  ()  , the tightness is  () = 0. In every

submarket with  () ≥ , a stayer’s expected profit of entry is zero. This yields:

 () =


 ()
 (2.9)

Now consider a visitor. If the visitor participates in submarket (  ), the expected

surplus is  (), as given by (2.4). The visitor chooses  to maximize  (), taking the

relationships (2.6) and (2.9) into account. Substituting  from (2.7) into (2.4), changing

the integration variable from  to  and then substituting  from (2.9), I have:

 () = 
¡
1− −

¢−  ()  (2.10)

For future references, it is useful to interpret the term  (). This term is equal to  (),

after using (2.9) and  () =  (). The term is the expected surplus that a visitor

concedes to a stayer in the submarket. The appearance of the product between  and 

should not be construed as suggesting that a visitor can have more than one trade. Rather,

a visitor has at most one trade in the period. However, a stayer “prices in” the risk of

losing a visitor to a competitor. The potential failure to trade with a visitor in a meeting

raises the price that the stayer charges in order to break even for entry, resulting in the

expected amount  () being taken away from a visitor.

Because  () is a strictly convex function,  () is strictly concave and, hence, is

maximized by a unique . Denote the unique maximizer as ∗. If ∗ is interior, then it

satisfies the first-order condition:

0 (∗) 
∗
=




 (2.11)

It is easy to verify ∗  ̄, where  (̄) =∞. Also, ∗  0 under the maintained assumption
  0 (0) . The above analysis has established the following proposition:

Proposition 2.3. A unique SMSE exists, with only submarket (  
∗) being active,

where ∗ ∈ (0 ̄) solves (2.11). Posted prices are continuously distributed according to  ∗

over [  ], where  and  are given by (2.8) and 
∗ by (2.6) with  = ∗. Transaction

prices are distributed according to  in (2.5).
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Homogeneity among visitors is clearly responsible for the SMSE to have only one active

submarket. If there are  types of visitors who differ in the valuation, then the SMSE will

have  active submarkets (see section 5).

3. Equilibrium Properties, Efficiency and Interpretations

3.1. Directed search regulates the price distribution

The current model encompasses two classes of search models as special cases. Purely

directed search is the special case where each visitor is restricted to having at most one

meeting, e.g., Peters (1991), Burdett et al. (2001) and Julien et al. (2000). Purely noisy

search is the special case where  is exogenous and there is no commitment to  , e.g., the

BJ model. Because noisy matching is the common cause of price dispersion in the current

model and in BJ, I focus on the link and the contrast between the two.

Noisy matching with multiple offers induces a continuous distribution of prices in an

interval.11 A stayer may lose the visitor to a competitor. To increase the trading probabil-

ity, a stayer would want to post a price slightly below the competitor’s if he/she knew what

price a competitor posts. This implies that the price distribution cannot have a mass point

anywhere above the lowest price . If there were, posting a slightly lower price would

increase a visitor’s acceptance probability by a discrete amount and, hence, would increase

the stayer’s expected surplus. There cannot be a mass point at the lowest price , either.

If there were, then  = 0, because any   0 would make it profitable for a stayer to un-

dercut the price. But if  = 0, then posting a price    would yield a higher (positive)

expected profit than posting . In the equilibrium, prices are continuously distributed.

In addition, the support of the price distribution must be a connected interval. If there

were a “hole” in the support, a stayer posting a price inside the hole could increase the ex

post gain without reducing the acceptance probability, relative to posting the price at the

lower boundary of the hole.

The current model differs from BJ primarily in the presence of directed search in SMS.

11BJ model noisy matching slightly differently and do not impose the unit upper bound on a stayer’s

capacity. These additional differences are not essential for the price distribution to be non-degenerate.
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The BJ model, phrased in the notation of the current model, fixes  and considers a market

with a fixed measure of individuals on each side of the market. In an extension, BJ add

a cost of  to endogenize visitors’ choice of , but keep the assumption that search is not

directed by any relationship between  and  . As explained in the Introduction and

further below,  =  in BJ, and so one cannot extend BJ to incorporate directed search.

Directed search in the first stage of SMS affects the equilibrium substantially by deter-

mining the optimal choice of . The equilibrium has ∗ ∈ (0∞) (see Proposition 2.3), and
so the probability that a visitor receives two or more meetings, 1− (1 + ∗) −

∗
, is strictly

bounded in (0 1). This interior probability is critical for the equilibrium price distribution

to be non-degenerate. Moreover, through ∗, directed search affects the entire distribution

of prices in the equilibrium. To state these effects, denote the price spread as ∆ ≡ −
and the coefficient of variation in posted prices as  ≡ [ ]

12

E
, where E is the mean

and  the variance of posted prices. The coefficient of variation in transaction prices is

, where the distribution  in (2.5) is used instead of  . Computation yields:

 () =

∙
 ( + 1)

2 ( − 1) − 1
¸ 1
2

  () =

"

µ
1− −



¶2
− 1
#12

 (3.1)

These coefficients of variation are functions of only , with no parameters. Any change

in a parameter of the model can change  and  only if it affects . For this reason, it

is useful to examine this effect of  on price dispersion, even though  is endogenous. The

proof of the following corollary is straightforward and omitted:

Corollary 3.1. An increase in  increases posted and transaction prices in the first-order

stochastic dominance in  and . Also, an increase in  increases the bounds ( ),

the price spread ∆, and the coefficients of variation (  ).

For a stayer, an increase in  reduces both the meeting probability and the matching

probability conditional on having a meeting. Both reduce a stayer’s expected profit. To

compensate for a stayer’s entry cost, posted and transaction prices must be higher. The

positive relationship between posted prices and  is important for directed search. A
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submarket with a higher meeting rate for a visitor necessarily has higher prices. The

optimal tradeoff between the meeting rate and prices yields the equilibrium .

For an increase in  to affect price dispersion, it must affect stayers differently depending

on their posted prices. This non-uniform effect arises from the effect of  on a stayer’s

matching instead of meeting probability. Conditional on having a meeting, a stayer is less

likely to succeed in a trade if the posted price is higher. As a result, an increase in 

reduces a stayer’s trading probability by more if the stayer posts a higher price. To yield

the same expected surplus conditional on having a meeting, , the price must increase by

more if the price is initially higher. This is why an increase in  increases the bounds on

prices, the price spread and the coefficient of variation in prices.

3.2. Every trade generates strictly positive surpluses for both sides

If   0, a stayer obtains a strictly positive surplus in a trade. If   , a visitor

obtains a strictly positive surplus in a trade. The proof of the following corollary can be

constructed from the ensuing explanation:

Corollary 3.2.    and   0, and so every trade generates strictly positive surpluses

for both sides of the market.

The result   0 is evident, because posting price 0 implies zero expected profit. The

result    illustrates the importance of directed search in SMS. When search is purely

noisy, as in BJ, stayers do not commit to any feature of the price distribution. In this case,

for any   , it is profitable for a stayer to increase  , as explained at the end of section

2.1. This is why the equilibrium in BJ has  = . With directed search, in contrast,

visitors choose the submarket to participate. In the submarket with  = , prices may

be too high to be optimal for the tradeoff between the trading probability and the trade

surplus. Catering to visitors’ tradeoff, stayers may optimally set   .

Although directed search is necessary for   , it is not sufficient. To find other

necessary ingredients for   , let me explain how the result arises in this model by

considering a marginal increase in  . The higher price induces more stayers to enter
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the submarket, which generates an increase in a visitor’s meeting rate  according to

 =  ()  (see (2.8)). A higher  increases a visitor’s trading probability by − and,

hence, increases the expected surplus of a meeting by −. To compensate stayers for

entering the submarket to support the higher , a visitor must increase the expected

surplus conceded to a stayer by 0 (), as explained for (2.10). If  is optimal, then the

net benefit of the higher  to a visitor must be equal to zero. That is, − = 0 () (see

(2.11)). This is consistent with the relationship  =  ()  if and only if




=

 ()

0 ()
=

1

 ()


where the second equality follows from substituting  () =  () and  () =  ().

Because  ()  1 by Assumption 1, then   .

The above explanation shows that, in addition to directed search, another necessary

condition for    is  ()  1. This condition captures meeting congestion on the

two sides of the market, as explained for Assumption 1. There are well-known examples

where at least one side of the market does not face meeting congestion. One example is

an economy where the meeting probability is one for the short side of the market; i.e.,

 = min{ 1} and  = min{1 1

}. If   1, then  = 1. If  ≥ 1, then  = 1. In

both cases,  () = 1 and  = . Another example is the urn-ball process discussed after

Assumption 1. In this process,  is a constant (one), which yields  () = 1 and  = . In

these examples, either a visitor’s meeting rate  or a stayer’s meeting rate  is independent

of the market tightness, which causes  =  even if search is directed.

The general interpretation of the outcome  =  is that, if one side of the market faces

meeting congestions but the other side does not, the side that faces meeting congestions

should have zero surplus at the lowest equilibrium price.. Under this general interpretation,

the result  =  holds in some auction models with directed search. For example, in Julien

et al. (2000), workers post auctions to direct firms’ search. In one of the models in Kennes

et al. (2018), firms post auctions to direct workers’ search. In both models, the search

process is urn-ball and so a bidder meets one of the auctions with certainty. Facing no

congestion in the meeting stage, a bidder faces no tradeoff between the meeting probability
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and the price. It is then optimal for an auctioneer to attract bidders to participate in his/her

auction by setting his/her own surplus to zero at the reserve price.12 In this case, since

the reserve price is equal to an exogenous number, it is unable to direct search. This is

the correction that Albrecht et al. (2012) have made to the result in Peters and Severinov

(1997). Corollary 3.2 indicates that if both sides of the market face meeting congestions,

both sides have a strictly positive surplus at the reserve price, and so the reserve price

resumes the role of directing search in competing auctions.

3.3. Social efficiency of the SMSE

Another main difference of SMSE from an equilibrium with purely noisy search is con-

strained social efficiency. To analyze efficiency, consider a social planner who maximizes

social welfare measured by the sum of expected surpluses in the economy. The planner

chooses the measure of stayers to enter the market, , but is constrained by the same

frictions as in the market. Specifically, the planner takes as given the meeting function

 ( ). If a visitor receives multiple meetings, the planner randomly chooses one of

them for the visitor to trade. Total cost of stayers’ entry is , and the measure of trades

is  (1− −). Since a trade generates the joint surplus , social welfare is:



¡
1− −

¢− 

To maximize social welfare, the planner chooses  subject to  =
1

 ( ). Because

 is fixed, the planner’s choice of  is equivalent to the choice of . Dividing social

welfare by , normalized welfare (per visitor) is:


¡
1− −

¢−  () 

where  = 


is used. This welfare measure is the same as  () in (2.10) — a visitor’s

expected surplus of entering a submarket (  ). Thus, the planner’s choice of  is identical

to a visitor’s choice in the SMSE. This proves the following proposition:

12This is true when the market is large. If the market is finite, the matching function has decreasing

returns to scale, and an auctioneer’s surplus is positive at the reserve price. See Julien et al. (2000).
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Proposition 3.3. The SMSE is constrained efficient.

Directed search in SMS and competitive entry of stayers are important for the equilib-

rium to be socially efficient, as emphasized in the directed search literature (e.g., Moen,

1997, Shi, 2001). The above proposition adds to the literature by showing that the equi-

librium is efficient even if the search process has noisy matching in the second stage. In

contrast, if search is purely noisy, then the equilibrium is socially inefficient. In this case,

 = , which is inefficiently higher and induces excessive entry of stayers.

There is a tight connection between a visitor’s optimality condition, (2.11), and the

social planner’s choice. When choosing the meeting rate for a visitor, the planner equates

the social marginal benefit of a higher  to the social marginal cost. The social marginal

benefit of a higher  is that it reduces the visitor’s probability of failing to trade. Since

the failure probability is −, a marginally higher  reduces this probability by −. The

expected social gain is −. The marginal cost of increasing  is that more stayers

need to enter the market to deliver the higher . To increase  marginally,  must increase

by 0 (), and so the measure of stayers must increase by 0 (). Thus, the entry cost

increases in an amount 0 (). The equilibrium condition (2.11) equates this social

marginal cost to the social marginal benefit of a higher .

3.4. Effects of the meeting efficiency

The Internet has increased the convenience of trading, but it has not reduced price disper-

sion significantly. Baye et al. (2004) compared the online market with the offline market

for consumer electronics and found similar price dispersion in the two markets. Ellison

and Ellison (2005) found a similar puzzle in other online markets. To resolve this puzzle,

I model the increasing use of the Internet as an increase in the meeting efficiency. Section

4.1 will re-examine the issue as a reduction in search cost.

Let the meeting function be  ( ), where  is the meeting efficiency. Denote

 = 

. The definition of  implies  =  ( 1), which solves  as (). The elasticity of

this tightness function is  () =
0()
()

. The meeting probability for a stayer is  = 
()
.
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Except the change in the argument of  and  from  to , the SMSE is characterized as

before. Modifying (2.11), the first-order condition for the optimal ∗ is:

1


0(

∗


)

∗
=




 (3.2)

Define 0 ∈ (0∞) as the unique solution to:


0
0(

1

0
) =




 (3.3)

Then, ∗  1 if and only if   0. The following proposition is proven in the Supple-

mentary Appendix C:

Proposition 3.4. (i) d∗
d

 0 and d
d
 ()  0 for  = . (ii) d

d
 0 iff   0.

(iii) d
d
≤ 0 iff (0 −) 0  0; If 0 ≥ 0 then d

d
 0 and d∆

d
 0. (iv) If 0 ≥ 0 and

  0, an increase in  reduces posted and transaction prices in the first-order stochastic

dominance.

An increase in the meeting efficiency unambiguously widens price dispersion measured

by the coefficient of variation, although price levels may change ambiguously. By increasing

stayers’ meeting rate, an increase in  has direct effects of increasing entry of stayers and

depressing price levels. However, an increase in  also increases a visitor’s meeting rate

, which increases prices and widens price dispersion (see Corollary 3.1). Specifically,

an increase in  reduces a stayer’s matching probability by more at high prices than at

low prices. To keep a stayer indifferent between posting different prices, a stayer’s match

surplus conditional on having a trade must fall by less at high prices than at low prices. If

prices fall after the increase in , they must fall by less at high levels than at low levels. If

prices rise after the increase in , they must rise by more at high levels than at low levels.

In both cases, price dispersion widens.

In the empirical evidence cited above, the increased use of the Internet did not widen

price dispersion significantly, although it did not compress price dispersion either. To

reconcile with this evidence, one may recognize that the Internet can reduce a stayer’s

entry , in addition to increasing . It can be verified that a reduction in  increases the
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measure of stayers, reduces  and compresses price dispersion. Thus, the combined effect

of an increase in  and a reduction in  may leave price dispersion unchanged.

Proposition 3.4 contains additional information about the effects of an increase in .

First, an increase in  may increase or decrease the market tightness. If the submarket

does not change, an increase in  increases the meeting rate for stayers, which induces more

stayers to enter the market to increase the market tightness. However, an increases in 

also induces visitors to choose a submarket with a higher , which reduces the matching

rate for a stayer and, hence, reduces stayers’ entry. The direct effect of  on a stayer’s

matching rate dominates if   1, which is equivalent to   0. In this case, an increase

in  increases stayers’ entry to increase the market tightness.

Second, an increase in  reduces the lowest price and widens the price spread if and

only if 0 ≥ 0. Because  () = 0()
()

is the elasticity of  to , the derivative 0 measures

the sensitivity of the market tightness to . The case 0 ≥ 0 is the normal case, as shown
later with examples. If 0 ≥ 0, then an increase in  causes the market tightness to increase
sharply by increasing stayers’ entry. Such a large entry of stayers depresses prices. This

negative effect on prices is stronger at low prices than at high prices, as explained for

Corollary 3.1 and repeated above. Thus, if 0 ≥ 0, the lowest price falls and the price

spread widens. The highest price also falls if the market tightness indeed increases, i.e.,

if   0. Conversely, if 
0 is sufficiently negative, the market tightness is insensitive to

changes in . In this case, prices must rise in order to induce more stayers to enter the

market to deliver the increase in , and the price spread narrows. Note that 0 ≥ 0 is

satisfied by the well-known meeting functions in Example 2.2.

Third, when   0 and 
0 ≥ 0, an increase in the meeting efficiency reduces all prices

according to the distribution. This is the case where the market tightness increases in 

and is sensitive to . In this case, an increase in  induces a large increase in stayers’

entry into the market and, hence, reduces prices. Despite lower prices, the increase in 

compensates stayers’ entry into the market by increasing a stayer’s meeting probability.
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4. Endogenous Search Effort and Efficient Policies

This section endogenizes visitors’ search effort. I show that price dispersion can induce

search effort to be strategic complements among visitors and the equilibrium to be socially

inefficient. I analyze the effects of a reduction in search cost and examine policies for

efficiently managing aggregate activities.

4.1. Equilibrium with endogenous search effort

A visitor chooses search effort, , after entering a submarket. Let  () be the cost of search

effort, with 0  0 and 00  0 for all   0, and 0 (0) = 0. Let the meeting rate for a

visitor be  = (+ 0) , where  denotes the meeting rate per search effort. The constant

0  0 rules out the uninteresting case where the equilibrium can be stuck at  =  = 0.13

The total measure of visitors’ search effort in a submarket is (+ 0), and the measure

of meetings in the submarket is  ( (+ 0)). Since the total measure of meetings

in the period is also equal to , then

 =
 ( (+ 0))

(+ 0)

= ( 1) 

where  = 

(+0)
is the effective tightness of the submarket. The above equation solves

 =  (), which is a function of  instead of . The meeting probability for a stayer in

a period is  () = 
()
. Define ̄ ≤ ∞ by  (̄) = ∞. Submarkets are now described by

(  ), instead of (  ). As a result, competitive entry of stayers into the market yields

a stayer’s expected surplus conditional on having a meeting as  () = 
() , which is a

function of  instead of .

For stayers, the formulas in the baseline model remain valid after replacing  () by

 () and  (|) by  (|). In a meeting, a stayer posting  succeeds in trade with the
probability − (|). The stayer’s expected surplus in the meeting is − (|). Equating

13If 0 = 0, a visitor’s meeting rate is , in which case the marginal gain to increasing  is zero if

 = 0 and the marginal gain to increasing  is also zero if  = 0. Even a small 0  0 can prevent this

uninteresting case from happening in the equilibrium.
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this expected surplus to  () for all prices on the support of  yields:

 (|) = 1


ln



 ()
 (4.1)

The inverse of this distribution function is:

 =  ()   (4.2)

The bounds on the support of  are:

 =  () ,  =  ()  (4.3)

To analyze a visitor’s optimal choice, suppose that one visitor searches with effort ̃

while all other visitors search with effort . For the deviating visitor, the meeting rate is

̃ ≡ (̃+ 0) , and the probability of trading at a price no higher than  is 1 − −̃ (|).

The deviating visitor’s expected surplus in the submarket is:

 ( ̃) ≡ − (̃) +
Z 



( − ) d
£
1− −̃ (|)

¤
 (4.4)

This modifies (2.4) by subtracting search cost and changing the meeting rate to ̃. Note

that stayers make their decisions based on the expectation that almost all visitors in the

submarket will search with effort . That is,  is given by (4.2) where search effort is 

instead of ̃. Substituting such , integrating and substituting  from (2.9), I have:

 ( ̃) = − (̃) + 
£
1− −̃

¤−  () (̃+ 0) ((̃− ) )  (4.5)

where ̃ = (̃+ 0)  and

 () ≡ 1− −


for all || ∞ (4.6)

The visitor chooses ( ̃) to maximize  ( ̃).

The term  ((̃− ) ) captures a visitor’s incentive to search more intensively than

others to find a lower price. To see this, note that the last term in (4.5) is equal to

̃. As in the explanation for (2.10), this term is the expected surplus that the deviating

visitor concedes to a stayer in the submarket. Thus,  is the concession normalized by the
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expected number of meetings for the visitor. If the visitor chooses the same search effort

as other visitors do, this normalized concession is  (0) = . However, by choosing ̃ 6= 

off the equilibrium path, the visitor can affect the concession. This externality critically

depends on the properties of the function , which are listed in the following lemma (see

the Supplementary Appendix C for a proof):

Lemma 4.1. The function  () defined by (4.6) has the following properties: (i)  (0) = 1,

0 (0) = −1
2
, and 00 (0) = 1

3
; (ii)  ()  0, 0 ()  0 and 00 ()  0 for all || ∞.

The property 0 ()  0 is the most important one. If the deviating visitor searches

more intensively than other visitors do, the visitor expects to be more likely to encounter

a meeting with a lower price and, hence, to concede less than  to a stayer in a meeting.

Conversely, if the visitor searches less intensively than other visitors, the visitor expects

to concede more than  to a stayer in a meeting. Notice that this benefit from higher

search effort exists even when ̃ is arbitrarily close to , because 0 (0)  0. The benefit

diminishes as the visitor keeps increasing search effort, because −00  0.

An SMSE can be defined similarly to that in section 2.1 by adding search effort ̃ to a

visitor’s choice. I focus on symmetric equilibria, where ̃ = . As shown in the proof of

Proposition 4.2 below, the optimal ( ̃) are interior and satisfy the first-order conditions:

0 = −̃ −  [0+ (̃− ) 0] (4.7)

0 = −0 + −̃ −  () [+ ̃0]  (4.8)

Denote the optimal choice of  as ∗. In any symmetric SMSE, these conditions become:

0 () = 


−

0 () =  ()
£
 ()− 1 + 

2

¤


(4.9)

Recall that  = (+ 0) . Given any , denote  () as the solution for  to the first equa-

tion in (4.9) and  () as the solution for  to the second equation. Figure 1 depicts  ()

and two possibilities of  (). The SMSE is depicted by points E1 and E2, respectively, for

the two possibilities of  (). The SMSE is unique. Formally, for any given ( ), denote a
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visitor’s the optimal choice of ̃ as  ( ). The following proposition holds (see Appendix

A for a proof):

Proposition 4.2. A unique symmetric SMSE exists. In the SMSE, 1 ( 
∗)  1. More-

over, 1 ( 
∗)  0 if and only if ∗ ≡ (+ 0) 

∗  3
2
. An exogenous reduction in 0

reduces , increases ( ), and increases (  ). If 
0 ≥ 0, this reduction in search cost

reduces posted and transaction prices in the first-order stochastic dominance.

The feature 1 ( 
∗)  0 means that search effort is “strategic complements” among

visitors. Higher search effort by some visitors widens price dispersion and, thereby, in-

creases the return on search to other visitors. For any given , higher search effort by some

visitors increases their meeting rates, , and pushes prices down. This negative effect on

prices is stronger at high prices than at low prices, as explained for Corollary 3.1. To keep

the expected surplus to be equal at all posted prices, prices fall by less at high levels than

at low levels. Thus, price dispersion increases, which motivates other visitors to increase

search effort in order to find lower prices. The term −0 (0) discussed earlier captures
this reward for a visitor’s higher search effort. The countering force comes from the fact

that prices are lower everywhere than before, which reduces visitors’ incentive to search.

The effect of price dispersion dominates if and only if prices are sufficiently dispersed. This

occurs when search effort is higher than a threshold (32).14

The equilibrium is unique regardless of whether search effort is complements among

visitors. The reason is that search effort is not strong complements, as shown by 1 ( 
∗) 

1. Two forces limit a visitor’s response in search effort to other visitors’ search effort. One

is that the decrease in price levels everywhere reduces the need to search. The other is

the equilibrium effect that higher search effort tends to reduce . Since search effort and 

both increase a visitor’s meeting rate, they are substitutes to a visitor. To induce a stayer

to enter the market, a visitor expects to concede part of the match surplus to the stayer.

This expected concession increases in , because a higher  implies a lower meeting rate

14This condition can be expressed as a restriction on the parameters. Since  is an increasing function

of ,  is above the threshold 32 if  is above some threshold.
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for a stayer. When it is optimal for a visitor to increase search effort, it is also optimal for

the visitor to lower  so as to reduce the expected concession to the stayer in a meeting.

For any given , a lower  mitigates the increase in the meeting rate for a visitor, which

limits the response of a visitor’s search effort to other visitors’ search effort.

   z za(s)

      E 1

       E 2     z b(s)

  an o th er zb(s)

   0    s
Figure 1. The unique equilibrium with endogenous search effort

Proposition 4.2 shows that a reduction in search cost has similar effects on price disper-

sion as an increase in the meeting efficiency studied by Corollary 3.4. Figure 1 illustrates

the effects of a reduction in the marginal cost of search, 0. Before the reduction in search

cost, let  () be the solid curve in Figure 1. A reduction in search cost shifts the curve

 () to the dashed curve, which results in a higher  and a lower . It is intuitive that a

reduction is search cost induces a visitor to search with higher effort and leads to a higher

meeting rate for a visitor. As the matching probability for a stayer falls, a smaller mea-

sure of stayers enter the market, resulting in a fall in . Because  increases, dispersion

widens in both posted and transaction prices. Under the mild condition 0 ≥ 0, posted and
transaction prices fall in the first-order stochastic dominance.15

15In a different model, Bethune et al. (2018) show that a reduction in the cost of becoming informed of

prices can increase price dispersion.
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4.2. Social inefficiency and corrective policies

The complementarity in search effort raises the question whether the SMSE is socially

efficient. To address this question, I incorporate visitors’ search effort into the social

planner’s problem in section 3.3. The total cost of stayers’ entry is . Because  =

 () (+ 0), the entry cost divided by the measure of visitors is  () (+ 0). Thus,

social welfare normalized by the fixed measure of visitors is:

− () + 
¡
1− −

¢−  () (+ 0) 

Maximizing social welfare, the planner’s choices ( ) satisfies the first-order conditions:

0 () =



− 0 () =  () [ ()− 1]  (4.10)

Compare these conditions with the counterparts in the SMSE, (4.9). The first condition is

the same as in the SMSE. The second condition, which characterizes the socially efficient

, differs from that in the SMSE in the absence of the term 
2
on the right-hand side. This

difference implies the following proposition (see Appendix A for a proof):

Proposition 4.3. Relative to the social optimum, the SMSE has excessive search effort

, a deficient , and an excessive meeting rate for a visitor, .

The inefficiency arises from an externality created by visitors’ search effort. There is a

private benefit for a visitor to increase search effort ̃ above other visitors’ unexpectedly.

Near ̃ = , this private benefit is: −0 (0) = 2. But if all visitors increase search

effort, congestion increases, which is a negative externality. In the SMSE, search effort

and the meeting rate for a visitor are inefficiently high. To maintain the optimal tradeoff

between the meeting rate and the surplus of a trade, visitors choose an inefficiently low .

This low  mitigates, but does not correct completely, the excessive .

Two elements are important for the inefficiency — the inability to commit to search

effort and the presence of noisy matching. To see the importance, first suppose that visitors

can commit to search effort before entering the market and so submarkets are indexed by
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(   ) instead of only (  ). In this case, the optimal tradeoff between search effort and

the trading probability will internalize the externality by “pricing” search effort correctly.

Next, if search is purely directed, as in Burdett et al. (2001), endogenizing search effort

does not generate inefficiency. This should be true more generally if search is directed by

mechanisms instead of posted prices. The purpose for a visitor to increase search effort is

to find a better mechanism. If there is no ex ante dispersion among mechanisms in the

equilibrium, then endogenizing visitors’ search effort should not lead to inefficiency even

though there is ex post dispersion in transaction prices within a mechanism.

To restore efficiency and maintain a balanced budget, the government can consider the

following policies: a subsidy rate  to the entry cost, a proportional tax rate  on the joint

value of a trade, and a lump-sum rebate  to a visitor’s participation in the market.
16

With the subsidy , competitive entry of stayers into the submarket pushes a stayer’s

expected surplus conditional on having a meeting to:

 () =
(1− ) 

 ()
 (4.11)

With this modified formula of  (), the inverse of the distribution of posted prices is still

given by (4.2). A visitor’s expected surplus in the market is given by (4.4), with  being

replaced by (1− )  and  by  − . This expected surplus is:

 ( ̃) = − (̃) +  + [(1− ) ]
£
1− −̃

¤
− (1− )  () (̃+ 0) ((̃− ) ) 

In the symmetric SMSE, the first-order conditions of ( ̃) become:

0 () = (1−)
(1−)

−
0 () = (1− )  ()

£
 ()− 1 + 

2

¤


(4.12)

Comparing these conditions with (4.10) for the social optimum, it is easy to verify that

the two sets of conditions coincide if and only if

 =  =

∙
2 [ ()− 1]


+ 1

¸−1
, (4.13)

16A tax on visitors’ search effort can also restore efficiency, but it requires the authority to have the

unrealistic ability of observing visitors’ search effort.
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where ( ) are the quantities in the social optimum. Because the measure of matches is

1−−, total tax revenue on the joint output across matches is  [1− −]. Total subsidy

to the entry of stayers is  (+ 0) . The difference between the two is the lump-sum

rebate to visitors that balances the government budget. That is,

 =  [(
 − 1) − ]




 (4.14)

With the above (  ), it can be verified that  in the SMSE is equal to social welfare.

The following proposition holds (see Appendix B for a proof):

Proposition 4.4. Suppose that (  ) satisfy (4.13)-(4.14). (i) The policies induce

the equilibrium to be socially efficient and maintain a balanced budget. (ii) The ef-

ficient policies increase  and reduce the following variables: , , aggregate output

 =  [1− −], and (  ). (iii) If 0 () ≥ 0, the efficient policies reduce  (),

reduce (  ∆), and reduce prices in the first-order stochastic dominance in  (|)
and  (|).

The policies ( ) restore social efficiency of the equilibrium while the rebate 

balances the government budget. With the subsidy to a stayer’s entry, , a stayer can

break-even on entry with a smaller expected concession from a visitor in a meeting. A

visitor’s incentive to search weakens, which improves efficiency. However,  distorts a

visitor’s tradeoff between the match surplus and the meeting rate by inducing a visitor to

enter a submarket with an inefficiently high . A tax on the joint output in a match, ,

eliminates this distortion by increasing the importance of the match surplus in a visitor’s

tradeoff relative to the meeting rate. The two policies ( ) generate a budget surplus

that is rebated to visitors through .

The corrective policies also affect price levels and price dispersion. In the absence

of the policies, search effort is excessive and price dispersion is inefficiently wide. The

policies tame search effort by reducing price dispersion. Price levels respond to the policies

ambiguously in general. However, if 0 ≥ 0, then posted and transaction prices fall in

the first-order stochastic dominance. The derivative 0 measures the sensitivity of 0, as
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discussed for Proposition 3.4, and the condition 0 ≥ 0 is satisfied by well-known meeting
functions (see Example 2.2). When 0 ≥ 0, the responses of  and  () to the policies are

relatively weak. In this case, the policies affect a stayer’s expected surplus conditional on

having a meeting,  (), primarily through the effective cost of entry, (1− ) . Because

 reduces this effective cost, it reduces the level of  needed for a stayer to break-even on

entry. The fall in  is delivered by lower prices.

4.3. Management of aggregate activities

I focus on how the corrective policies depend on . A higher  is a better economic

condition, arising from aggregate supply or demand. In Figure 1, an increase in  shifts

up the curve  () and leaves the curve  () intact. Equilibrium  increases. Equilibrium

 increases if the SMSE is one like point E1, but decreases if the SMSE is one like point

E2. The following proposition states how the SMSE and the corrective policies respond to

 (see Supplementary Appendix D for a proof):

Proposition 4.5. Without the corrective policies, an increase in  has the following effects

on the SMSE: d
d

 0, d
d

 0, d
d

 0, d∆

d
 0, d

d
  0, and d

d
  0. If 000  0,

then d
d

 0. If 000  0, then there exists  ∈ (0∞] such that d
d

 0 iff   .

With the efficient policies in (4.13), a sufficient condition for d
d

 0 and
d
d

 0 is

0 () ≤ (− 1) .

An increase in  increases the market tightness, increases the meeting rate for a visitor,

increases the two bounds on prices and shifts the price distributions to higher prices. These

effects are intuitive. When the joint value of a trade increases, more stayers enter the

market, which increases the market tightness. Equilibrium prices increase to be consistent

with the optimal choices of both sides of the market. For visitors, the benefit of a higher

 induces them to enter a submarket that has a higher meeting rate, which necessarily

comes with higher prices. For stayers, the meeting probability falls because of the higher

entry of stayers. However, the expected surplus for a stayer in the market (unconditional

on a meeting) must remain the same as the fixed cost of entry. This implies that a
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stayer’s expected surplus conditional on a meeting must rise. For this to happen despite

the decrease in the stayer’s trading probability, prices must increase to raise the stayer’s

surplus conditional on a trade. Moreover, as explained for Corollary 3.1, the increase in a

visitor’s meeting rate  widens price dispersion by reducing the trading probability for a

stayer by more at high prices than at low prices.17

Without the corrective policies, an improvement in the economic condition results in

an over-heated economy. Search effort and a visitor’s meeting rate increase by an excessive

amount, resulting in inflated prices and inefficiently wide dispersion in prices. The policies

described by Proposition 4.4 are automatic stabilizers for the economy even if the policies

do not respond to the increase in . These policies tame visitors’ search effort, moderate

the increase in aggregate output and prevent price dispersion from widening excessively.

Moreover, Proposition 4.5 shows that if 0 ≤ (− 1) , the tax on the joint value of a
trade should increase in an economic boom and decrease in a recession. To accompany this

procyclical tax, the subsidy to stayers’ entry should also be procyclical.

The corrective policies contrast with those in Diamond (1982), who assumes the match-

ing function to have increasing returns to scale. In the current model, the meeting and the

matching functions have constant returns to scale. Instead, the inefficiency arises from an

externality in visitors’ choice of search effort. Also, in contrast to Diamond’s recommen-

dation to manage aggregate demand, the corrective policies in Proposition 4.5 call for a

policy mix that manages both aggregate demand and supply.

5. Conclusion

This paper constructs a tractable model of sequentially mixed search, which has directed

search followed by noisy matching with multiple offers. I establish existence of a unique

equilibrium and analyze the novel implications of the equilibrium on quantities and price

dispersion. Moreover, I show that an increase in the meeting efficiency widens price dis-

17The variable  responds to a higher  ambiguously. Because a higher  induces search effort to increase,

the surplus that a visitor expects to concede to a stayer in a meeting increases. To restrict the increase

in this concession, a visitor may reduce . This happens when search effort is high. When search effort is

low, the direct effect of  on  dominates, in which case  increases.
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persion. An extension endogenizing search effort shows that the equilibrium is constrained

inefficient, where search effort is inefficiently high and can be strategic complements among

visitors. Under a mild condition, policies that restore efficiency should lean against the

wind to manage aggregate demand and supply.

The simple framework of SMS in this paper allows for several extensions. An obvious

extension is to introduce heterogeneity among visitors, say, in their valuation of the good.

This valuation can be either public or private information. In both cases, the modifications

to the SMSE are straightforward. Visitors of different types will self-select into different

submarkets indexed by (  ), with higher-valuation visitors selecting a higher  and

a higher  . As in this paper, the SMSE is constrained efficient when search effort is

exogenous and inefficient when search effort is endogenous.

A more substantial extension is to allow for many-to-many meetings. That is, each

stayer and each visitor can both meet more than one individual on the other side of the

market. This extension needs to specify a procedure by which individuals select trading

partners from the meetings. In a sequel (Shi, 2018), I have studied many-to-many meetings

with two selection mechanisms. In one, stayers select visitors, where stayers posting lower

prices select earlier. In the other, visitors selected stayers according to a predetermined

order of visitors. Both selection mechanisms lead to the same expected payoffs to the

market participants and constrained efficiency of the equilibrium.

The third extension is to incorporate trading relationships and business cycles. In

the goods market, past trades create customer relationships, as analyzed in Gourio and

Rudanko (2014) and Shi (2016). In the labor market, employment is a lasting relationship

between a firm and a worker, as analyzed by Burdett and Mortensen (1998). In both

markets, individuals in a relationship can continue to search. By embedding search on the

relationship into a business cycle model, the analysis can shed light on how the turnover

of relationships and the price distribution fluctuate in the business cycle. Directed search

in the first stage of SMS will be important for such an analysis to be tractable by making

the SMSE block recursive, as formulated by Shi (2009) and Menzio and Shi (2010).
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Appendix

A. Proofs for Propositions 4.2 and 4.3

Proof of Proposition 4.2:

First, I prove that a visitor’s optimal choices ( ̃) are interior and satisfy (4.7) and

(4.8). Because  ( ̃) is differentiable in ( ̃), the optimal choices satisfy the first-order

conditions if they are interior. The derivative 1 ( ̃) is equal to the right-hand side of

(4.7) multiplied by (̃+ 0). Since  (0) = 0,  (0) = 1 and 0 (0) = −1
2
, then

1 (0 ̃) = (̃+ 0) [ − 0 (0)]  0 for all ̃ ≥ 0

where the inequality is a maintained assumption. Similarly, 1 (∞ ̃)  0. Thus, for all

̃  0, the optimal  is interior and satisfies the first-order condition (4.7). 2 ( ̃) is

given by the right-hand side of (4.8). In any symmetric SMSE, I have:

2 ( ) = −0 + − − 
h
1− 

2

i


Substituting − from the version of (4.7) in the symmetric SMSE, I get:

2 ( ) = −0 + 
h
− 1 + 

2

i


Since 0 (0) = 0, then 2 ( 0)  0 for   0. That is, in any symmetric SMSE, ̃ =   0.

Also, 2 (∞)  0, and so the optimal ̃ satisfies ̃ ∞. Thus, in any symmetric SMSE,
the optimal ̃ is interior and satisfies the first-order condition (4.8).

Second, I prove that a unique SMSE exists. Recall that, given any ,  () denotes the

solution for  to the first equation in (4.9) and  () the solution to the second equation.

The equilibrium value of  solves  () −  () = 0. The assumption   0 (0) implies

 (0)  0. Also,  (∞) = 0. Since 0 (0) = 0 and  (0) = 0, then  (0) = 0   (0) and

 (∞)  0 =  (∞). Thus, the equation  () =  () has at least one solution in (0∞).
To prove that the solution is unique, compute:

0 () =
−

00
0 + + 0

 0, 0 () =
00 − 2


£
(+ 1) +0

2
+ 00

¤ 
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Here I substituted 0 = 00

− (−1)


. The difference [0 (0)− 0 (0)] has the same sign asµ

00

0
+ + 0

¶
00 + 

∙
00

0

µ
− 1

2

¶
+ 



2

¸


Since this is positive, then 0 ()  0 () for all  ≥ 0. Thus, the solution to  () =  ()

is unique, as multiple solutions necessarily have alternating signs of [0 ()− 0 ()].

Third, I prove 1 ( 
∗)  1 and find the condition for 1 ( 

∗)  0, where  ( ) is

a visitor’s optimal choice of ̃ given ( ). Differentiating (4.8), I can compute:

1 ( ) =
 () 

−22 ( ̃)
[0 + ̃00] 

In the symmetric SMSE, ̃ = . Using the features of  in Lemma 4.1, I can evaluate:

22 (
∗ ) = −00 −  [− 1 + 3]  0

1 ( 
∗) = (∗)∗

−22(∗)

£
∗
3
− 1

2

¤


Here ∗ is used instead of  because the first-order condition of , (4.7), is used to substitute

the term −̃. Thus, 1 ( ∗)  0 if and only if ∗  3
2
. Moreover, 1 ( 

∗)  1 if and

only if 00 + 
¡
− 1

2

¢
 0, which is satisfied.

Finally, suppose  () = 0̂ () for some constant 0  0 and a function ̂ (). An

increase in 0 is an exogenous increase in the marginal cost of search effort. A reduction

in 0 is an exogenous reduction in the marginal cost of search effort. Differentiating (4.9)

with respect to 0 shows
d
d0

 0, d
d0

 0, and d
d0

 0. Since 0 ()  0 and 
0
 ()  0

by Corollary 3.1, then d
d0

  0 and d
d0

  0. Similar to the proof of the effects

of  later in Proposition 4.4, the increase in  and the fall in  imply that, if 0 ≥ 0,

then d
d0

 0 and d
d0

 0. That is, an in 0 increase prices in the first-order stochastic

dominance in  and . QED

Proof of Proposition 4.3:

The first equation in (4.10) is identical to the first equation in (4.9). For any given ,

the common solution for  to the two equations is  (). Let 

 () denote the solution for

the equilibrium  to the second equation in (4.9), and  () the solution for the socially

optimal  to the second equation in (4.10). Denote ∆ () =  ()−  () and ∆ () =
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 () −  (). Then, the equilibrium  solves ∆ () = 0, and the socially optimal 

solves ∆ () = 0. As shown in the proof of Proposition 4.2, ∆ 0 ()  0. Similarly,

∆ 0 ()  0. For any  ≥ 0 and   0, the right-hand side of the second condition in

(4.9) is strictly greater than that of the second condition in (4.10). For any given  ≥ 0,
a smaller  is required to satisfy the second equation in (4.9) than to satisfy the second

equation in (4.10). That is,  ()   () for all  ≥ 0. This implies ∆ ()  ∆ ()

for all  ≥ 0. Since ∆ 0 ()  0 and ∆ 0 ()  0, the solution for  to ∆ () = 0 must

be strictly larger than the solution for  to ∆ () = 0. Because  satisfies the common

equation  =  () in the SMSE and the social optimum, and because 
0
 ()  0, then 

is lower in the equilibrium  than in the social optimum. Backing out  from the common

equation for  () in the SMSE and in the social optimum, I conclude that  is higher in

the SMSE than in the social optimum. This completes the proof of Proposition 4.3. QED

B. Proof of Proposition 4.4

(i) The text preceding the proposition has established the result that the policies (  )

induce the SMSE to be socially efficient.

(ii) By Proposition 4.3, the SMSE without the policies has an excessive , a deficient

 and an excessive , relative to the social optimum. Because the efficient policies restore

the social optimum, they reduce , increase  and reduce .

(iii) I analyze the effects of the policies on prices in three steps. First, I reduce the

dimension of the policies and variables. To do so, let  depend on  as in (4.13). Then,

for all , the first equation in (4.12) is the same as the first equation in (4.9), and the

common solution for  to the two equations is  =  (). For any given ,  () does not

depend on the policies directly. Also, 0 ()  0, as shown in the proof of Proposition 4.2.

Substituting  =  () into the second equation of (4.12), I get:

0 () = (1− )  ()
h
 ()− 1 + 

2

i
=()

 (B.1)

Second, I compute the effects of  on ( ),  and (  ), taking into account

the dependence of  on  in (4.13). In this computation,  is arbitrary instead of the
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efficient one. However, if the derivative of a variable with respect to  is positive, then

the variable increases under the efficient policies, because the efficient policies have   0.

Differentiating (B.1) with respect to , I get:

d

d
=
−0
1− 

∙
00 +

(2− 1) 00 + 0
00 + (+ 0) 0

1− 

2


¸−1
 0.

This implies d
d
= 0 ()

d
d

 0 and

d

d
=

00

00 + (+ 0) 0
d

d
 0

Since aggregate output is  =  [1− −], it is clear that d
d

 0. The coefficients

of variation in prices,  () and  (), are given by (3.1). Since 0 ()  0 and

0 ()  0 by Corollary 3.1, and since
d
d

 0, then d
d

  0 and d
d

  0.

Third, I compute the effects of  on  () and prices, again taking into account the

dependence of  on . With the policies,  () =
(1−)
()

. Using the above results for d
d

and d
d
, I compute:

−


©
[00 + (+ 0) 

0]00 + [(2− 1) 00 + 0] 1−
2


ª
d()

d

= [(2− 1) 00 + 0] 1−
2

 − (− 1) 00 + [00 + (+ 0) 
0]00

For the right-hand side to be strictly positive, a sufficient condition is that the difference

between the first two terms is non-negative. Substituting 0 from (B.1) and substituting

00 = 0 + (− 1) 0, I rewrite this difference as:
1− 

2
 {(2− 1) 0 + [− 1 + ] 0} 

Since   1, a sufficient condition for the above expression to be strictly positive is 0 ≥ 0.
Thus, 0 ≥ 0 is sufficient for d()

d
 0.

Assume 0 ≥ 0. For any given , (4.1) implies:


d (|)
d

= − d
d
− d ()

d
 0

Thus, the policies reduce posted prices in the first-order stochastic dominance. Similar to

(2.5), the distribution of transactions prices is:

 (|) ≡ 1− − (|)

1− −
=
1− ()



1− −

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where the second equality comes from substituting  from (4.1). Because  reduces  ()

and , then
d(|)
d

 0 for any given . That is, the policies reduce transaction prices in

the first-order stochastic dominance. Moreover, (4.2) implies:

d

d
=
d ()

d
 0,

d

d
= 

∙
d ()

d
+  ()

d

d

¸
 0

The policies affect the price spread, ∆ =  − , as follows:

d∆

d
=
¡
 − 1¢ d ()

d
+  ()

d

d
 0

This completes the proof of Proposition 4.4. QED
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C. Proofs of Proposition 3.4 and Lemma 4.1

Proof of Proposition 3.4:

I prove the following proposition that includes the effects of , in addition to the effects

of  stated in Proposition 3.4:

Proposition C.1. (i) d∗
d

 0, d
d

 0, d
d

 0, d
d

 0, d∆

d
 0, and prices increase

in  in the first-order stochastic dominance in  and . (ii) d∗
d

 0, d
d
 ()  0 and

d
d
 ()  0 for  = . (iii) d

d
 0 iff   0, where 0 is defined by (3.3). (iv)

d
d
≤ 0 iff (0 −) 0  0; If 0 ≥ 0 then d

d
 0 and d∆

d
 0. (v) If 0 ≥ 0 and   0,

an increase in  reduces posted prices and transaction prices in the first-order stochastic

dominance.

Proof. Taking ln on (3.2) and differentiating yields:µ
00

0
+ 

¶
d


=
d


+

µ
00

0
+ 1

¶
d


 (C.1)

where the asterisk on  is suppressed and the argument of  is  = . Since 0  0

and 00  0, then d
d

 0 and d
d

 0. The coefficients of variation given in (3.1) are only

functions of . Moreover, 0 ()  0 and 0 ()  0 (see Corollary 3.1). Because
d
d

 0

and d
d

 0, then d
d
 ()  0 and

d
d
 ()  0 for  = .

Differentiating  () and substituting (d) yields:µ
00

0
+ 

¶
d

0
=
d


+ (1− )

d




Clearly, d
d

 0. The definition of 0 in (3.3) implies that   1 is equivalent to   0.

Then, d
d

 0 iff   1 and, hence, iff   0. Substituting  from (2.9) into (2.8) and
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differentiating, I get:





µ
00

0
+ 

¶
d =

− 1

d −

µ


0
0 + 

¶
d


(C.2)

−



µ
00

0
+ 

¶
d =

− 1 + 


d − 0

0
(1− )

d


(C.3)

−


¡
00
0 + 

¢
d∆ =

(1−−)(−1)+


d

+
£
(− 1 + −) 

0 
0 + −

¤
d


(C.4)

I have used 0 () = 1

[00 − (− 1) 0], where the argument of  and  is  = . Because

  1, the above equations show that d
d

 0, d
d

 0 and d∆

d
 0. The effects of  on

(  ∆) depend on 0. Clearly, d
d
≤ 0 iff (1− ) 0  0 and, hence, iff (0 −) 0  0.

Note that − 1 + −  0 for all   0. If 0 ≥ 0, then d
d

 0 and d∆

d
 0.

The cumulative distribution function of posted prices is  (|) given by (2.6) and the
cumulative distribution function of transaction prices is  (|) given by (2.5). For any
given , differentiating these functions with respect to () yields:



µ
00

0
+ 

¶
d = −− 1 + 


d +

∙
(1−  )



0
0 +  (1−  )

¸
d


(C.5)


¡
00
0 + 

¢
d

= − ¡ −1

−1 +


−1
¢
d



+
£
0
0
¡

1
−1 − 

−1
¢
+ 

¡
1

−1 − 1
−1

¢¤
d



(C.6)

Because   1, the coefficients of (d) in both equations are strictly negative. Thus,

an increase in  increases both posted and transaction prices in the first-order stochastic

dominance. Note that  ≤ . If 0 ≥ 0 and   0 (i.e.,   1), then the coefficients

of (d) in (C.5) and (C.6) are strictly positive for all interior . Thus, an increase in 

reduces both posted and transaction prices. QED

Proof of Lemma 4.1:

Using L’Hopital’s rule, one can verify the properties in (i) of Lemma 4.1. To verify

 ()  0 in (ii) of the Lemma, note that 1  − if and only if   0. Thus,  ()  0 for

2



all  6= 0. In addition,  (0) = 1  0, as proven in part (i). To prove 0 ()  0 for all , it
suffices to prove 0 ()  0 for all  6= 0, since 0 (0) = −1

2
 0 by (i). Compute

0 () =
1

2

£
(+ 1) − − 1¤ 

Examine the expression in [] on the right-hand side for  6= 0. The derivative of the

expression with respect to  is equal to −−, which is positive if and only if   0. Thus,
the expression is maximized as  → 0. Because the expression approaches 0 as → 0, the

expression is negative for all  6= 0. Thus, 0 ()  0 for all  6= 0. Similarly, compute:

00 () =
1

3

£
2− ¡2 + 2+ 2¢ −¤ 

The expression in [] on the right-hand side is increasing in  and, at  = 0, it is equal to 0.

Thus, the expression is positive if and only if   0. Since 3  0 if and only if   0, then

00 ()  0 for all . QED

D. Proof of Proposition 4.5

Comparative statics with respect to  without the policies: In the absence of the

policies, the SMSE is characterized by (4.9). For any given , the solution for  is  ()

to the first equation in (4.9) and  () to the second equation. To prove
d
d

 0, note that

()


 0 and

()


= 0, where the partial derivatives are taken for any given . Since

0 ()  0 () with the optimal , then

d

d
=

 () 

0 ()− 0 ()
 0

Because
()


= 0, then

d

d
= 0 ()

d

d


Therefore, the sign of d
d
is the same as 0 (), which is ambiguous and examined below.

Similarly, using the notation  = (+ 0)  to express  =


− 0, I can use the two

equations in (4.9) to solve for  =  () and  =  (). Then,

0 () =
−0
00
, 

0 () =
00 − 

2



£
00 + 

2
0
¤
+ 00 




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Again, it can be verified that 0 ()  0 (). Thus, there is a unique solution  to  () =

 (), and the solution satisfies
d
d

 0. Furthermore,
d()

d
 0, and so d

d
 0. If

d
d
≤ 0, then d

d
≤ 0 and d∆

d
 0. If d

d
 0, then d

d
 0 and

d∆

d
= ( − 1) d

d
+ 

d

d
 0

In all cases, d∆

d
 0. Since 0 ()  0 and 0 ()  0, the result d

d
 0 implies

d
d
  0 and d

d
  0.

Finally, I establish the sign of 0 (). Return to the use of  instead of  as the variable.

Denote  () as the solution to  ()  = 200(). Then, 0 ()  0 if and only if

   (). Because 
00  0, then  (0)  0. Consider the following cases:

Case (i): 000  0. In this case, 0 ()  0 for all . I prove that 0 ()  0 for all

 ≥ 0, which implies
d
d

 0 by the above proof. A sufficient condition for this result

is  ()   () for all  ≥ 0. To prove that this sufficient condition holds, suppose, to
the contrary, that  () =  () for some  ∈ [0∞). Clearly,   0 and 0 () = 0.

Without loss of generality, let  be the smallest solution to  () =  (). Because

 ()   () for all   , and  () =  (), then 0 () ≥ 0 ()  0. This

contradicts the fact that 0 () = 0. Thus,   0 does not exist, and so  ()   () for

all   0. In this case, the SMSE is depicted by point E1 in Figure 1.

Case (ii): 000  0, but  ()   () for all . As in case (i), this case has 
0
 ()  0

for all , and so d
d

 0.

Case (iii): 000  0, and there exists   0 such that  () =  (). Let  be

the smallest solution to  () =  (). I prove that  is the only solution to  () =

 (). Suppose, to the contrary, that there is another solution 1 ( ) to  () =

 (). Without loss of generality, let 1 be the smallest solution among all   . Then

 (1 − )   (1 − ) for sufficiently small   0. This fact and the definition of 1 imply

0 (1) ≤ 0 (1)  0. This contradicts the fact that 0 (1) = 0. Thus, 1 does not exist;

i.e.,  ()   () for all   . Therefore, 
0
 ()  0 if and only if   . That is,

d
d

 0

if and only if the optimal  satisfies   . In this case, the SMSE is depicted by point

E2 in Figure 1.
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Case (iv): 000 = 0. In this case,  () is constant over . If  ()   () for all   0,

the case is qualitatively the same as case (i). If there is a solution   0 to  () =  (),

then  () =  () for all   . In this case,
d
d

 0 if   , and
d
d
= 0 if   .

The effect of  on the efficient policies: Under the efficient policies in (4.13), the

equilibrium allocation coincides with the social optimum given by (4.10). Differentiating

(4.10) with respect to , I get:

d

d
=

−


h
(+ 0) 0 +

³
20
00 + 1

´
00
i  0 d

d
=

00

00
d

d
 0

I have substituted 0 = 1

[00 − (− 1) 0]. All variables in the above expressions, as in the

remainder of this proof, are the ones in the social optimum. Differentiating the expression

for  in (4.13) with respect to , I have:

d

d
=

µ
2d

d

¶
2


∙
(− 1) 
+ 0

00

00
+

− 1

− 0

¸


A sufficient condition for d
d

 0 is 0 ≤ −1

. The expression for  in (4.13) shows that

this condition is also sufficient for
d
d

 0. QED

5


