
Chapter 1:
Distributed Information Systems

Gustavo Alonso
Computer Science Department
Swiss Federal Institute of Technology (ETHZ)
alonso@inf.ethz.ch
http://www.iks.inf.ethz.ch/

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 2

Contents - Chapter 1
  Design of an information system

 Layers and tiers
 Bottom up design
 Top down design

  Architecture of an information system
 One tier
 Two tier (client/server)
 Three tier (middleware)
 N-tier architectures
 Clusters and tier distribution

  Communication in an information system
 Blocking or synchronous interactions
 Non-blocking or asynchronous interactions

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 3

Layers and tiers
  Client is any user or program that wants

to perform an operation over the system.
Clients interact with the system through
a presentation layer

  The application logic determines what
the system actually does. It takes care of
enforcing the business rules and
establish the business processes. The
application logic can take many forms:
programs, constraints, business
processes, etc.

  The resource manager deals with the
organization (storage, indexing, and
retrieval) of the data necessary to
support the application logic. This is
typically a database but it can also be a
text retrieval system or any other data
management system providing querying
capabilities and persistence.

Client

Application Logic

Resource Manager

Presentation layer

Business rules

Business objects

Client

Server

Database

Client

Business processes

Persistent storage

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 4

A game of boxes and arrows
  Each box represents a part of the system.
  Each arrow represents a connection

between two parts of the system.
  The more boxes, the more modular the

system: more opportunities for
distribution and parallelism. This allows
encapsulation, component based design,
reuse.

  The more boxes, the more arrows: more
sessions (connections) need to be
maintained, more coordination is
necessary. The system becomes more
complex to monitor and manage.

  The more boxes, the greater the number
of context switches and intermediate
steps to go through before one gets to
the data. Performance suffers
considerably.

  System designers try to balance the
flexibility of modular design with the
performance demands of real
applications. Once a layer is established,
it tends to migrate down and merge with
lower layers.

There is no problem in system
design that cannot be solved by

adding a level of indirection.
There is no performance

problem that cannot be solved
by removing a level of

indirection.

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 5

Top down design
  The functionality of a system is divided

among several modules. Modules cannot
act as a separate component, their
functionality depends on the
functionality of other modules.

  Hardware is typically homogeneous and
the system is designed to be distributed
from the beginning.

top-down design

PL-A PL-B
PL-C

AL-A
AL-B

RM-1 RM-2

top-down architecture

RM-1 RM-2

AL-A

AL-B

PL-A
PL-B

PL-C

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 6

Top down design

presentation
layer

resource management
layer

application logic
layer

client

in
fo

rm
at

io
n

sy
st

em

1. define access channels
and client platforms

2. define presentation
formats and protocols for
the selected clients and
protocols

3. define the functionality
necessary to deliver the
contents and formats needed
at the presentation layer

4. define the data sources
and data organization needed
to implement the application
logic

top-down design

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 7

Bottom up design
  In a bottom up design, many of the

basic components already exist.
These are stand alone systems which
need to be integrated into new
systems.

  The components do not necessarily
cease to work as stand alone
components. Often old applications
continue running at the same time as
new applications.

  This approach has a wide
application because the underlying
systems already exist and cannot be
easily replaced.

  Much of the work and products in
this area are related to middleware,
the intermediate layer used to
provide a common interface, bridge
heterogeneity, and cope with
distribution.

Legacy systems

New
application

Legacy
applicati

on

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 8

Bottom up design
bottom-up design

PL-A PL-B
PL-C

AL-A
AL-B

bo
tt

om
-u

p
ar

ch
it
ec

tu
re

AL-A

AL-B

PL-A
PL-B

PL-C

wrapper wrapper wrapper

wrapper wrapper wrapper

legacy
application

legacy
application

legacy
system

legacy
system

legacy
system

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 9

Bottom up design

presentation
layer

resource management
layer

application logic
layer

client

in
fo

rm
at

io
n

sy
st

em

1. define access channels
and client platforms

2. examine existing resources
and the functionality
they offer

3. wrap existing resources
and integrate their functionality
into a consistent interface

4. adapt the output of the
application logic so that it
can be used with the required
access channels and client
protocols

bottom-up design

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 10

One tier: fully centralized
  The presentation layer, application

logic and resource manager are built
as a monolithic entity.

  Users/programs access the system
through display terminals but what
is displayed and how it appears is
controlled by the server. (These are
“dumb” terminals).

  This was the typical architecture of
mainframes, offering several
advantages:
 no forced context switches in

the control flow (everything
happens within the system),

 all is centralized, managing and
controlling resources is easier,

  the design can be highly
optimized by blurring the
separation between layers.

1-tier architecture

Server

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 11

Two tier: client/server
  As computers became more powerful, it

was possible to move the presentation
layer to the client. This has several
advantages:
  Clients are independent of each

other: one could have several
presentation layers depending on
what each client wants to do.

  One can take advantage of the
computing power at the client
machine to have more sophisticated
presentation layers. This also saves
computer resources at the server
machine.

  It introduces the concept of API
(Application Program Interface). An
interface to invoke the system from
the outside. It also allows designers
to think about federating the
systems into a single system.

  The resource manager only sees one
client: the application logic. This
greatly helps with performance
since there are no client
connections/sessions to maintain.

2-tier architecture

Server

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 12

API in client/server
  Client/server systems introduced the notion of service (the client invokes a service

implemented by the server)
  Together with the notion of service, client/server introduced the notion of service

interface (how the client can invoke a given service)
  Taken all together, the interfaces to all the services provided by a server (whether there

are application or system specific) define the server’s Application Program Interface
(API) that describes how to interact with the server from the outside

  Many standardization efforts were triggered by the need to agree to common APIs for
each type of server

resource management
layer

se
rv

er

service
interface

service
interface

service
interface

service
interface

server’s API

service service service service

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 13

Technical aspects of the 2 tier architecture
  There are clear technical advantages when going from one tier to two tier

architectures:
  take advantage of client capacity to off-load work to the clients
 work within the server takes place within one scope (almost as in 1 tier),
  the server design is still tightly coupled and can be optimized by ignoring

presentation issues
 still relatively easy to manage and control from a software engineering point

of view

  However, two tier systems have disadvantages:
 The server has to deal with all possible client connections. The maximum

number of clients is given by the number of connections supported by the
server.

 Clients are “tied” to the system since there is no standard presentation layer.
If one wants to connect to two systems, then the client needs two
presentation layers.

 There is no failure or load encapsulation. If the server fails, nobody can
work. Similarly, the load created by a client will directly affect the work of
others since they are all competing for the same resources.

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 14

The main limitation of client/server
 The responsibility of dealing

with heterogeneous systems is
shifted to the client.

 The client becomes responsible
for knowing where things are,
how to get to them, and how to
ensure consistency

  This is tremendously inefficient
from all points of view (software
design, portability, code reuse,
performance since the client
capacity is limited, etc.).

  There is very little that can be done
to solve this problems if staying
within the 2 tier model.

Server A Server B

  If clients want to access two or more
servers, a 2-tier architecture causes
several problems:
  the underlying systems don’t

know about each other
  there is no common business

logic
  the client is the point of

integration (increasingly fat
clients)

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 15

Three tier: middleware
  In a 3 tier system, the three layers

are fully separated.
  The layers are also typically

distributed taking advantage of the
complete modularity of the design
(in two tier systems, the server is
typically centralized)

  A middleware based system is a 3
tier architecture. This is a bit
oversimplified but conceptually
correct since the underlying systems
can be treated as black boxes. In
fact, 3 tier makes only sense in the
context of middleware systems
(otherwise the client has the same
problems as in a 2 tier system).

3-tier architecture

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 16

Middleware
  Middleware is just a level of

indirection between clients and other
layers of the system.

  It introduces an additional layer of
business logic encompassing all
underlying systems.

  By doing this, a middleware system:
 simplifies the design of the

clients by reducing the number
of interfaces,

 provides transparent access to
the underlying systems,

 acts as the platform for inter-
system functionality and high
level application logic, and

  takes care of locating resources,
accessing them, and gathering
results.

  But a middleware system is just a
system like any other! It can also be
1 tier, 2 tier, 3 tier ...

Middleware or
global application logic

clients

Local resource
managers

Local application logic

Server A Server B

middleware

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 17

Technical aspects of middleware
  The introduction of a middleware layer helps in that:

  the number of necessary interfaces is greatly reduced:
•  clients see only one system (the middleware),
•  local applications see only one system (the middleware),

  it centralizes control (middleware systems themselves are usually 2 tier),
  it makes necessary functionality widely available to all clients,
  it allows to implement functionality that otherwise would be very difficult to

provide, and
  it is a first step towards dealing with application heterogeneity (some forms

of it).
  The middleware layer does not help in that:

  it is another indirection level,
  it is complex software,
  it is a development platform, not a complete system

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 18

A three tier middleware based system ...
External clients

connecting logic

control

user
logic

internal
clients

2
tie

r s
ys

te
m

s

Resource
managers

wrappers

middleware

Resource
manager

2 tier system

m
id

dl
ew

ar
e

sy
st

em

External client

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 19

N-tier: connecting to the Web
  N-tier architectures result from

connecting several three tier
systems to each other and/or by
adding an additional layer to
allow clients to access the system
through a Web server

  The Web layer was initially
external to the system (a true
additional layer); today, it is
slowly being incorporated into a
presentation layer that resides on
the server side (part of the
middleware infrastructure in a
three tier system, or part of the
server directly in a two tier
system)

  The addition of the Web layer led
to the notion of “application
servers”, which was used to refer
to middleware platforms
supporting access through the
Web

client

resource management
layer

application logic
layer

information system

N-tier
architecture

middleware

presentation
layer

Web server

Web browser

HTML filter

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 20

INTERNET

FIREWALL

LAN

Web
server
cluster

LAN,
gateways

LAN

internal
clients

LAN

middleware
application

logic

resource
management

layer
database

server

LAN

middleware
application

logic

additional resource
management layers

LAN

Wrappers
and

gateways

file
server

application

N-tier systems in reality

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 21

Blocking or synchronous interaction
  Traditionally, information systems

use blocking calls (the client sends a
request to a service and waits for a
response of the service to come back
before continuing doing its work)

  Synchronous interaction requires
both parties to be “on-line”: the
caller makes a request, the receiver
gets the request, processes the
request, sends a response, the caller
receives the response.

  The caller must wait until the
response comes back. The receiver
does not need to exist at the time of
the call (TP-Monitors, CORBA or
DCOM create an instance of the
service/server /object when called if
it does not exist already) but the
interaction requires both client and
server to be “alive” at the same time

Call
Receive

Response
Answer

idle time

  Because it synchronizes client and
server, this mode of operation has
several disadvantages:
 connection overhead
 higher probability of failures
 difficult to identify and react to

failures
  it is a one-to-one system; it is

not really practical for nested
calls and complex interactions
(the problems becomes even
more acute)

client server

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 22

Overhead of synchronism
  Synchronous invocations require to

maintain a session between the
caller and the receiver.

  Maintaining sessions is expensive
and consumes CPU resources. There
is also a limit on how many sessions
can be active at the same time (thus
limiting the number of concurrent
clients connected to a server)

  For this reason, client/server
systems often resort to connection
pooling to optimize resource
utilization
 have a pool of open connections
 associate a thread with each

connection
 allocate connections as needed

  Synchronous interaction requires a
context for each call and a context
management system for all
incoming calls. The context needs to
be passed around with each call as it
identifies the session, the client, and
the nature of the interaction.

request()

do with answer

receive
process
return

session
duration

request()

do with answer

receive
process
return

Context is lost
Needs to be restarted!!

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 23

Failures in synchronous calls
  If the client or the server fail, the

context is lost and resynchronization
might be difficult.
  If the failure occurred before 1,

nothing has happened
  If the failure occurs after 1 but

before 2 (receiver crashes), then
the request is lost

  If the failure happens after 2 but
before 3, side effects may cause
inconsistencies

  If the failure occurs after 3 but
before 4, the response is lost but
the action has been performed
(do it again?)

  Who is responsible for finding out
what happened?

  Finding out when the failure took
place may not be easy. Worse still,
if there is a chain of invocations
(e.g., a client calls a server that calls
another server) the failure can occur
anywhere along the chain.

request()

do with answer

receive
process
return

1
2

3 4

request()

do with answer
timeout
try again

do with answer

receive
process
return

1
2

3

receive
process
return

2’

3’

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 24

Two solutions
ENHANCED SUPPORT

  Client/Server systems and
middleware platforms provide a
number of mechanisms to deal with
the problems created by
synchronous interaction:
 Transactional interaction: to

enforce exactly once execution
semantics and enable more
complex interactions with some
execution guarantees

 Service replication and load
balancing: to prevent the service
from becoming unavailable
when there is a failure
(however, the recovery at the
client side is still a problem of
the client)

ASYNCHRONOUS INTERACTION
  Using asynchronous interaction, the

caller sends a message that gets
stored somewhere until the receiver
reads it and sends a response. The
response is sent in a similar manner

  Asynchronous interaction can take
place in two forms:
 non-blocking invocation (a

service invocation but the call
returns immediately without
waiting for a response, similar
to batch jobs)

 persistent queues (the call and
the response are actually
persistently stored until they are
accessed by the client and the
server)

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 1 25

Message queuing
  Reliable queuing turned out to be a

very good idea and an excellent
complement to synchronous
interactions:
 Suitable to modular design: the

code for making a request can
be in a different module (even a
different machine!) than the
code for dealing with the
response

  It is easier to design
sophisticated distribution modes
(multicast, transfers, replication,
coalescing messages) an it also
helps to handle communication
sessions in a more abstract way

 More natural way to implement
complex interactions between
heterogeneous systems

do with answer

request()

receive
process
return

queue

queue

