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ABSTRACT

The accurate determination of excitation spectra of materials, such as the electronic band gap, is
critical for the design of novel devices, including photovoltaics, transistors, ba�eries, and LEDs. Many-
body perturbation-theory methods, and the ab initio GW approach [7, 8] in particular, have emerged
over the last decades as the gold standard for computing these quantities.[9] However, the ab initio
GW formalism is o�en limited to systems of at most 100 atoms due to its computational complexity.
For this reason, it is important to show that, through the use of novel algorithms and an optimal
HPC implementation, GW calculations containing 1000’s of atoms are achievable on leadership-class
HPC systems, such as the Cori system[2], a Cray XC40, Xeon-Phi powered system, at NERSC[10].
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We demonstrate this capability in this poster utilizing a highly-tuned version of the BerkeleyGW
so�ware package[1, 4] for the Cori system.
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(b)

Figure 1: For the BerkeleyGW-sigma code
shown are (a) the performance per node
measured as a function of the ratios of
OpenMP threads and MPI tasks employ-
ing a total of 200 nodes and (b) the parallel
speed-up with respect to 200 nodes.

In particular we show that th GW approach, within a traditional sum-over-states framework,
is well suited for exascale and pre-exascale HPC systems. The version of BerkeleyGW that we
optimized is capable of scaling well to the full-Cori system at NERSC, using a high fraction of peak
performance (> 11 PFLOPs) and achieving excellent time to solution (see figure 1). Additionally,
there are multiple orders of magnitude more parallelism to exploit at the system level, node level
and vector level. The ability to compute at near peak system performance ultimately derives from
the fact that we can and have cast the computationally intense work at the node level as large
ZGEMM operations. Optimal performance additionally required a new communication scheme that
replaced MPI BCAST and MPI REDUCE statements with a ring-based (nearest neighbor) communication
scheme that additionally allows overlaping with computation. Time to solution can be further reduced
by approximations that reduce the plane-wave basis size, via low-rank approximations,[11–14] and
compress the empty-orbital space required for summations.[3, 5, 6] The combination of methodological
improvements as well as many-core HPC optimization allow us to perform large-scale GW calculations
without sacrificing accuracy or convergence. We expect GW calculations to continue to grow in use
as exascale-like systems with many-core processors and GPU acceleration gain traction, and as
physicists and material scientists turn their a�ention to the study of novel materials requiring the use
of methods that are more accurate and predictive for excitation spectra.
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