
Fluid simulation with two-way interaction rigid body using a
heterogeneous GPU and CPU environment

José Ricardo da S. Junior
Media Lab - UFF

Esteban W. Clua
Media Lab - UFF

Paulo A. Pagliosa
FACOM - UFMS

Anselmo Montenegro
Media Lab - UFF

Figure 1: Fluid simulation with two-way interaction between rigid bodies

Abstract

Simulation of natural phenomena, such as water and smoke, is a
very important topic to increase real time scene realism in video-
games. Besides the graphical aspect, in order to achieve realism, it
is necessary to correctly simulate and solve its complex governing
equations, requiring an intense computational work. Fluid simu-
lation is achieved by solving the Navier-Stokes set of equations,
using a numerical method in CPU or GPU, independently, as these
equations do not have an analytical solution. The real time simula-
tion also requires the simulation of interaction of the particles with
objects in the scene, requiring many collision and contact forces
calculation, which may drastically increase the computational time.

In this paper we propose an heterogeneous multicore CPU and GPU
hybrid architecture for fluid simulation with two-ways of interac-
tion between them, and with a fine granularity control over rigid
body’s shape collision. We also show the impact of this heteroge-
neous architecture over GPU and CPU bounded simulations, which
is commonly used for this kind of application. The heterogeneous
architecture developed in this work is developed to best fit the Sin-
gle Instruction Multiple Thread (SIMT) model used by GPUs in all
simulation stages, allowing a high level performance increase.

Keywords:: Smoothed Particle Hydrodynamics, Fluids, CUDA,
GPU aceleration

Author’s Contact:

{jricardo,esteban,anselmo}@ic.uff.br
pagliosa@facom.ufms.br

1 Introduction

Simulating natural phenomena like flow rivers or smoke has be-
came popular in computer games and movie films. Using aerody-
namics effects in races and flight simulation augment even more the
immersion during its usage. These type of phenomena is simulated
through solving fluid’s governing equations with different attributes
according to the desired effect. Due its important aspect in many
areas, a new knowledge area called Computational Fluid Dynamics
(CFD) has emerged for studying methods to solve these governing
equations numerically. Even more, to not break the scene immer-
sion, interaction with dynamic and static rigid bodies in the ambient
where the fluid is being simulated must be considered, performing
collision with them and computing forces coming from these rigid
bodies and to these ones.

For solving its governing equations numerically, fluid simulation
can be done by using Eulerian and/or Lagrangian approach. In the
Eulerian approach, the domain where the simulation occurs is dis-
cretized into a fixed grid and variables like pressure and density
are calculated in these cells. On the other hand, in Lagrangian ap-
proach, these variables are calculated in the material that moves
with the flow, avoiding unnecessary processing in space where
no fluid is being at. Additionally there is the ALE (Arbitrary

Lagrangian-Eulerian) method, which is a mix between Eulerian and
Lagrangian methods used in the same simulation.

The first real time fluid simulations were performed in CPU, most
time without any interaction with ambient in order to achieve inter-
active frame rates. Later, with the horsepower provided by the GPU
over CPU, additional phenomena could be performed in real time
during fluid simulation like allowing more objects to be simulated
and two-way interaction between them and its surrounded objects.

Unfortunately, in many works where the GPU is used for perform-
ing simulations like fluid and rigid bodies, the CPU is subutilized,
being responsible only for coordinating what needs to be done by
the GPU during the simulation, sitting and waiting it to be ready. In
this case, some CPU’s cores stay idle during the simulation, which
could be used to make some useful processing while waiting for
the GPU to be done. For many cases, this subutilization is due the
fact long time required to do memory data transfer between CPU
and GPU, leading a low overall system performance than doing all
tasks using only GPU without data memory transfer or low data
transfer.

In this paper we present a new architecture for simulating fluid and
rigid body using a heterogeneous multicore CPU and GPU system,
allowing two-way interaction between them, as shown in the simu-
lation of fluid and rigid body in Figure 1. At the same time we fill
the lack of GPU bounded architecture during collision detection,
which in many times processes all elements in the scene at each
frame without making any pre-sort of which ones need really to be
processed. For performance increase, memory independent regular
grids are used for fluid, static and dynamic rigid bodies with an effi-
cient way communication between them. After search in literature,
the author did not find any related work of using a heterogeneous
system for performing this kind of simulation. In this work, the
fluid simulation in done by using the Smoothed Particle Hydrody-
namics (SPH), a mesh free particle Lagrangian based method.

The remainder of this paper is organized as follows. After referring
to related works of fluid simulation in section 2, we describe the
fluid and rigid body approach used in this work in section 3. In
section 4 we describe acceleration data structures employed in the
simulations. In section 5 we present our heterogeneous architecture
of multicore CPU e GPU. In section 6 we show the results and, in
section 7, the conclusions of the paper.

2 Related work

Physical simulation using Eulerian grid-based approach started by
Foster and Metaxas [Foster and Metaxas 1996; Foster and Metaxas
1997] which are the first to propose solving the full 3D Navier-
Stokes equations in order to re-create visual properties of dynamic
fluids. Stam [Stam 1999] simulates dynamic gases using a semi-
Lagrangian integration scheme that archives unconditional stability
using artificial viscosity and rotational damping. Foster and Fedkiw
[Foster and Fedkiw 2001] extended the technique to liquids using
both a level-set method and particles inside the liquid. Enright et
al. [Enright et al. 2002] added particles outside the fluid for free

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 148

surface tracking of the fluid.

Allowing rigid body two-way interaction, Takahashi et al. [Taka-
hashi et al. 2002] presents a simple method for coupling between
fluids and buoyant rigid bodies on regular grids using a combined
Volume of Fluid method and Cubic Interpolated Propagation sys-
tem. Génevaux et al. [Arash et al. 2003] uses marker particles
for free surface representation and performs interaction with de-
formable rigid bodies represented as a collection of spring-mass set
of particles. In [Cohen et al. 2010], the authors use a moving grid
to simulate fluid. In the approach the grid moves together with the
fluid flows, allowing the use of small grid with the benefit of being
able to calculate the fluids variable anywhere in space.

After introduction of particle system by Reeves [Reeves 1983], nat-
ural phenomena that uses mesh less methods starts to appear. Fluid
simulation using SPH is proposed by Desbrun and Gascuel [Des-
brun and paule Gascuel 1996] for simulating deformable objects,
augmenting it later [Stora et al. 1999] for allowing lava simulation
through the viscosity coupling to temperature.

Müller et al. [Müller et al. 2003] uses the SPH method for fluid
simulation in real time, deriving the density and viscosity forces
from the Navier-Stokes equation. After this, the authors augment
this work [Müller et al. 2004] by allowing fluid interaction with
rigid bodies to simulate virtual surgery using a Gaussian quadra-
ture to distribute ghost particles on rigid bodies surfaces, which are
responsible for generating repulsive forces.

Kipfer and Westermann [Kipfer and Westermann 2006] use SPH to
simulate fluid flows over deformable terrains in GPU using shader,
without considering collision with rigid bodies. Kurose and Taka-
hashi [Kurose and Takahashi 2009] simulate fluids and rigid bodies
with two-way interaction between them using SPH in GPU. For the
interaction, the authors discretize rigid body’s polygons into a set of
particles and solve Linear Complementary Problem (LCP) to solve
collision forces between them.

3 Fluid and rigid body models

In this section, the fluid and rigid body models employed in our
approach are explained. The model used for solving fluid’s govern-
ing equations is based on the one proposed by Müller [Müller et al.
2003].

3.1 SPH model

Simulating fluids’ behavior requires the solving of the equations

ρ

(
∂v

∂t
+ v.∇v

)
= −∇p + ρg + µ∇2v, (1)

and
∂ρ

∂t
+∇.(ρv) = 0, (2)

which is known as Navier-Stokes equation for modeling the flow of
incompressible Newtonian fluids. In these equations, ρ represents
the fluid’s density, v the velocity field, p is the pressure field, g is
the resultant of external forces (like gravity) and µ represents the
fluid’s viscosity.

Equation (1) is known as equation of motion and states that changes
in linear momentum must be equal to all forces that act in the sys-
tem. The convective term v.∇v represents the change of a fluid’s
element properties that moves from one position to another, not
used in Lagrangian methods as the material flows with the fluid.

Equation (2) is known as continuity equation or mass conservation
and states that in absence of sinks and drains the mass in the sys-
tem must be constant. For particle based method this equation is
unnecessary as each particle carries a constant mass [Müller et al.
2003].

The Navier-Stokes equation is solved in this paper using the SPH
method, introduced by Lucy [Lucy 1977] and Gingold and Mon-
aghan [Gingold and Monaghan 1977] for simulation of astrophys-

ical problems. The SPH is a mesh free Lagrangian particle based
method that allows for field quantities defined only at discrete par-
ticles to be evaluated anywhere in space using a radial symmetri-
cal smoothing kernel over a set of neighborhood particles inside
a compact support radius [Monaghan 1992]. Evaluating a continu-
ous fieldA(x) scalar quantity is achieved by calculating a weighted
summation of contributions for all particles i ∈ [1...N], with posi-
tion xi, mass mi and additional attributes Ai as

A(x) =
∑
j

mj
Aj

ρj
W (r, h), (3)

where ρi is the density of particle i, r = x−xj and W (r, h) is the
smoothing kernel. Computing the density of ρi can be evaluated
using the equation (3) as

ρi = ρ(xi) =
∑
j

mjW (r, h). (4)

The kernel function W (r, h) must have a finite support, i.e.∫
W (r, h)dr = 1 and W (r, h) = 0 for |r| > h. According to

[Liu and Liu 2003], the value of h must be chosen to allows for
a particle i to have 5, 21 and 27 neighborhood in one, two and
three dimensions, respectively. The gradient and Laplacian of a
smoothed attribute function A(x) is the gradient and Laplacian of
the kernel function, respectively

5A(x) =
∑
j

mj
Aj

ρj
5W (r, h), (5)

52A(x) =
∑
j

mj
Aj

ρj
52 W (r, h). (6)

Using equation (3) for calculating pressure and viscosity forces
generates asymmetrical forces as can be seen when considering
only two particles. To avoid this, pressure and viscosity forces are
evaluated using the following functions

fpressure
i = −

∑
j

mj
pi + pj
2ρj

5W (r, h), (7)

fviscosity
i = µ

∑
j

mj
vj − vi
ρj

52 W (r, h), (8)

where vi is the particle’s velocity and µ is the viscosity coefficient,
respectively. The kernels used to compute these functions are the
ones proposed in [Müller et al. 2003]. The pressure is computed
using a modified ideal gas law state suggested by Desbrun [Desbrun
and paule Gascuel 1996]

pi = k(ρi − ρ0), (9)

where k is the stiffness constant of the fluid and ρ0 is its rest density.
At the end, the acceleration of particle i is computed as

ai =
fpressure
i + fviscosity

i + fexternal
i

ρi
. (10)

In this paper, fexternal
i is the resultant force between the gravita-

tional force and rigid body’s acting forces during collision.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 149

3.2 Rigid body model

A simple rigid body simulation basically only applies gravitational
forces in their center of mass when any collisions occur. In this
case, one of the most expensive tasks in simulating rigid body is
checking for collision and performing calculations of the generated
forces together with others information like normal of the contact
point and depth of interpenetration between the colliders. In gen-
eral, performing collision detection between rigid bodies is done
through the use of polygons or a polygon’s mathematical function
representation. Collision detection using mathematical function is
far away very fast than using polygonal collision as only an equa-
tion needs to be solved. Due its performance, the first step during
collision detection is made by using a coarse representation of the
whole rigid body in a polygon that can be evaluated mathemati-
cally, like a bounding sphere or bounding box. After these broad
phase, rigid bodies that have passed goes through a narrow phase,
where a more accurate collision is done, many times using triangle
level [Moore and Wilhelms 1988]. At the same time, CUDA uses a
SIMT (Single Instruction Multiple Thread) architecture, where an
instruction is performed for a collection of different data elements.
This way, solving the same function for collision detection using
different data elements is even fast using CUDA.

For all the benefits listed, this work discretizes rigid body’s poly-
gons into a set of spheres with the same radius. As fluid ele-
ments are represented using particles, which in turns is a collection
of spheres with the same radius, using spheres to represents rigid
body’s polygons allow for ease collision detection with rigid bod-
ies and fluids, performing two-way interaction between fluid and
rigid bodies.

Discretizing a polygonal model into a set of particles is made by us-
ing a modified of depth peeling [Everitt 2001], originally used for
rendering transparent polygons. The technique has been also ap-
plied to various other operations like collision detection [Trapp and
Döllner 2008] and polygonal discretization [Harada 2007]. In this
work, we use a pre-processing step to discretize the rigid body’s
polygons into a set of particles, as shown in Figure 2. These par-
ticles are only used during collision detection with fluid and others
rigid bodies in the scene. Collision response is made through repul-
sive forces using Discrete Elements Method (DEM) as explained in
section 5.4.

Figure 2: Teapot processing using variable radius parameter: (a)
0.3 radius with com 7337 spheres; (b) 0.5 radius with 2674 spheres;
(c) 0.9 radius with 600 spheres; (d) 1 radius with 668 spheres.

4 Acceleration structure

SPH uses neighborhood particles to calculate fluid’s variable using
an interpolation function. In this case, the complexity is O(n2) for
a set of n particles. To reduce this, a spatial subdivision structure
needs to be used. In this work, a regular grid sized R is used, where
R is the kernel compact support radius [Monaghan 1992] of parti-
cles interpolation. This way, only 27 grid cells needs to be checked
in 3 dimension.

For rigid bodies, a subdivision data structure is also required, as it

is represented by a set of particles for performing collision detec-
tion. Unfortunately, the rigid body’s particle radius maybe not be
the same as the one used to represents the fluid particle’s volume.
Allowing for two-way interaction between fluid and rigid body re-
quires communication between these data structures.

One solution to maintain the search over 27 grid cells is to have a
cell’s size capable of storing the greatest rigid body volume in the
scene. Unfortunately this will cause a degradation of the system as
more particles will need to be computed for fluid processing when
using a smaller radius than rigid body’s particles radius.

To solve this problem, a new data structure presented in
[da Silva Junior 2010] is used. In this work, the author presents
a method that allows for independent regular unbounded hash grids
localized at different memory space of GPU and CPU to communi-
cate each other in a efficient way, which fits best for the purpose of
the presented work.

During the simulation, three regular grids are used. First a regular
grid for fluid’s particles is used, responsible to sort particles based
on their compact support radius. Another one is used for static rigid
body’s particles and finally a regular grid for dynamic rigid body’s
particles. The use of different grids for static and dynamic rigid
body is based on the fact that static rigid body’s particles did not
change its cell location over the simulation, particles are fixed in
space. In this case, only the fluid’s and dynamic rigid body’s grids
need to be updated when necessary.

5 Heterogeneous architecture

Load balance over CPU and GPU is generally made for generic
tasks [Joselli et al. 2009]. In this case, these tasks running in paral-
lel must be independent of each other in order to avoid problems of
data corruption over multiple threads. This fact makes hard using
CPU and GPU together for solving a simulation. Also, sharing pro-
cessing between CPU and GPU may slow down the overall system
performance than using only GPU due data memory exchange.

In this section a new heterogeneous architecture using multiple
CPU cores and GPU for fluid and rigid body simulation is pre-
sented, allowing two-way fluid and rigid body interactions, mini-
mizing data exchange and concurrent data access during the simu-
lation.

5.1 Load balance strategy between CPU/GPU

Simulating fluid and rigid body require the execution of some or-
dered tasks. To allow for two-way interaction between them, data
interchanging between rigid body and fluid simulation stages is nec-
essary as can be seen by dashed lines in Figure 3. This dependency
may cause overall system performance degradation in case one of
these steps takes too long time to process data necessary by a depen-
dent stage. To minimize this, these tasks need to be well distributed
over GPU and CPU cores in an heterogeneous system, considering
the parallel GPU’s power over CPU.

Usually, fluid simulation archiving two-way rigid body interaction,
where rigid body is discretized into some sort of representation like
particles is made in GPU by performing operations like classifi-
cation and collision detection in all of these particles each frame
[Zhang et al. 2008; Zhang et al. 2007; Kurose and Takahashi 2009;
Harada 2007]. Considering for example, 400 rigid bodies dis-
cretized into 76 particles each, these operations need to be per-
formed for 30400 particles including the fluid’s particles, which
needs to be in a great number for obtaining correct numerical values
in SPH [Liu and Liu 2003].

Considering that in most scenes the fluid only occupies a small sub-
set of the world in relation to rigid bodies, some optimization can
be made to avoid the processing of all rigid body’s particles each
frame. This way, doing some sort of broad phase between rigid
bodies and fluid and between rigid bodies itself may eliminate the
processing of many particles or even the processing of some tasks,
as can be seen in Figure 4. This optimization can be made as rigid
body simulation only requires its center of mass integration, being

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 150

Figure 3: Stages necessary for performing fluid and rigid body
simulation and its dependency showed by the red lines.

its particles only used for collision detection and response. This
way, when any collisions occur between rigid bodies and fluid, the
simulations can be processed independently of each other. On the
other hand, in case of collision between them, only potential parti-
cles must take further processing for a more accurate collision and
response calculation.

Figure 4: Implemented model for fluid and rigid body simulation
with two-way interaction.

Figure 5 shows the workflow and tasks distribution between CPU
and GPU in the proposed environment. As can be seen, many of
these tasks are processed in GPU, due its capacity of execution in
parallel, except for the broad phase, which is processed in parallel
using multiple CPU cores during fluid’s particles spatial subdivi-
sion. As can be seen by this figure, some tasks may not be per-
formed according to results of the broad phase step. In this case,
the broad phase is an important process for performance increase,
as some tasks that may be avoided require a large amount of com-
putational effort.

5.2 Broad phase

There are the following possibilities during collision detection:
rigid body with fluid, rigid body with other rigid body only, and
rigid body with rigid body and also fluid. By detecting these types
of collision, the two-way interaction between rigid body and fluid
and its associated tasks can be performed only when they are nec-
essary.

For effectiveness, broad phase collision detection is made between
fluid and rigid bodies by using an axis aligned bounding box

Figure 5: Task distribution over GPU and CPU. Dashed blocks
represents fluid’s task while full blocks represents rigid body’s task.

(AABB) approach. For this, all the available CPU cores are used
through the OpenMP library, with allows CPU multithread pro-
gramming. During this, each CPU core is responsible for perform-
ing the collision detection in a subset of all rigid bodies in the scene
and the fluid’s volume using its bounding box. In case of collision,
a flag is checked in a flag array, indicating if this collision was with
a rigid body, fluid or both. For more clarity, this process is shown
in Figure 6, where the dashed blocks store the number of collisions
of each CPU core.

Figure 6: Performing broad phase using multiple CPU’s cores.
Rkbb represents the k-th rigid body’s bounding box. F flag repre-
sent fluid collision while R flag represents rigid body collision.

At the end of this process an array containing the potential rigid
body colliders and a flag array indicating with type of collision
has occurred is generated. Using these data, a position, offset and
count array is created independently for the ones that collided with
fluid and rigid body. These arrays are responsible to store the rigid
body’s relative particles position, the offset index for the starting
particle set of each rigid body’s in the position array and the parti-
cle number of each rigid body, respectively, as presented in Figure
7. Processing interaction between rigid bodies and fluid is only
necessary in this array set instead of all elements presented in the
simulation, as is commonly done.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 151

Figure 7: Data array generated after broad phase stage in CPU.
Rigid body’s particles that collide with fluids are stored indepen-
dently of the ones that collided with fluid.

5.3 Fluid and rigid bodies collision

After broad phase step, rigid bodies’ particles that collided with the
fluid and other rigid bodies are stored in two distinct arrays. For
narrow phase processing, these rigid bodies’ particles need to be
sorted using its own regular grid. As said before, three independent
regular grids are used for this step, these particles are classified us-
ing the dynamic rigid bodies’ regular grid.

First this classification is made for rigid bodies that may collided
with the fluid and forces between them are solved. After that the
classification is made based on the particles that collided with other
rigid bodies, processing the collision interaction forces. In both
steps, these particles need to be transformed from rigid body rela-
tive position to global position. This is done during classification
through the use of rigid body’s center of mass position and orien-
tation. With these particles in global position, the collision is made
by using the mathematical sphere equation

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2, (11)

which informs if collision occur and the depth of interpenetration.

5.4 External forces calculation

During fluid and rigid body simulation, external forces coming
from collision as well the ones caused by gravity is computed. Also,
as shown above, the two-way coupling between rigid body and fluid
is only computed for the rigid body’s particles that had collided in
the broad phase step, allowing the fluid to continue its own process-
ing in case any collisions occur.

These forces are calculated using the discrete elements method
(DEM), which is used for simulate granular materials [Mishra
2003] like sands. The repulsive force fij , acting on particle i
through interaction with particle j is computed using a spring force
fi,s

fi,s = −k(trad − |rij |)
rij
|rij |

, (12)

and a damping force fi,d

fi,d = ηvij , (13)

where k is the spring coefficient, η is the damping coefficient, rij ,
vij and trad represents the relative distance, relative velocity and i
and j radius sum, respectively.

The forces generated during particles interaction need to obey third
Newton’s law, which states that for every action there is a reac-
tion of the same magnitude but with opposite direction. So, the
same approach presented here is used for fluid/rigid body and rigid
body/rigid body interaction, storing each force in its respective par-
ticle.

5.5 Integration

After fluid and rigid body particles forces are computed, it is neces-
sary to integrate these forces to compute the acceleration, velocity
and position. In this paper, the explicit Eulerian approach is used
for.

For fluid’s particles, the internal and external forces previously
computed are integrated for each particle, and its velocity and posi-
tion variation is calculated.

For rigid bodies, another approach must be taken. Rigid bodies are
discretized into a set of particle for performing collision. During
collision, each particle stores its external force and torque amount
coming from interaction with other particles. At the end, particle’s
forces and torque are added and the resulting force and torque ap-
plied directly in the rigid body’s center of mass. In this work this is
performing by using a scan operation [Harris et al. 2007] in GPU.
However as rigid body’s particles forces and torques are stored in
a unique array, scan would add all forces from all rigid body’s par-
ticles that had collided. To solve this, a segmented scan operation
[Sengupta et al. 2007] is used instead scan. The segmented scan
employs an auxiliary array indicating the starting of each segment
in the array to be processed, doing the addition over all particles
from different subsets of the whole array. This processing is done
using the CUDPP library, which implements the most common op-
erations in GPU using CUDA. Unfortunately, the kernel for seg-
mented scan operation only enables primitive data as float and inte-
ger; so a modification in this library was made for allowing vector
structure, as the one used for storing particle’s forces. With this
modification, doing a back warded inclusive segmented scan make
the segment addition, storing its results in the first element of the
segment, which result can be applied in the rigid body’s center of
mass.

6 Results

This section presents the results of the heterogeneous multi core
CPU and GPU processing. For these tests, a PC equipped with an
Intel Core 2 Quad Q6600 using 4 GB of RAM and a NVidia 9600
GT with 512 DDRAM was used.

For each simulation, a number of different configuration was used.
In all simulation, the teapot model discretized into 76 particles is
used and the amount of time are presented in seconds. Also, the
results is presented without time to rendering, as some approach
that can be used to increase it performance was not employed in
this work.

First, Table 1 shows the simulation of rigid body and fluid made in
CPU and GPU without considering interaction between them. In
the table, the column labeled FPS represents the frames per second
which measure a time necessary to update and render the simula-
tion. As the graph in Figure 8 shows, increasing the number of
fluid’s particles causes almost an exponential increasing of time to
process the simulation. On the other hand, increasing the number of
rigid bodies makes almost a more linear increase in time to process
the simulation.

Figure 8: Graph of rigid body and fluid simulation without inter-
action in CPU and GPU.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 152

Table 1: Result of fluid and rigid body simulation without interaction between them. RB: number of rigid bodies; CRP: total of rigid body’s
particles; CF: total of fluid’s particles; TPS: total of particle’s system.

GPU CPU
CF RB CRP TPS FPS Time FPS Time Speedup

4096 200 15200 19296 57,4 0,0174 1,6 0,6028 35,87
4096 400 30400 34496 50,2 0,0199 0,9 1,0941 55,77
8192 200 15200 23392 27,7 0,0361 1,2 0,8045 23,08
8192 400 30400 38592 25,1 0,0397 0,7 1,3158 35,85

Using the new architecture of heterogeneous multi core CPU and
GPU for processing fluid and rigid body simulation with two-way
interaction between them is presented in Table 2 and its graph in
Figure 9. As can be seen, the exponential increase time due fluid’s
particles increase was preserved in the new architecture but the
overall system performance reach a speedup over two in relation
GPU bound, as show in Table 3.

Figure 9: Graph of rigid body and fluid simulation with two-way
interaction in CPU, GPU and heterogeneous (GPU e CPU) system.

Table 3: Overall system increase using the heterogeneous architec-
ture of multiple CPU cores and GPU over GPU bound. RB: number
of rigid bodies; CRP: total of rigid body’s particles; CF: total of
fluid’s particles; TPS: total of system’s particles.

CF RB CRP TPS GPU Het. Speedup
FPS FPS

4096 200 15200 19296 29,5 53,4 1,81
4096 400 30400 34496 22,0 52,6 2,39
8192 200 15200 23392 19,7 28,2 1,43
8192 400 30400 38592 14,9 27,6 1,85

7 Conclusions and future works

As presented the simulation of fluid and rigid bodies using a het-
erogeneous system of multicore CPU and GPU over a GPU bound
system increase the system performance almost in 60% during the
simulation. It’s due the fact that many complex and time consuming
tasks can be avoided during the simulation processing using a broad
phase step as done in this work. In this case, only rigid body that
potentially collided with fluid and/or other rigid bodies needs fur-
ther processing, performing two-way between fluid and rigid bodies
only in the required one. In most cases these number is very low
when compared with the amount of rigid bodies in the scene.

According to the results presented in this section, the proposed ar-
chitecture can be extended to enable the use of multiple CUDA
kernels using the new FERMI GPUs, which allows for more than
one kernel to be executed at the same time. In this case, one kernel
can be used to process fluid simulation and another one to process
rigid body simulation at same time, processing interaction between
them only when necessary. Also, the architecture of heterogeneous
system can be extended to support a cluster of GPUs, allowing even
more fluid’s particles and rigid bodies to be processed in real time.

Using the rigid body’s discretization in this work and the multi-

ple regular grids, level of detail for processing rigid body collision
could be used. In this case, rigid bodies which are in the simulation
focus uses a large number of small particles to better perform col-
lision detection and response, while rigid bodies that are not in the
simulation focus can use fewer number of big particles to increase
the simulation performance during the narrow phase processing.

Due the fact that rigid bodies are discretized into a set of particles,
the simulation can be extended for simulating deformable models.
Also rigid body melting and solidification can be implemented, al-
lowing them coupling with fluid during these phase transition.

Visualization of fluid’s free surface is also being developed, instead
of using a collection of spheres, as shown by this work. The visu-
alization will be presented using a point splat method.

8 Acknowledgements

The author thank all the Computation Institute at Federal Flumi-
nense University for their support. Financial support from CAPES
is acknowledged.

References

ARASH, O. E., GÈNEVAUX, O., HABIBI, A., AND MICHEL DIS-
CHLER, J. 2003. Simulating fluid-solid interaction. In in Graph-
ics Interface, 31–38.

COHEN, J. M., TARIQ, S., AND GREEN, S. 2010. Interac-
tive fluid-particle simulation using translating eulerian grids. In
I3D ’10: Proceedings of the 2010 ACM SIGGRAPH symposium
on Interactive 3D Graphics and Games, ACM, New York, NY,
USA, 15–22.

DA SILVA JUNIOR, J. R. 2010. Simulação computacional em
tempo real de fluidos utilizando o método SPH em ambiente het-
erogêneo CPU/GPU. Master’s thesis, Universidade Federal Flu-
minense.

DESBRUN, M., AND PAULE GASCUEL, M. 1996. Smoothed par-
ticles: A new paradigm for animating highly deformable bod-
ies. In In Computer Animation and Simulation ı́96 (Proceedings
of EG Workshop on Animation and Simulation, Springer-Verlag,
61–76.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Ani-
mation and rendering of complex water surfaces. ACM Trans.
Graph. 21, 3, 736–744.

EVERITT, C. 2001. Interactive order-independent transparency.
Tech. rep., NVidia Corporation.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liq-
uids. In SIGGRAPH ’01: Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques, ACM,
New York, NY, USA, 23–30.

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of
liquids. Graph. Models Image Process. 58, 5, 471–483.

FOSTER, N., AND METAXAS, D. 1997. Modeling the motion of a
hot, turbulent gas. In SIGGRAPH ’97: Proceedings of the 24th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 181–188.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 153

Table 2: Result of fluid and rigid body simulation with two-way interaction between them. RB: number of rigid bodies; CRP: total of rigid
body’s particles; CF: total of fluid’s particles; TPS: total of particle’s system.

GPU CPU Heterogeneous (CPU and GPU)
CF RB CRP TPS FPS Time FPS Time FPS Time

4096 200 15200 19296 29,5 0,0339 1,6 0,6028 53,4 0,0187
4096 400 30400 34496 22,0 0,0455 0,9 1,0941 52,6 0,0190
8192 200 15200 23392 19,7 0,0508 1,2 0,8045 28,2 0,0355
8192 400 30400 38592 14,9 0,0672 0,7 1,3158 27,6 0,0363

GINGOLD, R. A., AND MONAGHAN, J. J. 1977. Smoothed par-
ticle hydrodynamics - theory and application to non-spherical
stars. In Royal Astronomical Society, Monthly Notices, vol. 181,
375–389.

HARADA, T. 2007. Real-time rigid body simulation on gpus. In
GPU Gems 3, H. Nguyen, Ed. Addison-Wesley, 611–631.

HARRIS, M., SENGUPTA, S., AND OWENS, J. D. 2007. Parallel
prefix sum (scan) with cuda. In GPU Gems 3, H. Nguyen, Ed.
Addison Wesley, Aug.

JOSELLI, M., ZAMITH, M., CLUA, E., MONTENEGRO, A.,
LEAL-TOLEDO, R., CONCI, A., PAGLIOSA, P., VALENTE, L.,
AND FEIJÓ, B. 2009. An adaptative game loop architecture with
automatic distribution of tasks between cpu and gpu. Comput.
Entertain. 7, 4, 1–15.

KIPFER, P., AND WESTERMANN, R. 2006. Realistic and interac-
tive simulation of rivers. In GI ’06: Proceedings of Graphics In-
terface 2006, Canadian Information Processing Society, Toronto,
Ont., Canada, Canada, 41–48.

KUROSE, S., AND TAKAHASHI, S. 2009. Constraint-based simu-
lation of interactions between fluids and unconstrained rigid bod-
ies. In Proceedings of Spring Conference on Computer Graph-
ics, 197–204.

LIU, G. R., AND LIU, M. B. 2003. Smoothed Particle Hydrody-
namics: A Meshfree Particle Method; electronic version. World
Scientific, Singapore.

LUCY, L. B. 1977. A numerical approach to the testing of the
fission hypothesis. In Astronomical Journal, vol. 82, 1013–1024.

MISHRA, B. K. 2003. A review of computer simulation of tum-
bling mills by dem part i - contact mechanics. In International
Journal of Mineral Processing, Vol. 71(1-4), 73–93.

MONAGHAN, J. J. 1992. Smoothed particle hydrodynamics. In
Annual review of astronomy and astrophysics. Vol. 30, 543–574.

MOORE, M., AND WILHELMS, J. 1988. Collision detection and
response for computer animationr3. In SIGGRAPH ’88: Pro-
ceedings of the 15th annual conference on Computer graphics
and interactive techniques, ACM, New York, NY, USA, 289–
298.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In SCA ’03:
Proceedings of the 2003 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 154–159.

MÜLLER, M., SCHIRM, S., TESCHNER, M., HEIDELBERGER,
B., AND GROSS, M. 2004. Interaction of fluids with deformable
solids. Comput. Animat. Virtual Worlds 15, 3-4, 159–171.

REEVES, W. T. 1983. Particle systems—a technique for modeling
a class of fuzzy objects. ACM Trans. Graph. 2, 2, 91–108.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D.
2007. Scan primitives for gpu computing. In Graphics Hardware
2007, ACM, 97–106.

STAM, J. 1999. Stable fluids. In SIGGRAPH ’99: Proceedings
of the 26th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 121–128.

STORA, D., AGLIATI, P.-O., CANI, M.-P., NEYRET, F., AND
GASCUEL, J.-D. 1999. Animating lava flows. In Proceed-
ings of the 1999 conference on Graphics interface ’99, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 203–210.

TAKAHASHI, T., UEKI, H., KUNIMATSU, A., AND FUJII, H.
2002. The simulation of fluid-rigid body interaction. In SIG-
GRAPH ’02: ACM SIGGRAPH 2002 conference abstracts and
applications, ACM, New York, NY, USA, 266–266.

TRAPP, M., AND DÖLLNER, J. 2008. Real-time volumetric tests
using layered depth images. In Eurographics 2008, The Euro-
graphics Association, 235–238.

ZHANG, Y., SOLENTHALER, B., AND PAJAROLA, R. 2007.
Gpu accelerated sph particle simulation and rendering. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 posters, ACM, New York,
NY, USA, 9.

ZHANG, Y., SOLENTHALER, B., AND PAJAROLA, R. 2008. Adap-
tive sampling and rendering of fluids on the gpu. In Eurograph-
ics/IEEE VGTC Symposium on Point-Based Graphics, 137–146.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 154

