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The GW Method

Solve Dyson’s equation: [
−1

2
∇2 + Vloc + Σ(En)

]
φn = Enφn, (1)

Σ(En) → self-energy (non-Hermitian, non-local, energy-dependent operator)

I Perturbative expansion on the screened Coulomb interaction W

I First approximation Σ = iGW

I W obtained from Inverse Dielectric Matrix ε−1 of the system

In BerkeleyGW [1]:

I Epsilon code → Compute ε−1

I Sigma code → Compute W from ε−1 and solve eq.1

Epsilon code: Inverse Dielectric Matrix ε−1

Input: ψmk, εmk, {q-points}, {ωi}
1. Calculate plane-waves matrix elements (FFT’s): O(NvNcNG logNG)

MG
jak(q) = 〈ψjk+q| e i(G+q)·r |ψak〉

2. Calculate RPA polarizability (Matrix-Multiplication): O(NωNvNcN
2
G)

χ(q, ωi) = M(q)†∆jak(εjk, εak,q, ωi)M(q)

∆ diagonal matrix containing the frequency dependence

3. Dielectric matrix ε and inversion: O(NωN
3
G)

εGG ′(q, ωi) = δGG ′ − v(q + G)χGG ′(q, ωi)

ε−1(q, ωi) = (I − vχ(q, ωi))−1

Parameters: Nv number of valence bands, Nc number of conduction (empty) bands, NG PW basis set size, Nω number of frequencies.

Static Subspace Approximation [2]: Speed-Up the Calculation of ε−1(ωi) for ωi 6= 0

I For ωi = 0: Standard calculation of χ̄(0) = v
1
2χ(0)v

1
2

χ(0) = M†∆jak(0)M

Eigendecomposition χ̄(0) = C0†xC0, define C0
s according to threshold teigen

I Projection of M into the subspace spanned by C0
s

M
0
s = Mv

1
2C0

s

I For ωi 6= 0: direct computation of χ̄s(ωi)

χ̄s(ωi) = M
0
s

†
∆jak(ωi)M

0
s

I Final evaluation of ε−1(ωi) from χ̄s(ωi)

Execution Memory

Matrix Element O(NvNcNG logNG) O(NvNcNG)

Polarizability ω = 0 O(NvNcN
2
G) O(N2

G)

Eigendecomposition: C0
s O(N3

G) O(N2
G)

M
0
s O(NbNvNcNG) O(NvNcNb)

Polarizability ω 6= 0 O(NωNvNcN
2
b) O(NωN

2
b)

Inversion O(NωN
3
b) O(NωN

2
b)

I/O O(NGNb + NωN
2
b) O(NGNb + NωN

2
b)

Evaluation of ε−1(ωi) O(NωNbN
2
G) O(NωN

2
G)
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Benchmark Calculations

Silicon Carbide (β−SiC):

(a) (b) (c)

Figure: (a) band structure as obtained without (solid blue) and with the static subspace approximation (red dotted
teig = 0.01); (b) mean absolute error between the reference and approximate results (196 EQP calculated); (c)
percentage reduction in time to solution (red) and number of eigenvectors (blue) for the evaluation of ε−1.

Single Vacancy V 0
1 (1000-Si Atoms Benchmark)

∆E v ∆E g ∆E c ∆E Si #Nodes Time (min)

LDA 0.29 0.07 0.23 0.60 - -

G0W0 (6Ry) 0.41 0.27 0.46 1.15 480 73

G0W0 (12Ry) 0.42 0.26 0.49 1.18 2048 157

Energies in eV

G0W0 = Full-Frequency Contour Deformation

Calculations Performed on Edison@NERSC (CRAY-XC30)

I Approximation tested for Insulators, Semiconductors, Metals, Clusters, Slabs

I Direct correlation between accuracy and teigen (5-25% of the eigenstates →∼ 1 meV accuracy)

Sigma code: Calculate Σlm(ω) and Solve Dyson’s Equation

1. Calculate plane-waves matrix elements (FFT’s): O(NΣNnNG logNG)

M−Gnm = 〈φn| e−iG·r |φm〉
2. For any given pair of orbital functions {φl , φm} calculate:

Σlm(E ) =
i

2π

∫ ∞
0

dω
∑
n

∑
GG ′

M−Gnl

ε−1
GG ′(ω) · v(G ′)

E − En − ω
M−G

′

nm

Matrix-Multiplication + 2D Dot-Product O(NΣNωNnN
2
G)

Parallelization Strategy

Σlm(ω) matrix elements distributed over Pools of processes. For each Pool:

Data distribution layout

NG ' 105 ; Nn ' 104 ; NE ' 102

I Left Matrix: ε−1(ω) distributed over rows (NG ×Nω combined index)

I Right Matrix: MG
nl distributed over columns (FFT performed locally)

I At each cycle the matrix contraction is performed locally (ZGEMM)

I Ring communication restricted to contiguous MPI tasks

Non-blocking cyclic communication layout

I Communication can be performed over blocks of processes:
I Nn′′ size roughly constant independent on the ration OMP×MPI
I Good ZGEMM performance independent on the number of MPI

tasks employed

Same algorithm is used in the low-rank approximation case: matrix size NG → Nb

I Speed-up proportional to (NG/Nb)2

I Good performance achieved by using smaller pool sizes

Performance Measurement on Cori-KNL@NERSC

Systems: Divacancy states in Silicon supercells containing 998 and 1726 atoms.

I FLOPs per node

I Best/worst performing node

I Strong Scaling

I Time to solution

I Comparison to peak performance

Single Pool Performance: 200 KNL Nodes

(a) (b) (c)

(a) Poor performance due to small Comput./Commun. ratio (different OMPxMPI ratio, no
message blocking) (b) Improved performance for 64-OMPxMPI by using different processes block
size (c) Different OMPxMPI ratio and process block size adjusted to give roughly constant n′′.

Strong Scaling: Individual Pool and Full Sigma

(d) (e)

(a) Individual Pool scaling, total execution (red squares) and computationally intense part (blue
circles), (b) Full Sigma, 200-NKL nodes per Pool.

Full Sigma: Best Performance

998 Si 1726 Si

Number KNL Nodes 9600 9500

Number of Cores 633,600 627,000

Number Eqp Evaluated 48 38

Time to solution (s) 160 201

PetaFLOP/s 11.8 11.3

% Peak Performance 47 46

I Sigma kernel capable to scale to full-Cori

I Sigma achieves high fraction of peak performance

I Excellent time to solution (∼100 seconds) for systems made of thousands of atoms
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